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Abstract

Although deep learning methods have achieved outstanding success in the medical
image field, they face several challenges that can significantly impact training effec-
tiveness, learning stability and meaningful generalisations. One of these challenges
is the limited availability of annotated samples for certain diseases, which are often
difficult and expensive to obtain. Another important issue is the presence of over-
lapping class distributions, where similarities between features of different classes
make it difficult for the model to distinguish between them accurately.

To address these issues, the thesis aims to develop deep learning solutions that
improve classification performance when faced with limited annotations and irreg-
ular class distributions. The study specifically focuses on three key objectives: (1)
designing a convolutional neural network that improves feature learning from a
generic domain to a more specific task with small annotated samples, (2) develop-
ing a deep learning model that effectively mitigates class overlap by refining class
boundaries, and (3) enhancing the generalisation strategy to improve learning sta-
bility and simplify complex patterns within datasets.

To achieve these objectives, the thesis presents three main contributions. First,
the 45-DT model and its advanced version, XDecompo, are introduced to enhance
feature transferability through self-supervised learning with sample decomposition
and overcome the limited samples of the dataset. 45-DT uses the k-means clustering
to perform the decomposition process, which may not always align with the true
structure of the data. In contrast, XDecompo employs an affinity propagation-based
class decomposition to automatically enhance the learning of the class boundaries
in the downstream task without the need for preset cluster numbers. This clustering
process provides more flexibility and adaptability compared to the parametric ap-
proach used by 45-DT. Moreover, XDecompo also incorporates an explainable com-
ponent to highlight salient pixels that influenced the model’s decision and explain
the effectiveness of XDecompo to enhance the feature extraction and increase the trust
of deep learning applications.

The second contribution introduces CLOG-CD, a convolutional neural network
that integrates curriculum learning with class decomposition to improve classifica-
tion performance on medical image datasets exhibiting class irregularities. CLOG-
CD also explores different oscillation steps to evaluate the impact of varying learning
speeds on model generalisation at different levels of granularity.

The third contribution of the thesis introduces a novel curriculum learning with
a progressive of self-supervised learning called (CURVETE) that employs a cur-
riculum learning strategy based on the granularity of sample decomposition dur-
ing the training of unlabelled samples. Through this process, CURVETE enhances
the quality of feature representations, extracting rich information across different
levels of granularity. These features can then be effectively transferred to a new
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downstream task with limited examples, ultimately improving classification perfor-
mance. CURVETE also handles the challenge of irregular class distribution by util-
ising the curriculum learning strategy with a class decomposition approach in the
downstream task.

Extensive experiments have been carried out on various medical image datasets,
utilising different evaluation metrics, to validate the effectiveness of our three contri-
butions to the thesis. For the first contribution, 45-DT has achieved a high accuracy
of 97.54% and 99.80% for detecting COVID-19 cases in dataset-A and dataset-B, re-
spectively. Additionally, XDecompo achieved accuracies of 96.16% and 94.30% for
colorectal cancer and brain tumour images, respectively, outperforming 45-DT and
other training strategies. The second contribution, CLOG-CD, achieved an accuracy
of 96.08% on the chest x-ray dataset, 96.91% on the brain tumour dataset, 79.76% on
the digital knee x-ray, and 99.17% on the colorectal cancer dataset using the baseline
ResNet-50. In addition, CLOG-CD using DenseNet-121 achieved 94.86%, 94.63%,
76.19%, and 99.45% for chest x-ray, brain tumour, digital knee x-ray, and colorectal
cancer datasets, respectively. Finally, CURVETE showed significant improvements
in performance with an accuracy of 96.60% on the brain tumour dataset, 75.60%
on the digital knee x-ray dataset, and 93.35% on the Mini-DDSM dataset using the
baseline ResNet-50. Furthermore, the classification performance with the baseline
DenseNet-121 achieved an accuracy of 95.77%, 80.36%, and 93.22% on the brain tu-
mour, digital knee x-ray, and Mini-DDSM datasets, respectively.
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Chapter 1

Introduction

1.1 Overview

Computer-aided diagnostic (CAD) systems are powerful tools that leverage artificial
intelligence (AI). They help healthcare professionals diagnose diseases and predict
patient outcomes more efficiently and accurately, leading to better patient care and
outcomes [1]. In recent decades, Al has achieved significant advancements, particu-
larly in machine learning (ML) and deep learning (DL), which have transformed the
capabilities of CAD systems. These technologies enable systems to automatically
learn from large datasets and refine their performance over time without explicit
human intervention. ML and DL are key components of Al that have demonstrated
significant effectiveness in improving model performance. Traditional ML relies on
manually engineered features, where the model’s success is tied to the quality of
these features. In contrast, DL offers a more advanced approach by learning hier-
archical representations of data through multiple layers, enabling it to extract com-
plex patterns automatically. This makes DL especially well-suited for medical image
analysis, where high precision and adaptability are critical [2].

Convolutional neural networks (CNNs) are one of the DL algorithms that have
experienced rapid success in recent times. CNNs have shown remarkable success in
various medical imaging tasks, such as detecting tumours in MRI scans and classify-
ing medical conditions [3]. They can capture both low-level visual features and high-
level abstract patterns from the input data, resulting in superior classification perfor-
mance and generalisation capabilities compared to traditional methods. Moreover,
they are also less sensitive to small changes in the image, such as rotation, zoom, or
lighting, which makes them more flexible in real-world situations. A typical CNN
architecture consists of two main stages: feature extraction and classification. The
feature extraction stage comprises multiple convolutional and pooling layers that
learn to detect patterns ranging from simple edges to complex textures. The clas-
sification stage, usually composed of one or more fully connected layers, interprets
these features to make predictions. As the network deepens, it builds increasingly
abstract representations, allowing it to recognise intricate patterns in the input data.
However, the demand for more generalisable and adaptable deep learning solutions
continues to rise, particularly in applications where accuracy and trust are critical.



2 Chapter 1. Introduction

This chapter presents the research problem, objectives, and key contributions of
the thesis. In addition, the chapter outlines the challenges that arise from working
with limited annotated data and overlapping class distributions and introduces the
proposed solutions designed to address these issues.

1.2 Motivation

Training a CNN model can be either accomplished from scratch using a large la-
belled dataset or by utilising the rich knowledge encoded in pre-trained networks
through a strategy known as transfer learning [4]. In medical image processing, em-
ploying transfer learning with pre-trained networks is often the preferred method,
as it significantly enhances classification performance. This approach allows mod-
els to leverage the learnt features from large datasets, which substantially reduces
the need for extensive labelled data and decreases training time. Through utilising
knowledge from general tasks, transfer learning can achieve higher accuracy in spe-
cialised medical applications such as disease detection and diagnosis. These benefits
make transfer learning an attractive option for many medical image analysis prob-
lems.

Despite its potential, transfer learning’s effectiveness is often constrained by
challenges in achieving generalisability [5]. For example, annotating medical
datasets demands extensive expertise and effort from medical professionals, mak-
ing it a resource-intensive, time-consuming task and further limiting the ability to
generalise models effectively. Self-supervised learning (SSL) has become an alterna-
tive solution to transfer learning techniques. It addresses the challenge of limited
labelled data by leveraging large amounts of unlabelled data and creating tasks that
generate labels from the data itself [6]. This approach helps to improve model gener-
alisability and performance on downstream tasks without heavily relying on manual
annotations.

Another common challenge in medical image processing is the issue of overlap-
ping distributions between classes, which can lead to high variance and poor gen-
eralisation [7]. Overlapping distributions arise when different classes share similar
feature spaces, making it challenging for the model to distinguish between them.
Fig. 1.1 illustrates the overlapping issues in an imbalanced dataset.

Based on these challenges, we previously proposed a novel deep convolutional
neural network (DCNN) based on the class decomposition method called DeTraC [8].
To the best of our knowledge, employing the class decomposition approach within
a CNN model was the first step toward unbiased medical image classification. Class
decomposition is a method used in ML and DL models as a pre-processing step to
address overlapping distributions within classes, improving the model’s learning
ability and generalisation. When different classes overlap, the decision boundaries
between them can become unclear, especially if the data points within a class vary

significantly or resemble data from other classes. This makes the training process



1.3. Key Concepts 3

more difficult for the model to correctly classify new data points. For example, in
brain tumour classification, the “tumour” class might include images of different
types of tumours, sizes, or early-stage tumours. If the model tries to learn this class
as a whole, the diversity within the class may blur the boundaries, making it diffi-
cult to distinguish between different types of tumours. By decomposing the broad
tumour class into smaller, more homogeneous groups, the model can focus on learn-
ing specific patterns. This simplification makes it easier for the model to differentiate
between similar data points, resulting in better performance on unseen datasets.
The motivation of this thesis is to leverage the strengths of the super-sample de-
composition and class decomposition approaches to develop DCNN models with
more generalisation capabilities. These models aim to address common challenges
in medical image classification, such as the scarcity of labelled samples in some med-
ical datasets and the presence of overlapping distributions within classes. By ad-
dressing these issues, the proposed DCNN models will have the ability to enhance
accuracy and generalisability across various medical image datasets. Moreover, we
proposed a novel CNN model that incorporates a curriculum learning strategy with
the decomposition process to improve feature transferability through different lev-
els of granularity. Leading to enhancing the training process and improving the
classification performance on medical image datasets affected by class irregularities.

Majority class Overlapping area
/

Minority class

Feature y
>*
*
*(»
* %
X
te
X-
1"
L J

Feature x

FIGURE 1.1: Illustration of class overlap in an imbalanced dataset.

The blue stars represent the majority class, the red circles denote the

minority class, and the green rectangle indicates the overlapping re-
gion.

1.3 Key Concepts

This section introduces the essential concepts and terminology used in this thesis,
providing a foundational understanding of the concepts which will be discussed

later in the following chapters.



Chapter 1. Introduction

¢ Data decomposition: This technique is used as a pre-processing step before
training the model, aiming to enhance the performance of classification mod-
els, particularly in scenarios with overlapping or complex class structures. Its
root was first introduced in [9] to enhance low-variance classifiers and increase
the flexibility of the decision boundary. There are two types of data decompo-
sition: class decomposition and sample decomposition. Class decomposition
focuses on dividing labelled classes in downstream datasets into smaller ones,
which is particularly useful when dealing with complex class structures. The
method involves dividing a class into smaller, more homogeneous sub-classes
based on certain features or characteristics, where each sub-class is assigned a
new label related to its original class and considered as a separate new class
[10]. After training, those sub-classes are recollected to compute the error cor-
rection of the final prediction. This simplification of the local structure within
each class enables the model to better capture the specific relationships and
boundaries between different data points [11]. By focusing on smaller, well-
defined sub-classes, models can achieve improved accuracy and generalisa-
tion, making this approach a powerful tool in the medical field. Fig. 1.2 and
Fig. 1.3 demonstrate the concept of the class decomposition method and the
error correction operation, respectively, for binary datasets.

In contrast, sample decomposition targets unlabelled data to serve as an initial
stage for labelling or further analysis. This approach is a key component in
SSL, enabling the model to learn useful representations or extract latent struc-
tures within the data without depending on explicit labels. These representa-
tions can later be utilised with a small labelled dataset to improve the general-
isation of the model. This approach reduces overlap in feature space, enabling
the model to better differentiate between sub-classes and create more distinct
boundaries. As a result, the performance improves when the sub-classes are
recombined for final classification [12].

¢ Feature transferability: This concept refers to the model’s ability to learn use-
ful features from one task or training stage and apply them to improve per-
formance on another task or at a different level of complexity [13]. Improv-
ing the feature transferability is particularly important in the training model
because it enables the model to build on previously acquired knowledge, re-
ducing the need to learn from scratch. This makes training more efficient, es-
pecially in complex or data-scarce scenarios [14]. In this thesis, we introduced
DCNN models to enhance feature transferability across different stages or new
tasks. For example, we enhanced feature representation in the source domain
by combining SSL with a sample decomposition process, enabling the model
to effectively learn relevant features in the source before fine-tuning them for
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a different task. Additionally, we integrated curriculum learning and data de-
composition strategies in a progressive manner to enhance feature transferabil-
ity at different levels of granularity. The model begins by learning specific fea-
tures and detailed representations, then gradually transfers this knowledge to
solve more complex tasks. This structured progression helps the model build
a robust understanding of the dataset’s structure, ultimately improving gener-

alisation on unseen data.

True classes

Normal 1

® Normal classes

Normal x  Abormal classes
Normal 2 ﬁ
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FIGURE 1.2: An example of the class decomposition method applied

to a binary classification task on a chest x-ray image dataset. In

this approach, each class in the original dataset is divided into two

smaller, more homogeneous sub-classes using a clustering algorithm,

resulting in a new dataset with four sub-classes. Each sub-class is as-
signed a label that corresponds to its original class.
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FIGURE 1.3: The figure represents the confusion matrix of a binary
classification task and after the error correction process. In the binary
confusion matrix, the true positive (TP) refers to correctly identified
abnormal cases, while the true negative (TN) refers to correctly iden-
tified normal cases. False positive (FP) and false negative (FN) rep-
resent incorrect predictions, where FP refers to normal cases misclas-
sified as abnormal and FN refers to abnormal cases misclassified as
normal. After class decomposition error correction, the corrected TP
is calculated by summing all the correct predictions of classes Abnor-
mal_1 and Abnormal_2 (represented as red squares). Similarly, TN
is calculated by summing the correct predictions of Normal_1 and
Normal_2 (represented by blue squares). This process is called error
correction, where the sub-classes are aggregated back into their re-
spective original classes and remapped to the original problem.
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1.4 Problem Statement

The field of medical image classification faces several challenges that affect the effec-
tiveness of machine learning models. With the increasing need for trustworthy and
accurate diagnostic tools, it is crucial to tackle these issues to improve the perfor-
mance of classification systems and enhance patient care. This problem statement
highlights the main obstacles that need to be addressed to create more effective and
generalised medical image classification solutions.

1. Irregularity distribution: One of the notable challenges in the medical imag-
ing domain is the overlap between classes, where different categories share
similar features, making it difficult to distinguish between them [15]. Class
decomposition is a powerful solution to address this issue by defining clear
boundaries between classes. and breaking down complex class structures into
simpler, more homogeneous sub-classes, helping the model to identify the dif-
ferences more effectively. In this way, the model builds a clearer understand-
ing of the overall class structure, allowing the model to first focus on detailed
patterns/features within sub-groups before moving to more general features
[16].

2. Inefficient learning under limited annotated data: Medical image datasets
frequently suffer from scarce and expensive labelled data. The lack of suffi-
cient labelled samples can lead to overfitting, poor feature learning, and ulti-
mately limited generalisation of unseen data. To address this challenge, SSL
has emerged as a promising solution to deal with such a problem [17]. Rather
than depending solely on labelled data, SSL allows the model to learn useful
feature representations from unlabelled samples through pretext tasks. These
representations can then be fine-tuned using the limited available annotations
for downstream classification. As demonstrated in prior works [18], this ap-
proach significantly improves model robustness in data-scarce environments
while reducing reliance on costly manual labelling in medical imaging appli-
cations. Fig. 1.4 demonstrates the fundamental concept behind SSL.

3. Difficulty in learning from complex dataset structures: Deep learning models
often struggle when the dataset contains a wide range of complex variations
and fine-grained details [19]. When training data is presented in a random
order, the model is exposed to both easy and hard examples. This can cause
the model to focus too much on simple patterns and miss important features
in more difficult samples [20]. As a result, this might lead to unstable learn-
ing and slower convergence to unseen data. Curriculum learning is an effec-
tive solution to improve the training process by changing the model’s learn-
ing behaviour [21]. This strategy introduces training samples progressively,
starting from easy examples and gradually moving to more complex ones. By
following this structured progression, the model can build its understanding
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FIGURE 1.4: The pipeline of the SSL process. First, the model is
trained on a large set of unlabelled data by solving a pretext task,
which generates pseudo-labels from the data itself. Then, an Ima-
geNet pre-trained network is used to train the pretext task to learn
rich representations and meaningful features within the data. Finally,
the acquired useful features are fine-tuned on a small set of labelled
data in a downstream task to improve performance for the final pre-
diction.
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incrementally, which leads to more stable training and improved generalisa-
tion. Fig. 1.5 illustrates the basic concept of curriculum learning and how this
structured progression can guide the model’s learning and enhance its overall

performance.

Target Dataset after Training
Dataset Curriculum models

FIGURE 1.5: Illustration of the curriculum learning strategy. The tar-

get dataset D is organised into a meaningful order, starting with eas-

ier examples and gradually progressing to more difficult ones. The

model addresses the target task 77 by training on a series of sub-tasks

(71, T2..., Tz). Each sub-task is associated with a corresponding pre-

dicted function (f), which helps the model improve step by step until
it reaches the final target function f; for the downstream task.
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1.5 Aim and Objectives

This thesis aims to develop DCNN models for medical image classification. These
models will effectively address data distribution irregularities, overcome the limita-
tions of annotated samples, and enhance the training process across diverse medical
imaging datasets. As a result, the models improve performance and facilitate the
accurate detection of diseases. The objectives of this thesis can be broken down as
follows:

* Develop a CNN model capable of improving feature transferability to new
tasks by simplifying the structure of classes, enabling the model to learn com-
plex patterns within medical datasets more effectively;

¢ introduce explainable and interpretable techniques to the machine learning
model to increase trustworthiness and usability across various applications in
medical imaging processing;

¢ design CNN models that can effectively resolve overlapping class boundaries

and mitigate the impact of limited sample sizes in medical image datasets; and

* build a generalisation and adaptability model capable of enhancing the ex-
traction of feature representations from the latent space, making them more

effective for other tasks.

1.6 Solution Approaches and Contributions

In this thesis, we integrated data decomposition with different elements to enhance
the performance of DCNN models and address challenges in training medical im-
age datasets. As shown in Fig. 1.6, this thesis presents three main contributions to
achieve the objectives mentioned above, which are outlined as follows:

® 4S-DT and its advanced version, XDecompo: These models are designed
to learn class boundaries and simplify the complex structure in downstream
datasets. 45-DT combines SSL with super sample decomposition to train a
large number of unlabelled samples and fine-tune the knowledge on a small
labelled dataset decomposed by k-means clustering. Here, the class decom-
position process has been applied using predefined clusters, which may influ-
ence the transferability of features and limit adaptability to new tasks. To ad-
dress this limitation, XDecompo employs a dynamic clustering technique that
enhances the clustering quality and improves feature transferability on down-
stream tasks. It extracts deep features from unlabelled images using a convo-
lutional autoencoder and generates pseudo-labels through a clustering algo-
rithm. Then, the ResNet-50 pre-trained network was employed as a backbone

for training the pretext model and extracting meaningful information. Finally,
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each class in the downstream dataset is divided into smaller, more homoge-
neous groups using an automatic clustering method. XDecompo also integrates
a post hoc explainable Al method for feature visualisation, showing its effec-
tiveness in improving feature transferability compared to the 45-DT model.

¢ CLOG-CD Model: This model was introduced to enhance the training process
and address irregular class distributions. CLOG-CD combines anti-curriculum
learning and class decomposition for training the downstream tasks based
on different levels of granularity. The model starts training at the highest
granularity of class decomposition, where the dataset is decomposed into the
maximum number of smaller groups. The knowledge gained at this level is
then used to learn progressively lower granularities until reaching the original
classes and then returning to the highest granularity level. In this process, the
class decomposition method simplifies complex challenges by breaking down
the structure of the classes into more homogeneous sub-classes. This allows
the model to initially focus on learning the most relevant features between
data points, making the classification task easier. The model was evaluated
using three different oscillation steps, which controlled the step size as the
model transitioned to the next level. In addition, its performance was com-
pared with other training strategies, including traditional curriculum learning,
anti-curriculum learning over a single iteration, and traditional transfer learn-

ing from pre-trained networks.

* CURVETE Model: This model brings together the strengths of all elements:
SSL with sample decomposition, curriculum learning, and class decomposi-
tion to address challenges such as limited labelled data and irregular class dis-
tributions. CURVETE achieves this through three main stages: First, SSL is ap-
plied in combination with sample decomposition to process a large volume of
unlabelled data, enabling the extraction of meaningful feature representations
without relying on explicit labels. Second, an ImageNet pre-trained network is
adapted for training the pretext task and classifying the pseudo-labels. At this
stage, the model leverages the anti-curriculum learning strategy with different
granularities of sample decomposition to make the training process more effec-
tive. This strategy broadens the solution space, allowing the model to discover
new patterns and meaningful representations, which can later be fine-tuned
on smaller labelled datasets. Finally, the learnt representations are fine-tuned
for classifying a new downstream task, which also utilises the anti-curriculum
learning approach based on the class decomposition method to simplify com-
plex structures and establish clear class boundaries. This enables the model to
improve feature transferability and effectively handle irregular data distribu-
tions.
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FIGURE 1.6: A framework of the proposed solutions to achieve the
thesis objectives.

1.7 Dataset Used in the Thesis

Medical imaging datasets often present unique challenges due to their complexity,
high dimensionality, and the need for expert annotation [22]. In this thesis, a diverse
set of publicly available medical datasets was used to evaluate and validate the pro-
posed contributions, such as chest x-ray images, brain tumours, colorectal cancer
histopathology, digital knee x-ray images, and digital mammogram datasets. These
datasets were selected due to their clinical relevance and the presence of various
data irregularities, such as class overlap in the morphological structure of medical
images. In the experimental work, we used both labelled and unlabelled datasets,
depending on the research contribution. Labelled data is used for supervised learn-
ing tasks, while unlabelled data is leveraged through self-supervised learning to ad-
dress limited annotation. The specific usage of each dataset is detailed in the respec-
tive contribution chapters. Table 1.1 provides a summary of the basic characteristics
of both the labelled and unlabelled data for each dataset.

¢ COVID-19 chest x-ray dataset: This dataset was employed only in the first
contribution for detecting COVID-19 cases under the constraint of limited an-
notated cases at that time. Two different labelled datasets were used, referred
to as Dataset-A and Dataset-B. Dataset-A contains 105 COVID-19, 11 SARS,
and 80 Normal images, while Dataset-B includes 576 COVID-19, 4,273 Pneu-
monia, and 1,583 Normal images. In addition, a large number of unlabelled
chest radiograph samples were collected from different sources to train the
pretext model and address the scarcity of COVID-19 annotation examples; see
the first row in Table 1.1.

* General chest x-ray dataset: This second chest x-ray dataset was used in the
second contribution as a labelled dataset to evaluate model generalisability.
The dataset was collected by a team of researchers from Qatar University, the
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University of Dhaka, and collaborators from Pakistan and Malaysia, in part-
nership with medical doctors. It consists of 21,165 x-ray images divided into
four classes: 3,616 COVID-19, 6,012 Lung Opacity, 10,192 Normal, and 1,345
Viral Pneumonia, see the second row in Table 1.1.

¢ Brain tumour dataset: The labelled dataset was obtained from Nanfang and
General Hospitals at Tianjin Medical University, China, comprising 3,034 im-
ages across three tumour classes: 1,426 glioma, 708 meningioma, and 930 pi-
tuitary tumours. It was used in all three contributions, making it suitable
for comparative analysis of the proposed models. Unlabelled data were also
sourced from a public Kaggle dataset to assess model performance under lim-
ited annotation conditions; see Table 1.1.

* Colorectal cancer histopathology dataset: The labelled and unlabelled
datasets were obtained from the NCT Biobank (National Center for Tumour
Diseases, Heidelberg, Germany) and the UMM pathology archive (Univer-
sity Medical Centre Mannheim, Mannheim, Germany). The labelled dataset,
“CRC-VAL-HE-7K,” consists of 7,180 image patches divided into nine tissue
types: 1,338 Adipose, 847 Background, 339 Debris, and others including Lym-
phocytes (LYM), Mucus (MUC), Smooth Muscle (MUS), Normal Colon Mu-
cosa (NORM), Cancer-Associated Stroma (STR), and Colorectal Adenocarci-
noma Epithelium (TUM). The unlabelled dataset, “NCT-CRC-HE-100K,” con-
tains 100,000 samples with diverse representations of colorectal cancer and
normal tissues.

¢ Digital knee dataset: The labelled and unlabelled knee x-ray datasets were
sourced from different repositories, as summarised in Table 1.1. The labelled
dataset consists of five classes: 514 Normal, 477 Doubtful, 232 Mild, 221 Mod-
erate, and 206 Severe cases. These images were acquired from reputable hospi-
tals and diagnostic centres using the PROTEC PRS 500E X-ray machine, with
expert annotation from two medical specialists. In this study, only images from
the MedicalExpert-I sub-folder were used. The unlabelled dataset, the Knee
Osteoarthritis Initiative (OAI) was used, including 9,786 images categorised

into five severity grades.

¢ Digital mammograms dataset: We used the Mini-DDSM dataset, which is a
subset of the larger Digital Database for Screening Mammography (DDSM), as
a labelled dataset. The dataset is divided into three classes: 2048 Normal, 2,716
Cancer, and 2,684 Benign. In addition, the MIAS mammograms dataset was se-
lected as unlabelled samples, which is a well-known public dataset commonly
used in breast cancer detection and diagnosis.
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TABLE 1.1: Summary of the datasets used in this thesis.

Dataset Reference/ Sources Dataset Image Image

Name Labelled dataset | Unlabelled dataset| Modality Size Formate
COVID-19 chest x-ray | [23], Kaggle! [24, 25, 26, 27] x-ray 1255 x 2199 Ipg
General chest x-ray [28, 29] - x-ray 299 x 299 Png
Brain Tumor [30] Kaggle? MRI 400 x 400 Png
Colorectal cancer [31] [31]® Histopathology | 224 x 224 Tif
knee x-ray [32] [33] MRI 300 x 162 Png

Mini-DDSM [34] [35] x-ray 125 x 320 | Png, JPEG

Ihttps://www.kaggle. com/prashant268/chest-xray-covid19-pneumonia
Zhttps://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
3No case overlap between the labelled and unlabelled datasets.

1.8 Publications
The following list of publications supports the work presented in this thesis.

e Abbas, A., Abdelsamea, M. M., Gaber, M. M., 45-DT: Self-supervised super
sample decomposition for transfer learning with application to COVID-19 de-
tection. IEEE Transactions on Neural Networks and Learning Systems, 32(7),
2021.

e Abbas, A., Gaber, M.M. and Abdelsamea, M.M., Xdecompo: explainable de-
composition approach in convolutional neural networks for tumour image
classification. Sensors, 22(24), p.9875, 2022.

Abbas, A., Gaber, M.M. and Abdelsamea, M.M., CLOG-CD: Curriculum
Learning based on Oscillating Granularity of Class Decomposed Medical Im-
age Classification. IEEE Transactions on Emerging Topics in Computing, 2025.

e Abbas, A., Gaber, M.M. and Abdelsamea, M.M., CURVETE: Curriculum
Learning and Progressive Self-supervised Training. ICONIP 2025 (under re-
view).

1.9 Thesis Organisation

The rest of this thesis is organised in the following manner.

Chapter 2 provides a comprehensive background on the architecture and func-
tionality of neural networks, as well as the theoretical foundation for DL and its dif-
ferent techniques. In addition, it emphasises the DCNN architecture and provides a
detailed description of the layers and operations in DCNNs. The chapter also dis-
cusses common challenges associated with the implementation of the DCNN model,
along with an exploration of different training strategies and the pre-trained deep
learning models utilised in our research.


https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection

1.9. Thesis Organisation 13

Chapter 3 reviews the related work on medical image classification using DC-
NNs. In addition, we pay attention to the other methods that address challenges
related to limited data and overlapping class distributions. In addition, the chapter
highlights recent works that have utilised SSL and curriculum learning strategies in
improving medical image processing.

Chapter 4 introduces our 45-DT model and its enhanced version, XDecompo,
which improves the class decomposition process by automatically learning class
boundaries in downstream tasks. The chapter starts by discussing the 45-DT model,
which utilises a predefined clustering algorithm to decompose the dataset into a
fixed number of sub-classes. Next, we provide a detailed description of the stages
that comprise the XDecompo model. In addition, we integrate post hoc explainable
Al to ensure the trustworthiness of the model’s decisions, highlighting specific fea-
tures and regions of interest that the model accurately localised. XDecompo was
evaluated on two distinct medical image datasets, both of which face challenges
with overlapping classes. The chapter also presents various performance metrics
and compares our model with other state-of-the-art methods.

