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Abstract 11 

Infrastructure defects pose significant public safety risks and, if undetected, can lead to costly repairs. 12 

While machine learning (ML) technologies have significantly enhanced the capabilities for inspecting 13 

infrastructure, a comprehensive synthesis of these advancements and their practical application across 14 

various infrastructures is lacking. This study addresses this gap by providing a literature review, offering a 15 

consolidated view of current ML methodologies in Infrastructure Automated Defect Detection (IADD). 16 

This research employs a systematic literature review (SLR) approach to analyse 123 papers on ML 17 

methodologies applied to IADD.  The analysis reveals the wide use of deep learning architectures like 18 

Convolutional Neural Network and its variants, which perform well in defect detection across various 19 

infrastructures, including roads, bridges, and sewers. However, standardised, comprehensive datasets are 20 

critical to train and test these models more effectively. The study also highlights the importance of 21 

developing ML approaches that can accurately assess the severity of defects, an area currently 22 

underexplored but with significant implications for risk management in infrastructure. This SLR provides 23 

a consolidated perspective on ML technologies' advancements and practical applications in IADD, and it 24 

offers substantial value to researchers, engineers, and policymakers engaged in infrastructure asset 25 

management.  26 

Keywords: Machine learning, Automated defect detection, Infrastructure, Image processing, 27 

Classification algorithms, Infrastructure defects 28 

1. Introduction 29 

Critical infrastructures globally are frequently exposed to severe physical stress from acute and chronic 30 

catastrophes such as earthquakes, floods, and ageing deterioration (Munawar et al., 2021). Managing 31 

these infrastructures often falls under the purview of municipal bodies and governments, which deploy 32 

asset management plans to ensure stability and longevity. Condition monitoring is integral to asset 33 

management plans, significantly contributing to extending the service life of an asset (Le Gat et al., 2023). 34 

It offers insight into the current state of assets and facilitates predicting their future performance (Assaad 35 

and El-adaway, 2020). A crucial outcome of condition monitoring is defect detection. Substantial financial 36 
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investments are directed annually towards procuring techniques and resources for defect detection in 37 

critical infrastructures such as roads, bridges, buildings, and water assets (Mukherjee et al., 2023; Ni et 38 

al., 2019). 39 

Traditionally, experts conduct visual inspections, using specialised tools to detect defects manually. 40 

Despite its widespread use, this approach is labour-intensive, hazardous, time-consuming, and prone to 41 

human error (Ahmadi et al., 2022). Hence, there has been a discernible shift towards Infrastructure 42 

Automated Defect Detection (IADD) in recent years, fuelled by emerging technologies' ability to expedite 43 

and improve defect detection and assessment reliability (Cheng and Wang, 2018; Hsieh and Tsai, 2020; 44 

Munawar et al., 2021; Zhu et al., 2020). 45 

Various approaches have been developed in automated defect detection to analyse and interpret the vast 46 

and complex image data collected. Methods range from thresholding and edge detection to machine 47 

learning (ML) algorithms (Munawar et al., 2021). Notably, ML techniques have been identified as robust 48 

solutions to the challenges in infrastructure defect detection, offering advantages such as accuracy, 49 

automation, speed, customisability, and scalability over conventional methods (Assaad and El-adaway, 50 

2020). Consequently, research leveraging ML algorithms for automated defect detection, including image 51 

classification-based techniques, object detection, and semantic segmentation, has proliferated in recent 52 

years (Pan et al., 2020). For instance, Protopapadakis et al. (2019) demonstrated the application of 53 

Convolutional Neural Networks (CNNs) with heuristic post-processing techniques for crack detection in 54 

tunnels, achieving high accuracy. While their study focuses on tunnel-specific infrastructure, it highlights 55 

the broader potential of ML approaches across various infrastructure types. 56 

Despite rapid advancements in ML techniques for IADD, comprehensive reviews synthesising these 57 

developments and assessing their practical applications across various infrastructures are lacking. 58 

Particularly, the integration of diverse ML algorithms, their efficacy in different settings, and the 59 

evaluation of performance metrics in the context of varying data characteristics have not been thoroughly 60 

explored. This paper seeks to fill this gap by presenting a comprehensive review of state-of-the-art 61 

research employing diverse ML techniques in IADD. This study would benefit researchers in this field and 62 

enhance existing knowledge by gaining insights into the algorithms, datasets, characteristics, performance 63 

metrics, and significant defects detected by ML algorithms. The subsequent sections elaborate on our 64 

research methodology, analyses, and findings, followed by a discussion, conclusions, and 65 

recommendations for future research and development. 66 

2. Research Methodology 67 

2.1. Review Protocol  68 

The study utilises a Systematic Literature Review (SLR) approach to explore the application of ML 69 

techniques in IADD. The protocol for this literature review encompassed three phases: data acquisition, 70 

screening, and in-depth analysis. Figure 1 illustrates this process, which is elaborated upon in the 71 

subsequent sections. The utilised protocol incorporates key elements of the PRISMA (Preferred Reporting 72 

