Sustainable Cities and Society 113 (2024) 105717

Contents lists available at ScienceDirect =

Sustainable Cities
and Society

Sustainable Cities and Society

journal homepage: www.elsevier.com/locate/scs

t.)

Check for

A smart-contract-based adaptive security governance architecture for smart [
city service interoperations

Shahbaz Siddiqui ?, Sufian Hameed ?, Syed Attique Shah ™", Junaid Arshad ®, Yussuf Ahmed®,
Dirk Draheim ©

2 Department of Computer Science, National University of Computer & Engineering Sciences, 75160, Karachi, Pakistan
b School of Computing and Digital Technology, Birmingham City University, STEAMhouse, Birmingham, B4 7RQ, United Kingdom
¢ Tallinn University of Technology, Akadeemia tee 15A, Tallinn, 12169, Estonia

ARTICLE INFO ABSTRACT

Keywords: Smart cities represent a promising paradigm aimed at enhancing citizens’ quality of life through cutting-
Smart city edge infrastructure and technological advancements. Collaborative services serve as a cornerstone for any
Blockchain smart city, fostering seamless cooperation among diverse entities, including government agencies, businesses,
Software-defined networking and individuals, thereby enhancing community outcomes. These services are pivotal, promoting seamless
Eizsgi{::fgfﬁchams communication and collaboration among various smart applications, and facilitating data exchange, resource
MultiChain sharing, and functional interactions within smart city environments to optimize efficiency, effectiveness, and
Collaborative services user experiences. However, the development and deployment of secure, interoperable services in smart cities
Interoperability present significant challenges. These issues encompass, ensuring data security compliance during interoper-

ation, effective management of interconnected services, securely handling sensitive data across services, and
addressing issues related to confidentiality, integrity, and availability (CIA) traits. To tackle these challenges,
this research proposes an innovative adaptive security governance framework tailored for smart cities. This
framework relies on dynamic security policies implemented through smart contracts to guarantee data security
and privacy during smart service interoperation. Real-world use cases in collaborative smart city environments
validate the framework, integrating multi-chain blockchain technology, smart services APIs, and Software-
Defined Networking (SDN), showcasing its ability to enhance security and efficiency in collaborative services.
This study contributes to the development of safe and efficient collaborative services inside smart cities,
tackling administrative issues while emphasizing data security and privacy. Smart cities may improve citizens’
living conditions while successfully addressing crucial security problems in an ever-changing environment by
using this architecture.

Security adaptation

1. Introduction multiple sources, including real-time information from sensors, traffic

cameras, and public transportation schedules (Arthurs et al., 2021).

Smart cities are rapidly emerging as a transformative model for
urban living, capitalizing on cutting-edge technologies to improve the
well-being of residents (Joo, 2023). At the core of a smart city in-
frastructure, smart services and applications are being developed with
interoperability in mind, enabling seamless communication and col-
laboration among diverse systems and devices (Choi, 2022; Kirimtat,
Krejcar, Kertesz, & Tasgetiren, 2020). Deploying interoperability in
smart cities has the potential to revolutionize various sectors and
their services, including transportation, energy, healthcare, waste man-
agement, and public safety, by facilitating synchronized and efficient
operations (Javed et al., 2022; Kumar, Singh, Gupta, & Madaan, 2020).
For instance, the implementation of smart transportation systems al-
lows for optimized traffic flow through the analysis of data from

* Corresponding author.
E-mail address: syedattique.shah@bcu.ac.uk (S.A. Shah).

https://doi.org/10.1016/j.scs.2024.105717

Leveraging this data, traffic signal timings can be dynamically ad-
justed, vehicles can be redirected, and personalized travel advice can
be provided to commuters, leading to a reduction in congestion and
an improvement in overall mobility (Rathore, Attique Shah, et al.,
2021; Rathore, Paul, et al., 2021). Furthermore, the example taken as
a case study in this research, which includes the secure integration of
interoperable transportation and weather services within smart cities
can potentially provide accurate weather information to users of smart
transport services. Fig. 1 illustrates a representative depiction of a smart
city consisting of different interoperable services.

Despite the numerous advantages offered by the interoperability
of smart services, there are significant concerns that need to be ad-
dressed, with data security as the most crucial aspect. In a networked

Received 31 December 2023; Received in revised form 27 July 2024; Accepted 28 July 2024

Available online 2 August 2024

2210-6707/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/scs
https://www.elsevier.com/locate/scs
mailto:syedattique.shah@bcu.ac.uk
https://doi.org/10.1016/j.scs.2024.105717
https://doi.org/10.1016/j.scs.2024.105717
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scs.2024.105717&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S. Siddiqui et al.

& \
AROEAN

Disaster

\ ’
ﬁ\ N Management ’
’ (Sdnf(*) ‘\

s o

owo @ m .

\ Transport '

N
. Service P
~ / f
~
P i @ -

. §mart Home 4
Service

’
»

Heathcare
Service

Sustainable Cities and Society 113 (2024) 105717

Waste ﬁ

Management ¢

e
..@@@

Smart
\
5k

EIectncKy

Fig. 1. Illustration of enabling interoperability between multiple smart services in a smart city network.

environment where systems and devices exchange data for collabo-
rative tasks, ensuring the security, integrity, and accessibility of data
becomes of paramount importance. The potential risks associated with
data breaches or cyberattacks are a major challenge that can jeopardize
private information, disrupt services, and compromise the security and
privacy of residents (Viale Pereira, Cunha, Lampoltshammer, Parycek,
& Testa, 2017). Malicious entities, such as hackers, can exploit vul-
nerabilities within interconnected systems to gain unauthorized access
or manipulate data, leading to severe consequences. Therefore, it is
imperative to establish robust security measures to protect against such
threats and safeguard critical information and infrastructure within
smart cities. In addition to data security, another obstacle to achiev-
ing effective interoperability is the need for data governance and
standardization. With multiple systems and devices exchanging data,
standardized data formats, protocols, and security measures are essen-
tial to ensure seamless communication and mitigate the complexities
associated with data integration (Bello & Zeadally, 2019; Keoh, Kumar,
& Tschofenig, 2014). The absence of standardization can result in
challenges related to data integration, data quality, and potential se-
curity vulnerabilities (Singh et al., 2020). To address these challenges,
collaborative efforts among policymakers, researchers, and industry
stakeholders are required. Comprehensive frameworks and guidelines
need to be developed, encompassing robust security measures, stan-
dardized protocols, and data governance frameworks, to ensure secure
and efficient data exchange between systems and devices within smart
cities.

Blockchain technology has emerged as a promising solution for
addressing the data security challenges associated with interoperable
smart services in smart cities (Islam et al., 2021; Mingxiao, Xiaofeng,
Zhe, Xiangwei, & Qijun, 2017). By providing a distributed and decen-
tralized ledger, a blockchain offers a secure and transparent method
for recording and verifying transactions, making it an ideal solution
for enhancing data security in interconnected systems. A key char-
acteristic of blockchains is their use of cryptographic techniques to
ensure data integrity and immutability, thereby preventing unautho-
rized access and manipulation (Bhushan, Sahoo, Sinha, & Khamparia,
2021). This feature makes blockchains well-suited for securing sensitive
data, including personal information, financial transactions, and critical
infrastructure data. Through consensus among network participants, a
blockchain ensures that data cannot be modified without detection,

enhancing the overall security of the system. In the context of inter-
operable smart services, blockchain technology plays a crucial role in
improving data governance and standardization.

Smart contracts, which are self-executing contracts stored on a
blockchain, can establish rules and protocols for data exchange (Ante,
2021). This enables the enforcement of uniform data formats, protocols,
and security measures across multiple systems and devices (Macrinici,
Cartofeanu, & Gao, 2018; Makhdoom, Zhou, Abolhasan, Lipman, &
Ni, 2020). By leveraging smart contracts, smart cities can promote
seamless communication and interoperability while ensuring data in-
tegrity and security. Furthermore, blockchain technology empowers
residents in smart cities by enhancing data privacy and control. With a
blockchain, individuals can have ownership and control over their data,
determining how it is accessed and utilized. This capability enables
residents to maintain their privacy and make informed decisions about
data sharing and utilization within the smart city ecosystem (Mora,
Mendoza-Tello, Varela-Guzmén, & Szymanski, 2021). Using blockchain
technology to address data security challenges in interoperable smart
services holds significant promise. Its inherent security, transparency,
data governance capabilities, and potential for increased privacy and
trust make it an appealing solution for ensuring secure and accountable
data exchange within smart city environments (Nguyen, Pathirana,
Ding, & Seneviratne, 2020). However, the adoption of blockchain tech-
nology in smart cities requires careful consideration of various factors
such as scalability, interoperability, and regulatory compliance (Xie
et al.,, 2019). Scaling blockchain networks to handle the large vol-
ume of transactions in smart cities is a challenge that needs to be
addressed to ensure its effectiveness. Interoperability among different
blockchain platforms and other existing systems is equally essential for
seamless integration and communication. Additionally, adherence to
relevant regulations and compliance frameworks is crucial to ensure
the legally correct and ethical use of blockchain technology in smart
city applications.

Software-defined networking (SDN) is a cutting-edge communica-
tion framework that utilizes a programmatic approach to enable the
execution of communication mediums. SDN controllers consist of con-
trol and data planes, which offer high customizability and efficient
packet-forwarding capabilities. SDN proves to be a valuable asset in the
implementation of network infrastructure for smart cities (Mamatas,
Demiroglou, Kalafatidis, Skaperas, & Tsaoussidis, 2023). However, cer-
tain limitations of SDN pose significant challenges to its utilization in

S. Siddiqui et al.

smart cities, with the risks introduced by single points of failure (Gal-
luccio, Milardo, Morabito, & Palazzo, 2015). In contrast, blockchain
technology, as a distributed ledger, offers a means to create a tamper-
proof and secure network (Bannour, Souihi, & Mellouk, 2017). By
integrating blockchain technology with SDN, network administration
tasks can be decentralized across multiple nodes, increasing the sys-
tem’s resilience to external interference. With its decentralized and
tamper-proof nature, blockchain technology provides an additional
layer of security to the network (Ali, Irfan, Alwadie, & Glowacz, 2020;
Sharma, Singh, Jeong, & Park, 2017; Zhou et al., 2016). Moreover,
the establishment of a secure and efficient communication infrastruc-
ture is critical for the effective functioning of interoperable services
within smart cities, and SDN plays a crucial role in enabling seamless
communication and collaboration among various systems and devices.

The combination of blockchain technology and SDN permits the
distribution of network control across multiple nodes, thereby en-
hancing the network’s resistance to assaults and malfunctions. The
deployment of communication infrastructure in smart cities can ef-
fectively resolve security concerns by utilizing the inherent security
features of blockchain, such as immutability and consensus mecha-
nisms (Yazdinejad, Parizi, Dehghantanha, Zhang, & Choo, 2020). This
integration has the potential to yield benefits as it decentralizes net-
work control and leverages blockchain’s security features, resulting in
a more resilient, transparent, and secure system. These innovations
mitigate the risks associated with cyberattacks, unauthorized access,
and data manipulation, which are crucial factors for the communication
infrastructure of smart cities (Aujla, Singh, Bose, et al., 2020). While
this integration bears promise, additional research and development
are required to address challenges such as scalability, performance,
and interoperability to ensure practicable implementation in real-world
smart city environments. Blockchain and SDN together show consider-
able potential for delivering adaptive security solutions in smart cities.
Blockchain technology offers safe and transparent transactions, while
SDN provides a dynamic and adaptable network architecture capable of
adapting to changing security needs. Together, these technologies may
improve the interoperability of smart services in smart cities while also
ensuring system security (Igbal, Abbas, Daneshmand, Rauf, & Bangash,
2020; Latif et al., 2022).

1.1. Motivation

The increasing number of smart city applications across different
domains presents a challenge in maintaining consistent security mea-
sures and enforcing dynamic governance policies. To address these
challenges and ensure data security and privacy during collaborative
tasks in heterogeneous smart cities, this research aims to propose an
adaptive security framework that leverages smart security contracts.
To identify the research gap, four research questions related to col-
laborative service security were identified. The summarized version
of the literature based on these research questions is presented in
Table 1. Upon examining the existing literature, it becomes evident
that ensuring secure and reliable communication among diverse in-
telligent services during interoperation in collaborative tasks requires
consideration of the following factors:

1. Scalable Communication Infrastructure: Smart cities’ interop-
erable services require a communication infrastructure that is
capable of dealing with diverse smart city applications to pro-
vide collaborative tasks efficiently. This infrastructure should be
scalable to accommodate the growing number of services and
devices.

2. Integration of Blockchain Technology: The adaptation of block-
chain technology is essential in smart city solutions. The de-
centralized nature of blockchain allows for safe and transparent
transactions among numerous parties in a smart city ecosystem.
Moreover, the scalability and versatility of blockchain make

Sustainable Cities and Society 113 (2024) 105717

it a suitable choice for various sectors of smart city automa-
tion, enabling customized solutions to meet specific use case
requirements.

3. Comprehensive Security Solution: A complete security solution
for smart cities’ interoperable services should encompass several
security components, including authentication, authorization,
access control, encryption, and monitoring. Additionally, the
security solution needs to be dynamic and adaptable, capable of
quickly recognizing and addressing new security challenges that
may arise in the evolving smart city landscape.

By addressing these factors, the proposed adaptive security frame-
work utilizing smart security contracts aims to enhance the security
and privacy of collaborative tasks in smart cities. The integration
of scalable communication infrastructure, blockchain technology, and
comprehensive security measures can contribute to the effective and
secure functioning of smart city services across diverse domains (Al-
saeedi, Mohamad, & Al-Roubaiey, 2019; Aujla, Singh, Singh, et al.,
2020; Huang, Fang, Qian, & Hu, 2020). Our research contributes to the
ongoing efforts of advancing secure and efficient collaborative services
in smart cities, aiming to elevate the standard of living for citizens while
addressing critical security concerns in a dynamic and evolving envi-
ronment. By mitigating administrative challenges and prioritizing data
security and privacy, the proposed framework represents a significant
step towards the realization of smart cities’ full potential in improving
the lives of their residents.

1.2. Contributions

The main contributions of this paper are outlined as follows:

1. We propose a novel decentralized adaptive security governance
management mechanism for enforcing rules and regulations for
smart services interoperability within smart cities. The mecha-
nism ensures that security policies are dynamically adjusted to
address evolving security challenges and maintain cooperative
endeavours’ integrity.

2. We introduce an adaptive security policy engine based on smart
contracts, which enables the secure execution of interoperable
smart services in smart cities. The smart contracts ensure that
security measures are consistently enforced and provide a trans-
parent and auditable framework for verifying compliance with
security policies.

3. We demonstrate the feasibility of the proposed solution by im-
plementing a use-case scenario that showcases the interoperabil-
ity between decentralized services within a smart city environ-
ment. This implementation serves as a practical demonstration
of how the proposed framework can be applied to real-world
scenarios.

4. We conduct an evaluation of the proposed framework using
performance metrics such as throughput, access time delay, and
running time complexity for each service security smart contract.
Additionally, the evaluation includes an analysis of the impact
of varying ECC (Elliptic Curve Cryptography) key lengths on the
performance of the security framework.

5. We perform an adaptive security assessment to evaluate the
adaptiveness of the proposed security framework. This assess-
ment involved analyzing the framework’s ability to detect and
respond to security threats, adapt security policies based on
changing conditions, and ensure the overall resilience and ef-
fectiveness of the system.

The rest of the paper is organized in the following manner. Section 2
examines the literature related to security concerns in smart city frame-
works and explores the concept of adaptive security governance based
on smart contracts in smart cities. Section 3 provides insights into the

S. Siddiqui et al.

Table 1

Summary of identified research gaps through available literature.

Sustainable Cities and Society 113 (2024) 105717

Research questions

Summary

Challenges

What are the essential security
prerequisites to establish a
secure communication
mechanism for syntactically
interoperable smart services?

What is the feasibility of
utilizing blockchain
technology for achieving the
syntactic interoperability of
smart services?

What are the characteristics
and capabilities of SDN that
make it a viable
communication architecture
for achieving syntactic
interoperable services in a
smart city?

Is there an adaptive security
solution, utilizing smart
contracts, available for

A secure communication mechanism for smart service
interoperability must possess certain important characteristics to
ensure the confidentiality, integrity, and availability of sensitive
information shared between different entities. Authentication
and trust management are two fundamental characteristics that
must be considered (Ismagilova, Hughes, Rana, & Dwivedi,
2022; Tang, Kang, Fan, Li, & Sandhu, 2019)

In the context of interoperability, blockchain technology enables
direct interaction and secure data exchange among
heterogeneous systems without intermediaries or centralized
authorities. Its key features, data consistency, integrity, and
smart contract execution, contribute to a secure mechanism for
syntactically interoperable smart services (Asif et al., 2022;
Bhushan et al., 2020).

SDN serves as a feasible communication architecture for
achieving syntactically compatible services in smart cities.
Through its centralized management and dynamic policy
enforcement, SDN enables the enforcement of syntactic
standards and uniform communication protocols. This simplifies
tasks such as message translation, protocol conversion, and
traffic segmentation, particularly for services with diverse
syntactic forms. (Medhane, Sangaiah, Hossain, Muhammad, &
Wang, 2020; Salman, Elhajj, Kayssi, & Chehab, 2016).