Chapter 5 introduces the theoretical and mathematical foundation behind the
idea of CL, and the two factors that are responsible for the implementation of the cur-
riculum learning strategy. Next, we go through our method and demonstrate how
the curriculum learning strategy can enhance classification performance and address
distribution irregularities when combined with the class decomposition method.
Our method was evaluated through extensive experiments based on four different
medical image datasets using two baseline networks. We examined our method
with different steps of oscillation and compared its performance against different
training strategies. Finally, we compared our model with other recent methods in
the medical imaging field.

Chapter 6 explores the effectiveness of applying a curriculum learning strategy
with different levels of granularity in sample decomposition to improve feature rep-
resentations from generic, unlabelled samples during pretext training. The chapter
outlines the key stages of our proposed model, which combines curriculum learning
and sample decomposition to enhance the quality of feature learning in the pre-
text phase. Additionally, the method applies curriculum learning with the class de-
composition approach for training the downstream classification task. The model
was tested using two different granularity components during pretext training, en-
abling the model to gradually learn and capture more refined features. Our method
was evaluated on three small datasets and compared to other training strategies and
state-of-the-art models in the field.

Chapter 7 concludes this dissertation by summarising and discussing the main
findings and contributions made throughout the research, reflecting on the initial
aims and objectives. It also introduces new directions for future research in the med-

ical image field.






Chapter 2

Background

In the previous chapter, we detailed the problem statement, defined the aims and
objectives of the research, and provided an overview of the contributions of this
work. This chapter focuses on the essential background information and founda-
tional concepts that are necessary to understand the methodologies and contribu-

tions discussed in chapters 4, 5, and 6.

2.1 Artificial Neural Networks (ANN)

Artificial neural networks (ANNSs) are computational systems inspired by the struc-
ture and function of the human brain. They consist of layers of interconnected nodes
(also known as neurons) designed to process and transmit information. This enables
the recognition of patterns and the solving of complex problems [36]. ANNs con-
sist of an input layer, one or more hidden layers, and an output layer. Networks
with only one hidden layer are often referred to as simple or traditional neural net-
works, while those with multiple hidden layers are known as deep neural networks
(DNNSs). In most neural networks, neurons from one layer are connected to neurons
in the subsequent layer, with each connection having an associated weight. These
weights determine the influence one neuron has on another, processing the input
data and transmitting the results to the next layer. Through this layered structure,
the network learns progressively more about the data, capturing deeper and more
complex patterns at each stage. The final layer produces the output based on the
cumulative learning from all preceding layers. This hierarchical depth is essential
for tackling complex tasks such as image and speech recognition, as well as natural
language processing. By passing data through multiple layers, each layer focuses on
different aspects of the input, allowing ANNSs to effectively identify and interpret
complex features and relationships within the data [37].

DNNs are a fundamental component of deep learning (DL), which itself is a
subfield of machine learning (ML) [38]. While ML methods typically require hand-
crafted features and domain expertise, DL models rely on DNNs to learn features au-
tomatically from raw input data. This end-to-end learning process enables DL mod-
els to extract increasingly abstract representations through multiple hidden layers.



16 Chapter 2. Background

Each layer captures higher-level patterns, improving the model’s ability to recognise
complex structures.

2.1.1 Fundamental Structure of DNN

DNN consists of multiple layers: the input layer, which receives raw input data such
as images, text, or numerical values. Each layer comprises interconnected nodes
(neurons) that process data through weighted connections, and each neuron corre-
sponds to one feature of the input data. Hidden layers are intermediate layers that
perform specific computations on the features entered from the input/previous lay-
ers to provide more abstract and useful representations before passing the result to
the next/output layer. This structure allows the network to learn complex patterns
through a series of computations before passing the result to the final output layer
[39].

Fig. 2.1 represents the main building block of DNN. As shown, the learning
process in DNN requires transforming inputs across numerous layers of neurons to
produce the desired output. For each neuron, the training observation x is multi-
plied by the weight w, and the output is added with a bias b to allow the network
to fit the data when all input features are equal to 0. This process is called linear-
transformation and can be represented as z = wix1 + wyx2 + - - - + wyx, + b. The
linear transformations can be used to classify data with linear models, which are
essential for tasks where drawing a straight decision boundary is sufficient, such as
classifying email as spam or not. However, in real-world data, the model needs to
learn complex relationships between patterns to generalise such data that cannot be
modelled or represented with linear transformations. Using the activation function
is essential for the transfer of linear signals into non-linear ones, making the model
more powerful and flexible to learn complex patterns in the data [40]. As shown in
Fig. 2.1, the sum z is passed through an activation function ¢ to decide whether the
information received is important enough to determine the output and make the de-
cision and pass it along or not. The mathematical formula of the activation function

can be represented as:

y=<l><n xiwi+b>/ (2.1)
i=1

There are several types of activation functions that can be used in DNN to trans-
fer the input signals, such as Sigmoid, ReLU, and Softmax; see Fig. 2.2. The sigmoid
function maps any input to a value between 0 and 1, and it is commonly used in
binary classification tasks where the model predicts the probability of an input be-
longing to a certain class. Whereas the softmax function is usually used in multi-
classification problems to normalise the output into (n) probabilities based on the
categories of the data. The ReLU (Rectified Linear Unit) function is widely used
in deep learning models, such as convolutional neural networks (CNNs), particu-

larly in real-world applications. ReLU is a popular activation function because, for
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FIGURE 2.1: Learning process in the neural network.

positive input values, it maintains a gradient of 1, preventing the vanishing gradi-
ent problem that can occur during back-propagation and allowing for more efficient
learning and faster convergence during training. Fig. 2.2 shows examples of activa-

tion functions and their mathematical equations.
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FIGURE 2.2: Examples of activation functions commonly applied to
neural networks: a) Sigmoid, b) Softmax, c) Relu.

At this stage, DNN acquires knowledge through feed-forward propagation,
where input data moves through the network from the input layer to the output
layer in one direction to make initial predictions (predicted class labels) [41]. These
predictions are compared to the actual outcomes (true class labels) using a loss func-
tion, which measures the error between the predicted and actual outputs. This error
is then used to adjust the network’s parameters, guiding the learning process. The
smaller the value of the loss function, the better the model’s predictive accuracy, as
it indicates the model is making predictions closer to the true values. Let n be the
number of observations, §j the predicted values, and y the actual values, then the

Mean Squared Error (MSE) loss function / can be defined as:

(v, 9)=-Y @—y)? (2.2)

ni3

MSE is commonly used in regression tasks, such as predicting continuous values.
For classification tasks, cross-entropy loss is the most common loss function, which
is particularly suited for multi-class classification problems [42]. Cross-entropy loss
measures the difference between the true probability distribution (actual labels) and
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the predicted probability distribution (predicted labels). By penalising incorrect pre-
dictions based on their confidence, cross-entropy loss encourages the model to as-
sign higher probabilities to correct classes. It is also effective when combined with
softmax activation in the output layer, where the model’s predictions are turned into
probabilities that sum to 1, making it easier to compare them with the actual labels
and guiding the model to make better predictions. Cross-entropy loss for multi-class
classification can be represented as:

1

n

Z Zy i) Ina;(x (2.3)

i=1j=1

Where X = {x(l),x(z),...,x(”)} are the input samples in the training dataset,
Y = { y(1), y(z), .y y(”) } are the corresponding labels for these inputs, c is the number
of classes, and txj(x(i)) is the predicted probability of class j for the input x(!) from
the softmax activation function.

The process of updating the weights of the connections between the neurons
to reduce this error is known as back-propagation [43], see Fig. 2.1. After the
model makes a prediction, back-propagation calculates the difference between the
predicted and actual output (the error). This error is then propagated backwards
through the network, layer by layer, to update the weights using gradient descent.
The gradient of the loss function with respect to each weight is calculated using the
chain rule of calculus. These gradients are then used to adjust the network’s pa-
rameters (weights and biases), guiding the model toward an optimal solution. This
process is critical for training DNN as it allows the model to learn the relationship
between features and complex patterns in real-world data. As a result, the model
achieves better performance and higher accuracy. By repeating this process dur-
ing training, the model gradually learns the best weights that minimise the error,
refining its predictions over multiple training cycles (epochs). This iterative pro-
cess allows the model to improve its performance on both training data and unseen
test sets, leading to higher overall accuracy. The general equation for updating the
weights during back-propagation is:

ol
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Where 7 is the learning rate, aif is the partial derivative of the loss function [

with respect to the weight w;, Wthh gives the gradient of the loss with respect to
that weight.

In addition, there are external adjustable parameters, known as hyperparame-
ters, that are defined prior to the start of the learning process and have a significant
impact on the model’s performance. For example, the learning rate must be chosen
by the user to determine the size of the updates made to the model’s weights during
training. Selecting the learning rate is essential for controlling how quickly or slowly
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the model learns [44]. A low learning rate can cause the loss function to decrease
very slowly, increasing the risk of the model getting stuck in a bad local minimum.
On the other hand, a high learning rate can prevent the model from learning useful
patterns, causing the loss function to fluctuate or even diverge, missing the optimal
solution. Therefore, finding an appropriate learning rate is crucial for effective train-
ing. In practice, techniques like step decay, which gradually reduce the learning rate
at regular intervals, are often used to help the model converge more efficiently over

time.

2.2 Challenges in Training DNN

The effectiveness of a deep learning model is primarily assessed by its performance
on unseen datasets rather than merely its accuracy on the training data. This subsec-
tion discusses common problems encountered during training deep learning models
and the techniques that can be used to overcome these issues. One significant chal-
lenge that should be taken into consideration before training the DNN is the high
demand of a large volume of labelled data, which can be expensive or scarce, par-
ticularly in fields like medical imaging. To address this, data augmentation (AUG)
is often employed as a strategy to artificially increase the size and diversity of the
dataset by applying transformations to the existing data [45]. These transformations
include cropping, flipping (both vertically and horizontally), sharpening, shifting,
adding noise, and rotating images at different angles. Another common challenge
is the frequent occurrence of overfitting and underfitting in machine learning and
deep learning [46].

Fig. 2.3 illustrates the relationship between model complexity, represented by the
number of weights and parameters included in the model, and the prediction error
displayed on the y-axis. As illustrated in the figure, the relationship between model
complexity and error rates shows distinct trends. From left to right, as model com-
plexity increases, the training error (green curve) consistently decreases. Conversely,
the test error (red curve) initially declines but eventually starts to rise, illustrating the
phenomenon known as overfitting. This occurs when the model exhibits high vari-
ance, becoming overly sensitive to fluctuations in the training data. As a result, the
model memorises the training examples, including noise, rather than learning the
underlying patterns. This leads to a low training error but a high test error. In other
words, the model is too complex and fits the training data well but performs poorly
on unseen test data.

On the left side of the figure, where model complexity is low, we encounter un-
derfitting, characterised by high bias. Here, the model lacks sufficient capacity to
capture the relationships between patterns in the data, resulting in high error rates
and poor performance on both training and test datasets. This issue is often observed
in shallow neural networks, where the model does not contain enough parameters

or is oversimplified in its architecture. Therefore, to address underfitting, one can
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increase the complexity of the model by adding more neurones to the hidden layers
or by increasing the number of hidden layers, allowing the model to capture more
intricate patterns. Achieving an optimal fit requires developing a robust model that
strikes a balance between complexity and simplicity, ensuring low test error and

strong generalisation to new unseen data.

High Bias Low Bias
Low Variance High Variance
—

5

Prediction Error

& — Testerror

Training error

Underfitting Good models Overfitting

Low Complexity of the model High

FIGURE 2.3: The relationship between model complexity and loss
function error, insights into underfitting, overfitting, and the bias-
variance trade-off.

There are several techniques to prevent or mitigate overfitting, including AUG,
early stopping, dropout, and regularisation techniques. 1) An early-stopping train-
ing technique can be used when the validation loss no longer improves after a certain
number of epochs, preventing the model from fitting the noise in the data [47]. 2)
AUG, as discussed earlier, helps increase the dataset size by applying several trans-
formation processes. 3) Dropout [48] is another common technique in which, during
each iteration, a fraction of neurons and their connections are randomly dropped
from the network based on a probability p (commonly set to 0.5). This means
that their weights cannot be updated nor affect the learning of the other network
nodes. 4) Regularisation techniques [49], such as L1 and L2 regularisation, control
the model’s complexity and prevent overfitting by adding a penalty term A to the
loss function, where for every weight w in the network, we add the term A to the
loss function to minimise the loss on the training set. L1 regularisation keeps only
the useful features and drives the weights of some features to be zero. It means if
the input features have weights closer to 0, L1 norm would be sparse during opti-
misation. This can be useful to focus on the most relevant features, but it may also
cause the loss of some useful information that influences the final output. In com-
parison, L2 regularisation, also known as weight decay, does not force any weights
to zero but instead penalises larger weights. This allows the model to learn as much
information as possible and forces some weights to be small without rejecting or
making them exactly zero. As a result, L2 regularisation helps the model generalise
better by returning a non-sparse solution, where all the weights remain non-zero. In

practice, L2 regularisation is well-suited for medical analysis tasks because medical



2.3. A Taxonomy of ML and DL Techniques 21

images often contain subtle and complex features spread across different regions. By
retaining non-zero weights, L2 regularisation ensures that no potentially important
features are completely ignored, helping the model capture specific patterns that are
essential for accurate diagnosis or classification. The modified loss function after
adding the L2 regularisation term is represented as:

1 n C 1
- Z Zy Ina;(x\")) + o Y wi (2.5)
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Where the first term represents the cross-entropy loss in Eq. 2.3, the second term
is the L2 regularisation, wy is the weights of the model, m is the total number of
weights, and A is the regularisation hyper-parameter that controls the strength of the
L2 regularisation. Choosing A properly is critical for the model’s performance. If A is
too small, the regularisation will have little effect, allowing the model to potentially
overfit the training data. On the other hand, if A is too large, the regulariser will
dominate, forcing the weights to become too small or even zero, which could lead to
underfitting, where the model fails to capture important patterns in the data.

2.3 A Taxonomy of ML and DL Techniques

ML and DL techniques can be broadly categorised into three major types: (i) su-
pervised or discriminative learning, (ii) unsupervised or generative learning, and
(iii) hybrid learning and other advanced strategies. Each of these categories serves

distinct purposes depending on the task and data requirements [50].

1. Supervised or discriminative learning [51]: These techniques learn from la-
belled data to predict target outputs, enabling classification, regression, and
detection tasks. Common ML algorithms include Support Vector Machines,
Decision Trees, and Random Forests. In DL, architectures such as CNNs and

Recurrent Neural Networks are widely used.

2. Unsupervised or generative learning [52]: In this category, models are pro-
vided with no information about the target class labels of the dataset. They
are capable of discovering the inherent structure of unlabelled data and learn-
ing meaningful representations without relying on labelled samples. This ap-
proach is used for tasks such as clustering, association, and dimensionality re-
duction. Include k-Means clustering and principal component analysis in ML,
while DL methods include Self-Organising Maps, and Restricted Boltzmann
Machines.

3. Hybrid learning and other advanced strategies [53]: These approaches com-
bine aspects of both supervised and unsupervised learning to leverage the
strengths of each method, resulting in more flexible and effective models.
These models can use labelled data (supervised learning) to make accurate pre-

dictions while also using unlabelled data (unsupervised learning) to uncover
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hidden patterns or structures within the data. This approach is especially use-
ful in scenarios where labelled data is limited but large amounts of unlabelled
data are available. There are several techniques in this category, such as: semi-
supervised learning, and self-supervised learning.

2.3.1 Self-supervised Learning Technique

For many years, the development of learning methods in computer vision has fo-
cused on improving model architectures, often assuming access to high-quality
annotated data. However, in practice, obtaining such data is costly and labour-
intensive, which frequently leads to models being trained on suboptimal datasets.
SSL is a type of ML in which models learn to understand data without relying on
labelled examples [54]. It can be used in a wide range of applications, including
computer vision, natural language processing, and speech recognition. Unlike su-
pervised learning, which requires large volumes of manually annotated data, SSL
leverages the natural structure and properties of the data itself to generate pseudo-
labels. This enables the model to learn useful features without explicit supervision,
making it particularly effective in domains like medical imaging, where annotated
datasets are limited due to the need for expert input and high annotation costs. The
SSL process typically follows a two-stage pipeline. In the pretext stage, the model is
trained using automatically generated pseudo-labels to learn meaningful represen-
tations from unlabelled data. In the downstream stage, these learnt representations
are transferred to target tasks that have limited labelled data, such as disease clas-
sification in medical imaging. This approach enables the model to generalise better,
particularly when annotated data is scarce or expensive to obtain [55].

SSL includes several types, each defined by the nature of the pretext task used to
extract meaningful features from unlabelled data [56], as follows:

¢ Contrastive learning task: The model learns to distinguish between similar
and dissimilar data instances by minimising the distance between similar pairs
and maximising the distance between dissimilar ones. This helps the model
capture key features and build robust representations by comparing pairs of

samples.

¢ Non-contrastive learning task: Involves training a model only using non-
contrasting pairs, also known as positive sample pairs. Rather than a positive

and negative sample, as is the case with contrastive learning.

¢ Generative learning task: The model learns the structure of the data by trying
to reconstruct or generate data that is similar to the input. For example, in au-
toencoders, the encoder compresses the input data into a lower-dimensional
representation (latent space), forcing the model to capture the most important
features. The decoder then reconstructs the original data from this compressed
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representation. By minimising the difference between the original and recon-
structed data, the model learns to capture key patterns, structures, and rela-
tionships in the data.

¢ Predictive learning tasks: The model learns the data’s structure by predicting
certain properties or transformations of the input data, such as rotation angles
or spatial positions. This helps the model capture meaningful patterns and fea-
tures by understanding how changes to the input data affect its representation.

¢ Clustering-based SSL: involves first grouping unlabelled samples into clus-
ters and treating these clusters as pseudo-labels. The model is then trained
on these pseudo-labelled samples to learn discriminative features during the
pretext stage. These learnt features can be fine-tuned or directly applied to
downstream tasks such as classification or detection. This clustering-based
approach is particularly effective when labels are unavailable but data con-
tains latent semantic structures that can be uncovered through unsupervised

grouping.

2.3.2 Curriculum Learning Strategy

Curriculum learning is also another type of ML designed to mimic the way humans
learn, where individuals tend to learn simpler concepts first, and as their under-
standing grows, they gradually tackle more complex tasks. It was first introduced
by Bengio et al. in 2009 and has become popular in many areas of machine learning
[21]. Unlike traditional training behaviours in ML and DL models that present data
in random order, curriculum learning introduces a structured progression starting
with learners beginning with basic concepts and gradually advancing to more diffi-
cult material. The main goal of curriculum learning is to help the model learn better
and faster by building a strong base with easy samples before facing more complex
data. This method can improve the model’s performance, help it generalise better to
new data, and make it more stable during training [57]. Curriculum learning relies
on two key factors to organise the training process: the curriculum schedule and the
pacing function. The curriculum schedule determines the right moment to introduce
new samples or tasks based on their difficulty. While the pacing function controls
how quickly the model moves from easier to harder examples, guiding the learning
progression in a structured manner. Curriculum learning has extended to include

various forms of curriculum as follows:

* Vanilla curriculum learning: This type is the basic form of curriculum learn-
ing, where the model starts training with the easiest examples and gradually
progresses to more difficult ones based on a predefined difficulty order.

¢ Self-paced learning (SPL): This type eliminates the need for prior knowledge
about the order of the training samples. Instead, the model is allowed to re-
order the samples dynamically based on its learning progress. The model
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starts with easier examples and progressively selects harder ones as it gains
more experience, enabling more flexible learning without relying on external

guidance.

Balanced curriculum learning (BCL): This approach builds on the idea that
the model shouldn’t bias one class or image over another. It ensures that sam-
ple selection is diversified and balanced under additional constraints. By in-
corporating various training examples into the CL framework, BCL ensures
the model learns from a broader range of data, enhancing its generalisation

capabilities.

Self-paced curriculum learning (SPCL): This approach combines aspects of
both vanilla curriculum learning and SPL. Initially, the training samples are or-
dered based on their complexity. Then, during the training process, the model
is allowed to reorder the data, adjusting its focus as it learns. This provides
a balance between predefined structure and dynamic adjustment, helping the
model to adapt to the data more effectively.

Progressive curriculum learning (PCL): This type allows the model to develop
gradually without explicitly sorting the data by difficulty. Instead of focusing
on organising the data in a specific order, PCL adjusts the model or task com-
plexity over time. This can involve techniques such as using higher dropout
rates or focusing on coarse patterns initially. As training progresses, these sim-
plifications are gradually removed, making the task more challenging and al-
lowing the model to learn progressively more complex representations.

Teacher-student curriculum learning (TSCL): This approach involves two
models: a teacher and a student. The teacher model learns to adjust optimal
learning parameters based on feedback from the student model and creates a
training schedule. The student model is then trained according to the schedule
set by the teacher, allowing for more efficient learning through guided progres-

sion.

Curriculum learning has been applied across a wide range of machine learn-

ing tasks and domains. For example, in computer vision, it helps improve perfor-

mance in tasks like image classification, object detection, and medical image analy-

sis by gradually introducing complex examples. In natural language processing, it

has been used for tasks such as language modelling, machine translation, and text

summarisation, where training begins with simple sentences and gradually includes

more complex structures [58]. In addition, it is used in reinforcement learning to help

agents learn better strategies by starting with easier environments or goals. These

applications show that curriculum learning can make models more stable, faster to

train, and better at generalising unseen data across different scenarios.



2.4. Deep Learning Approaches for the Classification Task 25

2.4 Deep Learning Approaches for the Classification Task

Image classification is a fundamental task in computer vision, where an algorithm is
tasked with assigning a collection of images to predefined classes or categories based
on shared characteristics or distinctive features. For example, in medical image clas-
sification, the goal might be to determine whether an image represents a normal or
abnormal condition. The classification model is trained using labelled data, allow-
ing it to learn and recognise patterns, features, or characteristics that correspond to
specific categories. Once trained, the model can predict the class of new, unseen
images by analysing their features and assigning them to the appropriate category.

Image classification has been extensively explored using a range of techniques,
from traditional machine learning algorithms such as Support Vector Machines, k-
nearest Neighbours, and Random Forests to more advanced deep learning-based
approaches [59]. Traditional methods typically rely on hand-crafted features (e.g.,
texture, shape, intensity histograms), which often limit their performance, especially
on complex medical imaging data. Therefore, the performance of such methods is
often constrained by the quality and relevance of the features chosen, making them
less robust. In contrast, DL models eliminate the need for manual feature extrac-
tion by automatically learning a hierarchy of discriminative features from the raw
pixel data through multiple layers. As a result, most deep learning algorithms have
garnered significant attention from researchers.

There are several DL models, such as CNNs, Vision Transformers (ViTs), and
Recurrent Neural Networks (RNNs), that serve as the backbone of many state-of-
the-art applications in computer vision. CNNs have demonstrated exceptional per-
formance and have become the dominant architecture for image classification tasks,
particularly in medical imaging [60]. ViTs, on the other hand, are a more recent ar-
chitecture that leverages self-attention mechanisms to model global relationships be-
tween image patches, showing promising results in large-scale image classification
tasks [61]. Another commonly used DL model is RNN, which is effective for process-
ing sequential data and has been applied to tasks involving temporal or slice-based
medical imaging [62].

In this thesis, CNNs were selected as the best choice for building an accurate and
efficient classification model for several reasons. First, CNN has the ability to detect
local elements in an image in a hierarchical manner, where the low-level layers are
designed to learn general representations, while the high-level layers capture more
complex features and patterns. Second, they improve translation invariance due to
their reliance on local patterns in the data and the use of weight sharing. This means
that the same filter is applied across different regions of the input image, allowing
the model to recognise patterns regardless of their position. Another key advantage
of CNN s is their parameter efficiency, as weight sharing and local receptive fields
significantly reduce the number of parameters during training. This makes them

less sensitive to overfitting and allows them to work effectively even with smaller
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datasets.

In comparison, ViTs are computationally intensive due to the quadratic complex-
ity of the self-attention mechanism, which scales with the number of patches in an
image [63]. Although ViTs are effective at capturing global context and have gained
popularity in large-scale tasks, they generally require larger datasets and more com-
putational resources to achieve optimal performance. Finally, ViTs may struggle
with tasks that demand attention to local details, especially when data is limited,
making CNNs a more practical choice for many medical imaging applications. Con-
sequently, CNNs are widely adopted in various computer vision tasks, including

image classification, object detection, and medical image analysis [64].

2.5 The Architecture of CNNs: Building Blocks and Struc-
ture

CNNs are a popular discriminative deep learning architecture, and their structure
demonstrates remarkable success in a wide range of applications, especially at recog-
nising patterns and structures [60]. CNNs operate through a sequence of layers that
automatically learn spatial hierarchies of information from input images, with each
layer performing specific functions to process and extract relevant features. In this
section, we discuss the fundamental components of CNN, different strategies for

training it, and the pre-trained networks utilised in our contributions.

2.5.1 Feature Extraction Layers in CNN

The primary building blocks of CNNs involve two key tasks: feature learning and
classification, see Fig. 2.4. The first part of the CNN structure consists of a sequence
of layers: a convolutional layer, a ReLU layer, and a pooling layer. Convolutional
layers are responsible for detecting certain local features in all locations of the in-
put images by performing convolutional operations through the collection of filters
(also known as kernels) [65]. As shown in Fig. 2.5, the filter slides over the input
image, creating feature maps that highlight various elements such as edges and tex-
tures, and conducts the inner product between two matrices, one representing the
set of learnable parameters (i.e., kernel) and the other representing the weight vec-
tor section of the receptive field. The sliding size of the kernel is called a stride. The
convolution operation of the 2D input image can be represented below:

k1 k-1
Outij =Y Y XitmjtnWmn + bij, (2.6)

m=0n=0
Where x; ,j1 4 is the input features, wy,, represents the kernel/ filter weights at
position (m,n), and k is the size of the kernel/filter. The formula output size can be
computed by:
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W —F+2P
S
Where F is the filter, and S refers to the slide size of the kernel, (known as a

Convyyr = +1, (2.7)

stride). When the stride is 1, then we move the filters one pixel at a time. When the
stride is 2, then the filters jump 2 pixels at a time as we slide them around. Having
a larger stride will produce smaller feature maps. P is the amount of padding, and
it handles the elements on the edges or that would fall outside of the border of the
matrix, which are taken to be zero. (+1) is related to the "Bias", which adds to each
layer with the activation neuron. This operation is repeated over many deep layers,
with each layer learning to detect different features.
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FIGURE 2.5: An example of the 2D convolution operation in the con-

volution layer. The operation is performed by sliding the filter 3 x 3

over the input matrix, computing the element-wise multiplication be-

tween the filter and the region of the input it overlaps, and summing

the results. The result of applying the filter is shown as the first value
of the output matrix.

Convolutional layers also use an activation function, like ReLU, to transform the
linear operations from the previous step into a non-linear output, enabling the net-
work to discover more complex relationships in the data and eliminating the vanish-
ing gradient problem during model training. The pooling layer is applied separately
to each feature map to reduce the dimension and the number of parameters that the
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network needs to learn about [66]. This makes the model more computationally
efficient and robust to variations in the input data. The most common pooling oper-
ations are maximum and average pooling. As can be seen in Fig. 2.6, the input image
is divided into a set of non-overlapping rectangles. For each sub-region, a 2 x 2 win-
dow slides across the feature map with a stride of 2 cells. Depending on the pooling
method used, either max pooling or average pooling is applied. Max-pooling se-
lects the maximum value within the window, while average-pooling computes the

average value. The rest of the values in the sub-region are discarded.
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FIGURE 2.6: An example of a down-sampling operation in the pool-
ing layer is illustrated using two of the most popular methods, with
a filter size of 2 x 2 and a stride of 2, which extracts 2 x 2 patches
from the input data. In the max-pooling operation, the output is de-
termined by selecting the maximum value from each patch while dis-
carding the other values. In the average-pooling operation, the aver-
age value of the elements within each patch is calculated, providing
a different representation of the data.

2.5.2 Classification Layers in CNN

The second part of the CNN architecture is responsible for the classification task. As
shown in Fig. 2.7, this part consists of several dense layers that flatten the output
feature maps into a vector. This vector is then passed to the output layer, which
typically includes a fully connected layer and a softmax activation function. The
softmax function provides probabilities for each class, allowing the input image to
be classified into the class with the highest probability. The Fully Connected layer
is a traditional multi-layer perceptron that takes an input volume from the previous
output layer and multiplies it by a vector of weights. The result is an N-dimensional
vector, where N is the number of classes in the target data, and each element in the
N-dimensional vector represents the probability of a certain class. The softmax layer
calculates the probabilities for each class label, highlighting the features that most
correlate with a particular class by calculating the corresponding output, where the
probability for the correct class is higher and the probabilities for other classes are
significantly smaller. Finally, the last layer, known as the loss layer or cost function,
provides feedback to the neural network about its predictions. It indicates whether
the inputs were identified correctly and, if not, how far off the predictions were. This
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feedback helps manage the adjustments of weights across the network to minimise
the difference between the predicted probability distribution and the true distribu-

tion.