Items for Systematic Reviews and Meta-Analyses) framework, such as transparent reporting of search 73 

strategies, screening processes, and inclusion criteria, tailored to the engineering and infrastructure 74 

domains.  75 

 76 
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 77 

Fig.1. Review protocol. 78 

2.2. Paper Identification 79 

The primary objective of this phase was to identify the most pertinent academic articles for our analysis. 80 

Initially, we chose Scopus, Web of Science (WoS), and Google Scholar as our research engines. However, 81 

we excluded Google Scholar due to an overabundance of partially relevant articles. We formulated 82 

keywords using "AND" and "OR" to retrieve relevant articles, limiting our study to papers published post-83 

2017. To delineate the scope related to infrastructure types, we conducted a preliminary search using a 84 

specific query, revealing that roads, bridges, and sewers account for 83% of research in ML-based 85 

automated defect detection (Figure 2). Consequently, we focused on these three types of infrastructure. 86 

The keywords for the main search were based on our research questions and scope, as shown in Table 1, 87 

to retrieve data on IADD research papers. 88 

 89 

Fig.2. Infrastructure types with IADD research 90 
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Table1. Search query. 91 

Search String 

Initial ("Road" OR "Bridge" OR "Sewer" OR "Tunnel" OR "Railway" OR "Airport" OR "Dam") AND 
("Image processing" OR "Machine learning" OR "Deep learning") AND ("Defect detection" OR 
"Crack detection" OR "Damage detection") AND ("image" OR "video") 

Final ("Bridge " AND "Road" AND "Pavement" AND ("Sewer" OR "Sewer pipe")) AND ("Image 
processing" OR "Machine learning" OR "Deep learning") AND ("Defect detection" OR "Crack 
detection" OR "Damage detection") AND ("image" OR "video") 

 92 

2.3. Screening 93 

In the screening phase, we utilised formulated keywords in Scopus and Web of Science databases, aligning 94 

with our research questions on ML-based image processing techniques for IADD. Searches focused on 95 

titles, abstracts, and keywords from 2017 to 2024, yielding 777 papers. This period was chosen due to 96 

significant technological advancements in ML and IADD. To ensure comprehensive coverage, backwards 97 

and forward searching methods added 37 papers. A duplicate check reduced the total to 649 papers.  98 

A three-stage filtering process further narrowed down the papers. The first stage, title filtration, excluded 99 

review papers, articles with vague titles, and those out of scope (e.g., thermal images, 3D images, radar 100 

images), reducing the papers to 383. The second stage, abstract filtration, used similar criteria. Papers 101 

focusing on very specific issues (e.g., camera angles) and those with non-standard abstracts (unclear 102 

purpose, vague methodology, undisclosed findings) were excluded. This left 356 papers, which were 103 

downloaded for full-text analysis. In the final stage, full-text analysis, papers focusing on specific defects 104 

(e.g., bolt failure) or with unclear methodologies (sparse information on algorithm, model, datasets) were 105 

excluded. After this filtration, 123 papers remained for in-depth analysis. All protocol steps were 106 

independently verified by two researchers to ensure validity. The multi-phase screening approach (title, 107 

abstract, and full-text) follows systematic review principles akin to those outlined in PRISMA to ensure 108 

transparency and replicability. 109 

Table2. Inclusion and exclusion criteria 110 

Phases Criteria Justification 

Title and 
Abstract 

Screening 

- Review papers are excluded. 
- Irrelevant titles are excluded. 
- Only articles on bridges, roads and 

sewer infrastructures are included.  
- Articles not aligning with research 

questions and scope are excluded. 

- Focus on primary research.  
- Ensure clarity and relevance.  
- Broad coverage of key infrastructures  
- Relevance to the study’s aim and scope  
- Broad thematic relevance  
- Ensure clear and comprehensive abstracts  

Full-text 
Screening 

- Only articles on bridge, road and sewer 
infrastructure are included.  

- Articles considering very specific 
defects (e.g., bolt failing) are excluded. 

- Relevance to core infrastructure  
- Alignment with the study’s aim and scope 
- Focus on broadly applicable issues.  
- Exclude narrowly focused studies.  
- Ensure methodological clarity and rigour.   
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- Articles with insufficient information 
(e.g. algorithm, model, dataset) in 
methodologies are excluded. 