The availability of an adaptive security solution utilizing smart
contracts for addressing the syntactic interoperability of smart
services in smart cities is yet to be determined and requires

Ensuring trust is essential in implementing security requirements
for the interoperability of smart services. However, achieving
seamless interoperability and authentication becomes challenging
when diverse services utilize authentication mechanisms that do
not adhere to shared syntactic standards, encompassing data
formats, message structures, and protocols (Siddiqui, Hameed,
Shah, Khan, & Aneiba, 2023; Zarko et al., 2019).

Blockchain technology offers benefits for smart service
interoperability, but it also presents challenges such as
scalability, security, and regulatory compliance. As the
blockchain grows, scalability issues arise, impacting transaction
processing speed and interoperability. A blockchain-based
regulatory mechanism is necessary to govern security rules in
smart service interoperability.

The implementation of dynamic policy enforcement in SDN to
achieve syntactic interoperability of smart services presents a
complex challenge. It requires the development and
configuration of policies that effectively capture the desired
behavior of interoperable services. However, addressing this
challenge in SDN is challenging, as it involves ensuring accurate
policy definition and configuration (Benkhaled, Hemam, &
Maimour, 2022; Marshoodulla & Saha, 2022; Ullah et al., 2020).

Existing literature also highlights the absence of an adaptive
security solution for achieving interoperability of smart services
in smart cities (Koo & Kim, 2021; Zubaydi, Varga, & Molnér,

addressing the syntactic
interoperability of smart
services in a smart city?

further investigation. Existing literature provides evidence of 2023).
solutions for achieving interoperability among devices in IoT
networks (Ali, Ahmad, et al., 2020; Wang, Wang, & Chen, 2023).

integration and operation of SDIoT, multi-chain blockchain technology,
and smart contracts within the architecture. Section 4 provides an
overview of the security framework by describing the submodules of
the overall architecture. Section 5 discusses the execution of smart
contracts in the engines for enacting smart governance. In Section 6,
we discuss the description of the use case. Section 7 provides the
implementation details about the test bed used. Section 8 presents
the evaluation results of the comparative system performance of the
proposed framework. Section 9 presents the experiments conducted
for adaptive security assessment and finally we conclude the paper in
Section 11.

2. Related work

The existing literature has extensively examined the concept of
enhancing the intelligence of smart cities by integrating collaborative
services. Various domains such as “smart living”, “smart environ-
ment”, “smart people”, “smart economy”, “smart mobility”, “smart
tourism”, and “smart governance” have been identified as key areas
for collaborative interaction within smart cities (Balcerzak et al., 2022;
Meijer & Bolivar, 2016; Pereira, Parycek, Falco, & Kleinhans, 2018).
These domains encompass a wide range of sectors and highlight the
multidimensional nature of smart city development. Understanding the
collaborative dynamics within these domains is crucial for the success-
ful implementation and management of smart city initiatives. Rathee,
Kumar, Kerrache, and Igbal (2022) propose a trust formation method
aimed at establishing a secure and safe communication environment
in smart cities. Their approach involves the integration of multiple
technologies, including IoT, Al, drones, and robots, with the utilization
of a trust mechanism. By incorporating trust-based mechanisms, their
method aims to enhance the reliability and security of communication
networks within smart cities, enabling the seamless integration and col-
laboration of diverse technological components. This approach has the
potential to contribute to the establishment of a robust and trustworthy
communication infrastructure in smart city environments. Antonios,
Konstantinos, and Christos (2023), Hui, Sherratt, and Sanchez (2017),
Rao and Deebak (2022) extensively discuss the security and privacy
challenges associated with achieving syntactic interoperability in smart

cities. Maciel, David, Claro, and Braga (2017) highlight the importance
of interoperability in the context of regulatory policies, addressing the
limited adoption of commercial smart city technologies. On the other
hand, (Agbaje et al., 2022; Ibrar et al., 2022; Tosic et al., 2022) present
a comprehensive methodology for evaluating semantic interoperability
solutions, examining their strengths, weaknesses, and potential future
directions in the context of smart cities. Additionally, (Msahli, Labiod,
& Ampt, 2019) specifically focuses on the privacy protection mecha-
nisms for sensitive data during interoperation in a V2X environment,
including the identification of fake identities or certificates. These
studies contribute valuable insights into the various aspects of security,
privacy, and regulatory considerations surrounding interoperability in
smart city environments.

Rahman et al. (2022) propose a hierarchical blockchain-based plat-
form called Blockchain-of-Blockchains (BoBs) to address data man-
agement, integrity, traceability, and transparency challenges in IoT
interoperability across smart city organizations. Karumba et al. (2023)
present the Blockchain Agnostic Interoperability Framework (BAILIFF),
focusing on notary services and cross-chain attestation for verifica-
tion. In Guvenc et al. (2018), Motlagh, Taleb, and Arouk (2016),
the authors explore interoperable services for drone tracking in smart
city networks. Basheer and Itani (2023) discusses the integration of
Fog Computing, IoT, and MANETs to achieve interoperable systems
in sustainable cities. Chen et al. (2023) present Vehicle as a Service
(VAAS) as an interoperable service for vehicles. Batayneh et al. (2021)
highlights the lack of proper security governance in smart city de-
velopment and its impact on collaborative tasks. Dua et al. (2017)
propose a secure message transmission system using elliptic curve
cryptography for interoperable cars in smart cities. Reegu et al. (2022)
emphasize the role of blockchain in healthcare and its challenges in
achieving syntactic interoperability. Alshboul, Bsoul, Al Zamil, and
Samarah (2021), Kharche and Dere (2022), Sookhak, Tang, He, and
Yu (2018) analyze security and privacy challenges in syntactically
interoperable services using blockchain in smart cities. Bellavista et al.
(2021) discuss the role of blockchain technology in the fourth indus-
trial revolution (Industry 4.0) and highlight issues with interoperation
between blockchains. Villarreal, Garcia-Alonso, Moguel, and Alegria
(2023) focus on blockchain’s potential for interoperability and security

S. Siddiqui et al.

Table 2
Comparative analysis of existing solution with proposed solution.

Sustainable Cities and Society 113 (2024) 105717

S-no Studies Access level security Information security Governance mechanism
Authentication Authorization Trust Confidentiality Integrity Availability Security Governance Adaptive Security Governance

1 Meijer and Bolivar (2016) v v X v X X v X
2 Rathee et al. (2022) v X v 4 X X 4 X
3 Msahli et al. (2019) 4 X v 4 X X v X
4 Rahman, Chamikara, Khalil, and Bouras (2022) X X v v X v X X
5 Karumba, Jurdak, Kanhere, and Sethuvenkatraman (2023) v v v v v X v X
6 Guvenc, Koohifar, Singh, Sichitiu, and Matolak (2018) v v v X X X v X
7 Batayneh et al. (2021) X v X X X X X X
8 Dua, Kumar, Das, and Susilo (2017) v v X v v v v b'e
9 Knowles Flanagan (2022) v X X X X b'e X X
10 Xu, Chen, Blasch, and Chen (2018) v v v v v v v X
11 Gilani et al. (2023) X v X X X X v X
12 Proposed v v v v v v v v

of healthcare information. These studies contribute valuable insights
into various aspects of interoperability, security, and privacy in the
context of smart cities and blockchain technology.

Knowles Flanagan (2022) propose a decentralized protocol and data
exchange framework for human-driven and connected autonomous
vehicles to achieve interoperability in intersections. Xu et al. (2018)
introduce BlendCAC, a decentralized capability-based access control
mechanism for large-scale interoperable IoT systems using smart con-
tracts. Gilani et al. (2023) propose a vertical SDN-based framework
to enhance reliability and stability in smart home interoperable ser-
vices. Rana and Singh (2023) focus on ensuring compatible and ef-
fective communication in the IoT during interoperation utilizing SDN-
based architectures. Shamsudheen, Karthik, Anoop, and Gobinathan
(2023) discuss the challenges of SDIoT in emergency services for disas-
ter management. Banerjee et al. (2021) propose a secure and scalable
scheme for data collection and access control in IIoT using blockchain
technology. Latif et al. (2022) emphasize the importance of interoper-
ability of blockchains and SDN in addressing energy and security issues
in IoT networks. Kozhevnikov, Svitek, and Skobelev (2022) present a
multi-agent system prototype that enables adaptive planning for the
interoperable services of gas, water, and energy resources in smart
cities.

Recently Buldas, Draheim, Gault, et al. (2022) have suggested the
architecture of the multi-chain technology Alphabill, a blockchain plat-
form, which allows for universal asset tokenization, transfer and ex-
change as a global medium of exchange. Alphabill has been designed,
genuinely, for the purpose of universal asset tokenization (Buldas,
Draheim, Gault, et al., 2022). As such, it shares objectives with other
multi-chain blockchain technologies such as Polkadot (Polkadot, 2023).
In service of universal asset tokenization, the Alphabill platform (Bul-
das, Draheim, Gault, et al., 2022) aims at offering (1) systematic
support for joining a transaction system to the platform, (2) systematic
features for the interaction of hosted tokens, and, last but not least,
(3) uncapped scalability. The key difference between Alphabill and
Polkadot is in their approach to decomposition: Polkadot is a federa-
tion of multiple blockchains, whereas Alphabill is a single-partitioned
blockchain. The Alphabill platform is currently under development and
will be published as open-source software (Buldas, Draheim, Gault,
et al., 2022).

The existing literature primarily emphasizes augmenting the com-
munication architecture of SDIoT and the interface between SDIoT and
Blockchain to enhance security measures. Their primary objective is
to ensure interoperability among services in smart city networks. Yet,
there is a discernible gap concerning the integration of adaptive secu-
rity measures into established security governance standards, especially
during service interoperability. Table 2 provides a comparative analysis
between current solutions and the proposed approach. Our proposed
security framework introduces an innovative approach by employing
smart contracts to establish a dynamic security governance mechanism,
enabling adaptive security measures.

3. System overview

This research work proposes an architecture that addresses the secu-
rity requirements associated with collaborative tasks in smart cities and
interoperable services. This architecture is built upon the integration of
three key technologies: Software-Defined Internet of Things (SDIoT),
multi-chain blockchain technology, and smart contracts. By combining
these technologies, our approach aims to establish a highly secure
and resilient system capable of effectively managing potential security
threats that may arise during the interoperation of smart services in
smart city networks, particularly for collaborative tasks. Authentication
and access control represent the core security components carefully
incorporated into our proposed security framework. These components
play a critical role in ensuring that only authorized entities are granted
access to the system and its resources, thereby enhancing the overall
security of the system. The programmable scripts detailing the setup
and parameters of our proposed solution are publicly available on both
GitHub' and Code Ocean? platforms.

In the following subsections, we will provide a detailed discussion
of the technologies and core components involved in our proposed
security framework, as illustrated in Fig. 2. This discussion will of-
fer insights into the integration and operation of SDIoT, multi-chain
blockchain technology, and smart contracts within the architecture.

3.1. SDIoT (Software-Defined Internet of Things)

The Software-Defined Internet of Things (SDIoT) is a technology
that makes it possible to build a dynamic and adaptive network of
networked IoT devices, sensors, and other elements of the infrastruc-
ture for smart cities (EL-Garoui, Pierre, & Chamberland, 2020). Smart
city service nodes may be readily integrated and linked by SDIoT,
enabling real-time data interchange, analytics, and decision-making.
The architecture of SDIoT is based on the idea of SDN, which divides
the control plane and the data plane of network devices to provide
greater flexibility and programmability in controlling and running the
network. We use SDIoT architecture (Ogrodowczyk, Belter, & LeClerc,
2016) in our proposed framework in order to build a smart city net-
work that enables interoperability between various smart services for
collaborative tasks. The framework of SDIoT consists of three layers:
the application layer, the controller layer, and the perception layer. In
our proposed framework, Fig. 3 depicts the usual SDIoT architecture.

3.1.1. Application layer

The application layer is a crucial component of the SDIoT archi-
tecture that enables the deployment of various smart city services (Li,
Chen, & Fu, 2019). By leveraging the application layer, cities can easily
integrate and network smart services for seamless data exchange and
real-time decision-making. This layer provides a flexible and scalable

1 https://github.com/Shahbazdefender/A-Smart-Contract-Based-Adaptive-
Security-Governance- Architecture-for-Smart- City-Service/blob/master/
README.md

2 https://codeocean.com/capsule/1559462/tree

https://github.com/Shahbazdefender/A-Smart-Contract-Based-Adaptive-Security-Governance-Architecture-for-Smart-City-Service/blob/master/README.md
https://github.com/Shahbazdefender/A-Smart-Contract-Based-Adaptive-Security-Governance-Architecture-for-Smart-City-Service/blob/master/README.md
https://github.com/Shahbazdefender/A-Smart-Contract-Based-Adaptive-Security-Governance-Architecture-for-Smart-City-Service/blob/master/README.md
https://codeocean.com/capsule/1559462/tree

S. Siddiqui et al.

Sustainable Cities and Society 113 (2024) 105717

o

*

Global
Service Contract

Policy Engine
Contract

Context Engine
Contract

5 A AR AR E
s Ly N ;
Service Security
Contract

—_—

Policy Engine
~ Contract

Local
Adaptive Security Engine

’ Context Engine
Contract

Service Agreement
Contract

.\ o AP\ ;
. N N '
alablelebuleletelebelelebelelegielielptlelebeeleleleblelebuleletel =
Service Security ‘ Context Engine
Contract Contract

aulbug Ajunoag aandepy
leoo]

Service Agreement
Contract) Contract

[Policy Engine

SDIoT Architecture
Layer

¢ é@/ Perception Layer
<I€ﬂ' Nodes des

loT Nodes >

Smart Service -B

[Services API }[ServiceSecurityJ

Key

1ake
8in3o331ydly Loias

r//i@/ Perception Layer *)
\\1 Q
<Ié;|' Nodes foT: hiedes

loT Nodes 3

Fig. 2. Proposed security framework for collaborative services.

Interoperable Interoperable Interoperable |
Service A Service B Service C
1
\ Application Layer 7
:----------------—‘

7 SR < e R <
' i ' ' A |
1 ., SDNWise ' ' Key [
1 | Controller ! Management i
T £ S
1 Trust ' - Contract Cy
1 | Management ! Management :
. Controller Layer !

OO R ol s U R FRSE R

Sensor Nodes

Sensor Nodes

Sensor Nodes

Perception Layer

Fig. 3. Typical SDIoT architecture.

platform for developing and deploying innovative smart city services

that can improve the quality of life for citizens. In our proposed

framework, we take advantage of the application layer to integrate the
open APIs of multiple smart city services, enabling us to implement
a use case of interoperability between these services for collaborative
tasks. By allowing different services to communicate with each other,
our framework facilitates more efficient and effective delivery of smart
city services.

3.1.2. Controller layer

At the controller level, we have SDN-WISE controllers that are
responsible for communication features and SDN programming benefits
such as managing heterogeneity and scalability (Galluccio et al., 2015).
SDN-WISE is built on the IEEE 802.15.4 physical and MAC layers, and
the Forwarding (FWD) layer processes incoming packets in accordance
with the WISE Flow Table, which is changed by the Control Plane based
on settings. The typical SDN-WISE architecture includes the default
network module of SDN-WISE communication standards such as IEEE
802.15.4 for wireless nodes, topology discovery, packet processing, and
the flow-wise (Mostafaei & Menth, 2018).

3.1.3. Perception layer

The perception layer comprises the smart sensors and devices in
our proposed framework that are working as sensing nodes for smart
services. These sensing nodes are integrated into different smart city
services and applications, enabling the city to collect real-time data and
provide valuable insights for improving public safety and the quality of
life of its citizens (Mrabet, Belguith, Alhomoud, & Jemai, 2020).

S. Siddiqui et al.

f:n—b f:»—bf:»

Registration Service Security GLobal Level
Contract Agreement

\
. Global Blockchain F

S

Sustainable Cities and Society 113 (2024) 105717

Send/Receive
Client Socket

¢ :n = f:-«— ‘E:'"

Registration Service Security GLobal Level
Contract Agreement
Y, Local Blockchain L

Fig. 4. Client-Server architecture for proposed security framework.

3.2. Adaptive security engine layers

On top of the SDIoT layer, our proposed security framework in-
cludes two additional levels: global and local adaptive engine layers.
These layers include blockchain technology, which is vital for enforcing
norms and policies during message exchange across collaborative and
interoperable services in smart cities. To achieve this blockchain con-
nection, we use Multichain 2.0, a strong and scalable blockchain-centric
platform. Multichain 2.0 is purposely designed to provide a secure foun-
dation for designing and running decentralized applications, as well as
a variety of enhanced security features. Multichain 2.0 supports numer-
ous chains, giving developers the ability to precisely design blockchain
networks according to their own needs and preferences. This platform
enables the autonomous operation and smooth interaction of various
chains (MultiChain, 2023a, 2023b). Multi chains are currently emerg-
ing with Web3 (Buldas, Draheim, Gault, & Saarepera, 2022; Edelman,
2022; Esber & Kominers, 2022; Jin & Parrott, 2022; Stackpole, 2022)
(not to be confused with Web 3.0 (Berners-Lee, Hendler, & Lassila,
2001; SemnaticWeb, 2023)), which takes blockchain to the next level
by turning disintermediation ubiquitous — establishing disintermedia-
tion not only for basic payments but also for a wide range of financial
services, digital identities, data and business models (Buldas, Draheim,
Gault, & Saarepera, 2022; Edelman, 2022). As such, the Web3 vision
is about consolidating and integrating the fragmented landscape of
specific blockchain visions expressed in the many initial coin offerings
(ICOs) that we have seen over the last decade; and multi-chains are the
natural fit to form the technological basis of Web3.