Previous Fully-connected Softmax layer
layer layer

Loss Layer
(cross-entropy)

FIGURE 2.7: Illustration of the structure of a fully connected layer
with a softmax activation layer and cross-entropy loss for the classifi-
cation task.

2.5.3 Different Strategies for Training CNN

CNN s are highly effective for processing and analysing visual data, making them
essential in numerous image-related applications. There are two main strategies for
training CNN models [67]: 1) Training from scratch (or full training), which involves
designing a custom network architecture from end to end. It includes selecting the
number and types of layers, choosing appropriate activation functions, and config-
uring the learning process to fit the specific task. Training from scratch is particu-
larly suited for tasks that demand a custom model and involve a large number of
output categories. However, this method is less common because it often requires
long training times (days or weeks) to train the network and can be challenging
when labelled data is scarce or expensive to obtain. 2) The second method is transfer
learning from a pre-trained network, which utilises existing CNN models that have
been trained on large-scale datasets, called ImageNet. Instead of building a model
from scratch, the transfer learning strategy adapts the learnt general features from
large datasets to a new specific dataset. This approach is widely used in most DL ap-
plications due to its ability to reduce the training time and computational resources
needed [68]. Fig. 2.8 illustrates the transfer learning process.

There are three major transfer learning scenarios: a) shallow transfer train-
ing, which treats the pre-trained ImageNet as a fixed feature extractor for the new
dataset. In this scenario, the weights are not updated during training, except for the
last classification layers, which are replaced to match the new task. This approach is
quick and computationally inexpensive, making it suitable for tasks where the new
dataset is similar to the original dataset the model was trained on. However, per-
formance may be limited when there is significant variation between the datasets.
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b) Deep tuning strategy: involves training the entire CNN architecture, including
both the pre-trained layers and the newly added classification layers. By allowing
all layers to be updated, the model can extract more complex and abstract features
from the new dataset. This method is more computationally intensive but provides
better performance for tasks with greater differences between the pre-trained and
new datasets. c) The fine-tuning strategy: starts the training from the last layer in
the model and then incrementally includes more layers in the update process until
the desired performance is reached.

ImageNet ImageNet

Photos — Labels

New input

Feature 2 4 3 5
dataset Extractor y 2048 L classification
1
task

FIGURE 2.8: The framework of the transfer learning technique. The
CNN model is trained using an ImageNet pre-trained network, and
then the learnt weights are reused when training on a new dataset.

2,54 ImageNet Pre-trained Models in CNN

The ImageNet dataset contains a large variety of image datasets belonging to
various classes or labels that can be used for training machine learning and deep
learning models in various computer vision tasks. Popular deep learning architec-
tures, such as VGG [69], AlexNet [70], Xception [71], DenseNet [72], Inception [73],
ResNet [74]. Here, we discuss the architectures we have used in our experimental
work.

AlexNet: The network consists of eight layers with five convolution layers, and
the remaining three layers are fully connected; see Fig. 2.9. The main advantage
of AlexNet is that it minimises the vanishing gradient problem by using the ReLU
activation function. So, it can be trained better and faster. The pre-trained network
was used as a feature extraction of an input image in our contributions presented in
Chapter 4. Fig. 2.9 represents the architecture diagram of the AlexNet pre-trained
network.

ResNet: is a short form of residual network and has many variants. It was
originally developed to handle problems, such as the vanishing gradient and
degradation problem. It uses skip connections, which allow the network to preserve
information by adding the output of an earlier layer to the output of a later layer.
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FIGURE 2.9: The architecture of the AlexNet network [75].

This mechanism helps the network train more effectively and learn better repre-
sentations of the input data. For example, if layer (n) is not learning anything (the
output is zero) or gives no useful information. By the skip connection mechanism,
the output of layer (n-1) is directly added to the output of layer (n), so the network
still receives information from layer (n-1). This means that the network still moves
forward using the output from the previous layer (n-1), ensuring no loss of critical
data. Then the activation function is applied to this combined output (from both
layer (n-1) and layer (n)). This technique allows the network to "skip" unimportant
layers when they don’t contribute much, while still using their outputs if they do,
which prevents the vanishing gradient problem and potentially boosts the net-
work’s overall performance. In this study, we used ResNet-50 in the experimental
work as a baseline network in our contributions presented in chapters 4, 5, and 6.
ResNet-50 is a DNN consisting of an input layer, followed by four stages of residual
blocks, each containing three layers (a 1 x 1 convolution, a 3 x 3 convolution, and
another 1 x 1 convolution) per block. The network starts with a 7 x 7 convolution
and a 3 x 3 max-pooling layer and concludes with a global average pooling layer
before the fully connected classification layer. This architecture improves accuracy
and efficiency in image recognition tasks by simplifying the training of very deep
networks. Fig. 2.10 shows the architecture of the ResNet-50 and explains how a skip
connection works, where F(x) denotes the ReLU activation function applied on x,

and x is the output after applying the convolution operation.
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FIGURE 2.10: Structure of deep residual learning [76].
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DenseNet: another type of DNN architecture that connects each layer to every
other layer in a feed-forward manner. Where each layer receives inputs from all pre-
ceding layers and passes its output to all subsequent layers. This direct information
flow promotes feature reuse and reduces the risk of vanishing gradients, making
it possible to train deeper networks effectively. It also requires fewer parameters
since there is no need to learn redundant features, improving model efficiency. In
our experimental work, we used DenseNet-121 in our contributions presented in
chapters 5 and 6. DenseNet-121 is one of the different variants of DenseNet and is
widely used for tasks such as image classification due to its ability to achieve high
accuracy with fewer parameters, making it a powerful model for handling complex
visual recognition tasks [72]. It consists of 120 convolutional layers followed by a
fully connected layer. The network is composed of four dense blocks, each contain-
ing several convolutional layers. These dense blocks are interconnected, ensuring
that each layer receives inputs from all preceding layers. Between these blocks are
transition layers that include 1 x 1 convolution and 2 x 2 average pooling opera-
tions, which help reduce the number of feature maps and maintain computational
efficiency while preserving the dense connectivity that is key to the network’s per-

formance.
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FIGURE 2.11: DenseNet-121 Architecture [77].
2.6 Summary

In this chapter, we provided an overview of Al and the structure of the neural net-
work. We explained the fundamental structure of DNN and the challenges they
may encounter during training. Then, we presented the CNN architecture in detail
and discussed various strategies for training CNNs. Additionally, we introduced an
overview of the pre-trained deep DCNN architectures used in our work. In the next
chapter, we conduct a literature review of recent methods that use CNNs for clas-
sifying different medical imaging datasets. We will also highlight previous studies
that address challenges in training models for medical image analysis.



Chapter 3

A Review on Medical Image
Classification

In the previous chapter, we explored the fundamental concepts of deep learning net-
works and the architecture of deep convolutional neural networks (DCNNs), which
serve as the foundation for the models developed in this work. In this chapter, we
provide an overview of some of the applications of convolutional neural networks
(CNNs) in medical image classification, highlighting the methodologies, advance-

ments, and challenges within this domain.

3.1 Overview

Rapid development in the medical imaging field has significantly improved the abil-
ity to identify and detect a wide range of diseases. CNNs, as a powerful tool in the
medical imaging domain, have achieved state-of-the-art performance in processing
and analysing image datasets [78]. Their hierarchical architecture, which includes
layers of convolutions, pooling, and fully connected layers, is designed to automat-
ically learn and extract relevant features from input images. This capability makes
CNN s highly effective for various tasks, including medical image classification, en-
abling accurate classification of various diseases. In Chapter 2, we discussed two pri-
mary strategies for training CNNSs: full training (commonly referred to as training
from scratch) and transfer learning using pre-trained networks. Transfer learning
can be implemented through three scenarios: 1) Shallow tuning, in which the pre-
trained network is treated as a fixed feature extractor and only the final classification
layers are replaced and trained for the new task; 2) deep tuning, where the entire net-
work is retrained on the new dataset to comprehensively fine-tune its weights; and
3) fine-tuning, where selected layers are frozen while others are retrained to adapt
to the new task.

In this chapter, we explore the other efforts for medical image classification and
recent innovations that have used CNN architectures with transfer learning strate-
gies. Then we discuss other models that utilise class decomposition, supervised
learning, and curriculum learning strategy. These approaches have shown consider-

able promise in enhancing model performance, particularly in scenarios with limited
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labelled datasets and irregular distributions. Finally, we conclude with a discussion
and overview of the key findings, analysis of ideas, motivations behind the research,
and proposed solutions to address the challenges in the field.

3.2 Transfer Learning with CNN for Medical Imaging

CNNs have been successfully applied in various medical imaging modalities, in-
cluding MRI, CT, X-rays, and histopathological images. They have demonstrated
exceptional performance in detecting brain tumours in MRI scans, diagnosing pneu-
monia from chest x-rays (CXR), classifying malignant tissues in histopathology
slides, and detecting colon cancer (CRC) [79]. These applications highlight the effec-
tiveness of CNNs in enhancing diagnostic accuracy and assisting clinical decision-
making across multiple medical domains, outperforming traditional machine learn-
ing algorithms. There are many works where the authors used the concept of trans-
fer learning strategy to train a CNN and transfer the learnt weights to solve different
tasks. This eliminates the need for huge data sets and decreases the training time re-
quired for deep learning algorithms constructed from scratch. For example, Sethy
et al. [80] utilised a CNN architecture as a feature extraction using 13 pre-trained
networks. These features were then fed separately into a support vector machine
(SVM) classifier to distinguish between COVID-19, pneumonia, and normal cases.
The method demonstrated high accuracy in detecting COVID-19 when training a
CNN with ResNet50 compared to other pre-trained networks and traditional ma-
chine learning techniques. In [22], Apostolopoulos et al. proved the efficiency of
using a transfer learning strategy to enhance the accuracy of COVID-19 detection
from CXR images by transferring the pre-trained weights from pre-trained mod-
els to a small COVID-19 dataset. The experiment was conducted on two different
COVID-19 datasets with three different CNN networks.

Rahman et al. [81] applied three different augmentation processes to generate
additional CXR images for the detection of pneumonia. They used the augmented
images in a CNN model for binary classification (normal vs. pneumonia) and multi-
class classification (normal, bacterial, and viral pneumonia). The model was trained
using four different pre-trained networks, with DenseNet201 achieving the highest
accuracy. Mabrouk et al. [82] used an ensemble learning (EL) technique of several
pre-trained models to enhance the performance of detecting pneumonia from CXR
images. Their method utilised the meaningful features extracted from each model to
provide a more robust and accurate classification. Wang et al. [83] used the transfer
learning strategy using a data set labelled in the same domain as the target data set.
The model was fine-tuned to classify four classes of lung cancer using a fine-tuning
strategy. This method was compared to traditional machine learning classifiers and
deep learning models with pre-trained ImageNet. The results showed that the pro-
posed approach achieved significant performance, surpassing all other models.
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Another significant disease following lung cancer is breast cancer, which ranks as
the most common cancer among women. Clinical studies emphasise that early de-
tection greatly improves survival rates. Consequently, extensive research has been
conducted on computer-aided breast cancer diagnosis from various perspectives.
Samala et al. [84] suggested that training a CNN model to classify masses from
mammograms using multi-task learning is more effective than single-task learning,
which allows the model to share knowledge between related tasks and improves
overall performance. In addition, they investigated how varying the depth of con-
volutional layers impacted the model’s performance for classifying masses in two
types of mammography images. The experiments found that freezing the initial con-
volution layer achieved the best results. In [85], three different CNN architectures
were employed to extract meaningful features, which were then integrated and fed
into three fully connected layers along with an average pooling layer. The results
demonstrated that this integrated approach achieved better performance than us-
ing the features from the pre-trained models individually. Alkhaleefah et al. [86]
investigated the impact of applying different data augmentation (AUG) techniques
on the performance of transfer learning models using the VGG-19 pre-trained net-
work for classifying breast lesions into two classes. Their results demonstrated that
incorporating AUG techniques improves model robustness and classification accu-
racy. Ayana et al. [87] used a multistage transfer learning technique with three
pre-trained networks to classify breast cancer into two classes. The method started
with general feature extraction from ImageNet pre-trained models, then fine-tuning
the learnt features on a related dataset of cancer cell images. Finally, these features
were then used as a pre-trained model for the specific task of classifying ultrasound
images of breast cancer. The authors also used several AUG techniques to increase
the dataset and compared the results to a single-stage transfer learning process.

Saber et al. [88] proposed a comprehensive study for breast tumour classification
by incorporating several preprocessing techniques and leveraging five pre-trained
models for feature extraction with SVM as a classifier. The preprocessing step
involved resizing images, noise removal, and applying various AUG methods
to enhance dataset quality. Moreover, two segmentation tools were employed to
isolate tumours in the images and improve the relevance of the input features. The
results demonstrated that fine-tuning specific layers while freezing others yielded
better classification accuracy compared to other approaches. Alzubaidi et al. [89]
proposed two transfer learning strategies based on the source dataset. The first
approach involves pre-training a model on a labelled dataset from the same domain
as the target dataset to address the issue of limited training images. The pre-trained
model is then fine-tuned on the target dataset to adapt to its specific features. The
second approach utilises a collection of two natural image datasets for pretraining,
followed by fine-tuning the target dataset, enabling the model to adjust weights for
the unique characteristics of the medical images. The study concluded that transfer
learning within the same domain using whole-image training performed better
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than the other approaches.

Moreover, CNNs have shown promise in automating histopathological image
analysis, with potential gains in diagnosis accuracy and efficiency. For instance, Ma-
lik et al. [90] conducted a study on colorectal cancer diagnosis by classifying patch
images into four categories. They used various AUG techniques to enhance the
dataset and employed early stopping methods to prevent overfitting during train-
ing. The study included a comparison of different methods: five classical feature ex-
traction techniques followed by an SVM classifier, a CNN using the InceptionV3 pre-
trained network with fine-tuning, and a CNN model developed from scratch. The
results demonstrated that transfer learning based on the fine-tuning strategy out-
performed both the CNN designed from scratch and traditional approaches. Ohata
et al. [91] conducted extensive experiments to classify the CRC dataset into eight
distinct tissue classes. The study involved two main steps: first, utilising multiple
pre-trained networks as feature extractors to analyse the images and extract relevant
features. In the second step, these extracted features are fed into five different ma-
chine learning classifiers to classify the images based on the features. The results
demonstrated that DenseNet169 with SVM significantly enhanced the performance.
Kumar et al. [92] presented a comparative analysis of lung and colon cancer classifi-
cation using two different approaches to feature extraction: handcrafted techniques
and transfer learning approaches using pre-trained networks. The results demon-
strated that features extracted using DenseNet-121 significantly outperformed those
from other pre-trained models and handcrafted methods.

Furthermore, brain cancer has attracted significant attention from researchers
in various studies. Due to its complexity and impact on health, many works have
focused on developing effective diagnostic and classification methods for brain
cancer. Amin et al. [93] utilised various preprocessing and segmentation techniques
to isolate the tumour lesion before feeding it into a CNN. They leveraged two
pre-trained networks, AlexNet and GoogleNet, as feature extractors. The extracted
features were combined and used as input for seven different machine-learning
classifiers. Similar work was introduced in [94], where the authors extracted fea-
tures from GoogleNet using two classifiers, SVM and K-nearest neighbour (KNN).
Kokkalla et al. [95] combined three dense layers with ResNet v2 to classify brain
tumours into three classes. The results were compared with different pre-trained
networks. The model was trained with three different training sizes and a small

number of epochs.
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Table 3.1: Overview of transfer learning techniques in different medical image

datasets.
Paper Classification | Dataset | Transfer Accur- | Limitations
task modal- | learning acy
ity strategy
Sethy et | COVID-19, X-ray feature ex- | 95.33% | Relies on
al. [80] pneumonia, traction with X-rays, unsuit-
normal ResNet-50, able for critical
SVM patients
Apostolo- | COVID-19 x-ray deep-tuning 96.78% | limited  data
poulos detection availability
et al. [22]
Rahman | binary, mul- | x-ray deep-tuning 98.00% | Limited data
etal. [81] | ticlass lung availability
cancer
Mabrouk | pneumonia X-ray ensemble 93.91% | determining
etal. [82] | detection learning hyper-
parameters
high variance
and bias in EL
Wang et | four classes of | CT Freezing some | 85.71% | high complex-
al. [83] lung cancer layers ity
Samala benign and | x-ray Multi-task 0.82 £+ | computational
etal. [84] | malignant transfer learn- | 0.02 constraints,
of breast ing (AUC) | limited dataset
cancer size
Saber et | benign, X-ray freezing some | 98.96% | comparing
al. [88] malignant, layers with
normal one classifier
Alkhale- | benign and | x-ray deep-tuning 90.4% | AUG based on
efah et | malignant the views of ra-
al. [86] diologists
Ayana et | benign and | ultraso- | multi-task [99 =+ | fixed hyperpa-
al. in [87] | malignant und transfer learn- | 0.612%,| rameters for
ing 98.7 + | all pre-trained
1.1%] | models

Continued on next page
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Table 3.1: Overview of transfer learning techniques in different medical image
datasets. (Continued)

Alzubaidi | four classes of | histopa-| fine-tuning [90.50%, lacking other
etal. [89] | breast cancer | thology | from labelled | 96.10%]| evaluation
dataset metrics

Malik et | hyperplastic | CRC Freezing some | 94.50% | limited  vari-

al. [90] polyp, ade- | tissue | layers ability of tissue
noma, cancer | slides samples
Ohata et | eight classes | histopa-| feature ex- | 92.08% | high com-
al. [91] of CRC cancer | thology | traction plexity, com-
with  multi- putational
classifier resources
Kumar et | lung and | histopa-| feature ex- | 98.60% | absence of
al. [92] colon cancer | thology | traction stain normal-
tissue with  multi- ization
classifier

Amin et | three class of | [MRI, | feature ex- | [98.91, | high complex-

al. [93] brain tumour | CT] traction 98.01] | ity, time con-
with  multi- | BRATS | suming
classifier 2015

Deepak | three class of | MRI feature ex- | 98% limited train-

etal. [94] | brain tumour traction ing duration,
with  multi- overfitting
classifier

Kokkalla | three class of | MRI deep tuning 99.66% | limited train-
etal. [95] | brain tumour ing duration,
overfitting

3.3 Class Decomposition Approach in Medical Images

Class decomposition has been widely used as a preprocessing step in various ma-
chine learning algorithms to enhance performance, particularly in cases where there
is significant class overlap in the dataset [96, 97]. Initial studies focused on real-
world datasets, which provided an essential foundation for developing the class de-
composition technique. This concept was later extended and adapted to the medical
imaging domain to address challenges such as overlapping distributions and class
imbalance.

In the real-world domain, Vilalta et al. [9] proposed a method to reduce classifier
bias by incorporating the Expectation Maximisation (EM) clustering algorithm as a
pre-processing step before classification. EM decomposes each original class into
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smaller sub-classes based on probability density functions, resulting in a refined set
of classes. These sub-classes are then individually trained using two different clas-
sifiers: Naive Bayes and SVM. Naive Bayes. Their experiments revealed that using
too many clusters could lead to poor performance. Elyan et al. [98] used the k-means
clustering algorithm to decompose each class into more homogeneous sub-groups,
with the number of clusters ranging from 2 to 8. Then, Random forests were em-
ployed to classify the sub-classes independently and get the final classification deter-
mined by majority voting. The results demonstrated that increasing data diversity
through clustering allows the Random Forest classifier to better learn and differ-
entiate between these sub-classes, thereby enhancing performance. In [7], the au-
thors proposed the use of the One-vs-One (OVO) strategy to decompose multi-class
problems into multiple binary classification tasks for 34 real-world datasets. Addi-
tionally, they introduced a new evaluation framework that simulates overlapping
scenarios by generating synthetic samples near class boundaries. Through compre-
hensive experiments, the study demonstrated that OVO-based classifiers are more
robust to class overlap compared to traditional approaches.

In the medical image datasets, [99] introduced a method that uses multi-level dis-
crete wavelet transform (DWT) to improve lung nodule classification in CT images.
DWT applies fixed wavelet kernels to decompose images into components at dif-
ferent resolution levels, capturing both coarse and fine details. This multi-resolution
analysis enhances the ability to detect subtle differences between lung nodules, mak-
ing it easier to distinguish malignant from benign cases, even when they appear
visually similar. Additionally, the extracted features help separate classes more ef-
fectively and reduce confusion caused by overlapping visual patterns, leading to
improved classification performance. In addition, Polaka et al. [100] applied the
class decomposition only to the positive classes in various disease datasets. They
hypothesised that diseases could present in several forms, making them easier to
classify using different algorithms. The study utilised agglomerative hierarchical
clustering and k-means clustering to generate sub-classes and then examined how
the choice of clustering algorithm affected the performance of classifiers like SVM,
Random Forests, and C4.5. Vuttipittayamongkol et al. [101] proposed an overlap-
based undersampling method, called URNS, to improve the classification of five im-
balanced medical datasets. The method aims to reduce class overlap by identifying
and removing the majority class (negative) instances that are too close to minority
class (positive) samples in the feature space. URNS uses the k-Nearest Neighbours
algorithm to recursively explore the local neighbourhoods of minority instances, de-
tecting and eliminating overlapping majority samples. This process is performed
twice, with the output of the first round feeding into the second, ensuring effective
refinement of the overlapping region.

Polat et al. [102] used similarity-based attribute weighting combined with clus-
tering algorithms to address the issues of feature overlap and class imbalance. They
used three clustering methods (K-means, Fuzzy C-means, and Mean Shift) to group
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similar data points and calculate the distance from each point to its cluster centre.
These distances are then used to assign higher weights to points farther from the
centre, highlighting their greater importance for classification. Finally, the weighted
features are then passed to different machine learning classifiers. Shimizu et al. [103]
proposed a method for classifying four types of skin lesions, which involved three
key steps: border detection, feature extraction, and classification. They developed a
general border detection algorithm that segmented the lesion into subregions (cen-
tral, peripheral, whole tumour, and normal skin), treating each subregion as a sep-
arate subclass for more detailed feature extraction. For classification, they intro-
duced a layered model based on a task decomposition strategy and compared its
performance to two traditional machine learning classifiers. Gultekin et al. [104]
proposed a two-tier tissue decomposition model for histopathological image clas-
sification. They decomposed each image into multitype objects based on texture,
shape, and size information. In the first tier, a texture-based segmentation is ap-
plied to identify irregularly shaped local tissue regions. In the second tier, these
categorised objects were utilised for SVM as a classifier. In [105], the authors intro-
duced a CAD system for automated classification of brain abnormalities using SVM
as a classifier. The approach begins with decomposing the images using two ad-
vanced techniques: BEMD and VMD. BEMD separates an image into layers based
on patterns found in local intensity variations, helping to isolate fine textures and
structural details. VMD, on the other hand, divides the image into a fixed number
of frequency bands using an optimisation approach, ensuring that each component
is distinct and non-overlapping. This decomposition process enhances the visibility
of important features, which are then used to train the classifier more effectively.
Alwuthaynani et al. in [106] proposed a Class Decomposition Transfer Learning
(CDTL) model to enhance the classification of Alzheimer’s disease using 2D struc-
tural MRI images. The method leverages VGG19 and AlexNet as pre-trained net-
works. In the class decomposition strategy, they used clustering methods to divide
the imbalanced classes into more uniform sub-classes. Then, an entropy-based tech-
nique is applied to select the most informative image slices to focus on the most
valuable parts of the MRI scans. Their study highlights the potential of class de-
composition in mitigating data irregularities and improving prediction reliability
in Alzheimer’s detection. Dif et al. [107] introduced a novel class decomposition
approach for histopathological image classification by generating synthetic labels
through clustering. They employed two clustering algorithms, K-means and MOC-
Stream, to group image patches based on morphological and textural similarities.
These labels are then used to train an InceptionV3 model, which is fine-tuned for
transfer learning on various histopathological datasets. Results show that MOC-
Stream clustering consistently outperforms models trained on original labels and
ImageNet features, demonstrating the strength of this decomposition strategy in im-

proving generalisation and transfer performance.
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We previously introduced DeTraC in [8] as the first attempt to employ class de-
composition within the CNN framework for medical image classification. In the
DeTraC model, the downstream dataset was decomposed by the k-means cluster al-
gorithm, so each class was divided into smaller classes based on feature similarity.
The result of this process is a new dataset where each cluster is considered a class
of its own. Then, a transfer learning strategy from different ImageNet pre-trained
networks was utilised to evaluate the performance before and after applying the
decomposing method. After training on the decomposed dataset, each cluster is
returned to its parent class to get the final output. DeTraC was evaluated on three
different medical image datasets: CXR images, histological CRC, and digital mam-
mogram datasets. The results demonstrated its ability to effectively address irreg-
ularities in data distribution within the classes compared to traditional CNN mod-
els without the class decomposition approach. The same method was applied in
[108] to enhance the detection of COVID-19 in CXR images. We used five different
pre-trained networks as the backbone of the initial weights of the transfer learning
technique. DeTraC showed the capability to detect small cases of COVID-19 im-
ages, ultimately leading to higher accuracy in diagnoses. Moreover, in [109], the au-
thors integrated the DeTraC method with a novel segmentation approach, TCBOGK,
which uses pixel similarity and Gaussian functions to enhance COVID-19 detection
in CXR images. The results also proved that DeTraC improved the classification per-
formance compared to models without it.

3.4 Self-Supervised Learning in Medical Imaging

Despite the fact that transfer learning has shown success in many medical imaging
applications, it does come with certain limitations [110]. One of the main limitations
is that the features learnt from natural image datasets may not be fully relevant to
medical imaging data. Medical images differ from natural images in several fun-
damental ways. For example, in medical imaging, the focus is often on identifying
small, specific regions that indicate tumours or abnormalities, in contrast to natural
images, which are easily recognisable objects. Moreover, medical images often have
lower contrast to emphasise fine details like tissue boundaries or minor abnormali-
ties, which can be more challenging to distinguish than the high contrast in natural
images. Furthermore, medical image datasets tend to have fewer samples in some
diseases, which are often time-consuming or expensive to annotate. As a result, ap-
plying transfer learning directly from models pre-trained on natural images may not
yield optimal solutions for medical image tasks [111].

Recently, researchers have increasingly turned to self-supervised learning (SSL)
techniques as an alternative to transfer learning to address the challenges of medical
imaging. SSL enables models to learn useful features from unlabelled data within
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the same domain as downstream tasks, allowing the model to capture domain-
specific features that are highly relevant to medical image datasets [112]. For ex-
ample, in [113], SSL was employed to address the limitation of COVID-19 samples
and improve the performance of the CNN model. The first stage involves utilising
several pre-trained models from ImageNet as the initial model for self-supervised
learning on a large set of unlabelled CXR images. Then, the knowledge is fine-tuned
using a smaller set of labelled CXR images to effectively detect COVID-19 cases.
Additionally, the authors employed an explainable component to enhance the in-
terpretability of the results and provide explanations for the model’s decisions. In
[18] the authors employed SSL to restore medical image contexts that had been dis-
rupted. The results showed an improvement in classification accuracy for image
classification on 2D fetal ultrasound images compared to traditional training net-
works.

Gazda et al. [114] proposed an SSL model using contrastive learning on unla-
belled CXR images. The model generates pseudo-labels through data augmentation,
forming positive and negative pairs, and optimises a contrastive loss with a ResNet-
50 backbone to learn distinctive features. After pre-training, it serves as a feature
extractor for downstream pneumonia and COVID-19 classification tasks. Sowrirajan
et al. [115] proposed the (MoCo-CXR) model to enhance feature representations in
CXR images through self-supervised contrastive learning. In the pre-training phase,
the model learns to increase the similarity between augmented views of the same
image (positive pairs) while reducing the similarity between different images (neg-
ative pairs). After this, the model is fine-tuned to small amounts of labelled data
for detecting pleural effusion and tuberculosis from CXR images. Cho et al. in [116]
introduced the (CheSS) model, which employs self-supervised contrastive learning
to extract feature representation from 4.8 million CXR images. Then the (MoCo v2)
[117] framework was used for training the unlabelled images and transformed the
learnt weights into the downstream task to classify multi-class disease classification
in the CheXpert dataset. The authors also incorporate the AUG techniques on the
downstream task to support the training process.