 111 

2.4. In-depth Analysis 112 

In-depth analysis employed content analysis to address the research questions and evaluate the articles 113 

extracted from the screening phase. These methods align with a common objective of SLR, which involves 114 

examining the development of a specific research area (Saedi et al., 2022). Content analysis was used to 115 

synthesise the progression and intricacies of the IADD research domain, focusing on ML-based image 116 

processing techniques for IADD. 117 

3. Analysis and Results 118 

3.1 Infrastructure Defects Classification 119 

The type and severity of defects are essential criteria in risk assessment for deciding on infrastructure 120 

maintenance and repair activities (Ellingwood, 2005). Consequently, many standards, such as the manual 121 

of sewer condition classification in the United Kingdom (Water Research Centre, 2004), offer criteria and 122 

methods for infrastructure maintenance. Identifying defect types is the first step in risk assessment. Using 123 

ML-based image processing, several researchers have attempted to discover infrastructure defects 124 

(Ahmadi et al., 2022; Li et al., 2020a; Yang et al., 2020a; Yin et al., 2021). Figure 3 depicts the classification 125 

of detected defects in three types of infrastructure: roads, bridges, and sewers. Cracks are identified as 126 

the most prevalent defect in roads and bridges, while roots and obstacles are the most typical defects in 127 

sewer pipes. It also reveals a higher variety of defects detected in sewer pipes. This diversity could be 128 

attributed to the pronounced similarity among defects in this type of infrastructure. For instance, 129 

differentiating between various defects such as breakages, roots, cracks, fractures, and joint offsets 130 

through ML algorithms presents a significant challenge due to their visual similarity (Pan et al., 2020). A 131 

comparable issue arises when attempting to identify different types of cracks in road and bridge 132 

infrastructures (Mraz et al., 2020). 133 
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 134 

Fig.3. Infrastructure defects classification 135 

3.2 Machine Learning Techniques Analysis on Infrastructure Automated Defect Detection 136 

In the past decade, ML techniques have achieved exceptional success across various computer vision 137 

domains. They have been utilised in many image processing challenges, such as defect detection, and 138 

other civil engineering realms like construction progress monitoring (Dimitrov and Golparvar-Fard, 2014; 139 

Elghaish et al., 2022; Talebi et al., 2022). A typical pipeline for employing ML-based image processing 140 

methods consists of several stages, including image capture, pre-processing, model training, and model 141 

testing (Munawar et al., 2021). 142 

The subsequent sections will delve into critical specifics associated with deploying ML techniques for 143 

automated defect detection across three infrastructural settings: roads, bridges, and sewers. These 144 

specifics encompass training datasets, programming languages, tools and libraries, task analysis (such as 145 

segmentation, object detection, and classification), prevalent algorithms and specific models, as well as 146 

performance evaluation metrics. 147 

3.2.1 Training Datasets  148 

In the realm of IADD using ML models, most published studies train and test their models on self-collected 149 

datasets  (Ahmadi et al., 2022; Li et al., 2020a; Yin et al., 2021). These self-constructed datasets present a 150 

hurdle when comparing models (Sholevar et al., 2022). A standard dataset could address this issue 151 

(Eisenbach et al., 2017), allowing researchers to bypass the data collection stage. Numerous public image 152 

defect collections have been compiled for roads and bridges. However, due to the relatively recent 153 

adoption of ML for defect detection in sewer pipes, no public dataset is currently available. Figure 4 shows 154 

the proportion of public and self-collected datasets used in related literature for each infrastructure.  155 
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 156 

Fig. 4. Dataset types for each infrastructure used in ML-based defect detection models. 157 

The resolution and distance of the captured images are critical factors in determining the quality of data 158 

used for ML-based defect detection. High-resolution images enable the detection of fine-grained details, 159 

such as micro-cracks or surface wear, while lower-resolution images may limit accuracy, particularly for 160 

subtle or distant defects (Abdellatif et al., 2021). Similarly, the distance from which images are captured 161 

influences the level of detail and the field of view. Close-range images provide higher detail but are limited 162 

in coverage, whereas distant captures are suitable for large-scale assessments but may compromise the 163 

resolution of finer defects (Murao et al., 2019). For instance, studies like Zhu et al. (2020) have 164 

demonstrated that optimising resolution and distance can significantly enhance the accuracy and 165 

reliability of defect detection models. 166 

Prominent public datasets for roads include IEEE Big Data Cup Challenge 2020 (Jeong, 2020; Kortmann et 167 

al., 2020), Deep Crack (Chen and Jahanshahi, 2020; Qu et al., 2020; Al-Huda et al., 2023a), Crack Forest 168 

Dataset (CFD) (Chen and Jahanshahi, 2020; Qu et al., 2020; Al-Huda et al., 2023a), Crack500 (Chen and 169 

Jahanshahi, 2020; Qu et al., 2020; Al-Huda et al., 2023a), GAPs384 (Chen and Jahanshahi, 2020; Yang et 170 

al., 2020b; Matarneh et al., 2024), AigleRN (Fang et al., 2021; Li et al., 2019a), CrackTree200 (Fang et al., 171 

2021; Yang et al., 2020b; Matarneh et al., 2024; Nooralishahi et al., 2022), and Crack IT (Abdellatif et al., 172 

2021). For bridges, commonly used public datasets are Bridge88 (Jiang et al., 2020), BridgeTL58 (Jiang et 173 

al., 2020), BridgeXQ48 (Jiang et al., 2020), LiuYang128 (Jiang et al., 2020), BridgeDB288 (Jiang et al., 2020), 174 