Fig. 4 illustrates the internal client-server architecture of the in-
tegrated blockchain. In this architecture, client nodes serve as de-
centralized smart interoperable services, while server nodes act as
decentralized servers responsible for security governance. Following
are the validation chains in client and server multi-chain:

1. Registration: The registration validation chain is responsible for
maintaining the authenticity attributes of SDIoT architecture and
local and global adaptive engines. It ensures secure and trustwor-
thy interactions between them through the authenticity of their
public keys, digital signatures, etc. during the interoperation of
smart services in smart cities.

2. Service Security Contract: The service security contract vali-
dation chain is a critical component that ensures the integrity
and security of the global and local service security contracts
within the blockchain ecosystem. This validation chain is re-
sponsible for verifying and validating new security rules before

they are implemented in the blockchain. It ensures that the
security contracts adhere to the predefined criteria, policies,
and regulations and that they are compatible with the overall
security framework of the blockchain system.

3. Global Service Agreement: The agreement validation chain plays
a pivotal role in the storage and management of agreements
between diverse services within smart city ecosystems. It serves
as a reliable repository for storing and safeguarding the local and
global transaction agreements associated with service security
smart contracts. These agreements are established between two
smart services and serve as the foundation for collaborative tasks
undertaken within smart cities. By diligently maintaining the lo-
cal and global transaction agreements, the agreement validation
chain ensures the coherence and consistency of service security
smart contracts. This, in turn, facilitates seamless coordination
and interoperability between smart services, thereby enhanc-
ing the efficiency and effectiveness of collaborative endeavours
within smart cities.

3.2.1. Smart contracts

A smart contract is a self-executing and autonomous agreement that
is coded as a computer program and runs on a blockchain platform (Zou
et al., 2019). It defines and enforces the rules and conditions of an
agreement between parties without the need for intermediaries. Once
deployed on the blockchain, a smart contract automatically executes
and enforces its predefined logic when certain conditions are met, with-
out the need for human intervention (Khan, Loukil, Ghedira-Guegan,
Benkhelifa, & Bani-Hani, 2021). In our proposed security framework
we implement four types of security smart contracts in local and global
adaptive engines. Multi-chain blockchains utilize these smart contracts
to provide security automation during the interoperation of smart
services in the fulfillment of collaborative tasks.

1. Service Agreement Contract: is responsible for generating an
agreement between service to the local adaptive engine and
service to the global adaptive engine for collaborative tasks
between the interoperability of smart services in a smart city.

2. Service Security Contract: is a crucial component in ensuring
the secure interoperability of smart services in collaborative
tasks. It is responsible for creating local and global security
contracts that outline the security requirements for the ser-
vices involved. These security requirements typically encompass
authentication, authorization, and access control mechanisms
to protect the confidentiality, integrity, and availability of the
services and their data.

S. Siddiqui et al.

3. SPolicy Engine Contract: is responsible for creating local and
global policies for the interoperability of smart services based
on local and global service security contracts, such as a policy
to access collaborative messages between services.

4. Context Engine Contract: is responsible for executing the service
security contract for local and global adaptive engines required
during service interaction for collaborative tasks.

4. Proposed security framework

The proposed security framework for collaborative tasks in smart
cities is based on the integration of SDIoT architecture, a local adaptive
engine, and a global adaptive engine. These components work together
to ensure adaptive security during the interoperation of smart services.
The SDIoT architecture provides the foundation for dynamic and adapt-
able networking of IoT devices, sensors, and smart city infrastructure.
The local adaptive engine and global adaptive engine, implemented as
part of the blockchain, leverage smart contracts to automate security
measures.

In the following subsections, we will provide an overview detailing
the implementation of security modules within the SDIoT and Adaptive
Engines layers, accomplished through integration with the SDN-WISE
controller based on the Java platform and the utilization of smart
contracts based on the Python platform. This encompasses authenti-
cation and access control components, ensuring the system’s secure
and resilient operation. The local adaptive engine and global adap-
tive engine utilize the multi-chain blockchain and smart contracts to
enforce security measures and ensure the integrity and confidentiality
of data exchanged between different smart services in a collaborative
task environment. This integration ensures that security policies are
consistently applied across the system, enhancing overall reliability and
trustworthiness.

4.1. SDIoT security modules

In this section, we will discuss the implementation details of the
security modules residing in the SDIoT layer. These modules are im-
plemented within the SDN-Wise controller by integrating them with the
pre-existing modules already housed within the SDN-Wise controller.

4.1.1. Key and session management

In our proposed security framework, we implement a key and
session management module in the SDIoT architecture. It is responsible
for providing digital identity to the IoT nodes of smart services in terms
of key pairs and session keys. It is also responsible for storing it in
the local repository in order to validate security attributes during the
interoperation of smart services.

Definition 1 (Key Management). Let S; and S; represent two smart
services, each with sets of client nodes denoted as C; and C;. Each client
node has its own key-generating module, denoted by K,, which acts
as a repository of ECC keys (128, 192, 256 bits). The key-generating
module executes a key generation function 6 to generate keys for the
services and their client nodes. These keys are formally represented as
a set of 3-tuples (a, 8, y), where:

* a represents service key-pairs,
* f represents client key-pairs,
« y represents SDN key-pairs.

Formally, the set of keys stored is defined as:
K@ ={(a,p,7)i€S,3j€C) @

Algorithm 1 outlines the implementation of the key management
module, where the module will create Public key and Private key

Sustainable Cities and Society 113 (2024) 105717

pairs for SDN controllers, IoT nodes, and smart services in the SDIoT
architecture to provide them with digital identities. We used the Ellip-
tic Curve Cryptography (ECC) cryptographic algorithm for generating
these key pairs. ECC is known for its strong security and smaller key
sizes compared to traditional cryptographic algorithms, making it well-
suited for resource-constrained IoT devices. We are using different key
lengths such as ECC (128, 192, 256) in order to provide variation in
authentication between different interoperable services.

Algorithm 1 : Key and Session Management

Require: node;; Where i,j is communicating nodes
Ensure: Session ID for communicating nodes
Generate keys for controllers, IoT nodes for
Key Length 128, 192, 256 bit
1: Publickey;;= Openssl.generatePublic (ECC)
2: Privatekey;;= Openssl.generatePrivate (ECC)
3: Store in Key in repository accordingly
Binding identities of nodes with smart service
4: Initialize Service JSON
: Read the Keys from the repository accordingly
6: Service JSON=Publickey;;, Publickey;;

(9]

After generating the key pairs, the key management module gen-
erates session keys in order to provide secure communication between
IoT nodes during collaborative tasks through the controller. Following
is the high-level overview to distribute the session key from the key
management module to IoT nodes securely,

1. At the beginning of the system, when IoT nodes are initialized,
they need to join the network in the SDIoT architecture. IoT
nodes will initiate the process by sending the encrypted joining
request message through the SDN controller’s public key and
signing it with their own private key. We assumed the SDN
controller and IoT nodes knew each other’s public keys in the
system.

2. SDN controller decrypts the message with its private key and the
IoT node’s public keys. After a successful verification process, the
Key management module generates session keys.

3. Key management modules then use Elliptic Curve Diffie-Hellman
(ECDH) to distribute session keys securely to IoT nodes from an
SDN controller by encrypting the session key with the public
keys of IoT nodes and signing it with the controller’s private
key.

4. IoT nodes after successfully decrypting the message, IoT nodes
are able to use session keys for secure communication in order to
provide confidentiality to the collaborative message during the
interoperation of smart services.

4.1.2. Smart service management

Developing sustainable and effective urban environments requires
smart services that can work together. To accomplish this, we created
a dynamic application module in the SDIoT architecture responsible
for integrating multiple smart service APIs into the security framework
in order to provide collaborative tasks during the interoperation of
different smart services. We also introduced the trust factor associated
with smart services in the application layer to ensure that trustworthy
and reliable smart services are used for collaborative tasks between IoT
nodes.

Definition 2 (Smart Service Management). Let SmartService; , represent
a set of smart APIs denoted as AP, , responsible for executing a Smart
Service management function M. This function M appends service trust
keys and the Smart Service APIs. Formally:

M (SmartService; ,) = {ServiceAPIs, Trust = 0} (2)

S. Siddiqui et al.

Sustainable Cities and Society 113 (2024) 105717

SDN Controller

Dynamic Application

<%

3.Yes

Verification of
Security Variables

Update
Repository

SDIoT Architecture

Variables
\' loT Nodes

Bl

—> Repository

2.Verification
of SDN Preshared Key J/'_\
|)€ Module

1.Read Smart Service APIs

4. Yes ., Y
’, \
1, \‘
s = b
4NO e .. ‘a4
. - loT Nodes R
Add Security ‘~_’, {3 2y
Y

Fig. 5. Smart service management.

Algorithm 2 refers to the implementation of the Smart Service man-
agement module in the application of the SDIoT layer. We implement
the module in such a manner that enables us to integrate as many smart
service APIs into the application layer. After the API attaches to the
SDIoT application layer, the Service security module is responsible for
providing security requirements with the help of the key management
module along with the trust variable. We used trust variables for
smart services in order to make trustworthy interoperability possible
for collaborative tasks. Fig. 5 displays the workflow of the smart service
management.

Algorithm 2 : Smart Service Management

Require: Service APIs

Ensure: Add Trust values to smart services
For adding multiple smart APIs

. Service JSON[[Service APIs= APIs]

: API= Number of smart APIs

: while API>= 0 do

Service= API

Key Management (Service JSON)

Append Service JSON[[Trust= 0]

API= API-1

: end while

4.2. Security modules of adaptive engine’s layers

The adaptive engines encompass both the rule engine and the
execution engine. The execution engine comprises the policy engine,
context engine and process execution. Each module operates using
smart contracts to execute specific security functionalities. The security
validation mechanism between the local and global adaptive engines
is established through the security validation chain embedded within
the blockchain environment. Similarly, we adopt similar approaches
to integrate these engines into the SDIoT architecture. We utilized
the blockchain’s inherent key management modules to generate digital
identities for the global and local blockchains. This strategy aims to
facilitate seamless operations by ensuring that both the global and local
blockchains possess access to their respective keys.

4.2.1. Rule engine

The rule engine is responsible for generating security rules, both
local and global, based on the dynamic security requirements of smart
services during collaborative tasks in interoperability scenarios.

Definition 3 (Rule Engine). Let SmartService, , represent a set of smart
APIs denoted as API; , responsible for executing a Smart Service man-
agement function Z. This function Z converts security rules from the

Algorithm 3 : Rule Engine

Require: Authentication, Authorization, Access
Ensure: Local Service Security Contract
For Local Adaptive Engine
1: Define Authentication JSON object
Read the SDN Controller Public Keys (128,192,256) bits
Read the Local Blockchain Public Keys (128) bits
Read the Global Blockchain Public Keys (128) bits
2: Define Authorization JSON object
Service Trust= Define the Trust Parameter;
3: Define Access JSON object
Adding Collaborative Service;
4: Compile the JSON as Local Service Security
5: GLobalService= MultichainClient(JSON)

service security definitions into two sets: a local service contract for
the local adaptive engine and a global service contract for the global
adaptive engine. Formally, the Rule Engine function Z is defined as:

Z(SmartService; ,) = (LocalServiceContract, GlobalServiceContract)

3

where Local Service Contract and Global Service Contract represented
as a set of 5-tuple a, 8, ServiceAPIs,Trust where a represent services
key-pairs § represent client key-pairs and y represent SDN key-pairs

Algorithm 3 outlines the implementation of service security con-
tracts, involving the use of an array of dictionary objects to add
new security requirements for smart services, including authentication,
authorization, and access control mechanisms.

To activate the rule engine in both adaptive engines, we implement
two separate smart contracts: the Global Security Contract within
the local adaptive engine and the Service Security Contract within
the global adaptive engine, facilitated by the Service security.Json
file. These contracts ensure that critical security requirements, such
as access control, trust for authorization, and authentication, are in-
tegrated into services enabling their seamless interaction. The valida-
tion attributes are securely stored within the validation chains of the
Global Service Agreement Contract and the Local Service Security
Contract in the blockchains. Eq. (4) depicts the structure of the con-
tract’s JSON messages. After this, the Rule engine transfers the pending
request to the execution engine.

Service variable|| Authentication variable
[|Trust variable||Collaborative task

4

Contract =

S. Siddiqui et al.

Service variable = Security Validation attributes
Authentication variable = SDIoT, Blockchains(Public, Private Keys)
Trust = Value of trust Factor

4.2.2. Execution engine

The execution engine comprises distinct smart contracts, that in-
clude the policy contract, the context execution contract, and the
execution process contract. The policy engine contract in our proposed
security framework is defined as a set of rules, guidelines, or prin-
ciples based on the combination of local and global security rules
during the interoperation of smart services for the collaborative task
in a smart city. The Rule Engine is responsible for providing the
local security rules, while the global adaptive engine uses the global
blockchain to enforce the global security rules onto the local ones.
The context engine is responsible for executing the crucial processes of
authentication, authorization, and access control for the collaborative
task during the interaction of multiple services by fetching the service
security contracts from the local rule engine and global rule engine.
Algorithm 4 refers to the implementation of the context engine where
authentication of the identities of the SDN controller, blockchain, and
communicating nodes through the local and global blockchain is the
first step.

The Policy Engine, on the other hand, is responsible for fetching
the latest updated service security from the Global Adaptive Engine
server Blockchain and converting it into JSON Format as shown in the
Algorithm 5. To execute of Policy contract the module is responsible for
forwarding the policy to the Execution Engine. The engine has its policy
management operations (such as adding, deleting, and appending new
policies) in order to provide flexibility during the interoperation of
smart services.

Definition 4 (Policy Engine). Let SmartService; , represent a set of
smart APIs denoted as API, , responsible for executing a Smart Ser-
vice management function X. This function X fetches contracts from
blockchains, combines them, and converts them into a comprehensive

policy. Formally:

X (SmartService; ,) = LocalServiceContract U GlobalServiceContract (5)

Algorithm 4 : Local Context Engine

Require: Authentication, Authorization, Access
Ensure: Context Execution

1: Trust =0

2: while True do

3: Bool =Verification of Authentication Variable
4: if Bool == T'rue then

5: x=1-a

6: ServiceTrust= x * Trust + a*0.001

7: Trust = ServiceT rust

8: Send the Service Trust to Blockchain

9: if Trust > Pragramatical Variable then

10: Access = Grant

11: Call Collaborative Task
12: end if

13: end if

14: end while

After successful verification of authentication, the authorization is
completed with the help of trust assessment to access the collaborative
task during the interoperation of smart services. For trust assessment,
we are using a modified version of Bao, Chen, and Guo (2013) as
defined in the following Definition 5:

Definition 5 (Trust Assessment). Given two smart services i and j, a
time point ¢, a time difference to a previous trust assessment AT, a

10

Sustainable Cities and Society 113 (2024) 105717

Algorithm 5 : Policy Engine Contract

Require: Fetch the service security from the Blockchain

Ensure: Send the JSON Contract to the Execution Engine
1: Fetch the contract from the Blockchain

: Convert the contract in JSON format

: Initialize Global Service, JSON=[]

: a= Use Multichain command to fetch the contract

: Append Global Service, JSON= a

a H~ wWwN

direct trust assessment D, ;() € [0,1] at time point ¢, and a trust factor
a € [0,1] (indicating how much the trust assessment depends on
direct assessment), we define the trust assessment of service interaction
(between smart services i and j at time point ¢), denoted by 7; ;) €10,1]
(with 0 called untrusted, 0.5 called semi-trusted, and 1 called trusted) as
follows:

T,;()=aD;(N+1-a)T,;(t — AT) (6)

5. Workflow of smart contract execution

In this section, we discuss the execution of the smart contracts
present in the engines for enacting smart governance in a smart city.
We implement the concept of smart governance in a global adaptive
engine responsible for enforcing the smart city governance rule on
the smart services running in the smart city. Smart contracts are self-
executing programs that run on adaptive engines in our proposed
security framework, designed in a way to provide automation for secu-
rity. We implement the smart contract with the help of a Python script
that integrates with “multi-chain” APIs. Following is the workflow
of smart contract execution involved in the interoperation of smart
services and smart governance in a global adaptive engine:

1. Generation session token

2. Adding local service security contract
3. Adding global service security contract
4. Governance execution process

5.1. Generation session token

In the proposed security framework, we used session keys in con-
junction with private and public keys for communication between
SDIoT architecture and adaptive engines on blockchain in order to
provide additional data security features during a collaborative task.
Fig. 6 represents the workflow to generate a secure session token
for communication. The following are cryptographic steps involved to
generate a secure session token for communication

1. The SDN-wise controller generates key pairs and sends a request
message by including the public identities of nodes in the mes-
sage as node;;(pub) and the hash of the SDN controller public
key. The request message is then encrypted with the public keys
of the local blockchain and signed with the controller’s secret
key. Eq. (7) shows the structure of the request message. It is
assumed that the local blockchain and SDN controllers have
already shared their public keys with each other by sharing the
hash of their public keys.