Ciga et al. [118] used a contrastive SSL with several unlabelled datasets to
improve the performance of histopathology segmentation and classification tasks.
They proved through extensive experiments that the success of contrastive learning
depends on the ability to learn better features from the diversity of unlabelled train-
ing sets. This diversity can enhance the learning process by enabling the model to
extract more meaningful features, leading to improved performance in another task.
Koohbanani et al. [119] introduced (Self-Path) model to enhance the classification
performance of a small amount of pathology images. Self-Path is designed to en-
able the pretext model to learn from multiple aspects of histology images, including
different scales, spatial relationships between patterns, and semantic characteristics.
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For brain tumour classification, SSL has been applied to improve the perfor-
mance of detecting tumours and make the learning process highly effective for clas-
sification tasks with limited annotations. For instance, Chen et al. [18] developed an
SSL model based on the context restoration strategy, where the CNN model learns
meaningful features from unlabelled medical images by rearranging and restoring
image patches. This technique enables the model to capture semantic features that
can be useful for various tasks. Nguyen et al. [120] incorporate both spatial aware-
ness and semantic features for effective learning. where the pretext model trains
to classify whether an input image is normal or contains corrupted patches and to
predict the origin of these corrupted patches relative to their position, allowing the
model to learn not just the visual characteristics of individual slices but also the re-
lationships between neighbouring slices. Wang et al. [121] introduced the MI-SelfL
model, which incorporates two pretext tasks: multi-input correspondence and ge-
ometric transformation. In the first task, parts of certain images are replaced with
regions from other images in the same batch. In the second task, images are ran-
domly rotated and flipped. The model is designed to recognise replaced regions
by detecting significant differences from the original images, while images modified
only by geometric transformations are expected to preserve similar features. This
combination allows the model to learn both semantic and spatial features, which en-
hances its capacity to recognise certain variations and extract rich information to be
used in the downstream task. Mishra et al. in [122] introduced (SSCLNet) to enable
the pretext model to learn the latent space using contrastive discriminative methods,
where similar images from the augmented data are treated as a positive pair and dis-
similar images as negative samples. Through this process, the model becomes more
effective at identifying patterns in the data, improving its ability to extract meaning-
ful features and, consequently, enhancing performance in downstream tasks. The
authors investigated their method using various ratios of labelled data and experi-
mented with different augmentation techniques and ResNet architectures.

The first attempt to adopt a clustering algorithm for self-supervised learning on
large-scale datasets (ImageNet and YFCC100M) was made by Caron et al. in [123].
The authors introduced the DeepCluster method, which used k-means clustering to
group unlabelled images into clusters based on their feature representations. They
treated these clusters as pseudo-labels to pre-train a DCNN and learn new represen-
tations. This process is performed iteratively, improving both feature extraction and
clustering accuracy and leading to stronger model performance over time.

3.5 Training CNN with Curriculum Learning Strategy

Another notable strategy that has recently demonstrated improved performance in
the medical imaging domain is curriculum learning, which involves gradually in-
troducing training data in a meaningful order based on task difficulty or relevance.

This approach helps models learn from easier to more complex cases, improving
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stability and generalisation to new, unseen data. In [124], Lotter et al. presented a
multi-scale CNN combined with a curriculum learning strategy for improved mam-
mogram classification. Initially, the model is trained on simpler tasks by identifying
localised areas of lesions within the segmented mask, allowing it to focus on specific
lesion characteristics. Then, these learnt features are used to classify entire mam-
mogram images, where the model applies its understanding of localised features
to broader and more complex contexts. Jesson et al. [125] introduced a CASED
model for detecting pulmonary nodules. The authors adapted the curriculum learn-
ing strategy based on the size and localisation of the lung nodules by gradually
increasing the complexity of the training examples, starting with simple concepts
before moving on to more complex ones. Their model initially started learning by
focusing on the immediate surroundings of the nodules to extract the specific char-
acteristics and essential features of the nodules without being distracted by other
elements in the image.

Luo et al. [126] introduced a CNN model with the curriculum learning strategy
to improve the classification of a digital mammogram dataset into three classes. The
method involves dividing the classification problem into two tasks: an easier binary
classification task (Malignant and Negative classes) and a difficult classification task
(the original three classes). The training scheduler started by focusing on the easier
binary task, allowing the model to build foundational knowledge before transfer-
ring it to handle the more challenging three-class problem. The results showed that
their method outperformed others in enhancing classification accuracy. Park et al. in
[127] applied the curriculum learning strategy based on the classification task from
easy to hard. They hypothesised that training on entire CXR images could lead to the
model converging on poor local minima due to the complexity introduced by over-
lapping patterns of organs and tissues, and make the classification problem more
difficult. So, their initial step involved extracting patch images around regions of in-
terest (ROI) to focus on thoracic abnormalities, allowing the model to learn detailed
features specific to the abnormal lesions. These learnt features were then fine-tuned
using entire CXR images within a ResNet-50 architecture to classify each image into
five different categories.

Yang et al.[128] introduced (Su-MICL) to classify histopathology based on the
severity of the conditions, progressing from easy to hard. Initially, the model is
trained with images at the most severe level (easy to learn) using all patch images
to acquire the basic features associated with severe conditions, thus providing a de-
tailed understanding of these conditions. Subsequently, the model is retrained with
less severe images to refine its accuracy. To manage the increased difficulty, Su-
MICL employs a selective priority approach to choose the most informative patches
for retraining the model. Tang et al. in [129] introduced AGCL for classifying the
CXR dataset into multiple disease labels. The authors used the difficulty of diseases
from hard to easy to guide the curriculum learning strategy. Initially, the model fo-
cused on high-severity diseases, followed by moderate and mild ones, utilising prior
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knowledge to guide the training. Additionally, the model’s classification probability
scores guided the training process, allowing the model to concentrate on the most
confident predictions before advancing to the next level of difficulty.

Another scenario is presented in [130] for classifying the histopathology colorec-
tal polyp dataset. For the curriculum schedule, they used the percentage of agree-
ment among multiple human annotators as a measure of difficulty. Images with a
high majority voting agreement were considered easy, while those with a low agree-
ment were defined as difficult. The training set was then divided into four levels of
difficulty, with each level being fed separately into a pre-trained ResNet18 network.
The learnt features from each level were fine-tuned for the next level. The outcomes
outperformed the results from both the baseline and anti-curriculum strategies. Sim-
ilarly, Jimenez-Sanchez et al. [57] presented two curriculum techniques based on
the class difficulty for classifying proximal femur fracture images. The first strat-
egy assumed that there were notable differences between categories and assigned
ease weights based on the rank of each class. where easier classes are prioritised
early in training, while harder classes are introduced later. The second strategy used
the level of annotators” agreement to determine the sampling probability. where
samples with higher agreement (indicating lower difficulty) are presented earlier in
training, while those with lower agreement (indicating higher difficulty) are intro-
duced later. The results proved that the curriculum learning strategy outperformed
the ResNet-50 as a baseline network. Extended to their work, they also introduced in
[131] a combination of prior knowledge with the uncertainty of the model to classify
the same dataset. The curriculum training schedule is guided by two factors: prior
knowledge of the dataset, as determined by clinical expertise, and the uncertainty
of the model’s predictions during training. Based on these predictions, the model
identifies harder images and feeds them later in the training process.

Moreover, combining SSL with curriculum learning has achieved significant im-
provement in many works, leading to faster convergence, better generalisation abil-
ity, and alleviating overfitting to in-domain data. For example, Srinidhi et al. [132]
introduced HaDCL to enhance histology image classification performance. They
first used two different SSL techniques to train unlabelled sets using ResNet-18, then
fine-tuned these learnt representations on the downstream task. HaDCL consists of
two stages. First, the model starts with easier examples and gradually progresses
to harder ones. Second, the model has fine-tuned the previous knowledge by fo-
cusing specifically on the very hard examples. The difficulty of the samples in each
mini-batch is ranked based on their loss values, allowing the model to adapt and
handle progressively harder examples as training continues. Liu et al. [133] in-
troduced the ACPL method, a semi-supervised learning algorithm that improves
classification on CXR datasets by selecting the most informative unlabelled samples
for pseudo-labelling, starting from the difficult samples and gradually introducing

the easier ones. The cross-distribution sample informativeness (CDSI) guides the
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selection of unlabelled samples. The method also employs a mechanism called in-
formative mixup to combine predictions from an ensemble of classifiers and KNN
as a classifier, reducing confirmation bias and improving prediction accuracy. Bur-
duja et al. [134] introduced a model that gradually deblurs input images using a
Gaussian filter, starting with blurred images, which are easier to align, and progres-
sively transitioning to clear, original images. Alsharid et al. [135] proposed a dual-
curriculum approach that integrates both image and text data, allowing for training
in a structured manner from simpler to more complex examples. They utilised differ-
ent distance measures for constructing the curriculum, finding that the Wasserstein
distance is most effective for image data while tf-idf works best for text data. Exper-
imental results indicated that their method significantly improved the performance
compared to traditional stochastic mini-batch training methods.

The curriculum learning strategy has effectively addressed the issue of data
imbalance, leading to enhanced performance in different image analysis tasks.
Wang et al. [136] introduced a DCL model as a first attempt to tackle the challenges
of imbalanced data in the human attribute dataset. The idea is to enhance model
performance by adjusting sampling strategies and loss weights by transitioning
from imbalanced to balanced data distributions during the training process. The
sampling scheduler starts with fewer samples from minority classes and progresses
to more abundant samples from majority classes, allowing the model to develop
a robust representation of the minority class samples before focusing on distin-
guishing among all classes. The loss scheduler controls how much importance
is given to the learning features by assigning large weights at the beginning and
gradually decreasing their impact over time. Li et al. [137] designed the CLDL
model to address the challenges of imbalanced label distributions in medical
image segmentation by decomposing the segmentation task into multiple label
distribution estimation tasks. The method begins by establishing a region label
distribution to minimise disparities in region distributions. The segmentation
task is then decomposed into multiple sub-tasks of varying difficulty using a
task-oriented curriculum learning strategy. Building on this, the model incorporates
prior information from simpler tasks to reinforce feature learning across various
stages of the curriculum. Zhao et al. [138] presented the SEDC model to address
data imbalances in glaucoma diagnosis. The curriculum learning strategy starts
with non-glaucoma classes, utilising the learnt features to better understand the
smaller samples of glaucoma images. During the training process, the model adjusts
weights assigned to each sample based on their difficulties to ensure that the model
does not bias toward the majority class while ignoring the minority class, where
samples from the minority class are given more weight. This iterative process grad-

ually refines the decision boundary and enhances overall classification performance.
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Table 3.2: Overview of different curriculum learning methods.

Tasks | Dataset Criterion | Training Order| Limitations
Paper schedule
Lotter | classif- | digital label segmentati- | easy- | difficulty de-
et al. | ication | mammo- on mask | to- tecting  small
[124] grams then hard | lesions
whole-
image
Jesson | detec- | lung size  of | nodulesize | easy- | depends  on
et al. | tion nodules to- quality of
[125] hard | annotated data
Luo classi- | digital output number of | easy- | limited evalua-
et al. | fication | mammo- | task classes to- tion metrics, re-
[126] grams hard | stricting gener-
alisation.
Park | classi- | lung size  of | learnt easy- | limited lesion
et al. | fication ROI weights to- variety
[127] hard
Yang | classi- | histopath- | severity | patch selec- | easy- | depends on
et fication | ology of condi- | tion to- severity labels,
al.[128] tions hard | lack of context
information
Tang | classi- | lung classificat-| iterative easy- | high com-
et al. | fication ion prob- | attention- | to- putational
[129] abilities | guided hard | complexity,
limited train-
ing duration
Wei classi- | colorectal | percentage Four levels | easy- | limited anno-
et al. | fication | polyp of anno- | of difficulty | to- tator diversity,
[130] tators hard | using small
agree- and single
ment dataset, gen-
eralisation
uncertain
Jimenez- Classi- | femur expert samples- easy- | Performance
Sanchez fication | fractures | annota- | based to- influenced by
et tors probabilis- | hard | imbalanced
al.[57] tic classes

Continued on next page
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Table 3.2: Overview of different curriculum learning methods. (Continued)

Jimenez- Classi- | femur clinical Prior easy- | computationally
Sanchez fication | fractures | expertise | knowledge | to- expensive, sen-
et al and hard | sitive to noisy
[131] prediction labels or low

uncertainty resolution
Srinidhi classi- | histopath- | loss val- | difficulty of | easy- | computational
et al. | fication | ology ues samples to- cost of track-
[132] hard | ing sample

hardness
Liu classi- | lungand | difficulty | iterative hard- | quality of ini-
et al. | fication | skin of process to- tial labeled
[133] lesion samples easy | data
by CDSI

Burdujal image | liver Gaussian | high easy- | sensitive to
et al | regis- | tumours | filter blurred to- dropout sched-
[134] tration images to hard | ule

original

classes
Alsharid image | fetal entropy | training easy- | computational
et al | cap- ultrasound based- to- cost due to
[135] | tion- images batches hard | trainable pa-

ing rameters

Wang | classi- | a human | loss sample easy- | dependence on
et al. | fication | facial function | selections, to- dataset charac-
[136] attribute weights hard | teristics
Li et | Segme- | brain label dis- | tasks by | easy- | Relies on accu-
al. ntation | tumour tribution | difficulty to- rate segmenta-
[137] hard | tion
Zhao | classi- | brain difficulty | weights easy- | computational
et al. | fication | tumour of to- cost
[138] samples hard

3.6 Discussion

The related work in this chapter explores different methods to improve classifica-

tion performance and address the challenges in training DCNNs for medical image

classification. As stated in Section 3.2, transfer learning has been widely used and

performs well in many tasks. However, its effectiveness is limited in the medical
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imaging domain. This is due to major differences between medical and natural im-
ages, such as intensity, colour, and texture. Some studies [89, 83, 87] addressed this
limitation by pre-training models on labelled data sets from the same medical do-
main before fine-tuning them for specific tasks. This approach helps to reduce the
domain gap and improve performance. However, it heavily depends on the avail-
ability of large and diverse domain-specific datasets. In practice, such datasets are
difficult to obtain, particularly for rare diseases where data is scarce and annotations
are limited.

Moreover, medical image datasets often suffer from a limited number of samples
for certain diseases, making it challenging to train DCNN models effectively. To ad-
dress this, many studies have employed AUG techniques to artificially expand the
training set [81, 86, 88, 90]. While augmentation can enhance performance by in-
creasing data diversity, it has limitations. Augmented images are still derived from
a limited dataset and do not introduce entirely new or diverse cases. As a result,
they replicate existing patterns without reflecting real-world variability. Further-
more, when class distributions overlap, augmentation may worsen class confusion
by reinforcing similarities between classes rather than helping the model differen-
tiate them. To address the issue of overlapping distributions, class decomposition
has proven to be an effective strategy. As discussed in Section 3.3, previous works
have explored various approaches to class decomposition. For example, Vilalta et
al. [9] decomposed classes based on probability functions but observed that creating
too many clusters could negatively impact prediction accuracy. In contrast, Elyan et
al. [98] proved that increasing diversity within the data improved both learning and
performance. However, most of these methods were developed using different tra-
ditional machine learning models, limiting their applicability to deep learning and
medical imaging challenges. To extend these efforts to the deep learning domain,
we previously introduced DeTraC, which integrates, for the first time, the class de-
composition method within CNNs for medical image classification [8].

Another major challenge in training medical imaging models is the limited num-
ber of annotated samples, especially for rare conditions. As discussed in Section 3.4,
several previous studies have adopted SSL as an alternative to traditional transfer
learning, aiming to leverage unlabelled data from the same domain as the down-
stream task. However, the performance of these SSL approaches often depends
heavily on the quality and diversity of data augmentations, which may introduce
bias or fail to reflect real-world clinical variations. Additionally, techniques based
on contrastive learning or image restoration may not effectively capture the com-
plex spatial and semantic structures of medical images, particularly when disease
indicators are subtle or appear in small regions [114].

Curriculum learning has also emerged as a promising strategy and has attracted
growing interest in the medical imaging domain. As demonstrated in Table 3.5, re-

cent works have applied curriculum learning in different tasks to improve model
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performance. However, many of these studies face notable limitations. For exam-
ple, some studies rely heavily on the quality of annotated data or clinical expertise,
which can introduce bias and limit generalisability [131]. Others are constrained by
limited lesion variety or depend on severity labels that are not always available or
consistent across datasets [132]. These limitations highlight the need for more ro-
bust and adaptive curriculum strategies capable of handling complex datasets and
limited annotations that our proposed methods are specifically designed to address.

Building upon these limitations, we employed the DeTraC framework to de-
velop deep CNN models that combine class decomposition with SSL and curricu-
lum learning strategies. This integrated approach aims to address critical challenges
in medical imaging, including the scarcity of annotated samples and the difficulties
posed by irregular class distributions. By leveraging the strengths of each compo-
nent, our proposed method enhances learning efficiency and generalisation in com-
plex medical classification tasks.

3.7 Summary

In this chapter, we reviewed various methods to improve the classification of med-
ical image datasets and discussed the challenges that arise during the training pro-
cess in Section 3.6. A major challenge identified was the complexity of working with
overlapping class distributions. Data decomposition approaches inspired us to de-
velop more generalised and effective systems capable of addressing the difficulties
associated with training medical image datasets, making them more suitable for clin-
ical applications. Furthermore, the chapter highlighted the challenges of the scarcity
of large, diverse, and well-annotated datasets, particularly for rare diseases, which
complicate the development of accurate models and limit the model’s performance.
Self-supervised learning has been identified as a promising approach to achieving
these goals. Self-supervised learning uses unlabelled data to learn meaningful rep-
resentations, reducing the reliance on large labelled datasets and improving feature
transferability. On the other hand, curriculum learning improves the model’s ability
to efficiently learn meaningful patterns by structuring the training process, guiding
the model from simpler to more complex tasks.

These strategies represent significant progress toward the development of effec-
tive solutions for medical image classification. In the next chapter, we present our
tirst contribution, 45-DT, and its developed version, XDecompo, including the de-
tailed methodology and a comprehensive experimental study.



Chapter 4

Self-Supervised Learning and
Class Decomposition Approach for
Classification and Explanation

In the previous chapter, we reviewed the literature work in the field of medical im-
age classification, highlighting the previous methodologies used to address the chal-
lenges in training medical image datasets. In this chapter, we present our first con-
tribution to this thesis, 45-DT and its enhanced version, XDecompo. We then provide
detailed information on the datasets used in our experimental work. In addition,
we introduce a post-hoc explainable Al method to provide insights into the features
learnt by the model. Finally, we compare our approach with other state-of-the-art
methods. Findings reported in this chapter have been published in [139, 140].

4.1 Overview

In this chapter, we introduce 4S-DT to enhance the detection of COVID-19 in chest x-
ray (CXR) images and address the issue of limited dataset samples. The model was
evaluated on two CXR datasets with a small number of COVID-19 cases, referred
to as dataset-A and dataset-B. Unlike the parametric nature of 45-DT, XDecompo
benefits from a non-parametric approach to enhance its generalisation capabilities.
In the experimental work, 45-DT achieved a high accuracy of 97.54% and 99.80%
for detecting COVID-19 cases in dataset-A and dataset-B, respectively. Additionally,
XDecompo achieved accuracies of 96.16% and 94.30% for colorectal cancer and brain
tumour images, respectively, outperforming 45-DT and other training strategies.
The chapter is organised as follows: Section 4.2 provides an overview of the con-
tribution of this chapter. Section 4.3 introduces the 45-DT model and outlines its
fundamental elements. In Section 4.4, we present a detailed description of our de-
veloped approach, XDecompo. Section 4.5 covers our experimental setup and find-
ings. Section 4.6 discusses explainable Al techniques and feature visualisation that
we used in our work. Finally, Section 4.7 provides a summary of this chapter and

outlines the motivation for the upcoming contribution.
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4.2 Introduction

The availability of annotated medical image datasets remains a significant challenge
for researchers aiming to achieve high accuracy. While transfer learning can alle-
viate this issue by transferring knowledge from general image recognition tasks to
medical image classification, it often fails to provide a robust solution when there
are irregularities in the distribution of the dataset [141]. SSL provides a promising
approach by leveraging unsupervised learning tasks to enhance supervised learn-
ing objectives, making it particularly valuable when labelled data is limited or cer-
tain classes are difficult to obtain. Typically, SSL involves three key steps: pseudo-
labelling, pretext task, and downstream task. a) Pseudo-labelling, or self-labelling,
generates labels from the data’s structure, allowing the model to learn from huge
amounts of unlabelled data. b) The pretext task: is conducted in a self-supervised
manner and encourages the model to learn meaningful features (such as relation-
ships between patterns, object colours, and textures) by using a pre-trained model
as a backbone for initial weights. These learnt features are then fine-tuned for dif-
ferent tasks with small annotated examples. c) The downstream task: uses a smaller
labelled dataset and benefits from the features extracted from the pretext model,
leading to improved performance and generalisation on an unseen dataset.

Based on these principles, we introduce “Self-Supervised Super Sample Decom-
position for Transfer Learning With Application to COVID-19 Detection”, known as
(45-DT), to enhance COVID-19 detection from CXR images. 45-DT employs the K-
means clustering algorithm to generate sub-classes for the downstream task, which
can be affected by its sensitivity to initial centroid placement and the presence of
outliers. To address this, we developed XDecompo to automatically determine clus-
ter structures, enhance feature transferability, and improve decomposition quality.
XDecompo employs the affinity propagation (AP) method to guide the class decom-
position approach in the downstream task. This allows the model to effectively de-
fine the class boundaries and generate more precise clusters without requiring pre-
defined parameters. In addition, XDecompo is supported by a post-hoc explainable
component, enabling a deeper understanding of the model’s decision by highlight-
ing the important features in a heatmap. First, we used a self-supervised sample
decomposition method with a convolutional autoencoder (CAE) to extract features
from a large number of samples. The extracted features are then fed into the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) cluster algorithm
to generate the pseudo-labels. We used the pre-trained AlexNet network to train
the pretext model and classify the pseudo-labels. For downstream decomposition,
we employed the AP clustering algorithm to learn salient features and discover the
number of clusters without user intervention. Finally, we provided evidence of the

effectiveness of our method through an explainable component to give a clear view
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of how the model has made decisions to improve the learning process and perfor-
mance. The performance of our model was evaluated on two different medical im-
age datasets: colorectal cancer histology and brain tumour images. These datasets
were selected due to the presence of irregularity issues within classes in the down-
stream datasets and the large number of unlabelled related images.

The contributions of this chapter are summarised as follows:

e introduced the 45-DT model to improve the detection of small annotated
COVID-19 cases from CXR images;

¢ developed a model named XDecompo, which automatically learns the bound-
aries of the class in the downstream datasets using an AP based on the class

decomposition mechanism;

¢ investigate the effectiveness of XDecompo in enhancing feature transferability
and addressing irregular data distribution issues on two different medical im-

age datasets;

¢ demonstrate the robustness and effectiveness of XDecompo through the use of
post-hoc explainable Al methods, such as the Grad-CAM function, to provide
insights into the features learnt by the model and enhance its transparency;
and

¢ perform comprehensive quantitative and qualitative experimental evaluations
to compare XDecompo with 45-DT and other related methods, highlighting its

performance advantages in the field.

4.3 4S-DT Model

In this section, we describe in detail the 45-DT model, which was proposed to over-
come the limitations and costs of data annotations for COVID-19 cases by learning
visual features from a large set of unlabelled CXR images. As shown in Fig. 4.1, the
model starts by extracting feature representations from the unlabelled CXR images
using a stacked autoencoder model (SAE) [142]. Second, the features are fed into
the DBSCAN clustering algorithm to generate pseudo-labels. Third, the pre-trained
ResNet-18 network is used for training the pretext task and classifying the pseudo-
labels [74]. Finally, the learnt features from the pretext model are fine-tuned to a
downstream task using a parametric clustering algorithm (k-means) to detect small
cases of COVID-19 from CXR images. Algorithm 1 provides a detailed description
of the process of 45-DT.

4.3.1 Sample Decomposition on Unlabelled CXR Images

In SSL, unlabelled data are used for feature extraction by generating pseudo-labels
for each sample, allowing models to capture useful representations without the need
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Stage I: Self Supervised Super Sample Decomposition
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FIGURE 4.1: The framework of the 45-DT model. First, SAE is used to
extract feature representations from unlabelled CXR images, followed
by clustering with the DBSCAN algorithm to generate pseudo-labels.
Then, the ResNet-18 pre-trained network is employed to train the pre-
text task and classify these pseudo-labels. The features learnt from the
pretext model are then fine-tuned for the downstream task, which is
decomposed using class decomposition guided by the k-means clus-
tering method. Finally, error correction is applied to obtain the final
prediction.

for manual labelling. The 45-DT model starts with using SAE to extract feature rep-
resentation from an enormous number of CXR images. SAE is an unsupervised
learning technique that consists of multiple encoding and decoding layers, where
the output of one layer is fed as the input to the next. The encoder layers compress
the input data into a lower-dimensional representation, which the decoder then re-
constructs to match the original input as much as possible. This process allows the
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network to capture and learn hierarchical features within the unlabelled samples.
Let the representation vector from SAE denoted as h?, then the reconstructed input
image £ from the encoder layer can be defined as:
Encoding process

ht = (W x 4+ b)), (4.1)

Decoding process
£ =p(WPh 4 p?), (4.2)

where W(1) and W) are the weight matrices for the encoding and decoding lay-
ers, respectively, b and b?) are the bias vectors, and ¢ is non-linear activation func-
tion. Once the latent space vector i is obtained, it is passed to the DBSCAN clus-
ter algorithm to generate a number of classes C (pseudo-labelled). DBSCAN [143]
does not require the number of clusters to be predefined, offering greater flexibil-
ity when working with datasets that have unknown or undefined cluster structures.
This adaptability is particularly crucial in medical imaging, where data distributions
can be irregular and challenging to model. Additionally, DBSCAN can classify noisy
points as outliers, which helps ensure that clusters remain clean and more accurate,
further improving the quality of the clustering results.

The pseudo-labelled can be defined as X’ = {(x',y)|c € C}, where X’ is the new
dataset after applying the sample decomposition method. The baseline ResNet-18
was adapted for training the pretext model to extract meaningful and informative
features from the pseudo-labels that can be applied to downstream tasks in which
labelled data is scarce or expensive to obtain. By solving this task, the model learns
to recognise patterns, structures, and relationships within the general CXR images,
which are beneficial for other tasks.

4.3.2 Class Decomposition with k-means Clustering

Class decomposition uses clustering algorithms to break down complex classes into
more homogeneous subgroups. This method enables the model to focus on learning
more precise patterns within each subgroup, leading to better generalisation and
classification performance. 45-DT model uses k-means cluster algorithm to apply
the decomposition process. k-means is a popular clustering algorithm due to its
computational efficiency and simplicity, making it ideal for large datasets. However,
it requires pre-defining the number of clusters (k) beforehand, which can be chal-
lenging without prior knowledge of the data structure. Practically, k-means works
by identifying similar features among observations and grouping them into clus-
ters. Initially, centroids are randomly selected, and each data point is assigned to
the cluster whose centroid is closest. The mean of all points in each cluster is then
used to recalculate the new centroids. This process is repeated until the centroids
stop changing. The objective function for k-means clustering based on the Sum of
Squared Euclidean Distances (SED) is expressed as follows:
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k n .
SED=Y.Y [ 2% —¢; |2 (4.3)

j=li=1
Finally, a class relabelling is used to remap the classification back to the original
problem using a simple error correction criterion, see Fig. 1.3 in Chapter 1.

Algorithm 1: 45-DT Model

1 Input: A large set of unlabelled CXR images, labelled dataset. Output:
prediction output.
2 Sample Decomposition:
3 Use SAE on the unlabelled images to extract feature representations.
4 Apply DBSCAN to generate pseudo-labels.
5 Use a pre-trained network to classify the pseudo-labels.
6 Downstream Decomposition:
7 Use K-means clustering to decompose the classes of the labelled dataset.
8 Assign new labels to the new dataset.
9 A coarse transfer learning:
10 Adapt the final classification layer of the pretext CNN model to the
decomposed classes.
1 Fine-tune the learnt weights from the pretext model to the new dataset.
12 Model Evaluation:
13 Evaluate the model on the test set.

