
Citation: Shinde, A.; Shahra, E.Q.;

Basurra, S.; Saeed, F.; AlSewari, A.A.;

Jabbar, W.A. SMS Scam Detection

Application Based on Optical

Character Recognition for Image Data

Using Unsupervised and Deep

Semi-Supervised Learning. Sensors

2024, 24, 6084. https://doi.org/

10.3390/s24186084

Academic Editor: Adrian Barbu

Received: 8 August 2024

Revised: 11 September 2024

Accepted: 16 September 2024

Published: 20 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SMS Scam Detection Application Based on Optical Character
Recognition for Image Data Using Unsupervised and Deep
Semi-Supervised Learning
Anjali Shinde, Essa Q. Shahra * , Shadi Basurra, Faisal Saeed , Abdulrahman A. AlSewari and Waheb A. Jabbar *

Faculty of Computing, Engineering and Built Environment, Birmingham City University,
Birmingham B4 7RQ, UK; anjali.shinde@mail.bcu.ac.uk (A.S.); shadi.basurra@bcu.ac.uk (S.B.);
faisal.saeed@bcu.ac.uk (F.S.); rahman.alsewari@bcu.ac.uk (A.A.A.)
* Correspondence: essa.shahra@bcu.ac.uk (E.Q.S.); waheb.abdullah@bcu.ac.uk (W.A.J.)

Abstract: The growing problem of unsolicited text messages (smishing) and data irregularities neces-
sitates stronger spam detection solutions. This paper explores the development of a sophisticated
model designed to identify smishing messages by understanding the complex relationships among
words, images, and context-specific factors, areas that remain underexplored in existing research. To
address this, we merge a UCI spam dataset of regular text messages with real-world spam data, lever-
aging OCR technology for comprehensive analysis. The study employs a combination of traditional
machine learning models, including K-means, Non-Negative Matrix Factorization, and Gaussian Mix-
ture Models, along with feature extraction techniques such as TF_IDF and PCA. Additionally, deep
learning models like RNN-Flatten, LSTM, and Bi-LSTM are utilized. The selection of these models is
driven by their complementary strengths in capturing both the linear and non-linear relationships
inherent in smishing messages. Machine learning models are chosen for their efficiency in handling
structured text data, while deep learning models are selected for their superior ability to capture
sequential dependencies and contextual nuances. The performance of these models is rigorously
evaluated using metrics like accuracy, precision, recall, and F1 score, enabling a comparative analysis
between the machine learning and deep learning approaches. Notably, the K-means feature extraction
with vectorizer achieved 91.01% accuracy, and the KNN-Flatten model reached 94.13% accuracy,
emerging as the top performer. The rationale behind highlighting these models is their potential to
significantly improve smishing detection rates. For instance, the high accuracy of the KNN-Flatten
model suggests its applicability in real-time spam detection systems, but its computational complexity
might limit scalability in large-scale deployments. Similarly, while K-means with vectorizer excels in
accuracy, it may struggle with the dynamic and evolving nature of smishing attacks, necessitating
continual retraining.

Keywords: unsupervised machine learning; deep learning semi supervised; feature ex-traction;
smishing message

1. Introduction

Smishing, a portmanteau of SMS and phishing, represents a rapidly escalating mobile
security threat [1]. where attackers use text messages to deceive users by including email
IDs, website links, or phone numbers to extract sensitive information or lure victims with
fraudulent offers [2]. Unlike traditional email phishing, smishing leverages the ubiquity and
immediacy of SMS, making it a particularly effective and dangerous attack vector [3]. The
low cost of bulk SMS packages further incentivizes attackers, enabling them to launch large-
scale smishing campaigns with minimal investment [4]. The urgency of addressing this
threat is underscored by recent scams related to COVID-19, insurance, food deliveries, and
government programs, which have resulted in significant financial losses, as reported by
UK Finance [5]. The detection of SMS spam primarily involves a binary classification task,

Sensors 2024, 24, 6084. https://doi.org/10.3390/s24186084 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24186084
https://doi.org/10.3390/s24186084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3668-6230
https://orcid.org/0000-0002-2822-1708
https://orcid.org/0000-0002-7802-6628
https://orcid.org/0000-0001-5164-8403
https://doi.org/10.3390/s24186084
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24186084?type=check_update&version=3


Sensors 2024, 24, 6084 2 of 19

where messages are labeled as either ’spam’ or ’ham’ [6]. However, the rapidly evolving
tactics employed by smishers complicate this task, necessitating continuous updates to
detection methods [7]. While various techniques have been proposed for classifying SMS
messages, including supervised learning models [8], these approaches often struggle to
keep pace with the dynamic nature of smishing [9]. The need for constant retraining and
the reliance on labeled data are significant drawbacks, particularly in real-world scenarios
where new and evolving threats emerge regularly.

Existing literature on SMS spam detection has predominantly focused on supervised
learning approaches, where labeled datasets are used to train models to differentiate between
spam and legitimate messages [10]. Techniques such as Support Vector Machines (SVM), Naive
Bayes [11], and Random Forests [12] have been extensively explored and have shown promise
in detecting smishing attacks. For instance, Abayomi-Alli et al. [13] provided a comprehensive
review of machine learning models used for SMS spam detection, highlighting their strengths
and limitations. However, these models often require large, labeled datasets, which are not
always available, and they may struggle to adapt to new types of smishing messages that
differ from those seen during training. Recent research has begun to explore unsupervised and
semi-supervised learning techniques as alternatives to traditional supervised methods [14].
These approaches do not rely on labeled data, making them well-suited for detecting new and
previously unseen smishing attacks [15,16]. Unsupervised learning, in particular, offers the
advantage of identifying anomalies in data without the need for extensive labeling, which is
both time-consuming and costly [17]. Clustering algorithms, such as K-means and Gaussian
Mixture Models [18], have shown potential in this area by grouping similar messages
together and flagging outliers as potential spam. Rokach and Maimon [19] discussed the
potential of clustering techniques in detecting unknown patterns in data, which is crucial
for adapting to the ever-changing landscape of smishing.

Semi-supervised learning, which leverages a small amount of labeled data alongside a
larger pool of unlabeled data, has also gained traction in recent years [20]. This approach
strikes a balance between the robustness of supervised learning and the flexibility of unsu-
pervised methods, making it particularly effective in scenarios where labeled data is scarce.
Mansoor et al. [21] emphasized the need for semi-supervised methods in spam detection,
noting their ability to improve model performance while reducing the dependency on
labeled data. Despite these advancements, there remains a significant gap in the litera-
ture regarding the application of unsupervised and semi-supervised learning techniques
specifically for smishing detection. While some studies have explored these methods in
the context of general spam detection, few have focused on the unique challenges posed
by smishing, such as the integration of contextual information and the detection of highly
targeted attacks.