Crack500 (Zhu et al., 2021a), SYD Crack (Zhu et al., 2021a), COCO-Bridge (Bianchi et al., 2021), SDNET 175 

(Yang et al. 2020a; Xiong et al., 2024), CCIC (Yang et al., 2020a), and BCD (Yang et al., 2020a). A significant 176 

limitation of public datasets for defect detection is the limited variety of defect types. Most of these 177 

datasets document only cracks. This constraint has been highlighted as a research limitation in studies by 178 

Angulo et al.(2019), Gong and Wang (2021), and Kruachottikul et al. (2021). 179 

3.2.2 Analysis of Programming Languages, Tools, and Libraries 180 

Python, a freely available programming language, and TensorFlow, an open-source ML library developed 181 

by Google, are the most frequently used tools for implementing ML-based image processing algorithms 182 

in infrastructure defect detection.  Figures 5(a) and 5(b) highlight the distribution of programming 183 

languages and frameworks used to develop ML-based algorithms in three infrastructures: roads, bridges, 184 

and sewers. Factors contributing to the widespread use of Python and TensorFlow for implementing ML-185 
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based algorithms for IADD include simplicity and consistency, availability of high-level libraries and 186 

frameworks for Artificial Intelligence and ML, flexibility, platform independence, and expansive 187 

community support (Sholevar et al., 2022). 188 

In addition to Python and TensorFlow, other platforms like MATLAB and the Caffe deep learning 189 

framework have facilitated the implementation of ML-based algorithms in fields beyond computer 190 

science, such as civil engineering. While these ready-to-use tools enhance accessibility and ease of use, it 191 

is important to note that they may also limit the flexibility and customisability that researchers have in 192 

developing their unique ML solutions. 193 

 194 

 195 

Fig.5. (a) Distribution of programming languages for implementing ML-algorithm in IADD, (b) 196 

Distribution of libraries/frameworks/tools for developing ML-algorithm in IADD. 197 

3.2.3 Tasks analysis (Segmentation/ Object detection/ Classification) 198 

The strategies utilised for IADD leveraging ML-based image processing can be categorised into four main 199 

types: segmentation, classification, object detection, and hybrid methods. The choice of the most suitable 200 

approach for defect detection depends on factors such as the type of infrastructure, the nature of the 201 

defect, the dataset, and the standard guidelines and manuals for infrastructure asset management. 202 

17
4

0

2 7

31

9

2

7

21

3

5 1

0

14

0%

20%

40%

60%

80%

100%

Python Matlab C, C++ and C# Mixed Not Specified

Bridge Road Sewer

6
4

5

0
1

1 1
12

14

4

12
3

2

2 2

31

1 0
2

0

4

0 0

16

0%

20%

40%

60%

80%

100%

TensorFlow Keras Pytorch Caffe Matlab
Toolbox

OpenCV Other Not
Specified

Bridge Road Sewer

(a)

(b)

0

0



 

9 
 

For instance, in the context of sewer pipe condition assessment, guidelines like the WRC manual in the 203 

UK (Water Research Centre, 2004) stipulate various tasks necessary for a comprehensive evaluation. 204 

These tasks include defect type identification (such as root intrusion, joint offset, and infiltration), 205 

determination of defect location and orientation in the image, distance from the starting manhole, 206 

severity rating of the defect, and the tally of defects in each category. Consequently, a multitude of deep 207 

learning tasks ensue for sewer inspection, including 1) defect detection/classification of an image  (Hu et 208 

al., 2023), 2) defect detection accompanied by bounding boxes to signify defect type and location (Zhang 209 

et al., 2023), and 3) pixel-level defect segmentation for quantitative assessment (Dang et al., 2023).   210 

As depicted in Figure 6, in the context of road infrastructures, segmentation is the dominant detection 211 

approach, occupying 69% (25 out of 36) of the proportion. In bridges, classification is the most dominant 212 

task type. Due to the homogeneous nature of defect types, predominantly cracks, detection at the pixel 213 

level is paramount (Zhang et al., 2017). Additionally, given the enhanced importance of defect location in 214 

sewer pipes and the more advanced stage of robotics employment for inspections compared to other 215 

infrastructures, object detection and classification constitute the majority of tasks in sewer infrastructure 216 

analysis. 217 

 218 

Fig.6. Categorisation of Task Types for Each Infrastructure 219 
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a median of 83%, indicates models' high ability to identify positive instances correctly. Recall averages 224 

75.59%, indicating robust performance in capturing positive instances, while the F1 Score, balancing 225 

precision and recall, averages 73.99%. The Area Under the Curve (AUC), though reported in fewer studies, 226 

has a mean of 79.76%, showing good class distinction capabilities. Mean Intersection over Union (MIoU), 227 

crucial for segmentation tasks, averages 68.98%, and accuracy, the most common metric, averages 228 