14 Use error-correction criteria to obtain the final output.

4.3.3 Dataset used in 4S-DT

4S-DT was introduced to improve the detection of COVID-19 cases from CXR. In the
experimental work, we used two different types of data: unlabelled CXR im- ages
to extract generic features and a labelled dataset, which contains a small number
of COVID-19 samples; see Table 1.1 in Chapter 1. For the labelled dataset, we col-
lected 50,000 CXR images from various sources [24, 25, 26, 27], to ensure diversity in
the images and the extracted meaningful features. For the labelled dataset, due to
the limited availability of large publicly accessible COVID-19 datasets at that time,
we used two different CXR labelled datasets referred to as dataset-A and dataset-B.
Dataset-A collected from [23], contains 105 COVID-19 images, while dataset-B avail-
able at (https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia),
includes 576 COVID-19 images. It should be noted that the CXR images in datasets
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A and B are updated over time. Fig. 4.2 shows examples from the dataset used to
evaluate 45-DT.

(a) (b)

FIGURE 4.2: Examples of the downstream dataset used in the experi-
mental 45-DT model, where (a) Normal, (b) COVID-19, and (c) SARS.

4.3.4 Experimental Analysis of 45-DT

We investigated the performance of the proposed 45-DT framework using three dif-
ferent baseline networks: ResNet-18, GoogleNet, and VGG-19. Due to the limited
number of COVID-19 images, all models were trained in deep-tuning mode. In the
pretext stage, an SAE model was employed to extract deep features from the unla-
belled CXR images, using 80 neurons in the first hidden layer and 50 neurons in the
second. The extracted features were then clustered using the DBSCAN algorithm
to generate pseudo-labels. ResNet-18 was used for training the pretext task with
a mini-batch size of 256 over 200 epochs and a weight decay of 0.0001 to mitigate
overfitting. The learnt representations were subsequently transferred to train on the
small labelled datasets (Dataset-A and Dataset-B). During this downstream training
phase, the learning rate was set to 0.0001, the mini-batch size was 128, the number
of epochs was 256, and the weight decay was 0.001. Furthermore, the learning rate
was scheduled to drop by a factor of 0.95 every five epochs.

4.3.5 Performance Measures

In the experimental work, all models were evaluated using confusion matrices,
which included overall accuracy (ACC), precision (PR), recall (RE), and F1-score (F1)
metrics for a multi-class confusion matrix [144]. These metrics provide more insight
into the performance of a model by quantifying its quality through various measures
and understanding the model’s strengths and weaknesses in classification tasks. Ac-
curacy gives an overall measure of how the model correctly predicted the samples.
Precision measures the model’s effectiveness in correctly identifying negative cases,
such as classifying normal images correctly among all actual normal images. Re-
call, also known as sensitivity or true positive rate, focuses on the model’s ability to
correctly identify positive cases, such as detecting cancer images among all actual
cancer images. Finally, Fl-score can be defined as a weighted average of precision
and recall, offering a balanced measure of a model’s accuracy in identifying positive
instances. The confusion matrices are defined as follows:
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TP+ TN
Accuracy(ACC) = TP TN T+ FPLEN’ (4.4)
. TP
PreClSlOH(PR) = m ’ (45)
TP
ReCﬁH(RE) = m , (4:6)
PR x RE
Fl-SCOI‘e(Fl) - 2 X ﬁ (4:7)

Where TP and TN represent the true positive and true negative for a specific
class C;, respectively, while FP and FN refer to the incorrect predictions made by the
model for other classes and are defined as:

P =Y x; (48)
i=1
ii Xk, ] # ik #i (4.9)
FP;, = ix]l,] #1 (4.10)
j=1
FN; = ; Xij, ] # 1, (4.11)

where x;; is an element in the diagonal of the matrix. In addition, we used the
Receiver Operating Characteristic (ROC) curve to provide a visual representation
of the model’s performance. The ROC curve plots the true positive rate (TPR) or
sensitivity against the false positive rate (FPR). We also report the Area Under the
ROC Curve (AUC) to summarise the model’s performance. A higher AUC value
(approaching 1) indicates a highly efficient model, while a lower AUC value (ap-
proaching 0) indicates poor performance.

4.3.6 Performance of 45-DT Model

To evaluate the performance of 45-DT, we used three different baseline networks:
ResNet-18, GoogleNet, and VGG19. In addition, 45-DT was compared with two dif-
ferent training strategies: traditional transfer learning using the baseline networks
and the DeTraC model, where the pre-trained network weights are fine-tuned for
the downstream task using a class decomposition approach. As shown in Table 4.1,
for dataset-A, 45-DT achieved the highest performance only when using ResNet-18,
with an accuracy of 97.54%, precision of 97.15%, recall of 97.88%, and Fl-score of
97.51%. For dataset-B, 45-DT outperformed all other training strategies across all
baseline networks. The best results were obtained using VGG19, achieving 99.80%,
100%, 99.70%, and 99.84% for ACC, PR, RE, and F1-score, respectively, see Table
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4.2. Fig. 4.3 and Fig. 4.4 show the confusion matrix and the ROC curve for 45-DT,
respectively.

On the other hand, DeTraC achieved better performance than traditional trans-
fer learning across different pre-trained networks on both Dataset-A and Dataset-B.
This improvement is mainly due to its use of class decomposition, which simplifies
complex class structures and reduces overlap between similar categories. The same
process is adopted in the 45-DT model for the downstream task. However, instead of
transferring knowledge from a pre-trained model on a large dataset like ImageNet,
which contains images from various domains, 45-DT utilises SSL with sample de-
composition. This process allows knowledge transfer from features learnt within
the same domain, enabling the model to focus on more relevant features, ultimately
enhancing performance on downstream tasks.

To further evaluate the effectiveness of 45-DT, we applied statistical significance
testing using the Wilcoxon signed-rank test with continuity correction [145]. The sta-
tistical comparison between 45-DT and DeTraC produced a p-value of 0.0024, high-
lighting the substantial performance gain achieved by incorporating SSL and sample
decomposition. The statistical comparison between 45-DT and DeTraC produced a
p-value of 0.0024, highlighting the substantial performance gain achieved by incor-
porating SSL and sample decomposition. Furthermore, comparing the 45-DT model
to traditional transfer learning resulted in a p-value of 0.0025, confirming that our
model significantly outperforms standard transfer learning approaches.

TABLE 4.1: 45-DT: Comparison of the performance of 45-DT and
other models on the COVID-19 (Dataset-A) based on deep tuning
mode.

Baseline | Traditional learning DeTraC 45-DT

Network |[ACC PR RE F1 |[ACC PR RE Fl |[ACC PR RE F1

(%) (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) (%)

ResNet-18
GoogleNet
VGG19

92.50 94.30 65.01 76.96

93.68 91.52 92.59 92.05

94.59 93.08 91.64 92.35

95.12 91.87 97.91 94.79

94.71 95.76 97.80 96.76

97.35 96.34 98.23 97.27

97.54 97.15 97.88 97.51

94.15 93.08 97.07 95.03

95.28 97.15 93.66 95.37

Based on the obtained results, we concluded that the 45-DT model signifi-
cantly improves classification performance and effectively detects a small number
of COVID-19 cases by utilising SSL with sample decomposition before transferring
knowledge into another small dataset. In addition, 45-DT has the ability to handle
irregularities within the classes of the downstream dataset by employing the class
decomposition method in the downstream dataset. This is achieved by understand-
ing and clarifying the boundaries between classes, leading to more accurate and

reliable outcomes. However, using a parameter-based clustering algorithm to detect
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TABLE 4.2: 4S-DT: Comparison of the performance of 45-DT and
other models on the COVID-19 (Dataset-B) based on deep tuning
mode.

Baseline Traditional learning DeTraC 4S-DT
Network |[ACC PR RE Fl |[ACC PR RE Fl |ACC PR RE

(%) (%) (%) (%) | () (%) (%) (%) | (%) (%) (%)

F1

(%)

ResNet-18 [94.74 97.84 93.30 95.52(97.50 98.20 95.50 96.83/99.60 99.90 96.50 98.17
GoogleNet|94.43 91.15 88.17 89.63|97.10 99.48 97.41 98.43199.20 99.70 93.90 96.71

VGG19 [95.28 94.23 92.74 93.47198.20 99.40 96.50 97.92(99.80 100 99.70 99.84
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FIGURE 4.3: Confusion matrix of 45-DT on COVID-19 dataset-B us-
ing different pre-trained networks: (a) ResNet-18, (b) GoogleNet, and

(c) VGG19.
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the number of sub-classes in the downstream dataset can directly impact the quality
of these sub-classes. This, in turn, affects the quality of the features transferability.
In the next section, we introduce our first contribution method, XDecompo, which
is designed to overcome the limitations associated with parameter-based clustering
algorithms, thus providing a more robust solution for handling sub-class identifica-

tion and data irregularities.

4.4 XDecompo Model

This section provides a detailed explanation of the developed XDecompo model, in-
cluding its framework architecture and the key modifications made to the 45-DT
model. XDecompo is designed to address the limitation of 45-DT and enhance de-
composition quality through an automated clustering algorithm. Compared to the
4S-DT model, XDecompo provides a better generalisation and feature visualisation
due to the non-parametric nature of its class decomposition approach.

As shown in Fig. 4.5, XDecompo consists of four main stages. First, we used
a CAE to extract feature representations from the unlabelled images, which were
then clustered using the DBSCAN algorithm to generate pseudo-labels. Next, the
pre-trained ResNet-50 network is employed to train the pretext task and classify
the pseudo-labels. Third, the learnt features from the pretext model are fine-tuned
for the downstream task, where class decomposition is guided by the AP clustering
method. In addition, XDecompo incorporates the Grad-CAM algorithm as a post hoc
explainable method to highlight the contribution of each pixel in the input images
toward the model’s final prediction, providing insights into the feature robustness
and transferability. Algorithm 2 provides a detailed description of the process of
XDecompo.

4.4.1 Feature Extraction with CAE

In this stage, we extracted deep local features from a large number of unlabelled
images using CAE. The choice of CAE in XDecompo comes from the ability of con-
volutional layers to capture local spatial features by scanning the entire image with
convolutional filters, which is particularly important for medical images [146]. In
contrast, SAE, which uses fully connected layers, focuses on learning global pat-
terns and may not preserve spatial relationships as effectively. This makes CAEs
more suitable for tasks where spatial structures are vital for accurate feature extrac-
tion, such as in medical imaging.

CAE consists of two blocks: the encoder and the decoder layers. The encoder
block is made up of multiple convolutional layers with a non-linear activation func-
tion and a pooling layer that downsamples the input image. The decoder block is
responsible for reconstructing the input image, bringing it as close as possible to the
original. The 2D convolution operation can be defined as:
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FIGURE 4.5: The framework of the XDecompo model. First, we use
a CAE to extract feature representations from unlabelled images, fol-
lowed by clustering with the DBSCAN algorithm to generate pseudo-
labels. Next, a pre-trained ResNet-50 network is employed to train
the pretext task and classify these pseudo-labels. The features learnt
from the pretext model are then fine-tuned for the downstream task,
which is decomposed using class decomposition guided by the AP
clustering method. Finally, error correction is applied to obtain the
final prediction. Additionally, XDecompo integrates a post-hoc expla-
nation tool that highlights the contribution of each pixel in the input
images to the model’s final prediction.

241 2f+1

A,j)= ) Y. x(i—uj—o)w(u,0)+ b (4.12)
u=-2f-1v=-2f-1

where A (i, ) is the output activation map in position (ij), x is the input image,
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and w is the weights of a square convolution filter with dimension (2f +1,2f +1).
For d depth, the produced activation maps from the input x can be defined as:

Al =g (x x Wi + bd) ) (4.13)

where ce is an activation function and b? is the bias for d-th activation maps. The

reconstructed image £ is obtained by:

fzd(ZAded—i—b), (4.14)
deH

where H refers to a set of activation maps and W represents the inversion pro-
cess applied to both dimensions of the weights. The DBSCAN clustering was then
employed to generate pseudo-labels for the data. DBSCAN is an unsupervised clus-
tering algorithm that groups data points into a single cluster by looking at the local
density of the data points, so it is considered robust to real-life data which may con-
tain noisy points and outliers [143].

DBSCAN is sensitive to the value of two parameters that can significantly im-
pact the outcomes: Epsilon (Eps), which represents the radius of the neighbour-
hoods around a data point x, and MinPts refers to the minimum number of data
points/observations (neighbours) within that radius. Generally, MinPts can be com-
puted from the dimensions (D) of the dataset as MinPts >= D+1, and the Eps-
neighbourhood can be defined as:

Neps(x;) = {x; € X|dis(x;, xj) < Eps}. (4.15)

This process results in ¢ clusters, where each cluster is formed by maximising
the density reachability relationships among images. The resulting c cluster labels
are then assigned to the n’ unlabelled images, which will serve as pseudo-labels for
the pretext training task in the self-supervised learning mechanism. The pseudo-
labelled image dataset for the pretext task can be formally represented as:

X' ={(x,y)|x' € X,y° € C,c € {1,2,...,c}} (4.16)

Where x' refers to an image from the unlabelled dataset and y° represents its cor-
responding pseudo-label (cluster assignment). These labels are then used to train
the model in a self-supervised manner, allowing it to learn meaningful feature rep-
resentations for downstream tasks.

4.4.2 Pretext Training

The next stage involves training the pretext model using the baseline ResNet-50 net-

work to classify the pseudo-labelled images. The ResNet-50 network, known for
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its deep architecture with residual connections, provides an effective mechanism for
training very deep networks. These residual connections help mitigate the vanish-
ing gradient problem, ensuring that gradients can flow through the network more
efficiently during the back-propagation process. During training, the model learns
meaningful patterns and representations from the pseudo-labelled images, which
are crucial for fine-tuning the model for the downstream task. This process im-
proves the model’s ability to generalise by allowing it to capture the relationships
and complex features relevant to the specific context of the task. As a result, training
the downstream task becomes more efficient in making accurate predictions, lever-
aging the knowledge gained during pretext training to adapt effectively to new data
and tasks.

4.4.3 Class Decomposition with AP

The class decomposition method can be understood as breaking down the original
classes of a dataset into smaller sub-classes for better model performance. Let the
dataset (D) contain pairs of data points (x,y), where y is the corresponding label,
and C is the number of classes. The dataset can be represented as:

D = {(x],yl)N] € [1, N] JYi € {1,2,...,C}} (4.17)

After decomposition, each original class y; is split into k; sub-classes and can be
defined as D(y;) = {vi1,Yi2, -, Vik, }- As a result, the new dataset D’ containing these
sub-classes, is defined as:

D" = {(xj,yij)I¥j € [1,N],y;; € D(y:)} (4.18)

where N is the total number of samples in the dataset, and y;; represents the
sub-classes of the parent class y;.

XDecompo utilises the AP [147] clustering method to execute the decomposi-
tion process for the downstream task. The AP algorithm, an unsupervised tech-
nique, works by passing messages between data points and does not require the pre-
definition of the number of clusters. It determines how well the (j-th) point serves
as an exemplar for the (i-th) point by alternating between two message-passing up-
dates, named the responsibility and availability matrices, and can be defined as:

Responsibility matrix:

p (i,k) = sE (i,k) — max {a (i,k') +sE (i, k") VK" # k}, (4.19)

Availability matrix:

a (i, k) = min (O,p (k,k)+ ) max (0,p(i’,k))> i #k, (4.20)
i'¢{ik}
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where the responsibility matrix measures how well the point x; serves as
an exemplar for x; compared to other candidate exemplars for x;. On the other
hand, the availability matrix considers the appropriateness of x; choosing xj as its
exemplar based on how many other data points also favour x; as their exemplar.

Error correction prediction:

Once the model is trained on the decomposed dataset D’, the model’s predictions
at the sub-class level are mapped back to their respective original classes to obtain
the final classification results, see Fig. 1.3 in Chapter 1. The output predictions are
merged back into the original class y;, yielding the final classification result. Given
a model prediction §;; for a data point x;, we define the recombination function E(.)
as:

E(9i) = yi (4.21)

We used the cosine similarity measure for AP to learn the boundary between
certain features within each class. Cosine similarity is a structural similarity mea-
sure based on the idea that two vectors (X;, X;) are supposed to be similar if they
have many neighbours in common, where a similarity of 0 indicates that the vector
orientation is completely different, while a similarity of 1 indicates that the vector
orientation is the same. A similarity of 0 means a completely different vector orien-

tation, and a similarity of 1 means that the vector orientation is the same.

4.4.4 Explainable Techniques in Machine Learning

In healthcare, the black-box nature of deep learning models presents a significant
challenge to understanding and trusting their decision-making processes [148]. As
deep learning techniques become more widely used in clinical tasks, the demand
for interpretability methods develops, ensuring that users understand the underly-
ing mechanics driving the model’s predictions. Explainable Artificial Intelligence
(XAI) improves the openness and reliability of these models by providing insights
into how and why specific decisions are made [149, 150, 151]. In healthcare, XAI
techniques enable professionals to provide qualitative explanations, such as visual-
isations of important elements, which can aid in the justification and validation of
model outputs [152]. This not only increases trust in Al-driven choices but also pro-
motes the wider adoption of deep learning solutions in medical practice [153, 154].
For example, Magsood et al. [155] used an XAI function to visualise the final predic-
tions for brain tumour detection. Esmaeili et al. [156] employed explainable Al to
detect and interpret early-stage brain tumours in CMR images, providing insights
into the performance of three DL models and aiding in the selection of optimal train-
ing strategies. Wang et al. [157] introduced COVID-Net to detect COVID-19 in CXR
images, employing an explainability method to ensure transparent decision-making
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and provide insights into COVID-19 features to assist physicians. Similarly, Bhan-
dari et al. [158] proposed a DCNN for detecting lung diseases, including COVID-
19, pneumonia, and tuberculosis, using CXR images. The model’s predictions were
interpreted by different XAl algorithms, ensuring transparency and providing valu-
able insights to radiologists. Sabol et al. [159] developed an XAl-based system,
CFCMC, for classifying eight tissue types from histopathological cancer image sam-
ples. The model is designed to assist medical experts rather than fully automate the
diagnostic process.

The visualisation of explainable AI can be achieved using various attention
mechanisms, including trainable, post-hoc, soft, and hard attention methods [160,
161]. Trainable attention is incorporated during the model’s learning phase, helping
the network concentrate on important regions of the image. In contrast, post-hoc
attention is applied after training with fixed weights to generate heatmaps such as
occlusion [149], saliency [162], CAM [163], or Grad-CAM [164] maps. In this work,
we employed the Grad-CAM algorithm to identify specific patterns in the input im-
ages that guide the predictions made by the XDecompo model using an activation
heatmap [165]. The core concept of Grad-CAM is that the weights of a convolutional
layer are determined by computing the gradient of the classification score dx¢ for a
given class ¢ with respect to the activation map dA? of the d-th feature map. The
importance of each feature map’s neurons is then derived by performing a global
average pooling of the gradients at position (i, j) and defined as:

1 ox’
$q=— — (4.22)
m Zl: ; 8Af§.
where m represents the total number of pixels in A4 To generate the final Grad-CAM

heatmap, the ReLU activation function is applied to the sum of the products between
¢4 and the corresponding feature map A“ as defined in the following equation:

Heaa-cam = ReLU (Z Q’ZAd) (4.23)
d
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Algorithm 2: XDecompo Model

[y

Input: a large set of unlabelled images, a labelled dataset.

N

Output: prediction output.

3 Feature Extraction:

4 Use CAE on the unlabelled images to extract feature representations.
5 Apply DBSCAN to generate pseudo-labels.

6 Pretext Training:

7 Use a pre-trained network to classify the pseudo-labels.

8 Downstream Decomposition:

9 Use AP to decompose the classes of the labelled dataset.

10 Assign new labels to the new dataset.

11 Fine-tune the learnt weights from the pretext model to the new dataset.
12 Evaluate the predicted value on the test set.

13 Refine the final classification using error-correction criteria.

14 Explainable Al:

15 Apply an XAI technique to interpret the classification decisions.

4.5 Experimental Setup and Results

This section discusses the datasets used in our experiments and the evaluation met-
rics employed to assess classification performance. In addition, we discuss the re-
sults of XDecompo model and compare its performance with the 45-DT, DeTraC mod-
els, and other related work in the field. Finally, we demonstrate the model’s ability
to highlight significant features through heatmaps, providing a visual representation
of the learnt patterns.

4.5.1 Datasets Collection

In this experimental study, two medical image datasets were used: colorectal cancer
data (CRC) and brain tumour datasets. XDecompo leverages two types of data: un-
labelled data for generating pseudo-labels and extracting rich information through
training a pretext model, and labelled data for training and evaluating the down-
stream model.

As mentioned in Chapter 1, Section 1.7, the dataset “NCT-CRC-HE-100K” was
selected as the unlabelled data, containing 100,000 samples. The “CRC-VAL-HE-
7K” dataset was used as the labelled dataset, containing 7,180 image patches across
nine unbalanced classes, with all patches sized at 224 x 224 pixels at 0.5 microns
per pixel. For our experiment, we used three classes: Adipose (ADI), stroma (STR),
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and tumour epithelium (TUM), containing 1,338, 421, and 1,233 samples, respec-
tively. Fig. 4.6 represents examples of the three classes we used from the CRC
dataset. Similarly, as summarised in Section 1.7, the brain tumour dataset in-
cludes both labelled and unlabelled samples. The unlabelled samples were collected
from a publicly available source (https://www.kaggle.com/datasets/navoneel/
brain-mri-images-for-brain-tumor-detection). Several data augmentation pro-
cesses, including reflection, shifting, wrapping, and rotation at various angles, were
applied to increase the sample size, resulting in 45,960 brain tumour images. The la-
belled dataset was collected from [30], dividing into three classes: 1,426 glioma, 708
meningioma, and 930 pituitary tumour images, all sized at 400 x 400 pixels, see Fig.
4.7. Each dataset was randomly divided into 60% for training, 20% for validation,
and 20% for testing. XDecompo was evaluated using 268 ADI, 84 STR, and 247 TUM
samples from the CRC dataset and 1,426 glioma, 708 meningioma, and 930 pituitary
tumour samples from the brain tumour dataset.
1411 e
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FIGURE 4.6: Example patch images from the CRC-VAL-HE-7K col-
orectal cancer dataset used in our experiment: (a) ADI, (b) STR, and
(c) TUM.

(b)

FIGURE 4.7: Example images from the brain tumour test set: a)
glioma, b) meningioma, c) pituitary tumour.

4.5.2 Hyperparameter Settings

To extract deep features from the unlabelled dataset and generate pseudo-labels for
XDecompo, we built a CAE model comprising two convolutional layers with a ker-
nel size of 3 pixels and ReLU activation. For the histological dataset, the first layer
included 64 filters, while the second layer used 32. In contrast, for the brain tumour
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image dataset, the first and second layers were configured with 32 and 16 filters, re-
spectively, see Fig. 4.8. Our study also compares XDecompo with the 45-DT model,
which employs an SAE with 600 neurons in the first hidden layer, 400 in the sec-
ond, and 200 for latent space representation; see Fig. 4.9. As shown in Fig. 4.9 and
Fig. 4.8, SAE struggles to preserve fine details and spatial structures. On the other
hand, CAE highlights its ability to reconstruct the input image with significantly
better preservation of spatial structures and finer details, bringing it much closer to
the original image. This ability to maintain important features makes CAE more
suitable for medical image analysis.

Then, the latent features extracted from autoencoder models are fed into the DB-
SCAN clustering algorithm to generate pseudo-labels. Both the SAE and CAE mod-
els were trained using learning rates of 0.001 and 0.0001, respectively, with a mini-
batch size of 128, a minimum of 100 epochs, and a learning rate decay of 0.9 every
10 epochs. This process generated 4 and 2 classes for the CRC and brain tumour
datasets, respectively. While the SAE model produced 8 classes for the CRC dataset
and 6 for the brain tumour dataset.
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Colorectal cancer brain tumor

FIGURE 4.8: The CAE for unlabelled images; first row: the original
images of the dataset, second row: the reconstructed images.

For each labelled dataset, we used the AlexNet pre-trained network as a feature
extractor to extract the discriminative features between classes. We set the learning
rate to 0.0001, which decreased by a factor of 0.9 every 3 epochs for 100 training
epochs with a batch size of 128. Then these features were fed to clustering algorithms
to create sub-classes. For XDecompo, the AP technique was used with the cosine
similarity metric. The damping factor was set at 0.9 for the CRC dataset and 0.85
for the brain tumour dataset, with a maximum of 1,000 iterations and a convergence
parameter of 50. In contrast, for the 45-DT model, we used the k-means clustering
algorithm with k set to 2. Tables 4.3 and 4.4 illustrate the outcomes of this process
for CRC and brain tumour datasets, respectively. As shown in the tables, in the
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FIGURE 4.9: The SAE for unlabelled images; first row: the original
images of the dataset, second row: the reconstructed images.

AP clustering method, each downstream dataset was divided without predefined
parameters, leading to a random division of the original classes.

For training the downstream datasets, we adapted transfer learning based on
fine-tuning mode, so the model started training from the last fully connected layer
(FC) until the block named Conv5-x, which contains three residual layers.

Based on trial and error experiments, the CRC dataset was trained with a learn-
ing rate of 0.0001 for the CNN layers, with a learning rate decay of 0.95 every 5
epochs and a mini-batch size of 50. For the brain tumour dataset, a similar learning
rate of 0.0001 was used, with a decay schedule of 0.95 every 4 epochs. To reduce
overfitting, we applied L2 regularisation with a value of 0.001. The learning rate for
the final fully connected layer was set to 0.01, as this layer focuses on the classifica-
tion task rather than learning general features, like the earlier layers. Additionally,
the output layer was modified to match the number of classes in each dataset.

TABLE 4.3: The number of instances before and after applying the
class decomposition on the CRC data set using k-means and AP clus-
tering algorithms.

Method  Original dataset ADI STR TUM
# instances 1070 337 986

k-means Decomposed dataset ADI_1 ADI_2 STR_1 STR_2 TUM_1 TUM_2
# instances 666 404 171 166 406 580

AP Decomposed dataset ADI_1 ADI_2 ADI_3 ADI_4 STR_1 STR_2 TUM_1 TUM_2 TUM_3
# instances 377 270 222 201 171 166 381 371 234

4.5.3 Performance Measures

We adopt accuracy, precision, recall, and F1-score, which were defined in Section
4.3.5. In addition, we plot the ROC curve to provide a visual representation of the
model’s performance.
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TABLE 4.4: The number of instances before and after applying the
class decomposition on the brain tumour dataset using k-means and
AP clustering algorithms.

Method  Original dataset glioma meningioma  pituitary tumour
# instances 1140 565 744

k-means Decomposed dataset GLI_1 GLI_2 MEN_1 MEN_2 PIT 1 PIT 2
# instances 577 563 298 267 426 318

AP  Decomposed dataset GLI-1 GLI-2 GLI-3 MEN-1 MEN-2 PIT-1 PIT-2 PIT-3
# instances 455 529 156 290 275 214 322 208

4.5.4 Performance of XDecompo Model

We evaluated XDecompo on two datasets: CRC and brain tumour, using a fine-tuning
strategy. The model was trained based on fine-tuning four layers, and results are
summarised in the last column in Table 4.5 and Table 4.6 for the CRC and brain tu-
mour datasets, respectively. For CRC dataset, XDecompo achieved a significant ACC
of 96.16%, with a PR of 97.82% and RE of 90.87%, 94.22% for F1-score for classifying
599 test images. Similarly, Table 4.6 reports the performance on the brain tumour
dataset, where XDecompo also achieved a higher accuracy with 94.30%, 97.04% for
PR, 93.27% for RE, and 95.12% for F1-score on 615 brain tumours images.

4.5.5 Ablation Study

We conducted an ablation study comparing XDecompo with 45-DT, and DeTraC,
where the pre-trained network weights are fine-tuned as a backbone for training
the downstream task, in which class decomposition is applied. The models were
also compared with traditional transfer learning using ResNet-50. As shown in Ta-
ble 4.5, XDeCompo outperformed 4S-DT, which achieved 92.65%, 95.83%, 82.54%,
and 88.69% for ACC, PR, RE, and Fl-score, respectively. Likewise, for the brain tu-
mour, 45-DT achieved 92.84% for ACC, 96.40% for PR, 92.05% for RE, and 94.17%
for Fl1-score, which are lower than the results obtained by XDecompo.

On the other hand, the performance of DeTraC is lower than both 45-DT and
XDecompo, achieving accuracy of 91.31% and 89.91% on the CRC and brain tu-
mour datasets, respectively. In addition, transfer learning with ResNet-50 achieved
the lowest performance on the CRC and brain tumour datasets with accuracies of
90.31% and 87.96%, respectively.