Messageg,, = [(node,-/-(pub)l |haSh(SDNpub))sk]pb (2]
2. The local adaptive engine receives a request message from the
controller and decrypts the received message through the private
key of the local blockchain and the public key of the SDN

controller as shown in Eq. (8).

Messagey,. = [(node,j(pub)l |hash(SDNpu,,))] (8)

S. Siddiqui et al.

Sustainable Cities and Society 113 (2024) 105717

"
‘Q ’li

¢
Global Service Local Service
Agreement Security

G
1
! g
— Ty
H ke ’
f § Local
o : E Registration
s g
1 ®
= Not Allowed
w2
v | &
= [
ot 1
Q |
T |
T i
< | Multichain Client
© : Agent
Q |
° |
- | 2.Security Verification
1
1
1
: Local Adaptive
1 Agent
1
1
1

~

1
1
1
1
1
1
1
1
1
1
]
AY

SDN Public
K Local
ey -
Registration

Multichain Client
Agent

loT Nodes
Public Keys

1
1

1

1

1

1

1

1

1

1

1

1

v]

! |

! |

! |

7 !]
Session 1 1
> Token 1 '
! 1

! 1

! 1

! 1

! 1

1

1

1

1

1

1

1

1

1

1

1 1
! 1
] — 1
1 1.Request Session Keys]
! \\;//‘ T’ 1
1 'L
1 SDN Controller Application Agent :
1
| 6.Security :
e 1 Verification |
1 1
.a 1 Stop __No = 7.Token N
O = Yes 7| Acceptance Process 1
2|, :
=1 Multichain Agent N
- R |
< :
=l '
1 4 1
o . No 1
E 1 12.Store Session 1
! Token 1
(728N 1
1 1
1 1
! 1
: 8.Token :
! e 9.Token accepted 1
1 : A
I Verification Process !
1 Not Allowed |« < @: 1
' \/ '
; Multichain Client !
i Agent :

Fig. 6. Workflow of session token generation.

3. After successfully decrypting the request message, the adaptive
engines first verify the legitimacy of the SDN controller by
fetching the SDN controller’s public key from the validation
chain of the local blockchain.

4. After successful validation of the SDN public key from the local
blockchain, local adaptive engines call smart contracts for ses-
sion token generation. We implement it with the help of multi-
signature, this requires the public keys of the local blockchain,
along with the public key of IoT nodes as shown in Eq. (9).

Sessionyp = [(Multisig(node,-j(pub), (chainpub)))] 9

5. Multi-signature protocol returns the session ID which is then
stored in the validation chain of local and global chains and
forwarded to the SDN-wise controller.

6. The Encrypted Session,;, is then sent back to the controller by
encrypting with the public key SDN controllers and signing it
with the Local and the global blockchain private key. Eq. (10)
shows the sent message structure.

(10)

SessionContract . = [(Sessionxk)] b

7. The SDN controller verifies the legitimacy of the received mes-
sage.

11

8. Session token acceptance process is started.

9. If the session token is accepted, the legitimacy of the session
token security attribute will be again verified through the mul-
tichain client agent.

10. After successful verification of the security attribute of the ses-
sion token from the multichain client agent, the session token is
stored in the local repository.

11. After successfully validating of session;; from the local and
global validation chains, the session;; is stored in the local
repository of the controller. Lastly, the controller calls the key
distribution module in order to distribute the session key to the
IoT nodes for secure communication during the interoperation
of smart services during a collaborative task.

5.2. Adding local service security contract

Interoperability between services requires an agreement when add-
ing new security requirements to the service of a smart city. In our
proposed framework we create a smart contract for adding new security
requirements that generate a service-level agreement for interoper-
ability. For access to collaborative tasks, interoperable services should
agree on the service-level agreement. Fig. 7 shows the workflow steps.

S. Siddiqui et al. Sustainable Cities and Society 113 (2024) 105717

/—\l---I
1
| # - o :
T oW o ‘g |
' 2 ’ ¢ 1
' 2 Local Global Service Local Service :
o z Registration Agreement Security '
c S '
o | 8 S e e e e e (e ~ :
c £ Not Allowed ! (ES— R
w : g 1 olicy Engine _Context L3 Execution 1 ;
o | = : Contract Engine Contract : '
> Fail i . !
= Y Successful ! Execution Engine : '
) 5 : ~ .
o Verification i 1
5L o— e '
T | . j — m, 4.Service Security Contract 1
<C || Multichain Client Message KA :
© : Agent Parsing Multichain Client 1
Q| Agent 1
o 1 e T A A S S e R R Y S AT !
—| ' ' 1 1
1 f '
: @ 2.Security Verification : Authentication =~ —>» Authorization —> Access Control :
1]
1 f 1
|] .
1 Local Adaptive L Rule Engine A
' Agent ;
1
! Agreement Token :
I m b o e o o o e] = e e e e e e e e e e e e e =
[|- Sl N SR S s e e | T e e e L e T e e e s
1
1 LR 1
1 1.Adding Service | //_\, : fA\ ’ '
f . <), P lavl 1
! Security Contract _,/‘ s :
: SDN Controller Application Agent :
: 6.Security :
e 1 Verification '
=K __No - 7.Agreement !
! Stop <+ > '
8 1 Yes Acceptance Process '
! 1
=1, o 1
| Multichain Agent
O |, :
£
1 1
< | .
= | Y 1
Oh No |
al 12.Store Service Stop !
o\, Agreement :
1 1
! 1
1 1
: 8.Agreement 1
accepted 1
: Eail _Q.Ag_rrement '
Verification Process f;:;}‘ 1
1 Not Allowed [« < 7€ 1
i \/ u . 1
1 Multichain Client 1
: Agent 1
1
(e e A
Fig. 7. Workflow of adding local service security.
The cryptographic steps involved in the execution of the workflow are 3. After successfully decrypting the request message, local adaptive
given below, engines verify the legitimacy of the session keys by fetching the

session key from the validation chain of local blockchains and
then comparing its hash with the received hash of the session
key in the decrypted message.

4. After successful validation of the hash of the session key from
the local blockchain, The rule engine module is responsible for
adding new local security requirements for smart applications
based on authentication, authorization, and access control also
called local service security contracts. The “multi-chain” client
agent generates a transaction of Local service security contract
in the local blockchain and sends it to the global adaptive engine

1. The application agent sends the request message to the SDN
controller. The SDN controller is responsible for providing in-
tegrity, and confidentiality through ECC cryptographic suit by
adding a security tag of session-id to the requested message and
encrypting the request message with the public keys of the local
blockchains. After providing confidentiality and integrity to the
requested message SDN controller signed the message with the
secret key of the IoT nodes and will send it to the Local adaptive
engine. Eq. (11) shows the structure of the request message. It
is assumed that the local blockchain and application agent have
already shared their public keys with each other by sharing the in order to add administrative security requirements to the local

hash of their public keys. service security.
5. In the next step, the policy engine module fetches the updated

global service security contract from the “multi chain” client
agent along with the contract transactional ID also called the Ser-
vice agreement. The policy engine sends the service agreement
message to the context engine in order to provide confidentiality,
and integrity to the service-level agreement message. Context
Engine encrypts the message with the public keys of the SDN
Message,,, = [(Request|| Hash(SessionKey))] 12) controller and provides integrity by integrating the message with

Messagep,. = [(Requesll |Hash(SessionKey))Sk]pb an

2. The local adaptive engine receives a request message from the
application agent and decrypts the received message through the
private key of the local blockchain and public key of IoT nodes
as shown in Eq. (12) as,

12

S. Siddiqui et al.

Sustainable Cities and Society 113 (2024) 105717

.

' :
1 g -1 '
: i)) Y] :
<]] s 1
! 3 . . !
! 2 Global Local Global Service Local Service h
: = Registration Security Security 1
1
1 é 1
! 3 e e e e e - -———————————— - - ~ 1
! 5 HotAliowsd [Local service Context i
o 1 ontext > 1 1 1
: z A 1 Agreement Engine Escuton [
") 1 1
Fail = %
: Successful ! 5.Policy Engine Contract o !
: | PN, v AL UL UL Gl '
' Verification ;
! 1
1 K : 1
1
1 Multichain Server Agent 1 '\g‘:ﬁ::—\gge :
! Multichain Server Agent 1
1 1.Multichain Client T e e g |
, Agent Message d v
1 e s v
' 2.Security Verification : Authentication =~ —> Authorization —> Access Control : h
! 1
1

1 . - 1
- GLobal Adaptive P e o e eimis ak
| Agent Global Service :
! 1

Security Contract

Fig. 8. Workflow of global service security contract.

the hash of the session ID. Eq. (13) shows the send message
structure,

Contract g, [(Contractl |Hash(SessionKey))sk] a3)

pb

. The application agent is responsible for decrypting the received
agreement message from the local adaptive agent.

. After successfully decrypting the message, the agreement mes-
sage is forwarded to the acceptance process.

. If the agreement is accepted then again the verification process
is performed in order to confirm the legitimacy of the service
agreement token with the help of a “multi-chain” client agent.

. After successful validation of the service agreement token, the
service agreement token is accepted and stored in the local
repository.

5.3. Adding global service security contract

The global security requirements for smart services entail combining
the local service security requirements of smart services with the ad-
ministrative service security requirements for collaborative tasks. These
requirements must align with the service requester’s specifications
for service interoperability. In our proposed security framework we
integrate the global adaptive engine with the local adaptive engine
through a “multi-chain” client agent. Fig. 8 shows the pictorial view
Adding Global Service security contract. The Global adaptive engine
is responsible for creating smart city administrative service security
contracts to enforce smart city administrative security policies during
the interoperation of smart services. It is also responsible for receiving
a message from a “multi-chain” client agent through a global adaptive
agent. Following are the cryptographic steps involved in the making of
global security rules for collaborative tasks during the interoperation
of smart services.

1. The local adaptive engine incorporates “multi-chain” client age-
nts to facilitate the creation of transactions for local service se-
curity contracts. These transactions are intended for storing the
most recent local service security contract within both the local
blockchain and the global blockchain, utilizing a client-server
architecture. Once the transaction is generated, the “multi-
chain” client agent within the local adaptive engine encrypts the
message using the public key of the global blockchain and signs
it with the private key of the IoT nodes. To ensure data integrity,

13

the message is integrated with the hash of the session ID of the
IoT nodes. The structure of the received message is depicted in
Eq. (14) as,

Mg,. [(AgreementTX,-d | |Hash(Session))Sk]ph 14)
. The global adaptive engine decrypts the received message thro-
ugh the private key of the global blockchain and the public key

of IoT nodes’ public key as shown in Eq. (15) as,

M, = [(Agreementy; ||(Hash(Session)))| (15)

. After successfully decrypting the request message, global adap-
tive engines verify the legitimacy of the session keys by fetching
the session keys from the global blockchain.

. Once the transactional ID is successfully validated, the global
adaptive agent retrieves the most recent service security contract
from the global blockchain using this ID. Subsequently, the
global adaptive agent merges this local service security contract
with a smart city administrative security contract to form a
global service security contract. The structure of the global ser-
vice security contract message is represented by Eq. (16), where
A represents the local service security contract and B represents
the administrative security contract of the smart city.

Global Contract = [A||B] (16)

. Subsequently, the context engine initiates the generation of
global service security transactions to store the global security
contract in both the local and global blockchains. The context
engine securely forwards the transaction ID to the local adap-
tive engine for validation purposes. This is accomplished by
encrypting the transaction ID using the public key of the local
blockchain and signing it with the secret key of the IoT nodes.

5.4. Governance execution process

The governance execution process is facilitated by the context en-
gine, which plays a crucial role in coordinating and executing collabo-
rative tasks between smart services. One of the key processes within the
local adaptive engine is the execution of the context execution contract,
which enables the execution of collaborative tasks. Within the context
engine, we have implemented two sub-smart contracts that respond

S. Siddiqui et al.

Sustainable Cities and Society 113 (2024) 105717

]
1

1

:

: Global

' Service Security Contract
1

1

1

'

]

1

1

| senvice Agreement
Request

1.Global Service

ISecurity||Message Multichain Server Agent

Update Trust Value

B.Trust=Trust+0.001

Not Allowed

4.Trust Verification
Not Allowed

Send Agreement
Token

No

Send
Agreement

Send Collaborative
Message

i

Request

Message
Parsing

Collaborative Message

Global

Service Security Contract Multichain Server Agent

~

Not Allowed

Send Collaborative
Message

Not Allowed

4.Trust Verification

Fig. 9. Workflow of context engine.

to different message requests. The first sub-smart contract handles
requests for service agreement collaboration, while the second sub-
smart contract handles requests for executing collaborative messages
after the agreement has been established. Fig. 9 shows the workflow of
the context engine execution process. Following are the steps involved
in the execution of the context engine,

1. The request message is forwarded to the context engine after
successful security verification from the local blockchain. At
the beginning of the context engine, the requested message
authenticity will be verified first.

2. After successful verification of the authenticity of the requested
message, the trust assessment process is started. The trust assess-
ment process is based on an iterative procedure in which the
trust assessment value will increase continuously as an incen-
tive if authenticity is verified. When the required threshold for
collaborative trust is reached, the message is forwarded to the
execution process.

3. In the execution process collaborative response message is cre-
ated. We are implementing two types of response messages
based on the request message such as a Service agreement
token response message and a collaborative message response
(Access grant, Access not grant). The execution process is also
responsible for providing security requirements to respond to
messages.

6. Description of the use cases

The demand for emergency response systems in smart cities has
significantly increased due to factors such as the rapid growth of
urban populations and the escalating risks associated with emergen-
cies and disasters (Shah, Seker, Hameed, & Draheim, 2019; Shah,
Seker, Rathore, et al., 2019). As smart city technologies continue to
advance, there is a growing need for interconnected services to operate
seamlessly and collaboratively, particularly in emergencies (Kashef,
Visvizi, & Troisi, 2021). The effectiveness of a collaborative emergency
response system within a smart city hinges on its ability to swiftly and
efficiently execute responses to actual or anticipated emergency situa-
tions, taking into account the interoperation of multiple smart services.
The timely and coordinated execution of emergency response actions is
vital in ensuring the safety and well-being of citizens and minimizing
the impact of emergencies on infrastructure and resources. The speed
at which a collaborative emergency response system can execute is of

14

utmost importance. It determines the system’s ability to gather and an-
alyze relevant data, assess the severity of the situation, and coordinate
response efforts across multiple services and stakeholders (Costa et al.,
2022). By ensuring a fast and efficient execution process, smart cities
can enhance their emergency preparedness and response capabilities,
ultimately safeguarding the lives and properties of their residents. In
order to evaluate the feasibility of our proposed security framework,
we consider the use case of collaborative emergency response services
in a smart city, as shown in Fig. 10, where three services interact with
each other in order to execute disaster emergency response systems.
Following is detailed information on the three interoperable services
involved in the execution of emergency response systems.

1. Smart Disaster Management Service: In our research, we have
developed a disaster management service using Python socket
programming to establish a server—client code structure. This
service operates as a server node that collaborates with other
smart services. To facilitate collaborative request tasks during
interoperation, we have implemented two distinct functions:
send and receive. The receive function plays a crucial role in
acquiring essential data for disaster management. It receives
weather data from the weather service, enabling the system to
monitor current weather conditions. Furthermore, it receives
the current location data of ambulance users from the ambu-
lance services, providing real-time information on the location
of potential victims. Conversely, the send function is responsible
for transmitting alert messages based on the received weather
data from the weather service to the ambulance service. This
allows the ambulance service to proactively respond to potential
emergencies by taking necessary precautionary measures. Addi-
tionally, the send function also relays the current location of the
disaster server to the weather service, facilitating effective co-
ordination between the two services. Through the integration of
these functionalities, our disaster management service enhances
the interoperation between various smart services, enabling real-
time data exchange and collaborative decision-making during
emergency situations.

2. Smart Weather Service: This service plays a vital role in col-
lecting real-time weather-related information for smart citizens
based on their respective longitude and latitude positions. To
implement this service, we integrate publicly available Open-
weather APIs, which offer various attributes. For our purposes,
we focus on the weather.id feature, which provides current and

S. Siddiqui et al.

il

{ Checking of Trigger l

condition
Message: Send
Location

Compute the Service
Trust

Yes

Message : Send
Location

Not Trusted

Message : Alert
Conditions

Verification of
L Legitamate Source

Compute the Service
Trust

Sustainable Cities and Society 113 (2024) 105717

L
e
——
N "
: - - — Weather Service
Ambulance Service Disaster Management Service
Responsible to receive alert messages from the weather service Disaster Management service is responsible to provide disaster The Smart Weather service is responsible for gathering
and the disaster management service in order to plan their routes alert messages to Ambulance units and smart citizens for real-time weather related information for
more efficiently and avoid delays taking precautionary measures in the situation of smart citizens based on their respective
natural or local disasters longitude and latitude positions
send). _Send] | Receive

Verification of

L Source
Message:Weather | - J
Conditions
Not Trusted

Not Trusted

Compute the Service

Trust

Fig. 10. Communication workflow of interoperable services for smart emergency response.

predicted information about rainfall based on the smart citi-
zen’s geographical coordinates. The weather ID feature classifies
weather conditions into three distinct ranges: 800, indicating
“locally drizzling”; 900, indicating a prediction of “locally heavy
rain”; and 1000, indicating a prediction of “urban flood”. By
utilizing this feature, we can effectively determine the intensity
of rainfall in a given location.