89.57%, reflecting overall model correctness. Although AUC and MIoU are less frequently reported, they 229 
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demonstrates the effectiveness of ML techniques in this domain while also highlighting areas where 232 

further improvements and standardisations could be beneficial.  233 

Figure 7 shows the relationship between dataset size and these metrics, revealing weak negative 234 

correlations for most metrics. Precision (-0.03), recall (-0.17), F1 score (-0.13), MIoU (-0.07), and accuracy 235 

(-0.07) indicate minimal impact of dataset size on performance, suggesting that larger datasets slightly 236 

challenge models but do not significantly degrade performance. Notably, AUC shows a moderate negative 237 

correlation (-0.67), implying that larger datasets complicate the model's ability to distinguish between 238 

classes effectively, likely due to increased data complexity and variability. 239 

 240 

Fig 7. (a): Relationship between the number of data points and performance metrics (Precision, Recall 241 
and F1 score), (b): Relationship between the number of data points and performance metrics (Accuracy, 242 

AUC and MIoU). 243 
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asset defect analysis. 251 
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resources, including high-end GPUs and extended training times, making them less feasible for real-time 255 

or edge-based applications (Protopapadakis et al., 2019). Lightweight models, such as MobileNet and 256 

SqueezeNet, address this challenge by optimising network architectures to reduce complexity and 257 

resource demands while maintaining reasonable accuracy. Ranjbar et al. (2022) demonstrate the practical 258 

feasibility of such lightweight models by applying MobileNet for asphalt defect detection, achieving a 259 

balance between efficiency and accuracy suitable for resource-constrained settings. Furthermore, tasks 260 

like pixel-level segmentation (e.g., U-Net) and multi-class object detection (e.g., YOLO) are 261 

computationally intensive due to their fine-grained processing requirements, which impact deployment 262 

feasibility in resource-constrained environments (Augustauskas and Lipnickas, 2020). The trade-off 263 

between accuracy and computational efficiency remains a key challenge (Zhou et al., 2022c). 264 

 265 

3.2.5 Algorithm Analysis According to Infrastructure Type 266 

The analysis of algorithms utilised for IADD reveals a diverse array of ML techniques employed across 267 

different infrastructure types. This section categorises these algorithms into non-deep learning and 268 

various forms of CNNs, providing a comprehensive overview based on the reviewed literature (Table 3). 269 

Non-Deep Learning Algorithms 270 

Traditional ML algorithms, such as Support Vector Machines (SVMs), Decision Trees, K-Nearest 271 

Neighbours (KNN), Logistic Regression, and the Hough Transform, have been adapted for classification 272 

tasks in IADD. These models are generally less complex and require less computational power compared 273 

to deep learning models. However, they often rely on manually engineered features, which can limit their 274 

performance in more complex scenarios. For bridges, Li et al. (2020b) utilised these algorithms, 275 

demonstrating their applicability in this domain. While the simplicity and low computational requirements 276 

of traditional ML algorithms make them suitable for basic classification tasks, their reliance on manual 277 

feature engineering limits scalability to complex or large datasets (Hsieh and Tsai, 2020). In the context of 278 

roads, studies by Majidifard et al. (2020), Ahmadi et al. (2022), and Cubero-Fernandez et al. (2017) showed 279 

effective use of traditional algorithms for defect detection. For sewer pipes, Moradi et al. (2020) and 280 

Myrans et al. (2018) applied SVM and Decision Trees, illustrating their utility in this infrastructure type. 281 

Despite these applications, these methods often fall short in handling intricate patterns or achieving high 282 

accuracy compared to deep learning models (Cheng and Wang, 2018). 283 

Classification - Classic CNNs 284 

Classic CNN architectures such as AlexNet, VGG, ResNet, Inception, and DenseNet have been extensively 285 

used for image classification tasks. These models leverage deep layers to automatically extract features 286 

from images, making them highly effective for defect detection. In bridge defect detection, Zhu et al. 287 

(2020) and Kruachottikul et al. (2021) employed ResNet, highlighting the superior performance of deep 288 

learning models. For road defect identification, Zhang et al. (2024) and Dung et al. (2019) used VGG and 289 

ResNet, showing significant accuracy improvements. For sewer pipe defect detection, Qu et al. (2020) and 290 

Gao et al. (2022) applied AlexNet and Inception, demonstrating the versatility of CNNs. While these 291 

models achieve high accuracy, they are computationally expensive, as noted by Eisenbach et al. (2017) 292 

and Chen et al. (2018), requiring high-end GPUs and extended training times. This makes them less 293 

suitable for real-time applications or deployments in resource-constrained environments.  294 
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Classification - Customised CNNs 295 

Customised CNNs tailored for unique applications or datasets have also been utilised. These models are 296 

often modified versions of classic CNN architectures, adjusted to better handle specific tasks or data 297 

characteristics. Xu et al. (2019) and Kun et al. (2022) developed customised CNNs for bridge inspection, 298 

showing improved performance through architectural modifications. In the context of roads, Nhat-Duc et 299 

al. (2018) created specific CNN models, achieving higher precision. For sewer pipes, Ma et al. (2023) 300 

implemented customised CNNs, enhancing detection accuracy through tailored network designs. 301 