This paper aims to address these gaps by developing an AI model that leverages
unsupervised and deep semi-supervised learning to detect and classify SMS messages into
’ham’ and ’spam’ categories. The rationale for choosing these methods lies in their ability to
adapt to the evolving nature of smishing attacks without the need for constant retraining
or large labeled datasets. Unsupervised learning techniques, such as clustering, allow the
model to identify novel smishing patterns, while semi-supervised approaches enable the
incorporation of limited labeled data to refine the model’s accuracy.

The proposed approach not only aligns with but also advances the current state of
research by focusing on the practical application of these methods in real-world scenarios.
By addressing the limitations of traditional supervised models, our work offers a more
adaptable and scalable solution to the problem of smishing detection. The structure of this
paper is as follows: Section 2 presents the most recent related work, Section 3 explains the
feature extraction, Section 4 explains the methodology applied, Section 5 elaborates on the
results from all AI models, Section 6 shows the real-time detection and finally, Section 7
concludes the work and outlines the new directions for future research.



Sensors 2024, 24, 6084 3 of 19

2. Related Works

The advent of smartphones has transformed communication, and the detection of SMS
spam has emerged as a critical area of research. Researchers have turned to machine learn-
ing and data mining to develop effective spam filtering methods, essential for bolstering
text message security and usability. Deep learning and regular expressions were employed
in [22] to detect smishing messages within the UCI dataset [23]. Various preprocessing
techniques, such as stemming, word stopping, and punctuation removal using regex, were
applied for feature extraction. The classifier included traditional methods like multino-
mial NB, SVM, and RF, as well as LSTM variants for deep learning. Notably, the stacked
Bi-LSTM achieved the highest accuracy, surpassing others with scores of 98.8% and 99.09%.
In [24], SMS spam detection was examined using two datasets, with different classifiers
and preprocessing techniques tested. The CNN classifier achieved the highest accuracy,
reaching 99.19% and 98.25% accuracy for the two datasets. Authors in [25] conducted a
UCI dataset study using a one-class SVM for SMS spam detection, a novel approach that
outperformed traditional methods. It served as an anomaly detector, even without labeled
SMS data, achieving an overall accuracy of 98%, with 100% SMS spam detection and a 3%
false positive rate. In [26], a machine learning approach for SMS spam detection focused on
feature extraction and evaluation, leveraging features derived from spam and legitimate
message characteristics to train an averaged neural network model. This method delivered
outstanding results on the UCI dataset, boasting an accuracy of 98.8% and an F-measure of
99.29%. Weka and RapidMiner were applied for spam detection on the UCI dataset in [27].
Weka SVM achieved 99.3% accuracy in just 1.54 s, while K-Means excelled in clustering
with a 2.7 s runtime. RapidMiner SVM achieved 96.64% accuracy in 21 s, with K-Means
taking 37.0 s for results. In [28], an intention-based SMS spam filtering method was devel-
oped, emphasizing dynamic keyword semantics. The model, which utilized 13 predefined
intention labels, contextual embeddings, and supervised learning classifiers, achieved an
impressive 98.07% accuracy, along with 0.97% precision and recall. The study by [29]
introduced Text Augmentation for Model Improvement (TAMS) for addressing imbalanced
textual data classification. TAMS employed text augmentation by replacing words with
synonyms to create semantically similar messages, significantly enhancing classification
accuracy. The bidirectional LSTM (Bi-LSTM) classifier achieved a high accuracy of 93.34%
and an impressive F1-score of 94.18%. In [30], the UCI spam dataset was evaluated using
three algorithms: back propagation neural network, naive Bayes, and decision tree. Prepro-
cessing steps, including converting text to lowercase, removing punctuation and unique
strings, stemming, and tokenization, were applied. The neural network identified the
top seven smishing SMS features, achieving a final accuracy of 97.40%. The study by [31]
introduced the discrete-hidden Markov model for efficient spam detection, achieving an
impressive 95.9% accuracy. This model, unlike deep learning methods, is not language-
specific and performs well on both Chinese and English datasets. In [32], the Gini Index
metric was employed to investigate the ANN-SCG method for content-based spam SMS
filtering. Experiments showcased ANN-SCG’s ability to effectively filter over a hundred
spam SMS attributes swiftly, reducing memory usage. The research, which utilized datasets
like DIT SMS Spam, Spam Messages Collection, and British English SMS, revealed the
method’s high efficacy, achieving 99.1% accuracy in spam message filtering using just one
hundred features. In [33], a combination of machine learning (NB, LR, RF, GB, SGD) and
deep learning (CNN, LSTM) methods were introduced for spam filtering using UCI spam
datasets. The CNN achieved a remarkable 99.44% accuracy, though the study was focused
exclusively on English text messages.

Summarizing the reviewed papers, as presented in Table 1, the majority of the research
focuses on supervised and deep learning algorithms, with limited exploration of unsu-
pervised learning models. Consequently, our study aims to investigate the performance
of unsupervised and deep semi-supervised models and their applicability in real-world
scenarios, addressing the challenge of obtaining labeled data for training.



Sensors 2024, 24, 6084 4 of 19

Table 1. Literature review summary.

Author Methods Dataset Advantages Challenges Preprocessing Techniques

[22]

Multinomial NB,
SVM, and RF, LSTM,

Stacked LTSM,
Bi-LSTM, and

stacked Bi-LSTM

Stacked Bi-LSTM
98.8% and 99.09%
(with and without

regex)
UCI dataset stemming, stopwords

removal, regex

[24]
DT, SVM, NB, LR,
AdaBoost, ANN,

CNN, RF
CNN 99.19%, 98.25% Two different

Spam SMS Dataset Tf_IDF, Tokenizer

[25] One class SVM One class SVM 98% UCI dataset TF_IDF, bag-of-words

[26]

content-based
features using

averaged neural
networks

Neural Network
Algorithm 98% UCI dataset

C# framework for feature
extraction like urls,

punctuation, emoji etcs.

[27] Classification and
Clustering

For classification,
SVM is best and

for clustering,
the K-Means

algorithm is best

Weka SVM 99.3%
in 1.54 s, K-Means
2.7 s, RapidMiner

SVM 96.64% in
21 s, K-Means in

37.0 s.

UCI dataset Tokenization, Stop word
removal

[28] Decision tree, SVM,
Random forest

DistilBERT +
SVM 98.07%

Grumble Text
Website, NUS SMS

Corpus (NSC),
Caroline Tag’s
Ph.D. Thesis,

Spam SMS Corpus
v.0.1 Big

BERT, DistillBERT,
RoBERT, SpanBERT, NLP,

Cosine Similarity
Measures

[29] RF, Bi-LSTM Bi-LSTM 93.34% UCI spam dataset

TAMS, Text Augumented
Most similar synonymns,
Word2Vec, stop words,

Duplicate removal,

[30] Back Propogation
NN, NB, DT

Back
Propogation NN 97.40% UCI spam dataset

stemming, tokenization,
and feature extraction for

seven best features
through NN.