In addition to API integration, we have developed two essential
functions: send and receive. The receive function is responsible
for acquiring data from the weather API, allowing us to retrieve
real-time weather information. It also receives the current loca-
tion of the Ambulance user from the ambulance service, enabling
us to monitor their geographical position. On the other hand, the
send function handles the task of sending alert messages to both
the disaster services and ambulance services when the weather
API data indicates “locally heavy rain predicted”, “urban flood
predicted”, or “drizzling” conditions. This proactive communi-
cation ensures that the appropriate authorities and services are
promptly alerted to potential risks or emergencies. By imple-
menting these functions and integrating the Openweather APIs,
the Smart Weather service enhances the overall coordination
and response capabilities of smart city systems, ensuring that
citizens and relevant services are well-informed and prepared for
weather-related events.

. Smart Ambulance service: This service ensures effective commu-
nication and efficient response during emergency situations. By
actively exchanging information with the disaster services and
the smart weather service, the Smart Ambulance service can
provide timely assistance and contribute to the overall safety
and well-being of smart city residents. The smart ambulance
service is a crucial component of our system, implemented using
Python socket programming in a server—client code structure. As
a client node, it interacts with both the disaster services and the
smart weather service to facilitate collaborative task requests.
To achieve this, we have developed two distinct functions: send
and receive. The receive function of the smart ambulance service
plays a pivotal role in receiving alert messages from the disaster
service and the smart weather service. These alert messages
provide valuable information about potential emergencies or
weather-related events that require the attention of the am-
bulance service. By receiving and processing these messages,
the smart ambulance service can quickly respond to critical
situations. Conversely, the send function is responsible for send-
ing beacon messages to the connected services. These beacon

15

Global Blockchain

AP A AP
g g g

Smart City Administrative System

Fig. 11. An illustrative network architecture of the proposed use case.

messages serve as updates or status reports from the Smart Am-
bulance service, allowing other services to stay informed about
its current activities and availability. This facilitates seamless
coordination and collaboration among the different components
of the system.

Table 3 presents the distinct security policies employed by each
service involved in our proposed emergency response system dur-
ing the interoperation of smart services in the smart city. Moving
forward, the subsequent section will focus on the testbed scenarios
meticulously crafted to assess the efficacy of the proposed security
framework. We will explore the evaluation parameters utilized to gauge
the performance of the security framework across various scenarios.

7. Testbed and implementation discussion

We simulate a smart city network using the COOJA network simula-
tor, an open-source tool based on the Contiki operating system (Thom-
son et al., 2016). COOJA, based on the Contiki operating system (Thom-
son et al., 2016), is widely used for simulating wireless sensor networks
and IoT networks (Oikonomou et al., 2022). The Contiki architecture
comprises multiple modules offering features such as process manage-
ment, memory management, and inter-process communication to IoT

S. Siddiqui et al.

Table 3

Sustainable Cities and Society 113 (2024) 105717

Syntactically interoperable security rules for collaborative task between smart services.

Smart disaster management service

Smart weather service

Smart ambulance service

« Authentication with 128-bit ECC
Keys

« Trust 0.003

« IEEE 802.15.4.

ECC Keys

« Authentication with 192-bit

« Trust 0.003
« IEEE 802.15.4

« Authentication with 256-bit
ECC Keys

« Trust 0.003

« IEEE 802.15.4

nodes or motes. It supports network protocols such as IPv6, RPL, 6LoW-
PAN, and CoAP for low-power, lossy networks (Zikria, Afzal, Ishmanov,
Kim, & Yu, 2018). We integrate the Contiki operating system with
the SDN-Wise controller for the SDIoT architecture. SDN-Wise acts as
middleware, offering a programming abstraction that allows program-
mers to build high-level IoT services and applications while hiding the
intricate network architecture underlying them. In our Contiki setup, a
network of IoT nodes serves as client nodes for interoperable services,
with SDN-Wise controllers facilitating communication mechanisms be-
tween them. Additionally, all client nodes utilize the key management
module for their identities through public and private keys, and smart
services management modules in the SDN controller enable them to
access the interoperable services effectively.

In our Programming environment, we establish a decentralized
client-server interoperable service environment, where the disaster
management service functions as the server while the others operate as
clients. Each of these decentralized client-server interoperable services
utilizes the MultiChain blockchain to securely store all transactions in
a decentralized manner. This ensures that the transaction records re-
main immutable and transparent across the entire network, enhancing
trust and reliability. MultiChain primarily employs a default consensus
mechanism known as practical Byzantine fault tolerance (PBFT). PBFT
ensures that all nodes in the network reach a consensus on the validity
of transactions and the order in which they are added to the blockchain.
This consensus mechanism is renowned for its efficiency and resilience
in permissioned blockchain networks like MultiChain. Additionally,
within this environment, each service runs subprocesses, including a
rule engine, policy engine, and context engine, which work in tandem
to execute the interoperable service ecosystem efficiently. Together
with smart contracts, these components facilitate seamless operations
and interaction among the services while ensuring data integrity and
security.

To assess the effectiveness of our proposed security framework,
we examine its system performance as well as the execution time
performance of the smart contract implemented in the adaptive engines
that utilize blockchain technology. The performance of the proposed
framework is significantly dependent on the “multi-chain” memory
pool and the SDN controller’s memory capacity during the collab-
orative requests/response messages flow. The “multi-chain” memory
pool temporarily stores unconfirmed transactions before they are pub-
lished to the blockchain. However, as the number of collaborative
requests/response messages from SDN-WISE to “multi-chain” increases,
the memory pool may become a bottleneck, leading to reduced system
performance. In addition to this, the memory capacity of the SDN
controller is critical to the performance of the framework as it tracks
network topology and traffic flows.

Our testbed is designed to focus on the four critical processes
of message flow necessary for achieving interoperability of services
in smart cities. To evaluate the system’s performance, we gradually
increase the number of collaborative smart services and IoT nodes in
the smart city. We apply varying message flow loads, ranging from
100 to 5000, with corresponding delay differences of 600 ms, 120 ms,
60 ms, 30 ms, 15 ms, and 5 ms. This allows us to accurately measure
and analyze the system’s performance under different scenarios and
workloads. We are focusing on the following three workflows during
the interoperation of services for emergency collaborative tasks in a
smart city,

16

Table 4
Hardware configuration of the four physical machines.

Physical machines 1, 2, 3, 4
Intel® 6th Gen Intel® Core™ i7 (6700)

CPU (Processor)

Memory 16 GB DDR
Chipset Intel® H110 Chipset
Hardrive 256 GB Solid State Drive SATA

1. Service-level agreement between interoperable services.

2. Sending and receiving an emergency request during interopera-
tion of services.

3. End-end message sending and receiving.

The testbed for our system was implemented across four distinct
machines. Among these, three machines function as decentralized smart
services client blockchain nodes, while the remaining machine operates
as the server blockchain node, referred to as the global blockchain. The
configuration details of each machine are provided in Table 4, which
outlines the specifications and settings of the hardware used. To realize
the network infrastructure required for our use case, we have presented
an illustrative network architecture as depicted in Fig. 11.

7.1. Service-level agreement request between interoperable services

In order to achieve interoperability between smart services, it will
be necessary to establish service agreements between them. The first
step towards achieving interoperability is to generate a global service
agreement that encompasses all relevant smart services. Fig. 12 illus-
trates the workflow for generating and accepting the agreement for
interoperability between these services.

1. Service A sends the request through the application agent to the
SDN controller in the SDIOT architecture. The message structure
of the request message is shown in Eq. (17) (where X represents
the name of the interoperable service such as Service A).

Mg, = [(Requestll X||Hash(SessionKey))Sk] a7

pb

2. The Local Adaptive agent receives the encrypted request from
the SDIoT architecture. The Local Adaptive agent first verifies
the message authenticity along with the authenticity of IoT
nodes with the help of local blockchain validation chains.

3. After successful verification of the authenticity of IoT nodes and
request messages. The request is forwarded to the rule engine.

4. From the rule engine first the local security rule is generated in
JSON format and sent to the “multi-chain” client agent in order
to store the latest local service security transaction to the Local
blockchain.

5. As we implemented “multi-chain” as client and server nodes in
the proposed security framework. After creating a transaction of
local service security in the local blockchain it will send a copy
to the global blockchain in the global adaptive engine through
the global adaptive agent in Step 5. The sent message structure
is shown in (18) where Agreement Txid is the transactional ID
of the local service security.

Mg, = [(AgreementTX,-d | |Hash(SessionKey))Sk] (18)

pb

S. Siddiqui et al.

10.

11.

Sustainable Cities and Society 113 (2024) 105717

Successful
. Veriication

Multichain Server Agent

5 Muttichain Client
Agent Message

8.Security Verification

Global Adaptive 9 Global Service Security
t Contract

{’ Message B

Authentication

.
'
i
% % @ '
’ ’ ’ !
Global Local Global Service Local Service '
Registration Security Security '
T -
1 Local Security contot L of mocion |1
' Engine
' |
: {

Execution Engine

8.Smart city Security Contract

Multichain Server Agent

—> Authorization — Access Control

Rule Engine

Transaction id

o o ":'
d ’
Local Global Service Local Service
Registration Agreement Security

V
'
'
'
'
9 Fetch the Global !
'
'
'
'
'
'
'

H
= El Service Security Contract
2 ke [roroicyengna | o[- Hoomer | [oo - =
l:: H : ontract | Engine Contract —» 12Execution &
& ' '
2 ' Execution Engine v
by Sigcoseil) S EIfESTSER SCNISESS S S SIS ST SR Y
3 Aerficason 4.Service Security Contract]|Service Agreement
<
= Multichain Client [Message
g Agent Parsing Multichain Client
o |

¢ Agent

'

'

+ Authentication —> Authorization —> Access Conirol

d

' .

v Rule Engine

2 Security Verification

Local Adaptive
Agent

13.Send Global Service

Agreement

SDN Controller

Application Agent

14.Securtty
Verification

15 Agreement

Stop Acceptance Process

Yes

Multichain Agent

18 Store Service
Agreement

SDIoT Architecture

“

16 Agreement
17 Agrrement accepted

Fail Verification Process.

Not Allowed

Smart Service-A

T3 Send
Agreement Token Relay

Fig. 12. Service-level agreement between

. After security verification of the session ID from the global

blockchain, the request is forwarded to the Global rule en-
gine. The global rule is responsible for enforcing administrative
security for local services in smart cities.

. After the generation of the global security rule in JSON format

from the rule engine, the Transaction is generated with the help
of a “multi-chain” server agent and forwarded to the execution
engine of the global adaptive security engine.

. The execution engine first searches the local service security

contract with the help of the transactional ID of the local service
contract and then concatenates the contract with the global
service contract in the context engine and forwards it to the
execution process.

. Through the execution process, the global service security con-

tract transaction ID is returned to the “multi-chain” client agent
through the global adaptive agent.

In Step-10, the Global security contract will be fetched from the
local blockchain. Now the Local Execution engine incorporates
the local security requirement along with the administrative
security requirement and converts it into JSON format in order
to forward the request to the local context engine.

The Local Context engine verifies the legitimacy of global service
security contracts. Fig. 12 shows the workflow of verification

17

12.

13.

14.

15.

16.

17.

18.

16 Agreement
17 Agrrement accepted
Verification Process.

Fail e~y

R
Multichain Client

I
) L L '
% (7] N |
s ¢ g {
Local Global Service Local Service (
B Registration Agreement Security {
H 9 Fetch the Global -
H Service Security Contract : £
L e P e ~ 2
3 v = T
2 10.Policy Engine 11.Context i
- ' { 2
' Execution Engine R -
SUGOSI, e e S e TS S TT { %
N Vverification 4.Service Security Contract][Global Service Agreement | | G
R i <
Multichain Client Message : 3
Parsing Multichain Client -
S Agent . ool {4
L ‘I]
' I
0 Authentication ~— Authorization — Access Control : 1
' ' i
Rule Engine T
_____________________________ |
I
13.Agreement Token :
)
i
@O——& |
SDN Controller Application Agent H
14.Security {
Verification e
- No 15 Agreement { 3
=8 ‘ Yes Acceptance Process)
‘2
Multichain Agent s
e
| <
=
()
18.Store Service ''a
Agreement 7
i
i
i
I
i
I
i
i
i
i
i
'

Smart Service-B

interoperable services.

of global service security contracts and forwards it to the local
execution process.

The Local execution process is responsible for forwarding the
request to the requested service.

Service-B on receiving a request perform the same operation as
was performed in steps 2-14 for service-A.

After successful security verification, the local adaptive agent
sends the message back to the application agent of Service A in
Step-13.

The application agent forwards the message to the SDN con-
troller for security verification.

After successful security verification of the received message, the
process of acceptance of the service agreement is started.

If the agreement is accepted, the legitimacy of the service level
agreement security attribute will be again verified through the
multichain client agent in Step-16.

The service level agreement after successful security verification
is stored in the local repository.

By analyzing the data presented in Table 5, we observed a notable
increase in throughput when three services interacted to request a
service-level agreement, particularly when each service was equipped
with 50 sensing nodes. This indicates that the system was able to

S. Siddiqui et al.

Sustainable Cities and Society 113 (2024) 105717

Time in Millisecond

BN Execution Engine in ms
23 Request Recived in ms

Throughput/Second

1000

Number of Requests

Fig. 13. Performance result with the increased number of requests.

Time in Millisecond

I Execution Engine in ms
23 Request Recived in ms

Throughput/Second

1000
Number of Nodes

Fig. 14. Performance matrix during service-level agreement with the increased number of nodes.

Table 5
Performance matrix during service-level agreement with increased number of requests.

Number of requests Throughput (per second)

Contract execution (ms) Receive request delay (ms)

100 0.41
500 3.63
1000 5.25
2000 8.29
5000 6.27

1.66 2.66
1.55 2.33
1.29 1.67
1.21 1.33
2.68 2.66

handle a higher volume of transactions and process them more effi-
ciently. The improved throughput of the system had a direct impact
on the execution time of smart contracts in both execution engines.
With the increase in throughput, the execution time of smart contracts
significantly improved, demonstrating the enhanced performance of
the execution engines, particularly when faced with a dense influx of
collaborative request messages. We noticed that the received request
message delay from the global adaptive engine to interoperable service
had also improved with the increased throughput of the system which
represents the responsiveness of our proposed security framework. We
also noticed that at the maximum number of requests, the performance
matrix of the system goes down. Fig. 13 shows the graphical represen-
tation of the tabular result. In the second experiment, the performance
matrix is evaluated by increasing the number of sensing devices during
the seamless interaction of smart services for service-level agreement
requests. From Table 6 we can notice that the performance matrix gets
worse when the number of IoT nodes is increased if we compare it with
the previous result, this depicts the SDIoT architecture plays a vital role
in the performance matrix of the security framework. Fig. 14 depicts the
graphical representation of the performance matrix as the number of
IoT nodes increases. This performance matrix provides valuable insights
into the system’s behavior and efficiency.

18

7.2. Sending and receiving emergency request during interoperation of ser-
vices

In the process of collaborative message sending and receiving during
the interoperation of smart services, we consider the case where for
collaborative interoperability, service-level agreement is already shared
between interoperable services. Fig. 15 shows the pictorial steps of
sending and receiving an alert message between interoperable services.
Table 7 shows the performance matrix of the proposed security frame-
work by increasing the number of collaborative alert request messages
between interoperable services. We observed from the graphical results,
as shown in Fig. 16, that the performance of the proposed framework
is improved from the first two experiments in which the involvement
of a global adaptive engine adds some time complexity to the running
performance of the proposed framework. The execution time of a smart
contract is much more improved due to less smart contract execution as
compared to the first two experiments. From Table 8 we find out that
the performance matrix of the particular process is decreased. Fig. 17
shows the graphical result of system performance when increasing the
number of IoT nodes in smart services for interoperability. We also
noticed that in both results of this particular process, throughput is
decreased when we increase the number of IoT nodes along with an
increased number of collaborative requests at maximum numbers

S. Siddiqui et al. Sustainable Cities and Society 113 (2024) 105717

Table 6
Performance matrix during service-level agreement with increased number of nodes.
Number of nodes Throughput (per second) Contract execution (ms) Receive request delay (ms)
100 0.21 1.82 2.98
500 1.63 1.68 2.5
1000 3.65 1.32 2.0
2000 6.95 2.1 2.2
5000 3.2 2.3 2.8
.~ i i e il i L R e LY =)
& & @ | & &
Local Global Service Local Service ' Local Global Service Local Service
Registration Agreement Security . Registration Agreement Security

5.Pollcy Engine.