Although customised CNNs offer significant advantages in addressing task-specific challenges, their 302 

performance heavily depends on the availability of high-quality, task-specific training datasets, which can 303 

limit their broader applicability Elghaish et al. (2022).  304 

Classification - Lightweight CNNs 305 

Lightweight CNN architectures designed for resource-constrained environments, such as SqueezeNet and 306 

MobileNet, have been employed. These models are optimised for speed and efficiency, making them 307 

suitable for deployment on devices with limited computational resources. For bridge defect detection, 308 

Ranjbar et al. (2022) used MobileNet, demonstrating the feasibility of lightweight models. In road 309 

inspections, Zhou et al. (2021a) and Chen et al. (2018) utilised SqueezeNet, balancing performance with 310 

efficiency. For sewer pipes, Situ et al. (2021) applied MobileNet, proving its adaptability to different 311 

infrastructure types. However, lightweight CNNs may trade off some degree of accuracy compared to 312 

classic CNNs, making them more suitable for scenarios prioritising efficiency over precision, as discussed 313 

by Dang et al. (2023). 314 

Object Detection – CNNs 315 

CNN-based models for object detection, such as R-CNN, YOLO, SSD, and RetinaNet, are widely used for 316 

detecting and localising defects within images. These models can identify multiple defect types and 317 

provide bounding boxes for their locations. In bridge defect detection, Xiong et al. (2024) and Jiang et al. 318 

(2023) used YOLO, showcasing its ability to handle complex detection tasks. For road inspections, Deng et 319 

al. (2021) and Bianchi et al. (2021) employed SSD and YOLO, achieving high accuracy in defect localisation. 320 

In sewer pipe defect detection, Kumar et al. (2020) and Yin et al. (2021) utilised YOLO, highlighting its 321 

robustness in diverse environments. Although these models excel in defect localisation and multi-class 322 

detection, their performance can degrade when dealing with small or less distinct defects, as noted by 323 

Gao et al. (2022). 324 

Segmentation – CNNs 325 

CNN models for segmentation tasks, such as U-Net, FCN, SegNet, DeepLab, and PAN, have been adopted. 326 

These models partition images into meaningful segments, which is crucial for detailed defect analysis. For 327 

bridge defect segmentation, Li et al. (2020a) and Mohammed et al. (2022) used U-Net, enabling precise 328 

identification of defect areas. In road defect segmentation, Rubio et al. (2019) and Jang et al. (2021) 329 

employed DeepLab and SegNet, demonstrating their capability in handling complex segmentation tasks. 330 

For sewer pipes, Hsieh and Tsai (2020) and Peng et al. (2024) applied U-Net, providing detailed analysis of 331 

defect extents. However, segmentation models are computationally intensive, making their deployment 332 

challenging in real-time or resource-constrained environments, as highlighted by Deng et al. (2021) 333 

Common Tasks and Most Used Algorithms by Infrastructure Type 334 
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In the context of bridges, classification tasks using classic CNNs, particularly ResNet, and traditional 335 

algorithms such as SVM and Decision Trees, are most common. The primary focus in this area is on 336 

identifying and classifying defects such as cracks and structural damages. For roads, object detection tasks 337 

are predominant, with YOLO and SSD being the most frequently employed algorithms. These models are 338 

used extensively to detect and localise various types of road defects, including potholes, cracks, and 339 

surface deformations. In sewer pipes, segmentation tasks are the most common, with U-Net and 340 

customised CNNs being the primary algorithms. These models focus on segmenting and identifying 341 

specific defects within the pipes, such as blockages and fractures, to provide detailed insights into their 342 

condition. 343 

The integration of ML-based algorithms into existing inspection systems poses several challenges (Ahmadi 344 

et al., 2022; Elghaish et al., 2022). Computationally intensive models like ResNet and U-Net may require 345 

significant hardware upgrades (Augustauskas and Lipnickas, 2020), while lightweight models such as 346 

MobileNet, despite their efficiency, may compromise accuracy in critical applications (Gao et al., 2022). 347 

Interoperability with legacy systems and data formats often necessitates middleware solutions to 348 

interpret ML outputs within existing workflows (Elghaish et al., 2024). Additionally, the transition to ML-349 

based inspections requires investment in operator training, workflow redesign, and infrastructure 350 

upgrades (Assaad and El-Adaway, 2020). These integrability challenges highlight the need for tailored 351 

solutions that balance computational requirements, performance, and cost to facilitate seamless 352 

adoption of ML algorithms in real-world inspection systems (Deng et al., 2021). 353 