[31] Hidden Markov
model (HMM) HMM 95.90% UCI spam dataset

Stop words removal,
punctuation to
original words

[32]
ANN, Scaled

Conjugate Gradient
Algorithm

ANN 99.10%

Datasets contain
SMS spam, DIT

spam, British
language

Feature abstraction,
replacement of similar
words, tokenization,

stemming, Lowercase
conversion

[33]
NB,LR, CNN, LSTM,

RF, The boosted
Gradient,

CNN 99.44% UCI spam dataset Feature extraction

3. Feature Generation

In the realm of machine learning and artificial intelligence projects, the initial steps are
pivotal for the success of model implementations [34]. The process of Optical Character
Recognition (OCR) begins with capturing visual data using cameras or scanners, which act
as sensing devices to detect and digitize the textual content embedded within images [35].
These sensors convert the physical properties of light and color into digital signals that



Sensors 2024, 24, 6084 5 of 19

represent the visual patterns of the text [36]. Once the data is captured, OCR technology pro-
cesses the image, identifying and converting the detected text into machine-readable format.
This foundational step is crucial, as it enables the system to transform raw image data into
usable text for further analysis, such as spam detection in our proposed application. These
early stages encompass data cleaning, preprocessing [37], and feature engineering [38].
Data cleaning involves the removal of extraneous elements, such as stop words, numbers,
and spaces, from the raw data. Preprocessing is the phase where data is transformed and
standardized to make it suitable for modeling. Finally, feature engineering entails creating
essential features and evaluating their impact on model outcomes. These steps collectively
lay the foundation for robust and accurate machine learning models. As illustrated in
Figure 1, our research places a strong emphasis on these initial steps, recognizing them as
the cornerstone in determining the ultimate success of each model implementation.

Figure 1. A Hierarchical framework for feature generation in the context of the proposed SMS fraud
detection system

3.1. Dataset

In contrast to previous studies that have primarily relied on the UCI SMS spam
dataset, our research took a novel approach by collecting real user-reported spam messages
captured as screenshot images using scanners. These scanned images, sourced from online
platforms, were stored locally and provided a diverse and realistic dataset for our analysis.
The spam messages varied in content and origin, offering a rich resource for evaluating
our models. For classification, we organized the SMS spam into three distinct categories:
those containing an email ID, messages with a website link, and messages that included a
phone number, as visually represented in the dataset in Figure 2. To transform these image-
based messages into machine-readable text, we harnessed OCR technology, leveraging the
Python-Tesseract library. OCR is a sophisticated tool that detects and converts text within
images into a format that computers can readily interpret. Notably, we used an open-source
OCR engine maintained by Google [39]. Subsequently, we merged this new dataset of
1500 SMS messages with the UCI SMS spam dataset, which contained 5574 messages,
culminating in a consolidated dataset of 7074 messages, as detailed in Table 2. This unified
dataset contains a collection of English SMS text messages with varying sentence lengths,
including both text and numerical content. Each record in the dataset is accompanied by a
label, where ‘1’ designates ‘ham’ (non-spam) and ‘0’ indicates ‘spam’. This dataset served as
the foundation for our model development and evaluation. For our unsupervised learning
experiments, we fed the data without labels into the models. In the case of semi-supervised
learning, we incorporated 10% of labeled data from the entire corpus of 5000 messages
sourced from the UCI spam dataset, along with 90% of the newly collected SMS data from
real-time users.



Sensors 2024, 24, 6084 6 of 19

Figure 2. Illustrative example of a simulated SMS containing an email address, hyperlink, and
contact number.

Table 2. Sample example of dataset.

Text Label

Hi, How are you. When are you planning to meet me 1

Congratulations on winning the prize of 2000. To stop receiving messages, type
stop www.morereplayport.co.uk, accessed on 8 August 2024 Customer Support
0987617205546

0

Good Morning. Can we discuss this issue after sometime instaed of now 1

Service announcement from BRP. You have received a BRP card. Please call
07046744435 right away to schedule delivery between 8 a.m. and 8 p.m. 0

3.2. Dataset Pre-Processing

Cleaning raw data is essential for spam detection, involving the removal of stop
words, numbers, spaces, and other irrelevant characters. We extract crucial features from
the cleaned data to enhance classification efficiency. Data collected from various sources is
often unsuitable and must be transformed into a usable format. Preprocessing starts by
converting text to lowercase, facilitating natural language processing (NLP) with tools like
NLTK. We utilize stopping and stemming techniques to eliminate uninformative words
and then remove punctuation using Python Regex. Tokenization breaks messages into
specific aspects, ready for classification models.

3.3. Feature Extraction

Feature extraction is crucial for spam detection, converting cleaned text into quantifi-
able features essential for machine learning [40]. We utilized two techniques for unsuper-
vised and semi-supervised models in our research.

3.3.1. Unsupervised: TF_IDF and PCA

TF_IDF: TF-IDF (term frequency-inverse document frequency) is a numerical metric
used in statistical data analysis to assess the importance of words in a corpus. It places
emphasis on both word frequency and meaning within the dataset. By reducing the
significance of less important terms, TF_IDF simplifies the process of building models and
helps in managing input dimensionality. The TF_IDF formula is expressed as:

Wi,j = t fi,j ∗log
N
d fi

(1)

where t fi,j is the number of occurrences of term i in document j, d fi is the number of
documents containing term i, N represents the total number of documents in the corpus,
and the TF component counts the variety of occurrences of a term within a specific doc-
ument. For example, in two instances of “Text1”, the word “part” has a TF value of 1.
The “DF” stands for document frequency, indicating the number of documents in the

www.morereplayport.co.uk


Sensors 2024, 24, 6084 7 of 19

corpus that include a specific term. For a corpus consisting of “Text1” and “Text2” with a
total of two documents, the document frequency of “part” is assessed. For a comprehensive
understanding of TF_IDF and its applications, please refer to Tables 3 and 4.

Table 3. TF_IDF example.

Text1 Natural Language Processing is a part of AI

Text2 Machine learning is a part of AI

Table 4. TF_IDF processed example.

Vocab AI Is Language Learning Machine Natural Of Part Process

Text1 1 1 0.317 0 0 0.317 1 1 0.317

Text2 1 1 0 0.354 0.354 0 1 1 0

PCA: PCA, a dimensionality reduction technique, simplifies datasets, while sparse
PCA, a machine-learning variant, extracts main features, especially in multivariate data,
by giving input features a sparse structure. It is used for reducing dimensionality while
avoiding constraints. Researchers, such as [41–43], have employed PCA to enhance SMS
spam detection by reducing feature dimensions.

3.3.2. Deep Semi-Supervised: Tokenization and Sequence and Padding

Tokenization: The TensorFlow Keras Tokenizer API streamlines text vectorization by
converting words into integers and creating integer or vector sequences. Punctuation is
removed, reducing the number of unique words from 4520 to 3461 during preprocessing,
eliminating unnecessary data for the model. Table 5 illustrates the transformation from text
to tokens.

Table 5. Tokenization example.