6.Context i te
~ Engine Contract —> 7-Execution ——————y ~— Engine Contract —> 7-Execution

5.Policy Engine
ontract

Execution

3 Verification Altributes.
3 Verification Altributes.

Not Allowed

Successful
Verification

Not Allowed

Successful
Verification

(=

Multichain Client

Message
Parsing

Local Adaptive Engine

4 Fetch the Global
Service Security Contract

Local Adaptive Engine

4 Fetch the Global
Service Security Contract

Local Adaptive Multichain Client
gent

Multichain Cllent

r et e e L e
= | ! o
-2 N Service-B|| A ' Collaborative Alert Message|| Service-B|| A ‘5
) i Global Service Agreement ALY: H Global Service Agreement Slavz =
=3 R — Agresment Token Relay 1 e]
= 5= | SDN Controller - Application Agent i SDN Controller . Application Agent =
a S [0=
= | i ' o
< | ' g
'
v '
Smart Service-A Smart Service-B

Fig. 15. Collaborative alert sending and receiving message process.

Table 7
Performance matrix of sending and receiving emergency request process during interoperation of services with an increased number of requests.
Number of requests Throughput (per second) Contract execution (ms) Receive request delay (ms)
100 1.65 0.98 1.68
500 7.12 0.86 0.98
1000 13.23 0.76 0.82
2000 26.53 0.72 0.79
5000 22.77 1.4 1.56
Table 8
Performance matrix of sending and receiving emergency request process during interoperation of services with an increased number of IoT nodes.
Number of nodes Throughput (per second) Contract execution (ms) Receive request delay (ms)
100 0.49 1.69 1.91
500 6.12 0.92 1.4
1000 11.21 0.82 1.31
2000 20.53 0.93 1.1
5000 21.77 0.92 2.5

Il Execution Engine in ms
[Request Recived in ms

Throughput/Second

Time in Millisecond

1000
Number of Request

Fig. 16. Performance matrix of sending and receiving emergency request process with an increased number of requests.

19

S. Siddiqui et al.

Sustainable Cities and Society 113 (2024) 105717

@Bl Execution Engine in ms
BB Request Recived in ms

Time in Millisecond

1000

Number of Nodes

Fig. 17. Performance matrix of sending and receiving emergency request process with increased number of nodes.

Service-B||

G i i oo i
1
5 '
‘ L C v :
\
i v L] b4)
" Local Global Service Local Service '
" " Registration Agreement Security 4
\]
o H '
e 2 S T —— :
2 = \ 5Poly Engne 6 Context i
(5 A B 1 P ES® —> cngine Contract — 7.Execution -f—:—
' 3 I H
= - B e :
a | - !
3 i £ Succsssful d
< | A Verification '
® | '
S ' Muttichain client Message !
S Parsing :
i ’ '
| 4 Fetch the Global .
' Senvice Security Contract !
1 2.Securty Verification !
'
i '
\ Local Adaptive Multichaln Cllent !
"
i '
t '

%
v
Local
Registration

%%
v
Global Service
Agreement

%
)
Local Service
Security

S.Policy Engine _,, Engine Contract —» 7-Execution

Execution Engine !

3 Verification Attributes.

Not Allowed

Successful
Verification

Message
Parsing

Multichain Client

Local Adaptive Engine

4 Fetch the Global
Service Securty Contract

2.Security Verification

Multichain Cllent

Collaborative Alert Message|| Service-B||

Global Service Agreement

SDloT
Architecture

"
"
'
"
' SDN Controller
'
"
'
"

Smart Service-A

Global Service Agreement

SDN Controller

hitecture

SDIoT

‘ Arcl

Smart Service-B

Fig. 18. End-to-End alert message workflow.

7.3. End-end message sending and receiving process

In the context of collaborative message sending and receiving, we
examine the scenario where interoperable services engage in bidirec-
tional communication by sending and receiving collaborative messages.
This specific use case emphasizes the significance of our proposed
security framework in handling substantial workloads during the inter-
operation of smart services. Fig. 18 shows the workflow of end-to-end
sending and receiving alert messages during the interoperation of smart
services. The workflow of the specific use case follows the following
steps

1. Smart service-A prompted the alert message condition and the
application agent generates the message which will broadcast to
the connected services through the SDN controller by providing
the required security requirement to the generated message.

2. The local adaptive agent is responsible for taking the message
from the SDN controller and performing security verification in
order to verify the legitimacy of the received message.

3. The security verification is performed with the help of the Local
blockchain in order to fetch the validation attribute from the
local blockchain and compare it with the received message.

4. After security verification the decrypted message is forwarded to
the execution engine.

5. At the execution engine first the Policy engine fetches the global
security contract from the Local blockchain with the help of
the service agreement transaction ID and converts it into JSON
format in order to execute the policy in the context engine.

20

6. In the context engine, the authenticity of the global security
verification is performed then the trust value is associated with
the message and forwarded to the execution process.

7. In the execution process, The threshold of trust value in the alert
message is continuously verified in order to forward it to the
other service-B.

8. In end-to-end communication, service-B will perform the same
process from Step-1 to Step-7 in response to the request message
in order to provide an update to the requester service.

The performance of the specific operation deteriorated compared
to the previous experiment, as observed from Table 9. This decline
can be attributed to increased computation workload in the End-to-End
interaction, specifically the cryptographic encryption and decryption
processes. Fig. 20 provides a graphical representation of the perfor-
mance matrix as the number of requests increases. Additionally, Ta-
ble 10 presents a tabular overview of the performance matrix as the
number of nodes in the services increases. Notably, the throughput of
the process decreased due to the increased number of nodes in the
SDIoT architecture. Fig. 21 visually depicts the performance matrix of
the security framework when the number of requests is incrementally
increased.

8. Comparative throughput performance of the proposed security
framework

The system performance of our proposed security framework in
collaborative disaster management and response use cases in smart

S. Siddiqui et al.

Table 9

Sustainable Cities and Society 113 (2024) 105717

Performance matrix of end-to-end message sending and receiving process with increased number of requests.

Number of requests Throughput per second

Contract execution (ms) Request response delay (ms)

100 1.35 1.28 1.91

500 5.12 1.12 2.12

1000 7.23 0.86 1.62

2000 13.53 1.26 2.12

5000 11.77 1.4 2.3
Table 10

Performance matrix of end-to-end message sending and receiving process with increased number of IoT nodes.

Number of nodes Throughput per second

Contract execution (ms) Response delay (ms)

100 0.21
500 3.12
1000 5.21
2000 7.53
5000 4.77

1.72 2.5
1.52 2.3
1.13 1.8
1.53 2.3
1.92 2.5

Service Level Agreement Request Operation
Ba@ Message Sending/Receiving Operation
EEE End to End Message Sending/Receiving

25

20

=
w

ative Thr

[
o

P

1000
Number Of Request
(A)

ZTA Service Level Agreement Request Operation
GEa

20.0 g Op:
BN End to End Message Sending/Receiving

s /] A
100 500 1000 2000 5000
Number Of Nodes ~ ~

(B)

Fig. 19. Comparative system performance result with (A) increased number of requests and (B) increased number of nodes.

B Execution Engine in ms
@73 Request Recived in ms

Time in Millisecond

1000
Number of Request

Fig. 20. Performance Matrix of End-End message sending and receiving with the increased number of requests.

cities is evaluated based on the comparative throughput of all processes
in two scenarios: one with an increase in the number of requests and the
other with an increase in the number of nodes during the interoperation
of smart services, as depicted in Fig. 19(A), (B). Initially, the throughput
during the process of fetching the service-level agreement is low due to
the involvement of the global security adaptive engine with the local

21

adaptive security engine. However, once the service-level agreement
is obtained, the throughput of all processes improves, highlighting
the effectiveness of our proposed security framework, particularly in
supporting delay-sensitive applications. In the SDIoT architecture, the
memory pool significantly impacts throughput compared to the mem-
ory pool of the “multi-chain” blockchain. When we increase the number

S. Siddiqui et al.

Sustainable Cities and Society 113 (2024) 105717

@A Execution Engine in ms
2 Request Recived in ms

Time in Millisecond

Throughput/Second

1000

Number of Nodes

Fig. 21. Performance Matrix of End-End message sending and receiving with the increased number of nodes.

Algorithm 6 : Access Level Security Policy

Require: User, Service
Ensure: True

1: if Service == disaster management then

2: if user key length == 128 and trust >= 0.003 then
3 return True

4: end if

5: end if

6: if Service == W eather service then

7: if user key length == 192 and trust >= 0.003 then
8: return True

9: end if
10: end if
11: if Service == Ambulance service then
12: if user key length == 192 and trust >= 0.003 then
13: return True
14: end if
15: end if

of nodes in the SDIoT architecture while keeping the request messages
constant, the throughput of the security framework decreases. How-
ever, the opposite occurs when we increase the number of request
messages while keeping the number of IoT nodes constant.

9. Adaptiveness security assessment

To evaluate the adaptability of interoperable smart services during
interoperability, we conducted adaptive security assessment experi-
ments. These experiments aimed to measure the speed and effectiveness
of the service’s adaptive capabilities. Specifically, we implemented
an access level security policy mechanism within the interoperable
service for collaborative tasks during interoperability, as defined in the
following Definition 6:

Definition 6 (Access Level Security Policy). Consider two smart services
denoted as Service; and Service; where Service; represents the subject
(requester) and Service; represents the object (responder) of collabora-
tive tasks during interoperability. Each service has its own access level
security policy function denoted y and 4 which is represented as a set
of 3-tuple (a, §,¢) where a represent service identification f represent
as a set of authentication scheme repository (128,192,256) ¢ represent
the trust value for authorization to access the collaborative task. The
access policy functiond(z) at the point timer is defined as a combination
of the y and 4 policies for access level security to access the data.

0@t) = ySubject”Aobject 19)

22

The specific authentication and authorization details for each ser-
vice are outlined below:

1. The smart disaster service management utilizes an ECC-128-bit

key for authentication.

The smart weather service utilizes an ECC-192-bit key for au-

thentication.

. The smart ambulance service requires an ECC-256-bit key for
authentication.

. For authorization to access the service, a trust value of 0.003 is
used.

2.

Algorithm 6 illustrates the implementation of service-level security
mechanisms in decentralized interoperable services, ensuring that each
service has its own unique access level security authentication and
authorization policies to access collaborative tasks. This configuration
empowers the users of each interoperable service to authenticate using
their designated authentication mechanism. Consequently, when a user
of a specific service seeks access to another interoperable service,
they retain the capability to authenticate with the target interoperable
service. This adaptive approach facilitates seamless interaction and
interoperability among the various services within the ecosystem.

Table 11 displays the results of trust convergence as the number
of request messages from the client of interoperable services to access
other interoperable services gradually increases. We observed a pattern
of slow trust convergence per second during the smart service interop-
erations of the third process when authentication requirements changed
to ECC-256 bits. Fig. 22 shows the graphical representation of trust
convergence when the number of the request message is increased. We
also noticed the same pattern in Table 12 with slower trust convergence
per second as compared with the previous result which reflects the
importance of the programmable value of the trust. Fig. 23 shows the
graphical representation of trust convergence when the number of IoT
nodes is increased.

Smart contract implementation time is a critical metric within our
proposed security framework, serving as an indicator of resource allo-
cation and the effectiveness of security-related operations. This metric
is particularly important for applications sensitive to delays, requiring
rapid response times with minimal latency. With its robustness, adapt-
ability, scalability, and compatibility, our framework ensures that smart
contract execution minimally impacts the system’s performance. By
emphasizing streamlined implementation processes, we strike a balance
between maintaining stringent security protocols, safeguarding applica-
tion performance, and ensuring the system’s scalability. This approach
enables the system to uphold robust security measures while preserving
operational efficiency and accommodating increasing user demand. The
duration of smart contract implementation provides valuable insights
into the framework’s ability to efficiently execute security measures
and hence, its comprehensive nature makes it a suitable metric for
evaluating the security effectiveness and scalability of the proposed
solution.

S. Siddiqui et al.

Table 11

Trust convergence by changing the number of requests.

Sustainable Cities and Society 113 (2024) 105717

Number of requests

Trust convergence/sec ECC (128 bit)

Trust convergence/sec ECC (192 bit)

Trust convergence/sec ECC (256 bit)

100 0.0035 0.0028 0.001
500 0.0052 0.0031 0.0026
1000 0.0072 0.0042 0.0028
2000 0.0091 0.006 0.004
5000 0.0062 0.003 0.002
0.009 LT * @+ Trust Convergence/sec at ECC-128bit
R 1 = Trust Convergence/sec at ECC-192bit
------- -& - Trust Convergence/sec at ECC-256bit
0.0081 et e
= g i
$ 0.007 £ Ty,
« & Ty
8 0.006 - @
3 ..' B » =
£ 0.005 K .
2 . e
goo0a; -
) y y o T =
o [J e 4 2 - i ~
% 0.003 . T
= T
0.002 / ~<e
i
0.001] o
100 500 1000 2000 5000
Number Of Reauest
Fig. 22. Trust convergence by changing the number of requests.
0.007 -8,
.. i SN i .,
5 0.006 g P ™ .
8 ! /’ e L
o » e WL
& 0.005 ’ N .
e 5 / ~ .
o [/’ ~
o © ,.-f P 2 8 .
9 0.004 I 7 / ~_\ \,x
= . / T ~
[. / P 4 ~. N
o .) . e P N
$0.003{ . / TS b
> a ! . ~. \“ R
5 o v /./ . e T
0.002{ =~ Y
a .
- -
£ V4
0.001 ’ -@- Trust Convergence/sec at ECC-128bit
./ ~< Trust Convergence/sec at ECC-192bit
0.000 / —&- Trust Convergence/sec at ECC-256bit
100 500 1000 2000 5000 |
Number Of Nodes
Fig. 23. Performance result with the increased number of nodes.
Table 12

Trust convergence by changing the number of nodes.

Number of nodes

Trust convergence/sec ECC (128 bit)

Trust convergence/sec ECC (192 bit)

Trust convergence/sec ECC (256 bit)

100 0.0025 0.0019 0.0001
500 0.0045 0.0022 0.0015
1000 0.0062 0.0042 0.0018
2000 0.0071 0.0062 0.0041
5000 0.003 0.002 0.0022

10. CIA triad-based cybersecurity assessment

In this study, we propose an adaptive security framework designed
to enhance the security and privacy of interoperable smart services
within smart cities. This section evaluates the proposed framework’s

23

effectiveness in upholding the fundamental principles of cybersecurity
as defined by the CIA triad: confidentiality, integrity, and availability.

1. Confidentiality: Confidentiality is one of the most critical el-
ements of the framework of cybersecurity, which puts access
constraints on information considered sensitive and hence keeps

S. Siddiqui et al.

Table 13
CIA traits and corresponding modules.

Sustainable Cities and Society 113 (2024) 105717

CIA trait Module name

Technique

- M El i
Confidentiality essage Encryption

Utilizes ECC (Elliptic Curve Cryptography) which relies on the algebraic
structure of elliptic curves over finite fields. ECC provides strong encryption
with smaller key sizes, enhancing security and efficiency.

- Key and Session
Management

Employs ECC for generating public and private keys, and ECDH (Elliptic Curve
Diffie-Hellman) for securely establishing session keys. This approach ensures
that session keys are exchanged securely and used for encrypting subsequent
communications.

- Local Blockchain Ledger
Integrity

Uses a decentralized local ledger with consensus mechanisms (e.g., Proof of
Work, Proof of Stake) to validate and record transactions. This ensures that all
local transactions are transparent, verifiable, and immutable, preventing
unauthorized alterations.

- Global Blockchain Ledger

Employs a decentralized global ledger to synchronize data across all smart city
services. The global ledger uses advanced consensus algorithms to maintain a
tamper-proof record of all transactions, ensuring consistency and integrity
across services.

- Smart Contracts

Implements automated rules and protocols using scripts on the blockchain that
execute actions based on predefined conditions. These contracts ensure that all
operations follow the agreed-upon rules, preserving the integrity of interactions
between services.

Availability - SDN Controller

Provides dynamic and efficient network management, ensuring high availability
by automatically routing traffic and managing network resources to prevent
bottlenecks and failures. Utilizes algorithms for load balancing, fault tolerance,

and traffic optimization.

- Adaptive Security Policies

Continuously adjusts security measures in response to evolving threats and
network conditions. Employs machine learning algorithms to predict and
mitigate potential disruptions, ensuring that services remain available and
resilient against attacks or failures.

it from unauthorized entities (Al-Muhtadi et al.,, 2021). The
proposed framework employs multiple encryption methods, in-
cluding Elliptic Curve Cryptography (ECC), to secure data trans-
mission between services. Three key lengths will be used with
ECC, 128-bit, 192-bit, and 256-bit, for different services, ensur-
ing a robust level of confidentiality. For instance, ECC-128 is
applied in smart disaster management services, while ECC-192 is
used in smart weather services and ECC-256 in smart ambulance
services.

2. Integrity: Integrity implies that the data does not change in
the process during a principal activity of transmission and stor-
age (Huang, Fan, et al., 2020). Data integrity is maintained
through the use of blockchain technology, which is a funda-
mental component of the framework. As a decentralized ledger,
blockchain ensures that all transactions are transparent and
immutable, meaning any attempt to alter data would be im-
mediately detectable and preventable (Singh, Hosen, & Yoon,
2021). The rules and protocols governing data exchange are en-
forced through smart contracts. These contracts in the proposed
framework ensure that data integrity is upheld across different
smart services by defining strict conditions for data transac-
tions. Any deviation from these conditions would invalidate the
transaction, thereby preserving the integrity of the data.