The integration of ML-based algorithms into inspection workflows increasingly involves robotic systems 354 

and drones. These technologies enhance defect detection by enabling remote, automated, and precise 355 

inspections, particularly in hazardous or hard-to-reach areas (Murao et al., 2019; Du et al., 2021). For 356 

example, drones equipped with high-resolution cameras and multi-modal sensors facilitate the collection 357 

of detailed data for defect analysis (Bianchi et al., 2021; Deng et al., 2021). Robotic platforms, such as 358 

autonomous ground vehicles, can be integrated with ML models to conduct inspections and even perform 359 

maintenance tasks, reducing the need for manual interventions (Jang et al., 2021). The EU-funded HERON 360 

initiative is a notable example, combining drones and robotic technologies with advanced ML-based tools 361 

to execute tasks like crack sealing, pothole repairs, and road marking in an automated workflow 362 

(Katsamenis et al., 2022). These innovations demonstrate the potential for ML-driven defect detection 363 

systems to evolve into comprehensive inspection and maintenance solutions (Bakalos et al., 2024).In 364 

summary, the most commonly used algorithms for each infrastructure type are: 365 

• Bridges: Traditional algorithms (e.g., SVM, Decision Trees) and Classic CNNs (e.g., ResNet), 366 

primarily for classification tasks. 367 

• Roads: Classic CNNs (e.g., VGG, ResNet) and Object Detection CNNs (e.g., YOLO, SSD), primarily 368 

for object detection tasks. 369 

• Sewer Pipes: Customised CNNs, Lightweight CNNs (e.g., MobileNet), and Segmentation CNNs 370 

(e.g., U-Net), primarily for segmentation tasks. 371 

This comprehensive analysis underscores the effectiveness and versatility of various ML models in IADD, 372 

providing a clear direction for future research and application development in this field. The algorithms 373 

and models listed in Table 3 are in their base forms, and most of the referenced studies include fine-tuned 374 

or variant versions, which are highlighted using an asterisk (*) symbol. Ma et al. (2023) used the 375 

Transformer in addition to the CNN  model listed in Table 3. 376 
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Table 3. Analysing ML algorithms for automated defect detection in different structures. 377 

Algorithm/Model 
 

Bridge Road Sewer Pipe 

Non-Deep Learning 
Algorithms*:  

• SVM 

• Decision Trees 

• KNN  

• Logistic 
Regression,  

• Hough transform 

Li et al (2020b) Majidifard et al. (2020) 
Ahmadi et al. (2022)  
Cubero-Fernandez et al. 
(2017) 
Hoang (2019) 
Matarneh et al. (2023) 
 

Moradi et al. (2020) 
Myrans et al. (2018) 
 

Classification - Classic 
CNNs*: 

• AlexNet  

• VGG 

• ResNet 

• Inception 

• DenseNet 

Zhu et al. (2020)  
Kruachottikul et al. 
(2021) 
Zhang et al. (2024) 
Deng et al.(2021) 
Dung et al. (2019)  
Zhang and Alavi, 
(2021), 
Yang et al. (2020a) 
 

Qu et al. (2020) 
Zhou et al. (2022a) 
Maniat et al. (2021) 
Gao et al. (2022) 
Zhang et al. (2020a) 
Ranjbar et al. (2022) 
Matarneh et al. (2024) 
Elghaish et al. (2024) 
 

Chen et al. (2018) 
Situ et al. (2021) 
Li et al. (2019b)  
 
 
 

Classification - 
Customised CNNs  

Xu et al. (2019) 
Kun et al. (2022) 
Vignesh et al. (2021) 
Zhang et al. (2021) 
 

Nhat-Duc et al. (2018) 
Park et al. (2019) 

Ma et al. (2023) 

Classification - 
Lightweight CNNs*: 

• SqueezeNet 

• MobileNet 

 Ranjbar et al. (2022) 
Hou et al. (2021) 
Yang et al. (2020b) 

Zhou et al. (2021a) 
Chen et al. (2018)  
Situ et al. (2021) 

Object Detection – 
CNNs*: 

• R-CNN 

• YOLO 

• SSD 

• RetinaNet 

Xiong et al. (2024) 
Jiang et al. (2023) 
Deng et al. (2021)  
Zhang et al. (2018)  
Yu et al. (2021) 
Teng et al. (2022) 
Bianchi et al. (2021) 
Murao et al. (2019) 
Golding et al. (2022) 
 Zhu et al. (2020) 
 

Zhou et al. (2022b)  
Angulo et al. (2019) 
Gou et al. (2019)  
Kortmann et al. (2020)  
Ranjbar et al. (2022) 
Jeong (2020)   
Ukhwah et al. (2019)  
Hu et al. (2021)  
Zhang et al. (2020a)  
Hegde et al. (2020) 
Silva et al. (2020)  
Li et al. (2021a) 
Lin et al. (2021) 
Wang et al. (2023a) 
Cano-Ortiz et al. (2024) 
Xing et al. (2023) 

Cheng and Wang 
(2018)  
Wang and Cheng 
(2018)  
Wang et al. (2021) 
Kumar et al. (2020) 
Wang et al. (2023b) 
Zhou et al. (2022a) 
Yin et al. (2020)  
Kumar et al. (2020)  
Yu et al. (2024) 
Kumar et al. (2020) 
Yin et al. (2021) 
Kumar and Abraham 
(2019) 
 Li et al. (2021c) 
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Algorithm/Model 
 