These findings demonstrate that XDecompo can improve the feature transfer-
ability, which plays a critical role in improving model generalisation compared to
other models. Furthermore, the comparison results demonstrate that 45-DT out-
performs DeTraC in some cases but does not reach the same performance levels as
XDecompo. Transfer learning with ResNet-50 consistently showed the lowest perfor-

mance across both datasets, indicating that with small datasets, traditional transfer
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learning may lead to poor generalisation, especially when the dataset distribution is
irregular.

The confusion matrices for each model are represented in Fig. 4.10 and Fig. 4.11
for the CRC and brain tumour datasets, respectively. In addition, Fig. 4.12 and Fig.
4.13 show the AUC for each class across all models, where XDecompo achieves the
highest AUC values for each class on the test sets.

We also measured statistical significance using the Wilcoxon signed-rank test
with continuity correction [145] to validate the results. At a 0.05 significance
level, XDecompo achieved statistically significant improvements on the brain tumour
dataset compared to 45-DT (p = 0.00167), DeTraC (p = 0.0012), and traditional trans-
fer learning (p = 0.00097). Similarly, for the CRC dataset, XDecompo outperformed
4S-DT (p = 0.00124), DeTraC (p = 0.0015), and traditional transfer learning (p =
0.00038). These results demonstrate that XDecompo with a non-parametric cluster-

ing method leads to better feature transferability and improved model performance.

TABLE 4.5: XDecompo: Classification performance of each model on
the test set of the CRC dataset.

Layer |Traditional training (ResNet-50) DeTraC 45-DT XDecompo
Name |[ACC PR RE F1 ACC PR RE F1 [ACC PR RE Fl1 |[ACC PR RE Fl
(%) (%) (%) (%) () () () ()| (%) (%) (%) (%) | (%) (%) (%) (%)
FC  190.81 94.79 78.17 85.68 91.48 95.17 80.34 87.13|92.82 95.92 82.93 88.95|95.49 97.44 89.28 93.18
Conv5-3|90.65 94.69 77.67 85.33 92.15 95.54 81.34 87.87|92.32 95.64 81.74 88.14|94.82 97.06 87.97 92.29
Conv5-2|90.65 94.69 77.67 85.33 91.65 95.26 80.51 87.27|92.98 96.02 83.33 89.23|94.99 97.15 88.36 92.55
Conv5-1{90.31 94.50 76.98 84.85 91.31 95.07 79.63 86.67|92.65 95.83 82.54 88.69|96.16 97.82 90.87 94.22

TABLE 4.6: XDecompo: Overall classification performance of each
model on a testing set of the brain tumour dataset.

Layer |Traditional training (ResNet-50) DeTraC 45-DT XDecompo
Name |[ACC PR RE F1 ACC PR RE Fl1 |[ACC PR RE Fl [ACC PR RE F1
(%) (%) (%) (%) (o) (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) (%)
FC |87.31 93.74 86.16 89.79 89.91 94.97 88.84 91.80|91.70 95.82 90.95 93.32(92.52 96.15 91.62 93.83
Conv5-3(86.29 93.75 87.01 90.25 90.24 95.36 90.21 92.71|92.52 96.32 91.99 94.11|92.19 96.03 91.71 93.82
Conv5-2(86.67 93.62 86.71 90.03 89.26 95.01 89.66 92.26|93.00 96.43 92.12 94.23|92.84 96.15 91.52 93.78
Conv5-1|87.96 93.84 86.57 90.06 89.91 95.19 90.14 92.60|92.84 96.40 92.05 94.17|94.30 97.04 93.27 95.12

4.5.6 Comparison with State-of-the-art Methods

To demonstrate the effectiveness of our model, we compared XDecompo with other
state-of-the-art DCNN models that have used the same datasets but with different
experimental settings. Tables 4.7 and 4.8 show the comparison of XDecompo with
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FIGURE 4.10: The confusion matrix results of the CRC dataset ob-
tained by: a) ResNet-50 pre-trained network, b) DeTraC, c) 45-DT,

and d) XDecompo.
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FIGURE 4.11: The confusion matrix results of the brain tumour
dataset obtained by: a) ResNet-50 pre-trained network, b) DeTraC,
¢) 45-DT, and d) XDecompo.
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FIGURE 4.12: ROC analysis of the CRC test set obtained by: a)

ResNet-50 pre-trained network, b) DeTraC, c) 45-DT, and d) XDe-
compo.
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FIGURE 4.13: ROC analysis of the brain tumour test set obtained by:
a) ResNet-50 pre-trained network, b) DeTraC, c) 45-DT, and d) XDe-
compo.
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other methods on the CRC and brain tumour datasets, respectively. In terms of
accuracy, XDecompo outperformed the other models, achieving superior results after
fine-tuning only the weights of the last four layers. For CRC images, Peng et al. [166]
employed a K-nearest neighbour-based method for histopathology image classifica-
tion and retrieval. However, their reliance on manual expert validation makes their
method time-consuming and limits its generalisation to unseen datasets. Similarly,
Ghosh et al. [167] proposed an ensemble method that combines two large labelled
datasets to improve model performance on unseen data, which may not be practi-
cal for datasets with smaller samples. Li et al. [168] introduced the DeepDisMISL,
combining patches from two CRC datasets to improve output prediction. However,
this method may not generalise well to datasets with different characteristics due to
selection bias. In contrast, our work seeks to mitigate such biases by enabling the
model to learn meaningful features from unlabelled data, allowing for more flexible
adaptation to diverse datasets. Moreover, Kather et al. [169] used a transfer learn-
ing strategy with different pre-trained networks on training a large labelled dataset,
then evaluated it on another small dataset, relying entirely on a supervised learning
task, which limits its generalisability, particularly for medical imaging tasks where
annotations are costly and scarce.

Regarding brain tumour datasets, Abiwinanda et al. [170] and Afshar et al.
[171] designed their custom CNN models from scratch, but their approaches de-
pend heavily on trial-and-error-based hyperparameter tuning, huge annotated sam-
ples, and resource consumption. Cheng et al. [172] applied data augmentation
techniques on tumour regions and used different statistical feature extraction meth-
ods, followed by SVM for classification. While these techniques can improve per-
formance, they are limited by relying on the performance of handcrafted features,
which may not fully capture the complex patterns in medical images as effectively as
CNNs. In addition, [173] used CNNs as feature extractors with different classifiers,
which may restrict the model’s ability to leverage backpropagation for faster conver-
gence and improved performance. Tazin et al. [174] compared the performance of
three pre-trained models, utilising various data augmentation techniques alongside
transfer learning to enhance accuracy. However, they did not evaluate their method
without relying on such preprocessing, leaving uncertainty about whether the im-
provements stem from the model architecture itself or the preprocessing techniques.
The results are summarised in Tables 4.7 and 4.8, demonstrating that XDecompo out-
performs previous methods by addressing their limitations in reducing dependence
on large labelled datasets and improving the generalisation.
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TABLE 4.7: Comparing the performance of several approaches and
XDecompo for classifying the CRC dataset.

Ref. Method ACC (%)
[166] | Multitask ResNet-18 95.0
[166] CNN-ResNet-50 93.60
[167] Ensemble DNN 92.83
[168] CNN-Xception 944
[169] CNN-VGGI19 94.3
[140] XDecompo 96.16

TABLE 4.8: Comparing the performance of several approaches and
XDecompo for classifying the brain tumour dataset.

Ref. Method ACC (%)
[170] 7-layered CNN 84.19
[172] BoW + SVM 91.28
[173] CNN + KELM 93.68
[174] | CNN-transfer learning 92.00
[171] CapsNet 90.89
[140] XDecompo 94.30

4.6 Visualizing Learnt Features

This section focuses on visualising the features learnt by XDecompo and other train-
ing strategies, interpreting what they represent, and making the model’s decisions
more understandable. To get insights into the decision-making process, we used the
GRAD-CAM algorithm as a post hoc explainable Al to highlight the salient features
influencing the model’s predictions and generate the final heatmap for each class of
the downstream datasets. The heatmaps overlay on the input images, highlighting
the areas that most influence the model’s prediction, making it easier to understand
why a certain prediction was made. In the heatmap, the red colour points to the
highest relevance that contributes significantly to the model’s prediction, while the
yellow colour refers to a low level of importance and is less activated than the red
colour. The blue area means there is no contribution to the model’s prediction. To
assist interpretation, black, red, and white arrows are used to point to the red, yel-
low, and blue regions, respectively. For the CRC dataset, the heatmaps for each class
of the test set are illustrated in Fig. 4.14, Fig. 4.15, and Fig. 4.16. As demonstrated,
XDecompo achieves superior localisation of relevant regions compared to the 45-DT
model, ResNet-50 pre-trained network, and DeTraC model. For example, in Fig.
4.14, XDecompo accurately detects all areas of adipose tissue (black arrows), whereas
other models miss some regions (white arrows) and focus on misleading areas (red
arrows). Likewise, in Fig. 4.15 and 4.16, XDecompo more effectively identifies the
relevant regions within the images compared to other models.

For the brain tumour dataset, Fig. 4.17, 4.18, and 4.19 display the heatmaps for
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glioma, meningioma, and pituitary tumours classes, respectively. As shown, XDe-
compo outperforms other models in accurately detecting the tumour (black arrows),
particularly in the meningioma class, while avoiding misleading regions (red ar-

TOWS).

(d) (e)

FIGURE 4.14: Visualisation of deep features for class ADI of CRC test
set images obtained by each model: a) original image, b) ResNet-50
pre-trained network, c) DeTraC, d) 45-DT, and e) XDecompo.
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FIGURE 4.15: Visualisation of deep features for class STR of CRC test
set images obtained by each model: a) original image, b) ResNet-50
pre-trained network, c¢) DeTraC, d) 45-DT, and e) XDecompo.

FIGURE 4.16: Visualisation of deep features for class TUM of CRC
test set images obtained by each model: a) original image, b) ResNet-
50 pre-trained network, c) DeTraC, d) 45-DT, and e) XDecompo.
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FIGURE 4.17: Visualisation of deep features for class glioma of brain

tumour test set images obtained by each model: a) original image,

b) ResNet-50 pre-trained network, c) DeTraC, d) 45-DT, and e) XDe-
compo.

FIGURE 4.18: Visualisation of deep features for class meningioma of

brain tumour test set images obtained by each model: a) original im-

age, b) ResNet-50 pre-trained network, c) DeTraC, d) 45-DT, and e)
XDecompo.



80

Chapter 4. 45-DT and Its Enhancement: XDecompo Model

FIGURE 4.19: Visualisation of deep features for class pituitary tu-

mours of brain tumour test set images obtained by each model: a)

original image, b) Traditional transfer learning, c¢) DeTraC, d) 45-DT,
and e) XDecompo.
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4.7 Summary

This chapter introduced our first contribution to this thesis: 45-DT and its developed
version, XDecompo, to enhance the feature transferability and improve the classifica-
tion performance of medical image datasets, particularly those with limited sample
sizes. First, we introduced the 45-DT model to improve the detection of COVID-
19 cases by using the k-means clustering algorithm to generate sub-classes for the
downstream task. While k-means is computationally efficient and well-suited for
large datasets, it is highly sensitive to initial centroid placement and outliers, which
can lead to inaccurate clustering. To address these limitations, XDecompo introduces
a non-parametric clustering algorithm that automatically determines the optimal
number of sub-classes in the downstream dataset. In XDecompo, the decomposi-
tion process is guided by the AP clustering algorithm, which automatically iden-
tifies the number of clusters without user intervention. This automated approach
is more effective for complex and heterogeneous datasets, as it helps better define
class boundaries. Consequently, the model generalises more effectively and per-
forms well on test sets. Moreover, XDecompo includes an explainable component
that highlights vital areas contributing to the model’s predictions, helping in un-
derstanding and validating its outputs. For evaluation of XDecompo, we used two
different medical image datasets: the CRC and the brain tumour datasets, which
suffer from irregular distribution within the classes. The results obtained from the
model were compared with the results of 45-DT, DeTraC models, and the traditional
transfer learning technique. The comparison showed that XDecompo outperformed
other training strategies and previous works in the field. In terms of explainable
Al, XDecompo also demonstrated its ability to provide clear visual explanations by
highlighting the most critical regions in tumour images, thus enhancing the inter-
pretability and trustworthiness of the classification results. In conclusion, the results
indicate that utilising an AP-based approach for the decomposition of downstream
datasets significantly enhances the model’s ability to capture the inherent structure
of the data. This improvement leads to more effective feature learning and superior
classification performance. The combination of automated clustering and explain-
able Al components demonstrates the potential of XDecompo as a powerful tool for
medical image analysis.

The next chapter will explore curriculum learning as another strategy for im-
proving the classification of medical image datasets, particularly those with irregu-
lar class distributions. Curriculum learning, inspired by the way humans learn, in-
volves training models with increasingly complex examples. This approach can help
models gradually adapt to difficult samples, enhancing their robustness and perfor-
mance. By investigating curriculum learning, we aim to address the challenges of
irregular distribution, providing an additional method to improve the classification
accuracy and generalisation of medical image analysis.






Chapter 5

Curriculum Learning with Class
Decomposition for Classification

In the previous chapter, we presented a detailed explanation of the 45-DT and XDe-
compo models, which form the first contribution of this thesis. These models are
introduced to enhance the classification performance of medical image datasets and
address the issue of irregular class distribution, particularly when certain classes
have limited sample sizes. Unlike the parametric nature of 45-DT, XDecompo ben-
efits from a non-parametric approach to enhance its generalisation capabilities and
generate more precise clusters. XDecompo demonstrated superior feature transfer-
ability compared to 45-DT, significantly improving classification performance on
two distinct datasets: brain tumours and colorectal cancer (CRC).

In this chapter, we introduce a novel model called CLOG-CD, designed to im-
prove generalisation and the training process by gradually increasing class complex-
ity in a structured way. This allows the model to learn more relevant features and
reduce class overlap by simplifying complex structures into smaller, more homoge-
neous groups. Findings reported in this chapter are accepted in IEEE Transactions
on Emerging Topics in Computing, 2025.

5.1 Overview

In this chapter, we introduce a novel convolutional neural network (CNN) called
CLOG-CD: Curriculum Learning based on Oscillating Granularity of Class Decom-
posed Medical Image Classification. CLOG-CD combines an anti-curriculum learn-
ing strategy with class decomposition to progressively learn and transfer discrim-
inative features across different levels of class granularity, enhancing both feature
transferability and classification performance. In addition, it mitigates the issues
of irregular distribution within classes. CLOG-CD was evaluated on four differ-
ent medical image datasets using two baseline networks. It achieved an accuracy
of 96.08% for the chest x-ray (CXR) dataset, 96.91% for the brain tumour dataset,
79.76% for the digital knee x-ray, and 99.17% for the CRC dataset with ResNet-50.
In addition, with DenseNet-121, CLOG-CD achieved 94.86%, 94.63%, 76.19%, and
99.45% for CXR, brain tumour, digital knee x-ray, and CRC datasets, respectively.
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This chapter is organised as follows: Section 5.2 provides an introduction to the
background and motivation behind the CLOG-CD model. In Section 5.3, we provide
an in-depth explanation of the CLOG-CD model. Section 5.4 outlines the experimen-
tal setup, including the datasets used, performance metrics, and a comprehensive
analysis of the results obtained by applying CLOG-CD to medical image datasets.
Section 5.5 presents the ablation study. Section 5.6 provides a discussion of the re-
sults. Finally, Section 5.7 concludes the chapter with a summary of our findings
and suggestions for future research directions, highlighting the model’s impact on
classification accuracy and training efficiency.

5.2 Introduction

Medical datasets often exhibit irregularities in data distribution and significant over-
lap between classes, posing substantial challenges to conventional classification
methods. State-of-the-art models still struggle to learn precise class boundaries,
leading to reduced performance and reliability. Therefore, there is a pressing need
for innovative training approaches that can adapt to these complexities and enhance
the robustness of classification systems. Curriculum learning (CL) provides advan-
tages over traditional deep learning strategies by structuring the training process
in a meaningful sequence, from easy-to-hard (traditional CL) or hard-to-easy tasks
(anti-CL). This ordered approach helps the model learn faster and more effectively,
leading to better generalisation. CL techniques have been introduced in various ar-
eas such as natural language processing, reinforcement learning, and different com-
puter vision tasks. Bengio et al. [21] introduced this educational technique to the
machine and deep learning fields as a way to improve model training by mimicking
students’ learning processes, beginning with concepts and moving on to more com-
plicated ones. Instead of delivering samples in random sequence as in traditional
training systems, Bengio et al. suggested that organising the model’s presentation of
training instances could be more beneficial, starting from simpler tasks or examples
and eventually progressing to more difficult ones. This strategy helps the model to
generalise more effectively in short-time training, overcome getting stuck in local
minima, and improve the performance of different computer vision tasks.

In this chapter, we introduce a novel CNN based on anti-CL combined with the
class decomposition approach to structure the learning process in a way that makes
training more effective. First, deep local features are extracted from each dataset
using the encoder layer of a convolutional autoencoder (CAE). Then, these features
are clustered using the k-means algorithm, where each original class is divided into
smaller groups, each assigned a new label that corresponds to the original class.
Finally, we adapted the anti-CL strategy with the class decomposition method for
training the downstream task, where the model begins training at the highest level
of granularity (with the maximum number of sub-classes) and gradually transitions

to lower levels. Here, the class decomposition method helps the model first learn
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specific features by simplifying the dataset’s complex structure and defining clear
boundaries between classes. This makes the learning process easier for the model to
understand relationships between examples and reduces the impact of overlapping
class distributions.

The contributions of this chapter are summarised below:

e introducing the class decomposition process as an effective strategy for en-
hancing CL in classification tasks;

¢ combining the class decomposition method with CL allows for handling the ir-
regularities and complexities within the dataset by simplifying the local struc-
ture within the classes;

¢ adopting the anti-CL strategy by initiating model training with the maximum
number of decomposed classes allows the classification task to be easier, en-
abling the model to effectively learn the most relevant features through homo-
geneous sub-classes;

e utilising anti-CL with different oscillations in class decomposition granularity
to enable the model to learn more meaningful features across different levels
of specificity within sub-classes; and

¢ conducting extensive experiments on four different medical image datasets us-
ing two baseline models, achieving better performance compared to state-of-
the-art methods.

5.3 CLOG-CD Model

In this section, we describe our CL based on the Oscillating Granularity of Class
Decomposed (CLOG-CD) Medical Image Classification model in detail. As demon-
strated in Fig. 5.1, CLOG-CD consists of three stages: a) First, deep local features
were extracted from each dataset using the encoder layer in CAE. The feature
representations from the latent space are then clustered using the k-means cluster
algorithm with k=5, forming the granularity levels for dataset decomposition. b)
The model is trained using different speed functions (i.e. 1, 2, and 4) to control the
transition between granularity levels, each speed represents the pacing at which
the model moves between different granularity levels. Slower speeds allow for
more levels of learning, while faster speeds encourage quicker transitions between
levels. ¢) In addition, we evaluated different training strategies to compare with
the performance of the CLOG-CD model: the ascending-descending order (ASG)
and the descending-ascending order with one single iteration (DEG). CLOG-CD
was evaluated over many iterations in each direction, starting from descending-
ascending order and returning towards the ascending direction. The sequence of
granularity-decomposed datasets is queued for training, starting first with the initial
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weights from a pre-trained network. After each level achieves convergence, the
learnt weights are transferred to the subsequent granularity level. Once the process
reaches the final level (whether high or low granularity), the model’s performance
is then evaluated on the test sets. As discussed in Chapter 4 Label 4.4.3, an error
correction equation was calculated to refine the decomposed clusters back to their
original form, allowing for producing the final prediction. Fig. 5.1 illustrates the
stages of CLOG-CD over multiple iterations (I) based on three different oscillation
steps of granularity decomposition and other training strategies, including the
ascending-descending strategy (ASG) and descending-ascending with one single
iteration (DEG).

Convolutional autoencoder

Oscillating granularity
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FIGURE 5.1: Architecture of the CLOG-CD model. Our model starts
with extracting deep local features from the medical image dataset
using the encoder layer of CAE. The feature representations from the
latent space are then clustered using the k-means algorithm, form-
ing different levels of decomposition granularity. Next, the model is
trained using different pacing speeds (1, 2, and 4), which control how
the model transitions between these granularity levels. The model is
evaluated using simple CL and anti-CL strategies based on a single
iteration and using both directions several times. Finally, an error cor-
rection equation is applied to refine the decomposed clusters back to
their original state, leading to the final prediction.

5.3.1 CLOG-CD Feature Extraction

In the CLOG-CD model, feature extraction is a major step that involves obtaining
deep local features from the input medical images. We used a CAE, which com-
presses the high-dimensional input data into a more compact latent space through
its encoder layer. The encoder captures critical patterns and salient features from the
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images, transforming them into feature vectors that highlight significant informa-
tion. These vectors form the basis for the granularity of the decomposition process
later. The feature vectors are then passed to a k-means clustering algorithm, which
organizes the latent space into clusters that represent different granularity levels for
dataset decomposition. The mathematical formulation of the encoder’s operation is
covered in detail in Chapter 4, Section:4.4.1.

5.3.2 Granularity of Class Decomposition

The concept of granularity of decomposition revolves around breaking down each
class in a dataset progressively into multiple sub-classes based on the k parameter,
where each level of decomposition corresponds to a specific degree of granularity.
The purpose of this is to provide the model with different levels of class complexity,
allowing the model to learn meaningful features and distinguish features between
those sub-classes from diversity decomposition levels during the training process.
Where, at the highest level of granularity, the model faces a more difficult classifica-
tion task with the maximum number of sub-classes. While at the lowest level, the
original class structure is retained.

In addition, employing the class decomposition approach simplifies this chal-
lenge by breaking down the local structure of these complex classes into smaller and
more homogeneous sub-classes, enabling the model to initially learn the most rele-
vant features between data points and making the classification task easier, before
gradually integrating this knowledge to fewer sub-classes (low granularity). There-
fore, this process allows the model to handle irregularities and complexities within
the dataset more effectively.

To construct the granularity of class decomposition for each dataset, let G de-
notes the granularity vector from the latent space, which we aim to break down into
k new datasets, each representing a specific granularity level, arranged sequentially
in decreasing order. Thus, k is expressed as k = {k,k—1,k—2,...}. For instance,
as depicted in the Fig. 5.2, when k = 4, the resulting datasets are 4,3,2,1, where
k = 1 reflects the original classes, and k = 4 implies that each class has been sub-
divided into four sub-classes. Consequently, the granularity decomposition with k
levels, ordered by descending complexity, is represented as G = {gx, gk—1,- - ,§1}-
Here, g refers to the original dataset, g; represents a dataset formed by dividing
each class into i sub-classes, and gy is the dataset derived from the highest level of
decomposition with k sub-classes. This process of decomposition can be viewed as
a hierarchical structure, where different levels of granularity represent different new
datasets.
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FIGURE 5.2: Illustration of the granularity decomposition concept
in the CLOG-CD model. It shows how the original dataset is pro-
gressively decomposed into more granular clusters: a) the original
class, and b) the newly generated datasets after applying the granu-
larity of class decomposition (e.g. k=4). During the training process,
the model transitions through these granularity levels, starting at the
higher granularity levels and moving gradually towards the lower
granularity levels.

5.3.3 Curriculum Learning Strategy and Oscillation

The CL strategy changes the learning process from feeding the entire dataset to the
ML model at once into a progressive approach by introducing data gradually, start-
ing with simpler examples and advancing to more complex ones. CLOG-CD adopted
the anti-CL strategy, where the model learns from the highest granularity level and
then moves toward lower ones. This structure promotes better learning by allowing
the model to build a foundational understanding with the help of the decomposition
mechanism before handling more challenging tasks with fewer classes. In addition,
CLOG-CD adaptive different oscillation steps to the training process that introduce a
dynamic variation in the learning sequence. By incorporating different speed func-
tions between granularity levels, the model has the ability to control how quickly or
slowly the fine-tuned techniques move between different granularity levels during
training. Where a slower speed allows the model to capture more detailed informa-
tion across various levels of granularity, whereas a faster speed encourages quicker
learning and skipping some intermediate levels.

The CL strategy involves two main critical factors that shape its implementation:
1) The score function refers to the training scheduler or a method to rank training
examples based on how difficult they are to learn. It can be determined in various
ways: manually through an expert in the domain [130], automatically using pre-
defined tasks by analysing features such as uncertainty or model loss, or dependent
measures based on the difficulty of the domain, such as the length of the text or the
size of the image [175]. It also includes the order of the training examples based on
the difficulty they are to learn, which can follow a traditional ascending order (easy-
to-hard), a random order, or a reverse order from a descending-ascending strategy
(anti-CL). 2) The pacing function, also called the speed function, defines the plan
when and how quickly to introduce more challenging examples to the model dur-
ing training. In other words, it controls how quickly the transitions between levels
occur. It can follow a fixed schedule, predefined before training, or adjust dynami-

cally based on the model’s performance.
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The objective of the CLOG-CD model is to enhance the training of the predictive
function fy : X — Y, where 0 represents the parameters being optimised during
the learning process. This is done by progressively learning a sequence of mod-
els, denoted as (fy,, ..., fo, ), each gaining knowledge from prior stages. The scoring
function S(x;, y;), which organises the data starting from the complexity task, can
be defined as S(x;,y;) > S(x;,y;),VS : X — R. Where the data point S(x;,y;) is
considered more difficult than S(xj,y;). To facilitate training, the model employs
mini-batches (MB) using stochastic gradient descent (SGD). These mini-batches are
represented as MB = {Bjy, By, ...By }, where MB C X and M is the number of mini-
batches. For each mini-batch B; and a subset Xj, the pacing function Py (i) can be de-
fined as: Py(i) = |Xi|. Where Xj = {X{, X3, ...., Xy1} represents the samples within
the mini-batch B;, sorted by the complexity given by the scoring function. This ap-
proach ensures that the model begins with more complex data and gradually moves
to simpler examples, allowing for more adaptive learning across different levels of
data difficulty.

In this study, we evaluated the CLOG-CD model using three different oscillation
step sizes denoted as A\, where A = (1,2,4), to examine how varying pacing strate-
gies influence the model’s learning performance at different levels () of granularity
G. Each step size defines the speed at which the model transitions between differ-
ent decomposition levels, providing valuable insights into how the transfer of prior
knowledge affects classification accuracy and the model’s capacity to generalise on
unseen test data. In more detail, when the speed is set to A = 1, the model pro-
gresses through each granularity level sequentially, starting training at the highest
granularity level g5, and gradually reducing complexity by transitioning to g4, g3, g2,
and finally g;. While at the speed A = 2, the model skips some levels, moving di-
rectly from gs to g3, then moves to g;. This faster pacing could risk losing beneficial
features and details, but still allows the model to gain insights from both highly de-
tailed and more general representations of the data. Finally, with A = 4, the model
rapidly transitions from g5 to g1. This fast transition reduces the time and focuses on
training from the most detailed and the most general levels without spending time
on intermediate granularity.

Moreover, we evaluated the effectiveness of the CLOG-CD model using a tradi-
tional CL strategy, where training begins at the lowest granularity level g; and pro-
gresses towards the most challenging level g. We donated B as a directional param-
eter of the training process, p = {0,1}, where = 0 corresponds to the descending
direction (anti-CL strategy) and = 1 refers to the ascending direction (traditional
CL). Algorithm 3 provides a detailed description of the process of CLOG-CD based
on different oscillating steps of granularity decomposition levels.



90 Chapter 5. CLOG-CD Model

Algorithm 3: CLOG-CD Model

1 Input: Unlabelled samples, labelled dataset, AA: oscillation step, B: training
direction, k: cluster component, I: number of iterations.

N

Output: G: new datasets generated by using the class decomposition
method, prediction output.

»

Granularity of Class Decomposition:

4 Use CAE for training unlabelled samples.
5 Extract features from the latent representation.
6 Use k-means to generate G in descending order.

7 G:{gk/gkfli"' /gl}
Training CLOG-CD on one direction:

9 Training with (A =1, B = 0).
10 if process = ASG then

@

11 t Arrange G in ascending order.

12 foriin G do

13 if i =1 then

14 t w' <+ Initial training (pre-trained network, G[i]).
15 W: the best learned weights.

16 | Training the model (W, G[i]).