3. Availability: Availability means that smart city services are
available whenever needed and ensures the continuous running
of the normal system without any disruptions (Jararweh, Otoum,
& Al Ridhawi, 2020). In the proposed framework, SDN, as a kind
of network management, makes management dynamic and effi-
cient. Decentralized management and communication between
smart services ensure high availability and resilience against
failure from the SDN controller. Adaptive security policies on
top decide, catching up with evolving threats, and hence make
services available even under adverse conditions.

Adaptive security policies are crucial for ensuring the CIA triads of
smart city infrastructures. These policies are enforced through smart

24

contracts, which dynamically adjust security measures in response to
the evolving threat landscape. Our adaptive assessment experiments
have demonstrated the proposed framework’s capability to detect and
respond to security threats effectively. Additionally, the framework’s
ability to further adapt these policies enhances system resilience and
overall effectiveness. Table 13 details the CIA traits and outlines the en-
cryption and decryption techniques employed to prevent data breaches,
demonstrating the robustness of our proposed framework. This compre-
hensive analysis underscores the significant contribution of our work to
the cybersecurity landscape in smart cities.

11. Conclusion

Smart contract-based systems offer a unique approach to adap-
tive security, dynamically adjusting security policies and measures to
changing conditions and emerging threats. Our evaluation highlights
the scalability of the proposed security framework, facilitated by crucial
components such as the SDN controller and Blockchain memory pool.
The SDN controller enables centralized management and efficient com-
munication between smart services, while the Blockchain memory pool
ensures the integrity and immutability of security-related transactions
and data. Looking forward, integrating a privacy management module
during smart service interoperation could enhance user privacy, data
confidentiality, and compliance with privacy regulations. However, it is
important to acknowledge the limitations of our framework. The emer-
gency response use case, while syntactically designed, may not fully
capture all possible scenarios and variations in real-world implementa-
tions. Performance evaluation results may vary based on the specific
design of the emergency response system, affecting metrics such as
throughput and contract execution time. Additionally, external factors
such as the environment of simulating tools and system resources
can impact experiment outcomes. Therefore, careful consideration of
system design and resource allocation is crucial for ensuring opti-
mal performance and effectiveness when implementing our proposed
security framework.

S. Siddiqui et al.

CRediT authorship contribution statement

Shahbaz Siddiqui: Writing — original draft, Visualization, Valida-
tion, Resources, Methodology, Formal analysis, Data curation, Concep-
tualization. Sufian Hameed: Writing — review & editing, Supervision,
Methodology, Investigation, Formal analysis, Data curation, Concep-
tualization. Syed Attique Shah: Writing — review & editing, Writing
— original draft, Validation, Supervision, Resources, Project adminis-
tration, Methodology, Investigation, Formal analysis. Junaid Arshad:
Writing — review & editing. Yussuf Ahmed: Writing — review & editing.
Dirk Draheim: Writing — review & editing, Validation, Supervision,
Project administration, Methodology.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
SYED ATTIQUE SHAH reports was provided by Birmingham City Uni-
versity. SYED ATTIQUE SHAH reports a relationship with Birmingham
City University that includes: employment. If there are other authors,
they declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work
reported in this paper.

Data availability
Data will be made available on request.

References

Agbaje, P., Anjum, A., Mitra, A., Oseghale, E., Bloom, G., & Olufowobi, H. (2022).
Survey of interoperability challenges in the internet of vehicles. IEEE Transactions
on Intelligent Transportation Systems, 23(12), 22838-22861.

Al Batayneh, R. M., Taleb, N., Said, R. A., Alshurideh, M. T., Ghazal, T. M., &
Alzoubi, H. M. (2021). IT governance framework and smart services integration for
future development of dubai infrastructure utilizing Al and big data, its reflection
on the citizens standard of living. In Proceedings of the international conference on
artificial intelligence and computer vision (pp. 235-247). Springer.

Al-Muhtadi, J., Saleem, K., Al-Rabiaah, S., Imran, M., Gawanmeh, A., & Rodrigues, J.
J. (2021). A lightweight cyber security framework with context-awareness for
pervasive computing environments. Sustainable Cities and Society, 66, Article
102610.

Ali, G., Ahmad, N., Cao, Y., Khan, S., Cruickshank, H., Qazi, E. A., et al. (2020). xD-
BAuth: Blockchain based cross domain authentication and authorization framework
for Internet of Things. IEEE Access, 8, 58800-58816.

Ali, T., Irfan, M., Alwadie, A. S., & Glowacz, A. (2020). IoT-based smart waste bin
monitoring and municipal solid waste management system for smart cities. Arabian
Journal for Science and Engineering, 45(12), 10185-10198.

Alsaeedi, M., Mohamad, M. M., & Al-Roubaiey, A. A. (2019). Toward adaptive and
scalable OpenFlow-SDN flow control: A survey. IEEE Access, 7, 107346-107379.

Alshboul, Y., Bsoul, A. A. R., Al Zamil, M., & Samarah, S. (2021). Cybersecurity of
smart home systems: Sensor identity protection. Journal of Network and Systems
Management, 29(3), 1-27.

Ante, L. (2021). Smart contracts on the blockchain-A bibliometric analysis and review.
Telematics and Informatics, 57, Article 101519.

Antonios, P., Konstantinos, K., & Christos, G. (2023). A systematic review on semantic
interoperability in the IoE-enabled smart cities. Internet of Things, Article 100754.

Arthurs, P., Gillam, L., Krause, P., Wang, N., Halder, K., & Mouzakitis, A. (2021). A
taxonomy and survey of edge cloud computing for intelligent transportation systems
and connected vehicles. IEEE Transactions on Intelligent Transportation Systems.

Asif, M., Aziz, Z., Bin Ahmad, M., Khalid, A., Waris, H. A., & Gilani, A. (2022).
Blockchain-based authentication and trust management mechanism for smart cities.
Sensors, 22(7), 2604.

Aujla, G. S., Singh, M., Bose, A., Kumar, N., Han, G., & Buyya, R. (2020). BlockSDN:
Blockchain-as-a-service for software defined networking in smart city applications.
IEEE Network, 34(2), 83-91.

Aujla, G. S., Singh, A., Singh, M., Sharma, S., Kumar, N., & Choo, K. K. R. (2020).
BloCKEd: Blockchain-based secure data processing framework in edge envisioned
V2X environment. [EEE Transactions on Vehicular Technology, 69(6), 5850-5863.

Balcerzak, A. P., Nica, E., Rogalska, E., Poliak, M., Kliestik, T., & Sabie, O. M. (2022).
Blockchain technology and smart contracts in decentralized governance systems.
Administrative Sciences, 12(3), 96.

25

Sustainable Cities and Society 113 (2024) 105717

Banerjee, S., Bera, B., Das, A. K., Chattopadhyay, S., Khan, M. K., & Rodrigues, J.
J. (2021). Private blockchain-envisioned multi-authority CP-ABE-based user access
control scheme in IIoT. Computer Communications, 169, 99-113.

Bannour, F., Souihi, S., & Mellouk, A. (2017). Distributed SDN control: Sur-
vey, taxonomy, and challenges. IEEE Communications Surveys & Tutorials, 20(1),
333-354.

Bao, F., Chen, R., & Guo, J. (2013). Scalable, adaptive and survivable trust management
for community of interest based internet of things systems. In 2013 IEEE 11th
international symposium on autonomous decentralized systems (pp. 1-7). IEEE.

Basheer, H., & Itani, M. (2023). Zero touch in fog, IoT, and MANET for enhanced smart
city applications: A survey. Future Cities and Environment, 9(1), 5.

Bellavista, P., Esposito, C., Foschini, L., Giannelli, C., Mazzocca, N., & Monta-
nari, R. (2021). Interoperable blockchains for highly-integrated supply chains in
collaborative manufacturing. Sensors, 21(15), 4955.

Bello, O., & Zeadally, S. (2019). Toward efficient smartification of the Internet of Things
(IoT) services. Future Generation Computer Systems, 92, 663-673.

Benkhaled, S., Hemam, M., & Maimour, M. (2022). SDN-based approaches for het-
erogeneity and interoperability in Internet of Things: An overview. In Distributed
sensing and intelligent systems: Proceedings of ICDSIS 2020 (pp. 489-499). Springer.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web — A new form
of Web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American, 17 May.

Bhushan, B., Khamparia, A., Sagayam, K. M., Sharma, S. K., Ahad, M. A., & Debnath, N.
C. (2020). Blockchain for smart cities: A review of architectures, integration trends
and future research directions. Sustainable Cities and Society, 61, Article 102360.

Bhushan, B., Sahoo, C., Sinha, P., & Khamparia, A. (2021). Unification of Blockchain
and Internet of Things (BIoT): requirements, working model, challenges and future
directions. Wireless Networks, 27, 55-90.

Buldas, A., Draheim, D., Gault, M., Laanoja, R., Nagumo, T., Saarepera, M., et al.
(2022). An ultra-scalable blockchain platform for universal asset tokenization:
Design and implementation. IEEE Access, 10, 77284-77322.

Buldas, A., Draheim, D., Gault, M., & Saarepera, M. (2022). Towards a foundation of
Web3. In CCIS: vol. 1688, Proceedings of FDSE’2022 — the 9th international conference
on future data and security engineering (pp. 3-18). Berlin Heidelberg New York:
Springer.

Chen, X., Deng, Y., Ding, H., Qu, G., Zhang, H., Li, P., et al. (2023). Vehicle as a service
(VaaS): Leverage vehicles to build service networks and capabilities for smart cities.
arXiv preprint arXiv:2304.11397.

Choi, J. (2022). Enablers and inhibitors of smart city service adoption: A dual-factor
approach based on the technology acceptance model. Telematics and Informatics,
75, Article 101911.

Costa, D. G., Peixoto, J. P. J., Jesus, T. C., Portugal, P., Vasques, F., Rangel, E., et al.
(2022). A survey of emergencies management systems in smart cities. IEEE Access,
10, 61843-61872.

Dua, A., Kumar, N., Das, A. K., & Susilo, W. (2017). Secure message communication
protocol among vehicles in smart city. IEEE Transactions on Vehicular Technology,
67(5), 4359-4373.

Edelman, G. (2022). Paradise at the cryto arcade. Wired, June.

EL-Garoui, L., Pierre, S., & Chamberland, S. (2020). A new SDN-based routing protocol
for improving delay in smart city environments. Smart Cities, 3(3), 1004-1021.
Esber, J., & Kominers, S. D. (2022). Why build in Web3. Harvard Business Review, 16

May, https://hbr.org/2022/05/why-build-in-web3.

Galluccio, L., Milardo, S., Morabito, G., & Palazzo, S. (2015). SDN-WISE: Design,
prototyping and experimentation of a stateful SDN solution for WIreless SEnsor
networks. In 2015 IEEE conference on computer communications (pp. 513-521). IEEE.

Gilani, S. M. M., Usman, M., Daud, S., Kabir, A., Nawaz, Q., & Judit, O. (2023).
SDN-based multi-level framework for smart home services. Multimedia Tools and
Applications, 1-21.

Guvenc, 1., Koohifar, F., Singh, S., Sichitiu, M. L., & Matolak, D. (2018). Detection,
tracking, and interdiction for amateur drones. IEEE Communications Magazine, 56(4),
75-81.

Huang, P., Fan, K., Yang, H., Zhang, K., Li, H., & Yang, Y. (2020). A collaborative
auditing blockchain for trustworthy data integrity in cloud storage system. IEEE
Access, 8, 94780-94794.

Huang, J., Fang, D., Qian, Y., & Hu, R. Q. (2020). Recent advances and challenges
in security and privacy for V2X communications. IEEE Open Journal of Vehicular
Technology, 1, 244-266.

Hui, T. K., Sherratt, R. S., & Sanchez, D. D. (2017). Major requirements for building
smart homes in smart cities based on Internet of Things technologies. Future
Generation Computer Systems, 76, 358-369.

Ibrar, M., Wang, L., Shah, N., Rottenstreich, O., Muntean, G. M., & Akbar, A. (2022).
Reliability-aware flow distribution algorithm in SDN-enabled fog computing for
smart cities. IEEE Transactions on Vehicular Technology.

Igbal, W., Abbas, H., Daneshmand, M., Rauf, B., & Bangash, Y. A. (2020). An in-depth
analysis of IoT security requirements, challenges, and their countermeasures via
software-defined security. IEEE Internet of Things Journal, 7(10), 10250-10276.

Islam, M. J., Rahman, A., Kabir, S., Karim, M. R., Acharjee, U. K., Nasir, M. K., et al.
(2021). Blockchain-SDN-based energy-aware and distributed secure architecture for
IoT in smart cities. IEEE Internet of Things Journal, 9(5), 3850-3864.

http://refhub.elsevier.com/S2210-6707(24)00542-0/sb1
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb1
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb1
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb1
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb1
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb2
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb2
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb2
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb2
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb2
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb2
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb2
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb2
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb2
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb3
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb3
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb3
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb3
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb3
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb3
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb3
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb4
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb4
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb4
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb4
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb4
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb5
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb5
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb5
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb5
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb5
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb6
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb6
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb6
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb7
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb7
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb7
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb7
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb7
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb8
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb8
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb8
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb9
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb9
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb9
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb10
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb10
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb10
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb10
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb10
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb11
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb11
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb11
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb11
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb11
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb12
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb12
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb12
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb12
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb12
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb13
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb13
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb13
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb13
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb13
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb14
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb14
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb14
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb14
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb14
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb15
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb15
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb15
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb15
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb15
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb16
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb16
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb16
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb16
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb16
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb17
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb17
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb17
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb17
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb17
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb18
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb18
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb18
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb19
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb19
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb19
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb19
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb19
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb20
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb20
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb20
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb21
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb21
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb21
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb21
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb21
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb22
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb22
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb22
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb22
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb22
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb23
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb23
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb23
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb23
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb23
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb24
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb24
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb24
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb24
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb24
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb25
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb25
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb25
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb25
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb25
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb26
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb26
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb26
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb26
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb26
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb26
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb26
http://arxiv.org/abs/2304.11397
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb28
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb28
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb28
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb28
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb28
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb29
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb29
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb29
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb29
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb29
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb30
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb30
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb30
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb30
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb30
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb31
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb32
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb32
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb32
https://hbr.org/2022/05/why-build-in-web3
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb34
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb34
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb34
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb34
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb34
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb35
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb35
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb35
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb35
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb35
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb36
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb36
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb36
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb36
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb36
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb37
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb37
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb37
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb37
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb37
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb38
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb38
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb38
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb38
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb38
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb39
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb39
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb39
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb39
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb39
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb40
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb40
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb40
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb40
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb40
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb41
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb41
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb41
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb41
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb41
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb42
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb42
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb42
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb42
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb42

S. Siddiqui et al.

Ismagilova, E., Hughes, L., Rana, N. P., & Dwivedi, Y. K. (2022). Security, privacy
and risks within smart cities: Literature review and development of a smart city
interaction framework. Information Systems Frontiers, 24(2), 393-414.

Jararweh, Y., Otoum, S., & Al Ridhawi, I. (2020). Trustworthy and sustainable smart
city services at the edge. Sustainable Cities and Society, 62, Article 102394.

Javed, A. R., Shahzad, F., ur Rehman, S., Zikria, Y. B., Razzak, L., Jalil, Z., et al. (2022).
Future smart cities: Requirements, emerging technologies, applications, challenges,
and future aspects. Cities, 129, Article 103794.

Jin, L., & Parrott, K. (2022). Web3 is our chance to make a better internet. Harvard
Business Review, 10 May, https://hbr.org/2022/05/web3-is-our-chance-to-make-a-
better-internet.

Joo, Y. M. (2023). Developmentalist smart cities? The cases of Singapore and Seoul.
International Journal of Urban Sciences, 27(supl), 164-182.

Karumba, S., Jurdak, R., Kanhere, S., & Sethuvenkatraman, S. (2023). BAILIF: A
blockchain agnostic interoperability framework. In Proceedings of the 5th IEEE
international conference on blockchain and cryptocurrency. Institute of Electrical and
Electronics Engineers Inc..

Kashef, M., Visvizi, A., & Troisi, O. (2021). Smart city as a smart service system:
Human-computer interaction and smart city surveillance systems. Computers in
Human Behavior, 124, Article 106923.

Keoh, S. L., Kumar, S. S., & Tschofenig, H. (2014). Securing the Internet of Things: A
standardization perspective. IEEE Internet of Things Journal, 1(3), 265-275.

Khan, S. N., Loukil, F., Ghedira-Guegan, C., Benkhelifa, E., & Bani-Hani, A. (2021).
Blockchain smart contracts: Applications, challenges, and future trends. Peer-to-peer
Networking and Applications, 14, 2901-2925.

Kharche, S., & Dere, P. (2022). Interoperability issues and challenges in 6G networks.
Journal of Mobile Multimedia, 18(5), 1445-1470.

Kirimtat, A., Krejcar, O., Kertesz, A., & Tasgetiren, M. F. (2020). Future trends and
current state of smart city concepts: A survey. IEEE Access, 8, 86448-86467.

Knowles Flanagan, S. A. (2022). Cooperative connected intelligent vehicles and
infrastructure for road safety applications (Ph.D. thesis), Aston University.

Koo, J., & Kim, Y. G. (2021). Interoperability requirements for a smart city. In
Proceedings of the 36th annual ACM symposium on applied computing (pp. 690-698).