Before tokenizer me also da i fel yesterday night wait til day night dear
After tokenizer [29, 253, 319, 3, 384, 354, 200, 215, 355, 78, 200, 102]

Sequencing and padding: Sequencing involves arranging sentences in order and
representing them as sequences of numbers using the Tokenizer API’s texts_to_sequences()
for both training and test data. To ensure consistent input shapes for deep learning models,
pad_sequences() is used to make each sequence the same length. This padding can be
applied either “pre” or “post,” with a specified maximum length, such as max_len = 8.
In experiments, max_len = 25 can be applied for effective padding. Table 6 illustrates
sequencing and padding and Table 7 demonstrates pre and post padding.

Table 6. Sequencing and padding example.

Train_data yesterday night wait
til day night dear [354, 200, 215,

355, 78, 200, 102]

Test_data since when which side
any fever any vomitin [835, 85, 349,

3200, 120, 120]

Table 7. Pre and post padding example.

Encoded_train [216, 1085, 1086, 123, 1, 1633, 320, 1634, 3, 79, 385, 2, 90, 85, 3, 40, 47]

Padded_train_pre [0 0 0 0 0 0 0 0 216 1085 1086 123 1 1633 320 1634 3 79 385 2 90 85 3 40 47]
Padded_train_post [216 1085 1086 123 1 1633 320 1634 3 79 385 2 90 85 3 40 47 0 0 0 0 0 0 0 0]



Sensors 2024, 24, 6084 8 of 19

4. Proposed Work: Technical Implementation of Unsupervised and Deep
Semi-Supervised Models

In our proposed work, we implemented two distinct categories of models: unsuper-
vised learning models and deep semi-supervised learning models, each tailored for the
task of smishing detection.

4.1. Unsupervised Learning Models

Unsupervised learning is a method where models analyze and group unlabeled data,
identifying patterns and distinctions without the need for human intervention. This ap-
proach is particularly useful in scenarios where labeled data is scarce or unavailable, such
as in data exploration, customer insights, and image classification [44]. In our study, we em-
ployed three unsupervised models—K-Means, Non-negative Matrix Factorization (NMF),
and Gaussian Mixture Models (GMM)—to classify smishing messages. The implementation
is structured into three primary phases as illustrated in Figure 3:

1. Feature Generation: Features were extracted from the text messages using techniques
like TF_IDF (Term Frequency-Inverse Document Frequency) and PCA (Principal
Component Analysis) to capture the most relevant textual information and reduce
dimensionality.

2. Machine Learning Algorithm: In this phase, the K-Means algorithm was used to parti-
tion the data into clusters based on message similarity, while NMF provided a linear
combination of non-negative features, and GMM modeled the data’s distribution
using multiple Gaussian distributions.

3. Message Classification: Each model classified messages as either spam or ham, based
on the patterns identified during the clustering process. The performance of these
models was evaluated using precision, accuracy, recall, and F1-score, providing a
comprehensive assessment of their effectiveness in smishing detection.

Figure 3. Classification framework for unsupervised methodological approaches.



Sensors 2024, 24, 6084 9 of 19

4.2. Model Settings

To assess each model’s accuracy on a similar front, all experimental settings are
listed in Table 8 and were kept relatively constant so that the comparisons could be made
appropriately. For each model, different feature extraction was applied. We set the initial
iterations as 10 and the maximum as 600. For the final comparison of all the models,
random state = 99 was used to gauge accuracy and determine the best model of them all.

Table 8. Unsupervised learning model setting.

Model Feature
Extraction Min_df Clusters Initial

Iterations
Max

Iterations
Random

State

Kmeans Vectorizer 10 2 10 600 99
Kmeans Transformer None 2 10 600 99

NMF Vectorizer 10 2 0 600 99
PCA Transformer 30 2 10 600 99

GMM Vectorizer 10 2 0 600 99

4.3. Experimental Results and Discussion

In our unsupervised approach, we processed the text data, creating distinct clusters
without labels in a Python pandas dataframe. We introduced a “clusterName” column to
record these clusters, enabling the extraction of classification reports, confusion matrices,
and accuracy scores. During training, unsupervised classifiers processed 1500 unlabeled
ham and spam messages. For testing, we used the stored model on another set of unlabeled
messages and assessed its performance. In the spam classification process, we tested
five different methods for unlabelled message training, as detailed in Table 8, through
20 iterations for each unsupervised ML classifier, as shown in Table 9. Interestingly, K-
means Vectorizer, PCA, and Gaussian mixture exhibited varying results in each run, while
NMF and K-means Transformer maintained consistent accuracy. Averaging the results,
K-means Vectorizer achieved the highest accuracy at 91.01%, followed by GMM at 89.04%,
and NMF at 88.24%. Meanwhile, PCA and K-means Transformer yielded similar accuracy
levels, approximately 71.15% and 71.50%, respectively. After experimenting with the
training data, we saved the model and feature extraction technique using the Pickle library
for ease of sharing and reusability. Subsequently, we tested the trained model on unseen
data to assess its performance. The K-means algorithm consistently outperformed other
models, achieving the highest accuracy at 82%. Other models performed as follows on
the testing data: PCA (58%), K-means Transformer (80%), NMF (80%), and GMM (81%).
K-means remained the top-performing model in each experiment.

During model implementation, hyperparameter tuning was conducted to improve
accuracy and message classification as shown in Table 10. Notably, min_d f = 10 con-
sistently provided the highest accuracy compared to min_d f = 5 and min_d f = 14, as
well as other parameters such as sublinear_t f = true, norm = l2, ngram_range = (1, 2),
and stop_words = ‘english’. This observation held true for both the K-means and Gaussian
mixture models, with the only difference being the min_df parameter set to 0. For NMF,
n_component = 2 and solver = mu yielded good results with 88%. The PCA model
achieved 72% as its highest accuracy after dimensionality reduction with max features = 25,
with higher values of 30 and 40 yielding increased accuracy but also longer runtimes. If
n_component = 2 was given, it returned a classification accuracy of only 38.65%; with 10, it
gave 66.71%. Therefore, n_component = 25 was determined as the optimal parameter for
feature dimensionality reduction.

Table 11 and Figure 4 reveal the performance of the different models. The K-means
Vectorizer stands out with the highest accuracy at 91.01%, followed by Gaussian mixture
models at 89.04%, and NMF at 88.24%. The F1-score, which strikes a balance between
precision and recall, further supports the model’s effectiveness. Achieving a 90% accuracy,
the model effectively detected spam SMS. However, K-means Transformer and PCA priori-



Sensors 2024, 24, 6084 10 of 19

tized precision over recall, excelling at detecting legitimate messages, but struggling with
spam identification.

Table 9. Outcome of the proposed models after 20 runs.