17 Evaluate the performance.

18 Training CLOG-CD based on both directions:

19 Training with (A = [1,2,4], = 1).

20 w' < initial training (pre-trained network, gx)

21 I =0

22 while I < n do

23 I=1+1

24 foriin G do

25 W: Transfer w’ only at I=1.

26 G < Descending order.

27 Training the model (W, G[i]).
28 W: the best learned weights.
29 Evaluate on the test set.

30 I=1+1

31 foriin G do

32 G < Ascending order.

33 Training the model (W, G[i]).
34 W: the best learned weights.
35 Evaluate on the test set.

36 Select the best performance among I,.
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5.4 Experimental Study

In this section, we present a comprehensive experimental study and describe the
datasets used to evaluate our model. We conducted experiments with varying os-
cillation speeds: A =1, A =2, and A = 4, to assess how the model’s progression
through different granularity levels influenced its generalisation ability. These pro-
cesses were named “CLOG-CD (A = 1)”, “CLOG-CD (A = 2)”, and “CLOG-CD
(A = 4)”. The model starts training at the highest granularity level, descending to-
ward the lowest level, and then returning to the highest. This was repeated in both
directions for 20 iterations with ResNet-50 and 10 with DenseNet-121. Additionally,
this section includes comparisons with other training strategies: (1) transfer learning
with fine-tuning, (2) an ascending-descending CL strategy “CLOG-CD(ASG)”, and
(3) an anti-CL strategy “CLOG-CD(DEG)”. Finally, we evaluated the model’s effec-
tiveness before and after applying data augmentation techniques to demonstrate its
ability to generalise well from the original dataset features and structures.

5.4.1 Datasets Used

In this study, we used four different medical image datasets to evaluate CLOG-CD
both before and after applying data augmentation techniques. We used the labelled
datasets described in Chapter 1, Section 1.7. Each dataset was randomly divided into
three sets: 70% for the training set, 20% for the validation set, and 10% for the test
set, which was used for evaluating the performance. For brain tumour dataset, 615
images were reserved as a test set, and 2,449 was increased to 34,286 after applying
several augmentation processes. Similarly, for the CRC dataset, we have used the
whole 7,180 images of the dataset, which are divided into nine classes, see Fig. 5.3.
723 images were dedicated as a test set, and the rest of the data was augmented
to 48,630. The third dataset we used is the CXR dataset, containing 21,165 images
divided into classes (3,616 COVID-19, 6,012 Lung-Opacity, 10,192 Normal, and 1,345
Viral Pneumonia), see Fig. 5.4. 2,119 images were dedicated to the test set, and
the rest of the images were increased to 57,156 images. Finally, the digital knee
dataset includes five classes with 1,650 MRI images. 168 images were reserved for
the testing set, and the rest of the images were expanded to 50,748 through different
augmentation processes. Fig. 5.5 shows examples of the dataset used.

5.4.2 Hyperparameter Settings

For feature extractions from the downstream dataset, we designed a CAE model
with two convolutional layers, and a kernel size was set to 3 x 3, utilising the ReLU
activation function. For the CRC and knee x-ray datasets, the first layer contained 32
filters, while the second had 16. For the CXR and brain tumour datasets, the first and
second layers were configured with 16 and 8 filters, respectively. The models were

trained using the Adam optimiser with a learning rate of 0.001, across 50 epochs,
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FIGURE 5.3: Example patch images from the CRC-VAL-HE-7K col-
orectal cancer test set used in our experiment: a) ADI, b) BACK, c¢)
DEB, d) LYM, e) MUC, f) MUS, g) NORM, h) STR, i) TUM.

(b) (© @

FIGURE 5.4: Example images from CXR test set: a) COVID-19, b)
Lung-Opacity, c) Normal, d) Viral Pneumonia.

(@) (b)
FIGURE 5.5: Example images from the digital knee x-ray images test
set: a) Normal, b) Doubtful, c) Mild, d) Moderate, e) Severe.

and a mini-batch size of 50. The feature representations from the latent space were
then input into the k-means clustering algorithm to create decomposition granular-
ity clusters with k = 5. This process generated four new datasets with sub-classes
corresponding to the original class labels, in addition to the original dataset.
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For the training CLOG-CD model, we used ResNet-50 and DenseNet-121 archi-
tectures as the backbones for initial training weights. The choice of these networks
is due to their effectiveness in complex image classification tasks. Where ResNet-
50 incorporates skip connection layers to prevent vanishing gradients, allowing for
deeper networks to be trained effectively. Similarly, DenseNet-121 employs dense
connections that enhance gradient flow and reduce the number of parameters, mak-
ing feature extraction more efficient.

The input layer of these pre-trained networks accepts image size 224 x 224 pixels,
so we decided to resize all images of the datasets to 224 x 224 pixels to be compatible
with the pre-trained networks, and we used a bi-linear interpolation technique for
the resizing process, which is commonly used in image processing to maintain image
quality, critical features and minimise artifacts.

The models were trained based on the deep-tuning strategy for 50 epochs with
a mini-batch size of 50, with a cross-entropy loss function and mini-batch stochastic
gradient descent (mSGD) as an optimizer. To prevent overfitting, we used the regu-
larisation technique L2 with a value of 0.001 for CXR, brain tumour, and knee x-ray,
and 0.0001 for the CRC dataset. The parameter settings for training each dataset are
reported in Table 5.1. The learning rate for the last fully connected layer was set to
0.01, and the output layer was modified to match the number of classes in each new
dataset.

TABLE 5.1: CLOG-CD: Experimental hyperparameter settings for
each dataset.

ResNet-50 DenseNet-121

Dataset Learning rate Learning rate-decay | Learning rate Learning rate-decay

CXR 0.001 0.85 every 10 epochs 0.001 0.80 every 15 epochs
Brain tumour 0.0001 0.9 every 10 epochs 0.001 0.80 every 10 epochs
Knee x-ray 0.001 0.90 every 15 epochs 0.0001 0.85 every 10 epochs
CRC 0.0001 0.95 every 15 epochs 0.001 0.90 every 15 epochs

5.4.3 Performance Evaluation

We adopt accuracy, precision, recall, and F1l-score, which were defined in Section
4.3.5. In addition, we computed the 95% confidence interval (CI) using the t-test
over I iterations for each dataset to provide a robust evaluation of our model’s per-
formance, where I = 20 for ResNet-50 and I = 10 for DenseNet-121 [176]. For each
iteration, we calculated the accuracy of the model and then computed the CI around
the mean accuracy to account for variability in performance. The t-score is used in
hypothesis testing to assess the reliability of sample-based estimates, ensuring a sta-
tistically sound evaluation of our model’s performance over multiple iterations. The
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confidence interval based on the t-test is calculated using the following formula:

s
Cl=%x+t— 5.1
N7 (5.1)
where X is the sample mean, t is the critical value from the t distribution, s is the

sample standard deviation, and # is the sample size.

5.4.4 Performance of CLOG-CD

We evaluated the performance of CLOG-CD based on three different oscillation steps
using two different ImageNet pre-trained networks (ResNet-50 and DenseNet-121)
for classifying the test set of each dataset. Table 5.2 and Table 5.3 summarise the clas-
sification performance of CLOG-CD using ResNet-50 and DenseNet-121 networks,
respectively. It can be noticed that CLOG-CD (A = 1) has the highest overall classifi-
cation on the test sets for each dataset. In addition, we can see that, the performance
of CLOG-CD (A = 1) without using augmentation has also achieved the highest
performance on all the datasets compared to other values of speed step.

The confidence intervals of CLOG-CD based on different oscillation steps are pre-
sented in Table 5.4 and Table 5.5. The results indicate that CLOG-CD (A = 1) pro-
vides a more consistent confidence interval compared to other strategies.

In addition, we conducted a statistical significance analysis using the Wilcoxon
signed-rank test at 0.05 to evaluate the impact of different oscillation steps in the
CLOG-CD model. The analysis was conducted on all four datasets using two base-
line networks: ResNet-50 and DenseNet-121. With ResNet-50, the p-values on the
CXR dataset were 0.0412 (A = 1vs. A = 2) and 0.0047 (A = 1vs. A = 4). For
the brain tumour dataset, the corresponding p-values were 0.0160 and 0.0240; for the
digital knee x-ray dataset, 0.00028 and 0.00035; and for the CRC dataset, 0.0220 and
0.0096. Similarly, using DenseNet-121, the p-values on the CXR dataset were 0.0322
(A =1vs. A = 2)and 0.0039 (A = 1vs. A = 4). For the brain tumour dataset,
the p-values were 0.0019 and 0.00097; for the digital knee x-ray dataset, 0.0322 and
0.0029; and for the CRC dataset, 0.00091 and 0.00097, respectively. These findings
confirm that adopting a single speed (A = 1) in CLOG-CD consistently leads to
statistically significant improvements over the other oscillation steps.



5.4. Experimental Study 95
TABLE 5.2: classification performance of CLOG-CD based on different
oscillating steps using the baseline (ResNet-50) for all the datasets.

CLOG-CD (A = 1) CLOG-CD (A = 2) CLOG-CD (A = 4)

Dataset ACC PR RE Fl1 |[ACC PR RE F1 |[ACC PR RE F1

(o) (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) (%)

CXR 96.08 97.16 96.71 96.94|95.66 96.63 96.30 96.46 |94.86 95.72 95.16 95.44
brain tumour [96.91 96.86 96.32 96.59 |96.75 96.36 96.44 96.40|95.12 94.69 94.75 94.73
digital knee x-ray |79.76 81.60 78.80 80.18 |76.19 77.31 75.65 76.47|72.02 74.51 69.05 71.68
CRC dataset {99.17 99.12 98.99 99.06 |98.34 98.34 98.06 98.20|98.34 98.11 98.05 98.08

Without data augmentation techniques
CXR 93.58 94.55 94.38 94.47|88.01 88.60 88.48 88.54|87.54 87.52 87.61 87.57
brain tumour |90.73 89.40 89.84 89.62|87.97 86.45 86.11 86.28|84.88 82.89 83.20 83.04
digital knee x-ray | 67.85 69.38 64.40 66.80|65.47 62.59 57.23 59.79|63.69 61.79 56.32 58.93
CRC dataset |88.52 88.51 88.28 88.39|87.28 79.50 82.80 81.16|83.26 80.73 81.88 81.30
TABLE 5.3: classification performance of CLOG-CD based on dif-
ferent oscillating steps using the baseline (DenseNet-121) for all the
datasets.
CLOG-CD (A = 1) CLOG-CD (A = 2) CLOG-CD(A = 4)

Dataset ACC PR RE Fl1 |[ACC PR RE F1 |[ACC PR RE F1

%) (%) (L) (%) | (%) (%) (%) (%) | (%) (R) (%) (%)

CXR 94.86 96.10 95.43 95.76 |93.44 94.94 91.33 93.10|91.27 94.00 90.09 92.00
brain tumour |94.63 93.91 93.99 93.95|92.85 92.45 91.65 92.05|91.87 90.91 90.55 90.73
digital knee x-ray |76.19 75.59 76.79 76.19|73.21 73.01 73.10 73.05|72.02 74.81 71.78 73.23
CRC dataset [99.45 99.57 99.40 99.49 |98.34 98.22 97.76 97.99|97.51 97.66 96.29 96.97

Without data augmentation techniques

CXR 89.29 90.47 87.44 88.93 |84.57 83.98 84.31 84.15|82.30 78.05 77.90 77.98
brain tumour |91.87 90.67 90.53 90.60 |86.99 85.26 85.40 85.32(85.37 83.47 83.13 83.30
digital knee x-ray | 67.26 67.15 64.14 65.61|60.11 61.19 58.06 59.59 |55.95 57.05 53.09 55.00
CRC dataset |92.25 91.19 89.60 90.39|89.76 87.45 84.82 86.11|89.63 86.95 86.55 86.51
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TABLE 5.4: Confidence intervals at 95% for CLOG-CD based on dif-
ferent oscillating steps with baseline ResNet-50

Dataset CLOG-CD (A =1) | CLOG-CD (A =2) | CLOG-CD(A = 4)
CXR (94.42% and 95.31%) | (94.08% and 94.85%) | (93.92% and 94.41%)
brain tumour | (94.09% and 95.69%) | (91.00% and 94.16%) | (90.19% and 93.08%)
digital knee x-ray | (74.42% and 77.90%) | (69.66% and 73.61%) | (64.78% and 67.99%)
CRC (84.65% and 95.34%) | (83.74% and 93.22%) | (79.69% and 91.41%)

TABLE 5.5: Confidence intervals at 95% for CLOG-CD based on dif-
ferent oscillating steps with denseNet-121.

Dataset CLOG-CD (A =1) |CLOG-CD (A =2)|CLOG-CD(A = 4)
CXR (88.08 and 92.56) (86.79 and 90.83) | (80.29 and 87.06)

brain tumour (84.07 and 91.35) (76.47 and 90.30) | (73.04 and 88.72)
digital knee x-ray | (69.08 and 75.21) (68.71 and 72.23) | (67.44 and 70.79)
CRC (96.77% and 99.77%) | (94.17 and 98.01) | (87.08 and 96.49)
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5.5 Ablation Study

The ablation studies are performed to assess the influence of each component in
CLOG-CD. We investigated the performance of CLOG-CD with two different strate-
gies: (1) traditional CL strategy, we called this process (ASG), where A = 1 and
B = 0. In this process, the model starts training at the lowest granularity level (g1)
with original classes, and the convergence weights are fine-tuned progressively to
the next higher level (g4) until reaching the highest level of granularity (g5) where
the maximum number of sub-classes. After one iteration, the overall classification
performance is evaluated on the test set. (2) CLOG-CD model based on anti-CL
strategy, called DEG, where A = 1 and = 1. The model is trained in one iteration
loop, starting at the highest granularity level (g5) and gradually the learnt weights
are transformed to the next level, until reaching the easiest level (g1). At the end
of this process, the overall classification performance was evaluated on the test set
of each dataset. Table 5.6 and Table 5.7 summarise the obtained results from tradi-
tional transfer learning and the ASG process. As shown, when augmentation was
applied, the ASG model outperformed the traditional transfer learning method on
the digital knee X-ray dataset. Specifically, with ResNet-50, the ASG model achieved
69.05% for ACC, 67.61% for PR, 69.19% for RE, and 68.39% for the Fl-score. When
using DenseNet-121, it also yielded better performance, reaching 61.90% for ACC,
60.51% for PR, 57.44% for RE, and 58.94% for the Fl-score. Similarly, without using
AUG, the ASG process still demonstrated higher accuracy than the traditional trans-
fer learning method on the knee dataset. However, for the other datasets, the ASG
approach performed slightly lower than traditional transfer learning strategies. On
the other hand, Table 5.8 shows the performance of the DEG process on the test sets
for all the datasets. The DEG model achieved a notable improvement in classifica-
tion accuracy, particularly with ResNet-50 on the CXR and brain tumour datasets.
Furthermore, it outperformed both the ASG model and traditional training methods
across all datasets when using DenseNet-121.

The confusion matrices for CLOG-CD and other training strategies using ResNet-
50 are shown in Fig. 5.6, Fig. 5.7, Fig. 5.8, and Fig. 5.9 for the CXR, brain tumour,
digital knee X-ray, and CRC datasets, respectively. Similarly, Fig. 5.10, Fig. 5.11, Fig.
5.12, and Fig. 5.13 present the confusion matrices using DenseNet-121 for the same

datasets.

Table 5.9 provides a summary of the results obtained from all the evaluated mod-
els using both ResNet-50 and DenseNet-121. The results clearly demonstrate that
CLOG-CD outperforms other training methods in terms of accuracy. This highlights
the effectiveness of combining curriculum learning with class decomposition to im-
prove generalisation and handle irregular data distributions. Moreover, Table 5.10
shows the statistical significance results p-values of the CLOG-CD model (A = 1)

compared to other models on all datasets.
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TABLE 5.6: Classification performance of the traditional transfer
learning on test sets of all image datasets, using ResNet-50 and
DenseNet-121 as baseline networks.

Traditional training (ResNet-50) | Traditional training (DenseNet-121)
Dataset ACC PR RE F1 ACC PR RE F1
() (%) (%) (%) (%) (%) (%) (%)
CXR 91.65 93.82 91.99 92.90 88.72 90.84 87.79 89.29
brain tumour | 90.89 89.71 89.83 89.77 86.99 86.86 83.32 85.05
digital knee x-ray | 63.69 61.36 62.72 62.03 60.12 58.29 62.14 60.15
CRC dataset |97.28 92.66 91.06 91.85 98.20 97.99 97.87 97.93

Without data augmentation techniques

CXR 89.76 90.81 89.67 90.24 84.38 85.89 82.66 84.24
brain tumour |66.99 69.35 59.26 63.91 66.34 61.78 56.55 59.05
digital knee x-ray | 35.12 33.84 35.07 34.44 39.29 44.09 33.66 38.18
CRC dataset |80.50 78.02 76.37 77.22 78.56 71.64 71.65 70.21

TABLE 5.7: Classification performance of the (ASG) process on test
sets of all image datasets, using ResNet-50 and DenseNet-121 as base-
line networks.

brain tumour

digital knee x-ray

77.56 75.62 71.19 73.33
69.05 67.61 69.19 68.39

ASG (ResNet-50) ASG(DenseNet-121)

Dataset ACC PR RE F1 [ACC PR RE F1
(%) (%) (%) (%) | (o) (%) (%) (%)

CXR 89.52 90.53 89.06 89.79|86.74 88.35 83.81 86.02

72.03 70.59 68.34 69.45
61.90 60.51 57.44 58.94

brain tumour
digital knee x-ray
CRC dataset

69.11 63.95 62.68 63.31
58.93 59.22 58.72 58.97
7247 65.83 65.02 65.42

CRC dataset  |97.37 94.46 95.75 96.60|96.13 94.97 94.23 94.60
Without data augmentation techniques
CXR 88.44 90.13 87.05 88.56|82.16 84.88 73.31 78.67

63.25 56.19 56.91 56.55
44.64 39.12 35.51 37.23
69.16 63.24 60.84 62.02
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TABLE 5.8: Classification performance of the (DEG) process on test
sets of all image datasets, using ResNet-50 and DenseNet-121 as base-

line networks.

Dataset DEG (ResNet-50) DEG (DenseNet-121)
ACC PR RE F1 [ACC PR RE F1
() (%) (%) (%) | (%) (%) (%) (%)
CXR 93.16 94.84 94.18 94.51|91.69 88.28 93.76 90.94

brain tumour

digital knee x-ray

92.20 91.43 91.64 91.54
64.88 67.62 65.66 66.62

91.71 90.43 91.31 90.87
70.24 73.08 69.84 71.42

CRC dataset |97.78 93.57 92.54 93.05|98.89 98.83 98.64 98.74
Without data augmentation techniques
CXR 89.75 90.81 89.67 90.24 (86.46 87.82 85.77 86.78

brain tumour
digital knee x-ray
CRC dataset

83.45 81.46 82.25 81.85
56.54 56.78 50.26 53.31
85.20 84.09 82.36 83.22

81.63 80.17 77.19 78.65
61.31 61.11 59.60 60.34
87.83 83.90 84.35 84.13

TABLE 5.9: Overall performance comparison of all models across the
four datasets using ResNet-50 and DenseNet-121 backbones.

Method

dataset using ResNet-50
CXR' brain tumour digital knee x-ray CRC

CXR brain tumour digital knee x-ray CRC

dataset using DenseNet-121

ASG model
DEG model

Traditional learning

CLOG-CD(A = 1)

91.65 90.89 63.69 97.28
89.52 77.56 69.05 97.37
93.16 92.20 64.88 97.78
96.08 96.91 79.76 99.17

88.72 86.99 60.12
86.74 72.03 61.90
91.69 91.71 70.24
94.86 94.63 76.19

98.20
96.13
98.89
99.45

TABLE 5.10: Statistical significance p-values of CLOG-CD (A = 1)
compared with traditional transfer learning, ASG, and DEG models

on all datasets using ResNet-50 and DenseNet-121 backbones.

Dataset CLOG-CD vs DenseNet-121 Backbone
Name Traditional learning ASG  DEG | vs Traditional learning vs ASG vs DEG
CXR 0.00093 0.0091 0.00097 0.00127 0.00121  0.0013
brain tumour 0.0185 0.0121 0.0322 0.0103 0.0294  0.0270
Knee x-ray 0.0097 0.0082  0.0093 0.0091 0.0093  0.0092
CRC 0.0019 0.0019 0.0319 0.0029 00164  0.0024
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FIGURE 5.6: The confusion matrix results of the CXR dataset obtained
by: a) ResNet-50 baseline, b) ASG, C) DEG, d) CLOG-CD(A = 1), e)
CLOG-CD(A = 2), and f) CLOG-CD(A = 4).
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FIGURE 5.7: The confusion matrix results of the brain tumour dataset
obtained by: a) ResNet-50 baseline, b) ASG, C) DEG, d) CLOG-
CD(A =1),e) CLOG-CD(A = 2), and f) CLOG-CD(A = 4).



5.5. Ablation Study 101

Normal 3 0 1 Normal 0 1 Normal 1 1 1
Doubtful 6 0 7 Doubtful 1 2 Doubtful 4 1 5
© © o
& & s
° Mild{ 1 4 10 6 3 ° Mild { 3 2 © Mildy 3 1 14 3 3
2 2 2
Moderate; 2 1 0 14 6 Moderate{ O 1 2 15 5 Moderate; 2 2 0 14 5
Severe{ O 1 0 3 17 Severe{ O 1 1 1 18 Severe| 0 0 1 2 18
> N o 4 > > WO o @ > > QO 2 4
>
&£ L & 0«7’& & & Q‘&\' & z«’;' & & 0‘50 N ?5’5& &
NP & & * & S & S
Q X Q K Q ©
predicted label predicted label predicted label
(@) (b) (©)
Normal Normal Normal 3 0 1 0
Doubtful Doubtful Doubtful{ 15 2 0 1
© © o
& 8 &
° Mild © Mild ° Mild{ 5 3 15 1 0
=] =] =3
s =] =]
Moderate Moderate Moderate] 1 3 3 13 3
Severe Severe Severei 1 2 3 0 15
2 D O o @
S S s 566 = %@& &
<~ <~ SR L o
predicted label predicted label predicted label
()] (e) ®
FIGURE 5.8: The confusion matrix results of the digital knee x-ray
obtained by: a) ResNet-50 baseline, b) ASG, C) DEG, d) CLOG-
CD(A = 1), e) CLOG-CD(A\ = 2), and f) CLOG-CD(A = 4).
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FIGURE 5.9: The confusion matrix results of the CRC dataset obtained
by: a) ResNet-50 baseline, b) ASG, C) DEG, d) CLOG-CD(A = 1), e)
CLOG-CD(A = 2),and f) CLOG-CD(A = 4).
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FIGURE 5.10: The confusion matrix results of the CXR dataset ob-
tained by: a) DenseNet-121 baseline, b) ASG, C) DEG, d) CLOG-
CD(A =1),e) CLOG-CD(A = 2), and f) CLOG-CD(A = 4).
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FIGURE 5.11: The confusion matrix results of the brain tumour
dataset obtained by: a) DenseNet-121 baseline, b) ASG, C) DEG, d)
CLOG-CD(A = 1), e) CLOG-CD(A = 2), and f) CLOG-CD(A = 4).
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FIGURE 5.12: The confusion matrix results of the digital knee x-ray
obtained by: a) DenseNet-121 baseline, b) ASG, C) DEG, d) CLOG-
CD(A = 1), e) CLOG-CD(A\ = 2), and f) CLOG-CD(A = 4).
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FIGURE 5.13: The confusion matrix results of the CRC dataset ob-
tained by: a) DenseNet-121 baseline, b) ASG, C) DEG, d) CLOG-
CD(A =1),e) CLOG-CD(A = 2), and f) CLOG-CD(A = 4).
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5.5.1 Comparison with State-of-the-art Methods

The obtained results in this study were compared with other works that achieved
successful results in the field, such as DCLU [177] and curriculum learning with
the prior uncertainty method [131]. DCLU introduces a novel CL strategy based on
uncertainty estimation to dynamically adapt training to the difficulty of data sam-
ples. Jiménez-Sanchez et al. [131] introduce three curriculum strategies: weighting,
reordering, and sampling training data, guided by two scoring functions based on
domain-specific knowledge and leveraging dynamic uncertainty. The datasets used
in the comparison were evaluated without applying the augmentation technique.
For the DCLU model, the reported classification accuracies were 88.44%, 90.20%,
49.40%, and 91.84% on the CXR, brain tumour, digital knee x-ray, and CRC datasets,
respectively. from Table 5.2, our CLOG-CD(A = 1) model outperformed DCLU on
the CXR, brain tumour, and digital knee x-ray datasets. For the CRC dataset, our
model with ResNet-50 achieved an accuracy of 88.52%, lower than DCLU’s perfor-
mance. However, when using DenseNet-121, CLOG-CD surpassed DCLU with an
accuracy of 92.25%, see Table 5.3. In addition, we compared our results with the
prior uncertainty method [131]. The model achieved 61.11%, 51.38%, 40.00%, and
65.28% on CXR, brain tumour, digital knee x-ray, and CRC datasets, which are lower
than the performance of our CLOG-CD(A = 1) model, see Table 5.2 and Table 5.3.

Moreover, comparisons with prior studies that used the same datasets under
different experimental setups highlight the effectiveness of the CLOG-CD method.
For instance, in CXR classification, our CLOG-CD process (with A = 1) achieved
96.08% accuracy, outperforming models such as CNN-DenseNet201 (95.11%) [29],
CNN-LSTM (94.50%) [178], and CoroDet (94.20%) [179]. In brain tumour classifi-
cation, our model attained a high accuracy of 96.91%, exceeding other techniques
like CNN-MobileNetV2 (92.00%) [180], Genetic Algorithm (94.34%) [181], 7-layered
CNN (84.19%) [170], and XDecompo (94.30%) [140]. On the digital knee x-ray dataset,
our model achieved an accuracy of 79.76%, outperforming CNN-ResNet-50 (64.58%)
[182], CNN-VGG-19 (69.70%) [183], and CNN-LSTM (75.28%) [184]. Finally, on the
CRC dataset, CLOG-CD(A = 1) achieved the highest accuracy of 99.17%, surpass-
ing ICAL [185] with 94.07%, multi-class texture with CL [169] with 94.3%, and the
multi-task ResNet-50 model [166] with 95.0%.

5.6 Discussion of Results

This section discusses the outcomes from all the evaluated models, including the
effectiveness of the proposed CLOG-CD model under different oscillation steps, as
well as a comparison with other training strategies. We first evaluated CLOG-CD us-
ing three different oscillation steps to investigate how varying pacing strategies in-
fluence the model’s performance across different levels of granularity. Each step size
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controls how quickly the model transitions between decomposition levels, provid-
ing valuable insights into how the transfer of prior knowledge affects classification
accuracy and the model’s capacity to generalise on unseen test data.

As shown in Table 5.2 and Table 5.3, the results consistently show that the slower
pacing strategy (A = 1) outperformed both A = 2 and A = 4 across all datasets.
The results also indicate that A = 2 yields better outcomes than A = 4. The superior
performance of a slower speed step (i.e. 1) comes from the model spending more
time to learn relevant features and capture more detailed information at each level
of granularity. Where the model starts training at the highest level of granularity
and gradually moves to lower levels, refining its understanding step by step. With
(A = 2), the model skips some levels, moving directly from g5 to ¢3, and then
moves to g1. This faster pacing could risk losing beneficial features and details, but
still allows the model to gain insights from both highly detailed and more general
representations of the data. On the other hand, the fastest speed component (A = 4)
encourages quicker transitions between levels, potentially saving training time but
at the cost of skipping important feature refinement stages.

Regarding other training strategies, CLOG-CD also outperforms traditional
transfer learning, ASG, and DEG models. The ASG model, which starts training at
the lowest granularity (original classes) and progresses to higher granularity (max-
imum number of sub-classes), shows lower performance. This may be due to the
model’s initial struggle to extract meaningful features from complex data without
prior structure. Conversely, the DEG model, which starts from more specific sub-
classes and gradually moves to a more complex structure, shows better performance
than ASG. This is due to the class decomposition method, which simplifies the com-
plex pattern by dividing each class into more homogeneous sub-classes, allowing
the model to first learn specific features before moving to more generic ones. Finally,
the traditional training strategy introduces samples in a random order, which might
cause noisy or complex samples to be presented early. This can make it difficult for
the model to learn complex patterns and, as a result, slow down convergence.

5.7 Summary

In this chapter, we introduced a novel CNN based on the anti-CL strategy and
the class decomposition approach, called Curriculum Learning based on Oscillating
Granularity of Class Decomposed (CLOG-CD) model. This model aims to improve
the classification performance of medical image datasets and address irregular class
distributions. CLOG-CD was designed to simplify the challenges of multi-class clas-
sification tasks by applying anti-CL with different levels of granularity. In addi-
tion, CLOG-CD allows the model to handle irregularities and complexities within
the dataset, leading to more robust performance and generalisation.