Bridge Road Sewer Pipe 

Segmentation – 
CNNs*:  

• U-Net  

• FCN 

• SegNet 

• DeepLab  

• PAN 

Li et al. (2020a)  
Mohammed et al. 
(2022) 
Rubio et al. (2019) 
Jang et al. (2021) 
Lopez Droguett et al. 
(2022) 
Jiang et al. (2021)  
Sun et al. (2023)  
Zhu et al. (2021) 
Bae et al. (2021) 

Li et al. (2019a) 
Fang et al. (2021) 
Augustauskas and Lipnickas 
(2020) 
Hsieh and Tsai (2020) 
Fan et al. (2020a) 
Chen et al. (2019) 
Chun and Ryu (2019) 
Liu et al. (2020) 
Al-Huda et al. (2023b) 
Wang and Su (2020) 
Peng et al. (2024) 
Li et al. (2022a) 
Li et al. (2022b)   
Joshi et al. (2022) 
Fan et al. (2020b) 
Alfarraj (2020) 
Jiang et al. (2021) 
Kaddah et al. (2020) 
Chen and Jahanshah (2020) 
Yang et al. (2020b) 
Abdellatif et al. (2021) 
Qiao et al. (2021) 
Zhang et al. (2020b) 
Li et al. (2021b) 
Tong et al. (2020) 
Al-Huda et al. (2023a) 
Liu et al. (2020);   
Tsuchiya et al. (2019)   
Majidifard et al. (2020) 
Jung et al. (2019) 
Wang et al. (2023c) 
 
 

Wang et al. (2023b)  
Guo et al. (2022) 
 
 Zhou et al. (2022c) 
 
Khalid et al. (2021) 
Guo et al. (2022) 
Pan et al. (2020) 
 

 378 

 379 

4.0 Conclusion, Recommendations and Limitations 380 

This systematic review has critically analysed recent studies on IADD, covering 123 papers that address 381 

defect classification, datasets, programming languages, and performance metrics. The research domain 382 

was structured to analyse studies involving roads, bridges, and sewer systems. One major challenge 383 

identified is the difficulty in detecting similar defects, such as cracks, across different infrastructures due 384 

to the use of self-compiled datasets, which hinders the cross-comparison of model performances. 385 

Nevertheless, the review highlights a clear trend towards deep learning models, surpassing traditional ML 386 
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approaches by eliminating the need for manual feature engineering, resulting in speed, accuracy, and 387 

applicability gains. 388 

This review has highlighted several areas needing further investigation and underscored the dynamic 389 

nature of ML applications in infrastructure defect detection. Future efforts should focus on creating 390 

shared, well-annotated datasets representing various infrastructure defects to enhance model 391 

performance comparisons and support the development of models with broader applicability. 392 

Additionally, there is a significant need to investigate the severity of defects using ML to establish a 393 

hierarchy of defect criticality, aiding in the prioritisation of maintenance tasks and efficient resource 394 

allocation. Developing and validating models capable of functioning across different infrastructure types 395 

will improve the breadth and effectiveness of defect detection. Conducting longitudinal studies to monitor 396 

the real-world performance of ML models will provide insights into their long-term effectiveness and 397 

maintenance needs. Furthermore, research into integrating ML models with automated repair and 398 

maintenance systems could lead to a more proactive and streamlined approach to infrastructure 399 

management. 400 

Future research should also focus on developing hybrid models that combine the strengths of traditional 401 

ML and deep learning techniques to enhance detection accuracy and efficiency. Applying transfer learning 402 

to use models trained with data from one type of infrastructure for others can help address the dataset 403 

creation problem. Enhancing the robustness of ML models to varying environmental conditions, such as 404 

light and weather, which affect image quality and defect detection accuracy, is also crucial. Moreover, 405 

improving the interpretability and explainability of ML models will help build trust among infrastructure 406 

managers, thereby facilitating better decision-making. 407 

Recent developments in the field include large language models, which could be leveraged to 408 

automatically analyse vast numbers of inspection and maintenance reports, identifying patterns and 409 

predicting potential defects through natural language processing. Their ability to generate insightful 410 

reports and easily extract knowledge from text data can lead to user-friendly ML tools for non-experts, 411 

fostering the adoption of advanced defect detection technologies in infrastructure. 412 

It is important to note that this review includes literature up to April 2024. Potential biases may exist in 413 

both the selection of databases and search terms, as relevant studies not indexed in the selected 414 

databases or not meeting the search criteria may have been overlooked. Similarly, papers not written in 415 

English may have been missed, omitting significant contributions. Despite these limitations, the review 416 

provides a thorough overview of the state of research up to the point of writing. The authors intend to 417 

pursue further work in developing a framework to identify the most suitable ML methods for effectively 418 

detecting specific defects and infrastructures, enabling more targeted and effective ML applications in 419 

infrastructure defect detection. 420 
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