Runs K-Means
Vectorizer NMF PCA K-Means

Transformer Guassian_Matrix

1 90.51% 88.24% 69.81% 71.87% 88.31%
2 91.88% 88.24% 71.94% 68.18% 91.47%
3 92.30% 88.24% 71.66% 68.18% 88.03%
4 91.06% 88.24% 66.78% 71.87% 82.39%
5 90.51% 88.24% 71.94% 71.87% 87.14%
6 91.27% 88.24% 71.73% 71.87% 86.59%
7 91.06% 88.24% 71.32% 71.87% 86.31%
8 92.43% 88.24% 71.87% 71.87% 92.37%
9 89.96% 88.24% 66.71% 71.87% 91.33%
10 92.57% 88.24% 72.01% 71.87% 87.28%
11 90.92% 88.24% 71.80% 71.87% 86.67%
12 89.13% 88.24% 72.01% 71.87% 85.35%
13 91.06% 88.24% 72.01% 71.87% 90.30%
14 90.44% 88.24% 69.81% 71.87% 91.47%
15 90.30% 88.24% 72.01% 71.87% 92.37%
16 90.92% 88.24% 72.01% 71.87% 92.50%
17 89.41% 88.24% 71.80% 71.87% 88.10%
18 91.54% 88.24% 71.94% 71.87% 89.61%
19 90.78% 88.24% 72.01% 71.87% 92.37%
20 92.23% 88.24% 71.80% 71.87% 90.92%

Accuracy 91.01% 88.24% 71.15% 71.50% 89.04%

Table 10. Model performance and hyperparameters.

Model Hyperparameters Feature Extraction Parameters Accuracy

K-means Vectorizer min df = 10 sublinear tf = true, norm = l2, ngram
range = (1, 2), stop words = ‘english’ (51.03%)

K-means Vectorizer min df = 10 - (90.92%)
K-means Vectorizer min df = 5 - (88.23%)
K-means Vectorizer min df = 14 - (82.53%)
K-means Vectorizer min df = none - (69.87%)

Gaussian Mixture min df = 10 sublinear tf = true, norm = l2, ngram
range = (1, 2), stop words = ‘english’ (50.75%)

Gaussian Mixture min df = 10 - (89.00%)
Gaussian Mixture min df = 5 - (81.00%)
Gaussian Mixture min df = 14 - (87.00%)
Gaussian Mixture min df = none -

NMF min df = 10 n_components = 2, solver = mu (88.00%)

K-means Transformer - - (71%)

PCA n_components = 25 - (72%)
PCA n component = 2 - (38.65%)
PCA n component = 10 - (66.71%)
PCA n component = 30 - -
PCA n component = 40 - -

Table 11. Classification report.

Model Type Accuracy Precision Recall F1-Score

K-means Vectorizer ML 90.92 91:00 91:00 91:00
K-means Transformer ML 71:87 80.00 72:00 70:00

NMF ML 88.24 88:00 88:00 88:00
PCA ML 72.48 74:00 72.00 71:00

GMM ML 89.40 89:00 89.50 89:00



Sensors 2024, 24, 6084 11 of 19

Figure 4. erformance metrics for unsupervised model accuracy.

4.4. Deep Semi-Supervised Learning

Deep semi-supervised learning leverages both labeled and unlabeled data to train deep
neural networks, which is particularly beneficial given the constraints of data annotation [45].
This approach allows the model to utilize large volumes of unlabeled data, enhancing its
ability to generalize and perform well in real-world scenarios where labeled datasets are
limited [46]. Our experimentation involved the deployment of three deep semi-supervised
models, as outlined in Figure 5:

1. Feature Generation: Similar to the unsupervised models, this phase involved extract-
ing features using advanced natural language processing techniques, including word
embeddings like Word2Vec, GloVe, and possibly transformer-based embeddings, to
capture more nuanced text representations.

2. Deep Learning Algorithm: We implemented three distinct deep learning architec-
tures—RNN-Flatten, LSTM (Long Short-Term Memory), and Bi-LSTM (Bidirectional
LSTM). The RNN-Flatten model utilized a recurrent neural network followed by a
flattening layer to process the sequential data, while LSTM and Bi-LSTM models
captured long-term dependencies and bidirectional context within the text.

3. Message Classification: Each of these models classified the messages as spam or ham.
The classification report, which includes metrics like accuracy, precision, recall, and
F1-score, was generated to evaluate the performance of these deep semi-supervised
models, allowing us to compare their effectiveness in identifying smishing attacks.

4.5. Model Configuration Details

In Table 12, we provide details of the model architecture and its parameters. The model
employs a simple linear stack architecture, specifically the sequential model. It begins
with word embedding, utilizing a vocabulary of 3426 words and word vectors of length 24.
The maximum sequence length is capped at eight characters. Following the embedding
layer, we introduce a unit layer, and then two dense layers with 500 and 200 units, applying
the ReLU activation function. These dense layers are designed to capture and process
features within the data. To prevent overfitting, a dropout layer with a 50% dropout rate is
included. The final layer consists of another dense layer with 100 units and 1 unit, using
the ReLU and Sigmoid activation functions, respectively. This design is tailored for binary
classification, distinguishing between spam and non-spam messages. During training, we
employ the Adam optimizer and the binary cross-entropy loss function. The model is
trained over 50 epochs with a learning rate of 0.01. Feature extraction is facilitated using



Sensors 2024, 24, 6084 12 of 19

Tokenizer and pad sequence techniques, which transform text data into a format suitable
for neural network processing.

Figure 5. Hierarchical classification of deep semi-supervised methodological approaches.

Table 12. Deep semi-supervised learning model settings.

Parameter RNN-Flatten LSTM Bi-LSTM

Training and Testing
Ratio 80:20 8:20 8:20

Rando State 42 42 42

Vocabulary 3462 3462 3462

Max sequence leng 8 8 8

Embedding Size 24 24 24

Unit layers 1 layer (8,24) 1 layer (8,24) 1 layer (8,24)

Dense 500 500 500

Dropout 0.5 0.5 0.5

Feature Layer Relu Relu Relu

Classifying Laye Sigmoid Sigmoid Sigmoid

Optimizer rmsprop adam adam

Loss Function crossentropy crossentropy crossentropy

Training epoch 50 50 50

Feature Extraction Tokenizer and pad
sequences

Tokenizer and pad
sequences

Tokenizer and pad
sequence



Sensors 2024, 24, 6084 13 of 19

4.6. Experiments Results for Semi-Supervised Approache

We conducted experiments to assess our model’s performance in classifying spam
messages using real SMS data. The algorithm was run 20 times, and the results are
summarized in Table 13. Remarkably, the RNN-Flatten consistently outperformed other
models in all runs. Table 14 presents a comparative performance evaluation of different
classification methods. Our approach achieved an accuracy of 94.13%, with precision, recall,
and F1-score all reaching 94%, surpassing other methods. Bi-LSTM achieved an accuracy
of 92.78%, followed by LSTM with 92.09%. The RNN-Flatten model’s 94.13% accuracy
highlights its effectiveness in spam SMS detection.

Table 13. Outcome of the proposed model after 20 runs.