Kozhevnikov, S., Svitek, M., & Skobelev, P. (2022). Smart grid system for real-time
adaptive utility management in smart cities. In IMCIC 2022-13th international
multi-conference on complexity, informatics and cybernetics, proceedings (pp. 4-9).

Kumar, H., Singh, M. K., Gupta, M., & Madaan, J. (2020). Moving towards smart
cities: Solutions that lead to the smart city transformation framework. Technological
Forecasting and Social Change, 153, Article 119281.

Latif, S. A., Wen, F. B. X., Iwendi, C., Li-li, F. W., Mohsin, S. M., Han, Z., et al. (2022).
Al-empowered, blockchain and SDN integrated security architecture for IoT network
of cyber physical systems. Computer Communications, 181, 274-283.

Li, T., Chen, J., & Fu, H. (2019). Application scenarios based on SDN: an overview.
Journal of Physics: Conference Series, 1187, Article 052067.

Maciel, R. S. P., David, J. M. N., Claro, D., & Braga, R. (2017). Full interoperability:
Challenges and opportunities for future information systems. Sociedade Brasileira de
Computagdo.

Macrinici, D., Cartofeanu, C., & Gao, S. (2018). Smart contract applications within
blockchain technology: A systematic mapping study. Telematics and Informatics,
35(8), 2337-2354.

Makhdoom, I., Zhou, I, Abolhasan, M., Lipman, J., & Ni, W. (2020). PrivySharing:
A blockchain-based framework for privacy-preserving and secure data sharing in
smart cities. Computers & Security, 88, Article 101653.

Mamatas, L., Demiroglou, V., Kalafatidis, S., Skaperas, S., & Tsaoussidis, V. (2023).
Protocol-adaptive strategies for wireless mesh smart city networks. IEEE Network,
37(2), 136-143.

Marshoodulla, S. Z., & Saha, G. (2022). Data heterogeneity handling in SDN-based IoT
infrastructure. NeuroQuantology, 20(14), 805-812.

Medhane, D. V., Sangaiah, A. K., Hossain, M. S., Muhammad, G., & Wang, J. (2020).
Blockchain-enabled distributed security framework for next-generation IoT: An edge
cloud and software-defined network-integrated approach. IEEE Internet of Things
Journal, 7(7), 6143-6149.

Meijer, A., & Bolivar, M. P. R. (2016). Governing the smart city: a review of the
literature on smart urban governance. International Review of Administrative Sciences,
82(2), 392-408.

Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., & Qijun, C. (2017). A review on
consensus algorithm of blockchain. In 2017 IEEE international conference on systems,
man, and cybernetics (pp. 2567-2572). IEEE.

Mora, H., Mendoza-Tello, J. C., Varela-Guzman, E. G., & Szymanski, J. (2021).
Blockchain technologies to address smart city and society challenges. Computers
in Human Behavior, 122, Article 106854.

Mostafaei, H., & Menth, M. (2018). Software-defined wireless sensor networks: A
survey. Journal of Network and Computer Applications, 119, 42-56.

Motlagh, N. H., Taleb, T., & Arouk, O. (2016). Low-altitude unmanned aerial vehicles-
based Internet of Things services: Comprehensive survey and future perspectives.
IEEE Internet of Things Journal, 3(6), 899-922.

Mrabet, H., Belguith, S., Alhomoud, A., & Jemai, A. (2020). A survey of IoT security
based on a layered architecture of sensing and data analysis. Sensors, 20(13), 3625.

Msahli, M., Labiod, H., & Ampt, G. (2019). Security interoperability for cooperative
ITS: Architecture and validation. In 2019 10th IFIP international conference on new
technologies, mobility and security (pp. 1-6). IEEE.

26

Sustainable Cities and Society 113 (2024) 105717

MultiChain (2023a). https://www.multichain.com/. (Last accessed 07 June 2023).

MultiChain (2023b). https://github.com/MultiChain/multichain-api-libraries/. (Last
accessed 07 June 2023).

Nguyen, D. C., Pathirana, P. N., Ding, M., & Seneviratne, A. (2020). Blockchain for 5G
and beyond networks: A state of the art survey. Journal of Network and Computer
Applications, 166, Article 102693.

Ogrodowczyk, L., Belter, B., & LeClerc, M. (2016). IoT ecosystem over programmable
SDN infrastructure for smart city applications. In 2016 fifth European workshop on
software-defined networks (pp. 49-51). IEEE.

Oikonomou, G., Duquennoy, S., Elsts, A., Eriksson, J., Tanaka, Y., & Tsiftes, N. (2022).
The Contiki-NG open source operating system for next generation IoT devices.
SoftwareX, 18, Article 101089.

Pereira, G. V., Parycek, P., Falco, E., & Kleinhans, R. (2018). Smart governance in the
context of smart cities: A literature review. Information Polity, 23(2), 143-162.

Polkadot (2023). https://polkadot.network/. (Last accessed 07 June 2023).

Rahman, M. S., Chamikara, M., Khalil, I, & Bouras, A. (2022). Blockchain-of-
blockchains: An interoperable blockchain platform for ensuring IoT data integrity
in smart city. Journal of Industrial Information Integration, 30, Article 100408.

Rana, B., & Singh, Y. (2023). Interoperable agile IoT. In Agile software development:
Trends, challenges and applications (pp. 51-70). Wiley Online Library.

Rao, P. M., & Deebak, B. (2022). Security and privacy issues in smart cities/industries:
Technologies, applications, and challenges. Journal of Ambient Intelligence and
Humanized Computing, 1-37.

Rathee, G., Kumar, A., Kerrache, C. A., & Igbal, R. (2022). A trust-based mechanism
for drones in smart cities. IET Smart Cities.

Rathore, M. M., Attique Shah, S., Awad, A., Shukla, D., Vimal, S., & Paul, A. (2021).
A cyber-physical system and graph-based approach for transportation management
in smart cities. Sustainability, 13(14), 7606.

Rathore, M. M., Paul, A., Rho, S., Khan, M., Vimal, S., & Shah, S. A. (2021). Smart traffic
control: Identifying driving-violations using fog devices with vehicular cameras in
smart cities. Sustainable Cities and Society, 71, Article 102986.

Reegu, F. A., Abas, H., Jabbari, A., Akmam, R., Uddin, M., Wu, C. M,, et al. (2022).
Interoperability requirements for blockchain-enabled electronic health records
in healthcare: A systematic review and open research challenges. Security and
Communication Networks, 2022.

Salman, O., Elhajj, I. H., Kayssi, A., & Chehab, A. (2016). SDN controllers: A
comparative study. In 2016 18th mediterranean electrotechnical conference (pp. 1-6).
IEEE.

SemnaticWeb (2023). https://www.w3.org/standards/semanticweb/. (Last accessed 07
June 2023).

Shah, S. A., Seker, D. Z., Hameed, S., & Draheim, D. (2019). The rising role of big
data analytics and IoT in disaster management: recent advances, taxonomy and
prospects. IEEE Access, 7, 54595-54614.

Shah, S. A., Seker, D. Z., Rathore, M. M., Hameed, S., Yahia, S. B., & Draheim, D.
(2019). Towards disaster resilient smart cities: Can internet of things and big data
analytics be the game changers? IEEE Access, 7, 91885-91903.

Shamsudheen, S., Karthik, G., Anoop, A., & Gobinathan, P. (2023). Internet-of-things
in emergency services: Architecture, applications, and research challenges. In 2023
1st international conference on advanced innovations in smart cities (pp. 1-6). IEEE.

Sharma, P. K., Singh, S., Jeong, Y. S., & Park, J. H. (2017). Distblocknet: A distributed
blockchains-based secure SDN architecture for IoT networks. IEEE Communications
Magazine, 55(9), 78-85.

Siddiqui, S., Hameed, S., Shah, S. A., Khan, A. K., & Aneiba, A. (2023). Smart contract-
based security architecture for collaborative services in municipal smart cities.
Journal of Systems Architecture, 135, Article 102802.

Singh, S., Hosen, A. S., & Yoon, B. (2021). Blockchain security attacks, challenges, and
solutions for the future distributed IoT network. IEEE Access, 9, 13938-13959.
Singh, S., Sharma, P. K., Yoon, B., Shojafar, M., Cho, G. H., & Ra, I. H. (2020).
Convergence of blockchain and artificial intelligence in IoT network for the

sustainable smart city. Sustainable Cities and Society, 63, Article 102364.

Sookhak, M., Tang, H., He, Y., & Yu, F. R. (2018). Security and privacy of smart cities:
a survey, research issues and challenges. IEEE Communications Surveys & Tutorials,
21(2), 1718-1743.

Stackpole, T. (2022). What is web3? Harvard Business Review, 10 May, https://hbr.org/
2022/05/what-is-web3.

Tang, B., Kang, H., Fan, J,, Li, Q., & Sandhu, R. (2019). IoT passport: A blockchain-
based trust framework for collaborative internet-of-things. In Proceedings of the 24th
ACM symposium on access control models and technologies (pp. 83-92).

Thomson, C., Romdhani, I, Al-Dubai, A., Qasem, M., Ghaleb, B., & Wadhaj, L
(2016). Cooja simulator manual, version 1.0. Edinburgh Napier University,
https://www.napier.ac.uk/~/media/worktribe/output-299955/cooja-simulator-
manual.pdf. (Last accessed 08 June 2023).

Tosic, M., Coelho, F. A., Nouwt, B., Rua, D. E., Tomcic, A., & Pesic, S. (2022). Towards
a cross-domain semantically interoperable ecosystem. In Proceedings of the fifteenth
ACM international conference on web search and data mining (pp. 1640-1641).

Ullah, F., Wang, J., Farhan, M., Jabbar, S., Naseer, M. K., & Asif, M. (2020). LSA
based smart assessment methodology for SDN infrastructure in IoT environment.
International Journal of Parallel Programming, 48, 162-177.

http://refhub.elsevier.com/S2210-6707(24)00542-0/sb43
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb43
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb43
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb43
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb43
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb44
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb44
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb44
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb45
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb45
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb45
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb45
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb45
https://hbr.org/2022/05/web3-is-our-chance-to-make-a-better-internet
https://hbr.org/2022/05/web3-is-our-chance-to-make-a-better-internet
https://hbr.org/2022/05/web3-is-our-chance-to-make-a-better-internet
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb47
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb47
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb47
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb48
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb48
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb48
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb48
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb48
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb48
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb48
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb49
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb49
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb49
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb49
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb49
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb50
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb50
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb50
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb51
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb51
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb51
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb51
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb51
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb52
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb52
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb52
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb53
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb53
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb53
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb54
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb54
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb54
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb55
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb55
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb55
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb56
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb56
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb56
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb56
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb56
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb57
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb57
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb57
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb57
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb57
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb58
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb58
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb58
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb58
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb58
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb59
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb59
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb59
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb60
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb60
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb60
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb60
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb60
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb61
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb61
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb61
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb61
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb61
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb62
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb62
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb62
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb62
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb62
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb63
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb63
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb63
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb63
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb63
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb64
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb64
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb64
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb65
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb65
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb65
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb65
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb65
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb65
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb65
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb66
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb66
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb66
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb66
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb66
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb67
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb67
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb67
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb67
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb67
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb68
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb68
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb68
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb68
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb68
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb69
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb69
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb69
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb70
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb70
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb70
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb70
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb70
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb71
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb71
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb71
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb72
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb72
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb72
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb72
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb72
https://www.multichain.com/
https://github.com/MultiChain/multichain-api-libraries/
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb75
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb75
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb75
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb75
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb75
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb76
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb76
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb76
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb76
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb76
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb77
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb77
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb77
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb77
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb77
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb78
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb78
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb78
https://polkadot.network/
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb80
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb80
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb80
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb80
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb80
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb81
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb81
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb81
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb82
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb82
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb82
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb82
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb82
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb83
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb83
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb83
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb84
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb84
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb84
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb84
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb84
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb85
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb85
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb85
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb85
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb85
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb86
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb86
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb86
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb86
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb86
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb86
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb86
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb87
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb87
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb87
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb87
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb87
https://www.w3.org/standards/semanticweb/
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb89
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb89
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb89
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb89
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb89
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb90
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb90
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb90
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb90
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb90
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb91
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb91
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb91
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb91
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb91
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb92
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb92
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb92
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb92
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb92
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb93
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb93
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb93
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb93
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb93
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb94
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb94
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb94
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb95
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb95
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb95
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb95
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb95
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb96
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb96
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb96
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb96
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb96
https://hbr.org/2022/05/what-is-web3
https://hbr.org/2022/05/what-is-web3
https://hbr.org/2022/05/what-is-web3
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb98
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb98
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb98
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb98
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb98
https://www.napier.ac.uk/~/media/worktribe/output-299955/cooja-simulator-manual.pdf
https://www.napier.ac.uk/~/media/worktribe/output-299955/cooja-simulator-manual.pdf
https://www.napier.ac.uk/~/media/worktribe/output-299955/cooja-simulator-manual.pdf
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb100
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb100
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb100
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb100
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb100
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb101
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb101
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb101
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb101
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb101

S. Siddiqui et al.

Viale Pereira, G., Cunha, M. A., Lampoltshammer, T. J., Parycek, P., & Testa, M. G.
(2017). Increasing collaboration and participation in smart city governance: A cross-
case analysis of smart city initiatives. Information Technology for Development, 23(3),
526-553.

Villarreal, E. R. D., Garcia-Alonso, J., Moguel, E., & Alegria, J. A. H. (2023). Blockchain
for healthcare management systems: A survey on interoperability and security. IEEE
Access, 11, 5629-5652.

Wang, G., Wang, Q., & Chen, S. (2023). Exploring blockchains interoperability: A
systematic survey. ACM Computing Surveys.

Xie, J., Tang, H., Huang, T., Yu, F. R., Xie, R., Liu, J., et al. (2019). A survey of
blockchain technology applied to smart cities: Research issues and challenges. IEEE
Communications Surveys & Tutorials, 21(3), 2794-2830.

Xu, R., Chen, Y., Blasch, E., & Chen, G. (2018). Blendcac: A smart contract enabled
decentralized capability-based access control mechanism for the IoT. Computers,
7(3), 39.

Yazdinejad, A., Parizi, R. M., Dehghantanha, A., Zhang, Q., & Choo, K. K. R. (2020). An
energy-efficient SDN controller architecture for IoT networks with blockchain-based
security. IEEE Transactions on Services Computing, 13(4), 625-638.

27

Sustainable Cities and Society 113 (2024) 105717

Zarko, I. P., Mueller, S., Plociennik, M., Rajtar, T., Jacoby, M., Pardi, M., et al. (2019).
The symbloTe solution for semantic and syntactic interoperability of cloud-based
IoT platforms. In 2019 global IoT summit (pp. 1-6). IEEE.

Zhou, J., Jiang, H., Wu, J., Wu, L., Zhu, C., & Li, W. (2016). SDN-based application
framework for wireless sensor and actor networks. IEEE Access, 4, 1583-1594.
Zikria, Y. B., Afzal, M. K., Ishmanov, F., Kim, S. W., & Yu, H. (2018). A survey on
routing protocols supported by the Contiki Internet of Things operating system.

Future Generation Computer Systems, 82, 200-219.

Zou, W., Lo, D., Kochhar, P. S., Le, X. B. D., Xia, X., Feng, Y., et al. (2019). Smart
contract development: Challenges and opportunities. IEEE Transactions on Software
Engineering, 47(10), 2084-2106.

Zubaydi, H. D., Varga, P., & Molnar, S. (2023). Leveraging blockchain technology for
ensuring security and privacy aspects in Internet of Things: A systematic literature
review. Sensors, 23(2), 788.

http://refhub.elsevier.com/S2210-6707(24)00542-0/sb102
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb102
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb102
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb102
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb102
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb102
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb102
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb103
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb103
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb103
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb103
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb103
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb104
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb104
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb104
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb105
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb105
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb105
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb105
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb105
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb106
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb106
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb106
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb106
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb106
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb107
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb107
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb107
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb107
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb107
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb108
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb108
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb108
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb108
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb108
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb109
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb109
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb109
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb110
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb110
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb110
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb110
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb110
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb111
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb111
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb111
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb111
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb111
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb112
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb112
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb112
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb112
http://refhub.elsevier.com/S2210-6707(24)00542-0/sb112

	A smart-contract-based adaptive security governance architecture for smart city service interoperations
	Introduction
	Motivation
	Contributions

	Related Work
	System Overview
	SDIoT (Software-Defined Internet of Things)
	Application Layer
	Controller Layer
	Perception Layer

	Adaptive Security Engine Layers
	Smart Contracts

	Proposed Security Framework
	SDIoT Security Modules
	Key and Session Management
	Smart Service Management

	Security Modules of Adaptive Engine's Layers
	Rule Engine
	Execution Engine

	Workflow of Smart Contract Execution
	Generation Session Token
	Adding Local Service Security Contract
	Adding Global Service Security Contract
	Governance Execution Process

	Description of the Use Cases
	Testbed and Implementation Discussion
	Service-Level Agreement Request between Interoperable Services
	Sending and Receiving Emergency Request During Interoperation of Services
	End-End Message Sending and Receiving Process

	Comparative Throughput Performance of the Proposed Security Framework
	Adaptiveness Security Assessment
	CIA Triad-Based Cybersecurity Assessment
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