Runs RNN LSTM Bi-LSTM

1 94.50% 92.44% 92.44%
2 95.53% 92.10% 92.78%
3 95.19% 92.44% 92.10%
4 94.85% 92.44% 93.81%
5 92.78% 91.75% 94.50%
6 94.50% 93.13% 94.50%
7 93.47% 91.41% 94.50%
8 92.44% 93.13% 92.44%
9 95.16% 91.75% 94.85%
10 94.81% 93.13% 94.16%
11 93.81% 93.13% 93.13%
12 93.13% 91.41% 94.16%
13 93.13% 91.75% 93.81%
14 93.81% 90.72% 95.53%
15 92.44% 92.10% 94.50%
16 94.16% 93.47% 94.85%
17 95.13% 93.47% 94.16%
18 93.47% 91.07% 94.16%
19 95.50% 91.75% 94.50%
20 94.85% 92.44% 94.16%

Accuracy 94.13% 92.25% 93.95%

Table 14. Classification report of deep semisupervised model.

Model Type Accuracy Precision Recall F1-Score

RNN-Flatten DL 94.13 94.00 94.00 94:00

LSTM DL 92.09 93.00 92.00 92:00

Bi-LSTM DL 92.78 93.00 92.00 92:00

Post-experimentation, we saved the model and feature extraction technique using the
Pickle library, ensuring ease of sharing and reusability. We then evaluated the model’s
prediction performance on unseen data, where the RNN-Flatten algorithm led with the
highest accuracy of 91%, surpassing Bi-LSTM (86%) and LSTM (84%).

During model training, we found that a message_length = 8 for sequence padding
and word embedding produced the best results. Additionally, we observed that the RNN
model with a flatten activation function consistently outperformed LSTM and Bi-LSTM
across all 20 iterations, demonstrating its superiority, as depicted in Figure 6. These results
highlight the efficacy of the RNN-Flatten model in spam SMS detection and showcase the
importance of architecture choice in deep semi-supervised learning for text classification.



Sensors 2024, 24, 6084 14 of 19

Figure 6. Performance evaluation of accuracy metrics for semi-Supervised models.

5. Discussion

In our experiments, we evaluated multiple models for spam detection, utilizing pre-
processing techniques, word embeddings, and a combination of machine learning and
deep learning models. Departing from prior studies that primarily used the UCI spam
dataset, we incorporated real-world, user-reported spam messages, extracted from images
using Optical Character Recognition (OCR) technology. This provided a more diverse
and realistic dataset for our analysis. The results indicated that the RNN-Flatten model
outperformed others, achieving a notable 94.13% accuracy, compared to 91.01% with the
K-means model, as shown in the accompanying Figure 7. This disparity underscores the
relative strengths and limitations of each model in handling diverse and complex data.

Figure 7. Accuracy score of unsupervised and deep semi-supervised models.

5.1. Analysis of Models Performance

RNN-Flatten model: The RNN-Flatten model, a deep learning approach, benefits from
its ability to capture sequential dependencies and context within the text, which is crucial
for understanding the nuances of spam messages. This model is adept at learning complex
patterns and relationships in data, which contributes to its superior accuracy. The deep



Sensors 2024, 24, 6084 15 of 19

learning architecture, with its multiple layers and non-linear activation functions, allows
the RNN-Flatten model to effectively interpret and classify messages based on intricate
features, including context and sequential information. Additionally, the model’s capacity
to handle and learn from the sequential nature of SMS content provides it with a significant
advantage over simpler clustering algorithms like K-means.

K-means Model: The K-means model, an unsupervised learning technique, relies
on clustering data based on similarity measures. While it demonstrated robust perfor-
mance with a 91.01% accuracy using entirely unlabelled data, it generally performs well in
identifying clusters but lacks the depth of feature learning that deep learning models like
RNN-Flatten offer. K-means is limited by its reliance on predefined clusters and may strug-
gle with the complexity of nuanced text data, which affects its classification performance in
comparison to models that can learn complex patterns.

5.2. Performance with New Data

K-means vs. RNN-Flatten on New Data: When tested with new data, the K-means
model maintained an accuracy of 82%, while the RNN-Flatten model achieved a higher
accuracy of 91%. This performance gap underscores the K-means model’s limitations in
generalizing from training data to unseen examples. The RNN-Flatten model’s higher ac-
curacy on new data suggests its superior capability to adapt to and generalize from diverse
SMS content, owing to its deep learning architecture and feature extraction capabilities.

6. Real Time Detection Capabilities

As illustrated in the Figure 8, the proposed framework is a streamlined web-based
application designed to accept user input in real-time as an image. The application processes
this image using the selected model, efficiently categorizing the message as either spam or
ham. Building on the feature extraction techniques and experiments detailed in the previous
sections, we developed this application using an unsupervised K-means approach and a
deep semi-supervised RNN-Flatten model. This implementation allows us to evaluate the
real-time effectiveness of our models in accurately detecting and classifying SMS messages.
The application operates through a straightforward process designed for user flexibility
and accurate detection.

Figure 8. Real-Time detection and classification of SMS messages.



Sensors 2024, 24, 6084 16 of 19

1. First, each SMS image is individually classified, allowing the system to handle mes-
sages one at a time. The user can then select from a variety of models to analyze the
nature of the image, offering the ability to choose the most suitable model for their
needs as shown in Figures 9 and 10 respectively.

2. Once the SMS is submitted, the system initiates preprocessing to prepare the data
for analysis. Following preprocessing, the selected model’s feature extraction tech-
niques and classifier are applied to the SMS, enabling the system to accurately assess
its content.

3. Finally, the application displays the result, indicating whether the message is classified
as spam or ham with the accuracy given by the selected model as shown in figure.

Figure 9. Selection of input files (image SMS).

Figure 10. Choice of preferred model for classification.

7. Conclusions and Future Work

Our research introduced a user-centric spam detection approach leveraging unsu-
pervised and deep semi-supervised learning models as shown in Figure 11, specifically
K-means and RNN-Flatten. We achieved notable accuracy rates, with K-means reaching
91.01% and RNN-Flatten achieving 94.13%. Notably, even with limited resources, our
unsupervised learning model performed only 3% lower than the deep semi-supervised
approach, demonstrating its efficiency and potential for practical application. We have
developed a web application that enables users to detect spam from screenshots, currently
supporting both K-means and RNN-Flatten models for real-time spam likelihood calcu-
lation. This application represents the first step towards integrating our models into a
functional system that can be easily utilized by end-users. Moving forward, we plan to
enhance the system’s capabilities by incorporating additional models and refining the
user interface for better usability and visual appeal. Future developments will prioritize
the following:

• Developing a more versatile application that enables users to effortlessly select and
switch between different models, tailored to their specific needs.

• Enhancing spam detection accuracy by integrating advanced feature extraction meth-
ods and natural language processing (NLP) techniques, with a focus on capturing
subtle details such as digits, fonts, and emojis within messages.

• Expanding language support beyond English to ensure the system’s reliability and
effectiveness across a broader range of linguistic contexts.



Sensors 2024, 24, 6084 17 of 19

By prioritizing these advancements, we aim to integrate our proposed model into
a fully functional system that effectively meets user needs while delivering robust and
adaptable spam detection capabilities, all without being hindered by the complexities of
system architecture, resource allocation, or maintenance challenges.

Figure 11. Results from both selected models

Author Contributions: A.S., E.Q.S. and S.B. conceived the presented idea. A.S., E.Q.S., S.B., F.S.,
A.A.A. and W.A.J. developed the theory and performed the computation. A.S. planned and carried
out the simulations. E.Q.S., S.B., A.S., E.Q.S., S.B., F.S., A.A.A. and W.A.J. verified the analytical
method. A.S. wrote the draft of the manuscript with input from all authors. A.S., E.Q.S., S.B., F.S.,
A.A.A. and W.A.J. revised and edited the manuscript. E.Q.S. and S.B. supervised the project. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Samad, S.R.A.; Ganesan, P.; Rajasekaran, J.; Radhakrishnan, M.; Ammaippan, H.; Ramamurthy, V. SmishGuard: Leveraging

Machine Learning and Natural Language Processing for Smishing Detection. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 11. [CrossRef]
2. Njuguna, D.N.; Kamau, J.; Kaburu, D. A Review of Smishing Attaks Mitigation Strategies. Int. J. Comput. Inf. Technol. 2022, 11,

9–13. [CrossRef]
3. Haber, M.J.; Chappell, B.; Hills, C. Attack Vectors. In Cloud Attack Vectors: Building Effective Cyber-Defense Strategies to Protect

Cloud Resources; Apress: Berkeley, CA, USA, 2022; pp. 117–219.
4. Vosen, D.J. An Exploration of Cyberpsychology Strategies Addressing Unintentional Insider Threats Through Undergraduate

Education: A Qualitative Study. Ph.D. Thesis, Colorado Technical University, Springs, CO, USA, 2021.
5. McLennan, M. The Global Risks Report 2022, 17th ed.; World Economic Forum: Cologny, Switzerland, 2022.
6. Julis, M.R.; Alagesan, S. Spam Detection in SMS Using Machine Learning through Textmining. Int. J. Sci. Technol. Res. 2020, 9, 2.
7. Barrera, D.; Naranjo, V.; Fuertes, W.; Macas, M. Literature Review of SMS Phishing Attacks: Lessons, Addresses, and Future

Challenges. In Proceedings of the International Conference on Advanced Research in Technologies, Information, Innovation and
Sustainability, Madrid, Spain, 18–20 October 2023; Springer: Cham, Switzerland, 2024; pp. 191–204.

8. Tiwari, A. Supervised Learning: From Theory to Applications. In Artificial Intelligence and Machine Learning for EDGE Computing;
Academic Press: Cambridge, MA, USA, 2022; pp. 23–32.

9. Al-Qahtani, A.F.; Cresci, S. The COVID-19 Scamdemic: A Survey of Phishing Attacks and Their Countermeasures during
COVID-19. IET Inf. Secur. 2022, 16, 324–345. [CrossRef]

10. Akinyelu, A.A. Advances in Spam Detection for Email Spam, Web Spam, Social Network Spam, and Review Spam: ML-Based
and Nature-Inspired-Based Techniques. J. Comput. Secur. 2021, 29, 473–529. [CrossRef]

11. Wickramasinghe, I.; Kalutarage, H. Naive Bayes: Applications, Variations and Vulnerabilities: A Review of Literature with Code
Snippets for Implementation. Soft Comput. 2021, 25, 2277–2293. [CrossRef]

12. Genuer, R.; Poggi, J.-M. Random Forests; Springer: Cham, Switzerland, 2020.
13. Abayomi, A.O.; Misra, S.; Abayomi, A.A.; Odusami, M. A review of soft techniques for SMS spam classification: methods,

approaches and applications. J. Eng. Appl. Artif. Intell. 2019, 86, 197–212. [CrossRef]
14. Taha, K. Semi-Supervised and Un-Supervised Clustering: A Review and Experimental Evaluation. Inf. Syst. 2023, 114, 102178.

[CrossRef]

http://doi.org/10.14569/IJACSA.2023.0141160
http://dx.doi.org/10.24203/ijcit.v11i1.201
http://dx.doi.org/10.1049/ise2.12073
http://dx.doi.org/10.3233/JCS-210022
http://dx.doi.org/10.1007/s00500-020-05297-6
http://dx.doi.org/10.1016/j.engappai.2019.08.024
http://dx.doi.org/10.1016/j.is.2023.102178


Sensors 2024, 24, 6084 18 of 19

15. Kumarasiri, W.L.T.T.N.; Siriwardhana, M.K.J.C.; Suraweera, S.A.D.S.L.; Senarathne, A.N.; Harshanath, S.M.B. Cybersmish: A
Proactive Approach for Smishing Detection and Prevention Using Machine Learning. In Proceedings of the 2023 7th International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Kirtipur, Nepal, 11–13 October 2023; pp. 210–217.

16. Shahra, E.Q.; Basurra, S.; Wu, W. Real-Time Multi-Class Classification of Water Quality Using MLP and Ensemble Learning. In
Proceedings of the International Congress on Information and Communication Technology; Springer: Singapore, 2024; pp. 481–491.

17. Usmani, U.A.; Happonen, A.; Watada, J. A Review of Unsupervised Machine Learning Frameworks for Anomaly Detection in
Industrial Applications. In Intelligent Computing; Springer: Cham, Switzerland, 2022; pp. 158–189.

18. Patel, E.; Kushwaha, D.S. Clustering Cloud Workloads: K-Means vs Gaussian Mixture Model. Procedia Comput. Sci. 2020, 171,
158–167. [CrossRef]

19. Rokach, L.; Maimon, O. Clustering Methods. In Data Mining and Knowledge Discovery Handbook; Springer, Boston, MA, USA, 2005;
pp. 321–352.

20. Slijepcevic, I.V.; Scaife, A.M.M.; Walmsley, M.; Bowles, M.; Wong, O.I.; Shabala, S.S.; Tang, H. Radio Galaxy Zoo: Using
Semi-Supervised Learning to Leverage Large Unlabelled Data Sets for Radio Galaxy Classification Under Data Set Shift. Mon.
Not. R. Astron. Soc. 2022, 514, 2599–2613. [CrossRef]

21. Mansoor, R.A.Z.A.; Jayasinghe, N.D.; Muslam, M.M.A. A Comprehensive Review on Email Spam Classification Using Machine
Learning Algorithms. In Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island,
Republic of Korea, 13–16 January 2021; pp. 327–332.

22. Sharaff, A.; Pathak, V.; Paul, S.S. Deep Learning-Based Smishing Message Identification Using Regular Expression Feature
Generation. Expert Syst. 2022, 40, e13153. [CrossRef]

23. Shahra, E.Q.; Wu, W.; Basurra, S.; Rizou, S. Deep Learning for Water Quality Classification in Water Distribution Networks. In
Proceedings of the International Conference on Engineering Applications of Neural Networks, Crete, Greece, 25–27 June 2021;
pp. 153–164.

24. Gupta, M.; Bakliwal, A.; Agarwal, S.; Mehndiratta, P. A Comparative Study of Spam SMS Detection Using Machine Learning
Classifiers. In Proceedings of the 2018 Eleventh International Conference on Contemporary Computing (IC3), Noida, India, 2–4
August 2018; pp. 1–7.

25. Yerima, S.Y.; Bashar, A. Semi-Supervised Novelty Detection with One Class SVM for SMS Spam Detection. In Proceedings of the
2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP), Sofia, Bulgaria, 1–3 June 2022; pp. 1–4.

26. Sheikhi, S.; Kheirabadi, M.T.; Bazzazi, A. An Effective Model for SMS Spam Detection Using Content-Based Features and
Averaged Neural Network. Int. J. Eng. 2020, 33, 221–228.

27. Zainal, K.; Sulaiman, N.F.; Jali, M.Z. An Analysis of Various Algorithms for Text Spam Classification and Clustering Using
RapidMiner and Weka. Int. J. Comput. Sci. Inf. Secur. 2015, 13, 66.

28. Oswald, C.; Simon, S.E.; Bhattacharya, A. SpotSpam: Intention Analysis Driven SMS Spam Detection Using BERT Embeddings.
ACM Trans. Web (TWEB) 2022, 16, 1–27. [CrossRef]

29. Jouban, M.Q.; Farou, Z. TAMS: Text Augmentation Using Most Similar Synonyms for SMS Spam Filtering. 2022. Available online:
https://ceur-ws.org/Vol-3226/paper4.pdf (accessed on 8 August 2024).

30. Mishra, S.; Soni, D. Implementation of ‘Smishing Detector’: An Efficient Model for Smishing Detection Using Neural Network.
SN Comput. Sci. 2022, 3, 1–13. [CrossRef]

31. Zhang, B.; Zhao, G.; Feng, Y.; Zhang, X.; Jiang, W.; Dai, J.; Gao, J. Behavior Analysis Based SMS Spammer Detection in Mobile
Communication Networks. In Proceedings of the 2016 IEEE First International Conference on Data Science in Cyberspace (DSC),
Changsha, China, 13–16 June 2016; pp. 538–543.

32. Waheeb, W.; Ghazali, R.; Deris, M.M. Content-Based SMS Spam Filtering Based on the Scaled Conjugate Gradient Backpropagation
Algorithm. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
Zhangjiajie, China, 15–17 August 2015; pp. 675–680.

33. Roy, P.K.; Singh, J.P.; Banerjee, S. Deep Learning to Filter SMS Spam. Future Gener. Comput. Syst. 2020, 102, 524–533. Available
online: https://www.sciencedirect.com/science/article/pii/S0167739X19306879 (accessed on 8 August 2024). [CrossRef]

34. Shahra, E.Q.; Wu, W.; Basurra, S.; Aneiba, A. Intelligent Edge-Cloud Framework for Water Quality Monitoring in Water
Distribution System. Water 2024, 16, 196. [CrossRef]

35. Nair, A.R.; Tripathy, V.D.; Lalitha Priya, R.; Kashimani, M.; Janthalur, G.A.N.; Ansari, N.J.; Jurcic, I. A Smarter Way to Collect and
Store Data: AI and OCR Solutions for Industry 4.0 Systems. In Topics in Artificial Intelligence Applied to Industry 4.0; Wiley Telecom:
Hoboken, NJ, USA, 2024; pp. 271–288.

36. Manovich, L. Computer vision, human senses, and language of art. AI SOCIETY 2021, 36, 1145–1152. [CrossRef]
37. Tabassum, A.; Patil, R.R. A survey on text pre-processing & feature extraction techniques in natural language processing. Int. Res.

J. Eng. Technol. (IRJET) 2020, 7, 4864–4867.
38. Dong, G.; Liu, H. Feature Engineering for Machine Learning and Data Analytics; CRC Press: Boca Raton, FL, USA, 2018.
39. Patel, C.; Patel, A.; Patel, D. Optical character recognition by open source OCR tool tesseract: A case study. Int. J. Comput. Appl.

2012, 55, 50–56. [CrossRef]
40. Guyon, I.; Elisseeff, A. An introduction to feature extraction. In Feature Extraction: Foundations and Applications; Springer:

Berlin/Heidelberg, Germany, 2006; pp. 1–25.

http://dx.doi.org/10.1016/j.procs.2020.04.017
http://dx.doi.org/10.1093/mnras/stac1135
http://dx.doi.org/10.1111/exsy.13153
http://dx.doi.org/10.1145/3538491
https://ceur-ws.org/Vol-3226/paper4.pdf
http://dx.doi.org/10.1007/s42979-022-01078-0
https://www.sciencedirect.com/science/article/pii/S0167739X19306879
http://dx.doi.org/10.1016/j.future.2019.09.001
http://dx.doi.org/10.3390/w16020196
http://dx.doi.org/10.1007/s00146-020-01094-9
http://dx.doi.org/10.5120/8794-2784


Sensors 2024, 24, 6084 19 of 19

41. Karamizadeh, S.; Abdullah, S.M.; Manaf, A.A.; Zamani, M.; Hooman, A. An overview of principal component analysis. J. Signal
Inf. Process. 2020, 4. [CrossRef]

42. Imani, M.; Montazer, G.A. Email Spam Detection Using Linear Discriminant Analysis Based on Clustering. CSI J. Comput. Sci.
Eng. 2017, 15, 22–30.

43. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 2016, 374, 20150202. [CrossRef] [PubMed]

44. Wang, X.S.; Ryoo, J.H.J.; Bendle, N.; Kopalle, P.K. The role of machine learning analytics and metrics in retailing research. J. Retail.
2021, 97, 658–675. [CrossRef]

45. Ouali, Y.; Hudelot, C.; Tami, M. An overview of deep semi-supervised learning. arXiv 2020, arXiv:2006.05278.
46. Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.4236/jsip.2013.43B031
http://dx.doi.org/10.1098/rsta.2015.0202
http://www.ncbi.nlm.nih.gov/pubmed/26953178
http://dx.doi.org/10.1016/j.jretai.2020.12.001
http://dx.doi.org/10.1007/s10994-019-05855-6

	Introduction
	Related Works
	Feature Generation
	Dataset
	Dataset Pre-Processing
	Feature Extraction
	Unsupervised: TF_IDF and PCA
	Deep Semi-Supervised: Tokenization and Sequence and Padding


	Proposed Work: Technical Implementation of Unsupervised and Deep Semi-Supervised Models
	Unsupervised Learning Models
	Model Settings
	Experimental Results and Discussion
	Deep Semi-Supervised Learning
	Model Configuration Details
	Experiments Results for Semi-Supervised Approache

	Discussion
	Analysis of Models Performance
	Performance with New Data

	 Real Time Detection Capabilities
	Conclusions and Future Work
	References