This approach starts by training the model on the most complex classification
task, where each class is broken down into the maximum number of sub-classes.
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Once the model achieves stability and convergence at a given granularity level, it
gradually transitions to simpler tasks, where the dataset contains fewer sub-classes.
Here, the class decomposition method plays a crucial role in simplifying challenging
classification tasks by understanding the boundaries between sub-classes, helping
the model focus on the most relevant features. Furthermore, the CLOG-CD model
incorporates an oscillation component that controls the rate of transition between
granularity levels, ensuring an adaptive and efficient learning process. The findings
proved that using a single-speed transition (A = 1) is more robust and capable of
improving the classification performance compared to other oscillation steps (A = 2
and A = 4). where a gradual transition between different levels of granularity
allows the model to efficiently learn from each level and generalise better across all
levels of granularity, even without introducing augmented data.

CLOG-CD was evaluated on four different medical image datasets using two
baseline networks, ResNet-50 and DenseNet-121, demonstrating its superiority
over traditional fine-tuning with ImageNet pre-trained networks and other training
strategies. CLOG-CD has achieved high accuracy with ResNet-50, recording 96.08%
for the CXR dataset, 96.91% for the brain tumour dataset, 79.76% for the digital knee
x-ray, and 99.17% for the CRC dataset. Similarly, with DenseNet-121, the model
achieved 94.86%, 94.63%, 76.19%, and 99.45% for CXR, brain tumour, digital knee
x-ray, and CRC datasets, respectively, and outperformed other state-of-the-art mod-
els. CLOG-CD is considered the first attempt to combine CL strategy with the class
decomposition method to enhance feature transferability and increase the generalis-
ability of deep learning models, especially when dealing with complex and irregu-
lar image datasets. Consequently, CLOG-CD can be integrated with other methods,
making it highly efficient.

In the next chapter, we introduce Curriculum Learning and Progressive Self-
supervised Training (CURVETE) to enhance the feature representations acquired
from the pretext task, thereby improving performance on new tasks. CURVETE
employs a CL strategy during the training of the pretext model using generic
unlabelled samples. This approach encourages a more effective training process
that facilitates the learning of rich and meaningful representations, leading to faster

convergence and improved performance in downstream tasks.



Chapter 6

Curriculum Learning and
Progressive Self-supervised

Training

In the last chapter, we explained in detail CLOG-CD for improving the training pro-
cess and the model’s performance as the second contribution of the thesis. CLOG-
CD integrates the anti-curriculum learning strategy with the class decomposition
method to boost convergence and improve the classification performance of down-
stream tasks. In addition, it has the ability to handle the overlapping within classes,
which is common in the medical image dataset.

In this chapter, we introduce a self-supervised learning (SSL) model that lever-
ages a curriculum learning (CL) strategy to enhance the training of unlabelled sam-
ples through sample decomposition. This approach aims to improve the effective-
ness of self-supervised learning by extracting meaningful features across a broad
range of solutions, thereby enhancing feature transferability to new tasks. Addition-
ally, the model utilises CL guided by class decomposition (CD) in the downstream
task to improve classification performance and overcome the impact of irregular
class distributions. Findings reported in this chapter are under review in ICONIP
2025.

6.1 Overview

In this chapter, we develop a self-supervised pre-trained model that utilises a CL-
based sample decomposition method for training a large set of unlabelled samples.
This strategy helps the model identify complex feature representations within the
data and enhances the feature transferability of the downstream data. In addition,
by adopting different granularities of decomposition, the optimiser has more room
to explore a diverse range of potential solutions and recognise meaningful patterns
within the data. As a result, the model improves its ability to generalise and in-
creases the classification performance. CURVETE has been evaluated on three medi-
cal image datasets: brain tumour, digital knee x-ray, and Mini-DDSM, using two dif-

ferent pre-trained networks. It achieved accuracies of 96.60% on the brain tumour
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dataset, 75.60% on the digital knee x-ray dataset, and 93.35% on the Mini-DDSM
dataset using the baseline ResNet-50. Furthermore, the classification performance
with the baseline DenseNet-121 achieved accuracies of 95.77%, 80.36%, and 93.22%
on the brain tumour, digital knee x-ray, and Mini-DDSM datasets, respectively, out-
performing other training strategies.

The chapter is structured as follows: in Section 6.2, we give an introduction about
the background and the developed work. Section 6.3 illustrates, in detail, the frame-
work of our method. Section 6.4 discusses our experimental results and findings.

Section 6.5 summarises our work.

6.2 Introduction

In medical image analysis, acquiring well-annotated samples is a major concern due
to their limited availability and the high expense of annotation. Although transfer
learning offers a promising solution, it frequently faces difficulties when there is a
large domain difference between natural scenes in ImageNet and medical images,
which leads to limited transferability. For example, in [186], the experimental work
demonstrated that using a pre-training network to detect lymph node metastases in
pathology images can increase convergence speed but does not enhance the perfor-
mance of the transferred features. Moreover, Bau et al. [187] proved that the effec-
tiveness of feature representations obtained through transfer learning relies on how
well these representations align with the requirements of the downstream task. This
is where SSL comes in as a powerful alternative tool. SSL is similar to transfer learn-
ing in that both approaches use an auxiliary pretext task to learn representations
before applying them to a target task. However, a key distinction is that in SSL, both
the pretext data and the downstream tasks come from the same domain. SSL typi-
cally follows two stages: (a) learning meaningful data representations by solving a
pretext task that generates pseudo-labels from unlabelled data, and (b) fine-tuning
these representations on a specific task using a few labelled samples through transfer
learning of the learnt weights.

The most important stage in SSL is the pretext task, which serves as the backbone
of SSL by enabling the model to learn useful representations from unlabelled data by
solving a related task. This task is designed to learn the model to extract meaningful
features that can be transferred to downstream tasks where labelled data may be
scarce, such as in medical imaging. The quality and effectiveness of the pretext task
directly impact the model’s ability to generalise and perform well on the target tasks,
making it a critical component in the success of SSL approaches.

In this chapter, we introduce “a Curriculum Learning and Progressive Self-
supervised Training” (CURVETE) to overcome the limitation of samples in medical
image datasets and increase the performance of the classification task. CURVETE is
designed to investigate the power of using the CL strategy with different granulari-

ties of decomposition during the training of generic unlabelled samples. In addition,
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CURVETE has the ability to handle the challenge of irregular class distribution by
combining the CL strategy with the CD approach in the downstream task. The per-
formance of CURVETE has been validated using two baseline networks (ResNet-50,
DenseNet-121) on three medical image datasets.

The contributions of the chapter can be summarised as below:

¢ Introducing an SSL model that utilises CL strategy in training the pretext
model to enhance the feature transferability and learn more meaningful repre-
sentations;

¢ combining anti-CL strategy with the CD method for a better understanding of
class boundaries and simplifying complex tasks;

¢ adopting the granularity of CD can handle irregularities in data distribution,

resulting in improved model performance; and

* conducting a comprehensive experimental study using different pre-trained
models on publicly available medical imaging datasets.

6.3 CURVETE Model

In this section, we explain our developed method CURVETE for solving the
problem of limited samples, addressing the overlap within classes, and improving
the classification performance of the deep learning model. As illustrated in Fig.
6.1, a large number of unlabelled samples are fed into a convolutional autoencoder
(CAE) model to extract deep learning representations, followed by a clustering
algorithm to create granular sample decompositions (pseudo-labels). In this stage,
we trained the pretext model using the anti-CL with the sample decomposition
method, where the model starts training at the most difficult level (with maximum
sub-classes) and the learnt weights are then progressively transformed towards
easier levels (fewer sub-classes). The CL criterion is based on the learnt weights,
which are gradually transformed as the model moves from higher to lower levels
of granularity, capturing important and meaningful features at each level. Once the
easiest level is reached, the process is reversed, and the model returns back to higher
granularity levels, ensuring that learnt representations are refined across different
complexities. This process is critical for capturing salient features and meaningful
information that can later be fine-tuned for a new problem task, as it allows the
self-supervised pretext task to discover a wide variety of viable solutions and
identify significant patterns in the data. CURVETE also incorporates the anti-CL
strategy with the CD method to train on smaller subsets of the downstream data,
effectively reducing the overlap in class distributions. As explained in Chapter 5,
CLOG-CD with a single oscillation step between granularity levels has achieved
the highest classification performance compared to other strategies. Consequently,
CURVETE was also designed to utilise anti-CL based on a single oscillation step,
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and the operation was repeated in both directions.
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FIGURE 6.1: The workflow of the CURVETE model involves three
main stages. First, different granular levels of sample decomposition
are created using the k-means clustering algorithm. Next, the pretext
model is trained based on an anti-curriculum learning (anti-CL) strat-
egy, utilising the granularity of the sample decomposition. This train-
ing process is repeated multiple times to refine the model’s ability to
learn rich features and meaningful representations, which are then
fine-tuned for a new problem. Finally, the extracted features serve as
initial weights for training on a small downstream dataset, where the
anti-CL strategy with CD is applied again to further improve classifi-
cation performance.

6.3.1 Self-Supervised Pretext Task Learning

CURVETE starts first by extracting local feature representations from a large set of
unlabelled samples using a CAE model. These features are then fed to a cluster algo-
rithm to generate different granularities of sample decomposition (pseudo-labelled).
In CURVETE, we used the same scenario in Chapter 5, Section 5.2, where k-means
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cluster algorithm was used to apply the sample decomposition process and gener-
ate sequential levels of granularity for each dataset. Then, we used a pre-trained
network as initial weights for training the pretext model. Here, we adopted anti-CL
with sample decomposition to solve the pretext task. Based on the outcomes from
Table 5.2 and Table 5.3 in Chapter 5, CLOG-CD with A = 1 and B = 1 has achieved
the highest classification performance for all the datasets. Therefore, we employed
the same process for training the pretext model, where the model starts training at
the highest granularity level and gradually the acquired knowledge is transferred to
the next lower granularity level until reaching the lowest level, then returns again to
the highest level.

6.3.2 Supervised Downstream Task Learning

After the pretext model has gained meaningful representations from the unlabelled
dataset, it transfers to a smaller, labelled dataset (downstream task) to leverage the
learnt features for enhanced generalisation and accurate predictions. By observing
the model’s performance on the downstream task, we can assess the quality of the
feature representations produced by the self-supervised pretext task. To generate
different granularities of CD, we also followed the same scenario to extract the fea-
ture representations from the latent space of the CAE by using k-means clustering.
In addition, the model was trained based on anti-CL with the CD method (A =1
and B = 1). Finally, class relabelling is performed to correct the classification predic-
tions made during the CD process, and ensure that the final output corresponds to
the initial classification problem.

6.4 Experimental Study

In this section, we describe the datasets used to evaluate the effectiveness and ro-
bustness of our model. We then detail the experimental procedures conducted
on each dataset, including model parameter configurations and evaluation met-
rics. Furthermore, we provide a comparative analysis of our model’s performance

against other training strategies.

6.4.1 Datasets Used

In this study, we used three different medical image datasets to evaluate CURVETE:
brain tumours, the digital knee x-ray, and digital mammogram datasets. CURVETE
leverages two types of data: unlabelled data for training a pretext model and extract-
ing rich information, and labelled data for training and evaluating the downstream
task. The describtion of each dataset was discussed in Chapter 1 Section 1.7.

For the brain tumour dataset, we used the same labelled and unlabelled datasets
which were applied in Chapter 4 Section 4.5.1. Regarding the knee dataset, the Os-
teoarthritis dataset was selected as unlabelled samples [33]. The dataset contains a
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total of 9786 images categorised into five grades. We generated more samples by
applying several AUG techniques, such as reflection, shifting, sharpening, and rota-
tion to produce 68,502 samples. For the labelled dataset, we used the same dataset
in Chapter 5 Section 5.4.1.

Finally, the digital mammograms dataset: MIAS mammograms dataset was used
as unlabelled samples [35]. Different AUG processes were applied to get 47,334 sam-
ples of the mammogram dataset, such as cropping, zooming, reflection, shifting, and
rotation. For the labelled dataset, we used the Mini-DDSM dataset, which is a sub-
set of the larger Digital Database for Screening Mammography (DDSM) [34]. The
dataset is divided into three classes: 2048 Normal, 2,716 Cancer, and 2,684 Benign,
and all images come in JPEG format with dimensions between 125 and 320 pixels.
Fig. 6.2 shows an example of the images from the labelled Mini-DDSM dataset.

) ®  ©

FIGURE 6.2: Example images from the Mini-DDSM dataset: a) Be-
nign, b) Cancer, and c¢) Normal.

6.4.2 Hyperparameter Settings

We first built a CAE model with two convolutional layers to extract the feature rep-
resentation from the encoder. For the brain tumour and Mini-DDSM datasets, the
number of filters in the first layer was set to 16, and the second one was 8. For the
digital knee x-ray dataset, the number of filters in the first and second layers was set
to 32 and 16, respectively. Each model was trained for 50 epochs using a kernel size
of 3 x 3, a mini-batch size of 50 and a learning rate of 0.001. The extracted features
from the latent representation are then fed into the k-means cluster algorithm with
two different components (5 and 10) to generate sample decomposition as pseudo-
labelled. Two baseline networks, ResNet-50 and DenseNet-121, were used as initial
weights to train the pretext model. The model was trained using anti-CL learning
with sample decomposition (A = 1 and B = 1), starting at the highest granularity
level, then the gained knowledge is passed down to the next level and continues
down until it reaches the original classes, before going back to the most detailed
level again.

In our experiments, we took into consideration both the available GPU memory
and the limitations of computational resources, so the training process was repeated
in both directions over (10) times based on deep-tuning mode with 50 epochs and
50 for mini-batch size with 0.001 for the learning rate, and weight decay was 0.9
every 10 epochs. The last stage is to transfer the acquired information from the self-
supervised pretext task into the downstream task. The same scenario was used to
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generate different granularities of decomposition for each dataset with component
(5). For training the supervised downstream task, we also used the anti-CL with CD
method (A = 1 and B = 1) starting training from the maximum level (g5), until
a significant performance boost is achieved, then the converged learnt weights are
transformed in a sequential manner until we reach the original classes (g1). This
process was repeated in both directions over (20) times for the ResNet-50 baseline
and (10) times for the DenseNet-121 baseline. Based on trial and error experiments,
the learning rate for training the brain tumour dataset was set to 0.001, with a weight
decay of 0.85 applied every 15 epochs. For the digital knee x-ray images, the learning
rate was set to 0.01, with a weight decay of 0.90 applied every 15 epochs. Finally, for
the Mini-DDSM dataset, the model was trained with a learning rate of 0.001 and a
weight decay of 0.90 applied every 15 epochs.

6.4.3 Performance Evaluation

We adopt accuracy, precision, recall and F1-score, which are defined before in Section
4.3.5.

6.4.4 Performance of CURVETE Model

To evaluate the impact of CL with sample decomposition in training the unlabelled
dataset and the effectiveness of CURVETE, we conducted experiments on the test
sets both with and without applying CL with granularity of decomposition in the
downstream task.

Table 6.1 presents the performance of the CURVETE model, evaluated with two
decomposition components, 5 and 10. The model was evaluated with two pre-
trained networks, ResNet-50 and DenseNet-121. As shown in Table 6.1, values in
bold indicate the highest performance scores achieved. For brain tumour classifica-
tion, the best accuracy is 96.60% using ResNet-50 and 95.77% using DenseNet-121.
The digital knee x-ray dataset achieved an accuracy of 76.60% and 80.36% using
ResNet-50 and DenseNet-121. For Mini-DDSM, the best classification accuracy is
93.35% and 93.22% using ResNet-50 and DenseNet-121 networks.

To ensure the effectiveness of CURVETE, we evaluated its performance on test
sets without applying the CL with the granularity of decomposition in the train-
ing of the downstream task. The results are reported in Table 6.2. As shown, the
classification performance without using CL and CD in training the downstream
task was consistently lower compared to the results in Table 6.1. For example, the
brain tumour dataset achieved an overall accuracy of 94.31% without the CL and
CD method, compared to 96.60% in the CURVETE model. Similarly, the digital knee
x-ray and Mini-DDSM datasets achieved an accuracy of 67.86% and 68.93%, respec-
tively, which are lower than the accuracy in Table 6.1.
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The results demonstrate that incorporating anti-CL with sample decomposition
in the self-supervised pretext task enables CURVETE to effectively learn and cap-
ture feature representations and complex patterns within unlabelled data. By start-
ing training at the highest granularity level and gradually progressing to lower lev-
els, the model can initially simplify complex patterns and better understand rela-
tionships between data points. This approach results in robust, highly transferable
representations that enhance the downstream task performance, even with limited
labelled examples.

TABLE 6.1: Classification performance of CURVETE using two base-
line networks, ResNet-50 and DenseNet-121, for all the datasets.

ResNet-50 DenseNet-121

CURVETE (G=5) CURVETE (G=10) CURVETE (G=5) CURVETE (G=10)

Dataset ACC PR RE

(%)

F1 |/ACC PR RE F1

(%)

ACC PR RE F1

(%) (%) (%) (%)

ACC PR RE
(%) (%)

F1

(%) (%) (%) | () (%) (%) (%) (%)

Brain tumour

digital knee x-ray

Mini-DDSM

95.12 94.11 95.04 94.57
75.60 76.54 73.54 75.01

93.35 93.35 93.55 93.45

96.60 95.82 96.56 96.19
73.21 75.06 73.07 74.05

91.94 92.04 92.12 92.08

95.77 95.18 95.15 95.16
80.36 83.24 78.64 80.87

92.58 92.63 92.79 92.71

93.01 91.79 92.48 92.13
72.62 71.04 68.14 69.56

93.22 93.29 93.40 93.35

TABLE 6.2: classification performance of CURVETE model without
using curriculum learning with class decomposition method on the
downstream task.

Dataset

ResNet-50

CURVETE (G=5)

ACC PR RE F1

(%) (%) (%) (%)

CURVETE (G=10)

ACC PR RE Fl

(%) (%) (%) (%)

DenseNet-121

CURVETE (G=5)

ACC PR RE F1

(%) (%) (%) (%)

CURVETE (G=10)

ACC PR RE F1

(%) (%) (%) (%)

brain tumour
digital knee x-ray

Mini-DDSM

93.66 92.92 92.53 92.72

66.07 67.86 63.91 65.83

66.24 67.02 66.38 66.83

94.31 93.26 93.63 93.45

67.86 66.36 61.72 63.95

68.93 69.51 69.35 69.43

87.97 86.38 86.20 86.29

55.95 65.84 59.80 62.67

71.99 75.82 71.87 73.80

88.13 86.57 86.29 86.43
57.74 60.80 59.20 59.98

66.50 80.25 66.85 72.94

6.4.5 Ablation Study

To assess the effectiveness of the proposed CURVETE model, we conducted a com-
prehensive comparison with three different training strategies: a) traditional trans-
fer learning, using two pre-trained baselines, ResNet-50 and DenseNet-121; b) the
CLOG-CD model, introduced in Chapter 5, which applies an anti-CL strategy com-
bined with CD in the downstream task; and ¢) CURVETE(WO/CL, W/CD), which
uses SSL with sample decomposition for pretext training but does not apply CL in
the pretext learning phase. Tables 6.3 and 6.4 report the classification performance
of these strategies across three datasets, using both ResNet-50 and DenseNet-121 as
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backbone networks. The results show that traditional transfer learning consistently
yields the lowest performance across all datasets and backbones. This highlights its
limited generalisation capability when fine-tuned with scarce labelled data, particu-
larly in medical imaging tasks with complex and irregular distributions.

On the other hand, CLOG-CD outperforms traditional transfer learning by lever-
aging anti-CL and class decomposition at different levels of granularity. This pro-
gressive structure improves generalisation and the training process by gradually in-
creasing class complexity in a structured way. Finally, CURVETE(WO/CL, W/CD),
shows notable improvement, especially in the digital knee x-ray dataset. This con-
firms that utilising SSL with sample decomposition for training unlabelled data en-
courages the transformation of coarse features from general samples to specific tasks
by simplifying the complex patterns and local structure of the dataset, providing
more effective knowledge before fine-tuning for the subsequent task.

In addition, Table 6.5 shows the statistical significance results (p-values)
of CURVETE against traditional transfer learning, CLOG-CD(A = 1), and
CURVETE(WO/CL, W/CD) using both ResNet-50 and DenseNet-121 backbones.

By comparing the results presented in Tables 6.3 and 6.4, along with the out-
comes in Table 6.1, it is clear that CURVETE consistently achieved the highest accu-
racy on all datasets. This demonstrates that CURVETE offers a promising solution
for enhancing feature transferability from the pretext task to a new classification
task. This is achieved by integrating the CL strategy with SSL and sample decom-
position during the training of unlabelled data. This process enables the model to
extract more informative and meaningful representations across different levels of
granularity.

The confusion matrices for CURVETE and other training strategies with ResNet-
50 are presented in Fig. 6.3, Fig. 6.5, and Fig. 6.7 for the brain tumour, digital knee
x-ray, and Mini-DDSM datasets, respectively. In addition, Fig. 6.4, Fig. 6.6, and Fig.
6.8 show the confusion matrices using DenseNet-121 for the same set of datasets.

TABLE 6.3: Classification performance of other training strategies us-
ing the baseline ResNet-50 for all the datasets.

Transfer learning (ResNet-50) CLOG-CD (A =1) CURVETE (WO/CL, W/CD)
Dataset ACC PR RE F1 ACC PR RE Fl1 |[ACC PR RE F1
%) (%) (%) (%) %) (%) (%) (%) | (%) (%) (%) (%)

brain tumour |91.22 89.85 90.72  90.28 |93.98 93.54 92.94 93.24|93.66 93.63 91.89  92.76
digital knee x-ray |61.31 60.66 59.57  60.11 |70.83 72.71 68.47 70.53|71.43 72.55 7098 71.76
Mini-DDSM  |66.88 67.42 67.46  67.44 |91.05 91.09 91.30 91.20|91.94 91.96 92.16  92.06
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TABLE 6.4: Classification performance of other training strategies us-
ing the baseline DenseNet-121 for all the datasets.

Transfer learning (ResNet-50) CLOG-CD(A =1) CURVETE(WO/CL, W/CD)
Dataset ACC PR RE F1 ACC PR RE Fl |ACC PR RE F1
(%) (%) (%) (%) %) (%) (%) (%) | (%) (%) (%) (%)
brain tumour |89.59 88.35 88.15 8825 |91.87 90.45 92.12 91.28|93.33 92.23 92.33  92.28
digital knee x-ray | 69.05 72.63 68.00 7024 |67.26 67.15 64.14 65.61|73.21 71.13 7043  70.78
Mini-DDSM | 66.75 67.41 67.19  67.30 |84.65 84.90 84.86 84.88|86.32 86.60 86.57 86.58

TABLE 6.5: Statistical significance (p-values) of CURVETE com-

pared with traditional transfer learning, CLOG-CD(A = 1), and

CURVETE(WO/CL, W/CD) models on all datasets using ResNet-50
and DenseNet-121 backbones.

Dataset

Name

CURVETE(ResNet-50) vs

CURVETE(DenseNet-121) vs

Traditional learning CLOG-CD CURVETE(WO/CL, W/CD) | Traditional learning CLOG-CD CURVETE(WO/CL, W/CD)

brain tumour 0.038 0.001 0.0039 0.0217 0.0014 0.0037
Knee X-ray 0.0025 0.00021 0.0091 0.0079 0.0032 0.0081
Mini-DDSM 0.0010 0.0053 0.0010 0.0029 00173 0.0035
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FIGURE 6.3: The confusion matrix results of the brain tu-

mour dataset obtained by: a) Transfer learning with ResNet-50,
b) CURVETE(WO/CLCD), ¢) CURVETE(WO/CL, W/CD), and d)
CURVETE(W/CLCD) G=5, and e) CURVETE(W /CLCD) G=10.
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CURVETE(W/CLCD) G=5, and e) CURVETE (W/CLCD) G=10.
40 40
Normal 10 1 9 4 Normal 4 1 8 1 Normal 5 1 6 3
35 35
Doubtful | 1 1 1 8 5] (3 poubtful] 4 1 1 6 2 30 Doubtful | 5 12 1 5 1
3 3 3 L
3 Ml 1 2 13 3 4 0 S Mid{ 2 1 18 1 1 o o Mid 2 0 18 1 2
3 E] I E]
g g =
15 -15
Moderate { 8 0 1 41 2 Moderate{ 10 0 0 42 0 Moderate | 10 1 0 40 1
-10 -10
Severe{ 3 2 1 1 14 S Severe{ 4 1 1 1 14 -5 Severe{ 1 1 0 2 17
& O © ¢ & ° O © £ & ° S £ &
SEER & & &N & R & & & ¢
& N g & & § & F & N \‘\oé o
Predicted Label Predicted Label Predicted Label
(a) (b) (©)
40 40
Normal 3 o 4 1 Normal 8 1 11 0
35 35
Doubtful{ 6 13 1 2 2 3 poubtful 13 1 7 2 *
3 LR 25
3 ) K
Q Mild{ 1 3 14 1 4 2 § Mild 1 17 2 3 2
g £
-15 15
Moderate { 11 0 0 41 0 Moderate 2 0 46 0
10 10
Severe| 0 2 o 0 19 5 Severe 0 o 2 19 5
-0 S 0
> N & & > N & &
& oy"é A I V.

FIGURE 6.5:

Predicted Label

@

x-ray dataset obtained by:
b) CURVETE(WO/CLCD), ¢) CURVETE(WO/CL, W/CD), and d)
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ray dataset obtained by: a) transfer learning with DenseNet-121,
b) CURVETE (WO/CLCD), ¢) CURVETE(WO/CL, W/CD), and d)
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FIGURE 6.7: The confusion matrix results of the Mini-DDSM

dataset obtained by: a) transfer learning with ResNet-50, b)

CURVETE(WO/CLCD), c¢) CURVETE(WO/CL, W/CD), and d)
CURVETE(W/CLCD) G=5, and e) CURVETE(W/CLCD) G=10.
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FIGURE 6.8: The confusion matrix results of the Mini-DDSM

dataset obtained by: a) transfer learning with DenseNet-121,

b) CURVETE(WO/CLCD), ¢) CURVETE(WO/CL, W/CD), and d)
CURVETE(W/CLCD) G=5, and e) CURVETE(W /CLCD) G=10.
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6.4.6 Comparison with State-of-the-art Methods

We compared the performance of CURVETE with other works on all the datasets; see
Table 6.6. First, we compared CURVETE with 4S-DT, which utilised self-supervised
sample decomposition to improve the detection of COVID-19. As shown in Table
6.6, CURVETE consistently outperforms 4S-DT across all datasets, with particularly
notable improvements on the Mini-DDSM and digital knee x-ray datasets. The key
difference lies in the integration of CL within CURVETE. While 45-DT focuses solely
on decomposition during both pretext and downstream training phases, CURVETE
introduces curriculum learning to guide the decomposition process through mul-
tiple levels of granularity. This enables the model to progressively refine feature
transferability, leading to better generalisation on unseen data.

Second, in [188], the authors examined three SSL techniques using different pre-
trained networks to extract feature representations. For comparison, we imple-
mented RotNet with ResNet-20 and DenseNet-121 as backbone networks. RotNet
utilised SSL to train a model for learning image representations and then predict-
ing the rotation angles applied to input images. Although this approach helps the
model learn useful features, it relies heavily on the assumption that objects have
clear and consistent orientations. Consequently, when images are noisy, contain
complex patterns, or lack distinct shapes, RotNet often struggles to learn meaning-
ful representations. In contrast, CURVETE focuses on the local patterns and refines
the meaningful features gradually on different levels of complexity, making it more
robust in the presence of irregular or complex data distributions. Finally, the authors
in [189] investigated several SSL strategies for fine-grained image classification, in-
cluding Jigsaw solving, SRGAN, and SimCLR. In our comparison, we focused on
SimCLR and SRGAN, where SimCLR uses contrastive learning on augmented im-
age pairs, and SRGAN applies super-resolution to enhance image details. How-
ever, SimCLR is sensitive to augmentation and often struggles with background dis-
tractions, while SRGAN introduces architectural complexity and risks overfitting
on subtle features. In contrast, CURVETE avoids these issues by directly learning
from the original images, guided by a structured curriculum and a decomposition
mechanism. This leads to better generalisation performance, particularly in noisy or
fine-grained datasets.
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TABLE 6.6: CURVETE: Comparison with other state-of-the-art meth-
ods.

Reference Method brain tumour digital knee x-ray Mini-DDSM

ACC PR RE F1 | ACC PR RE F1 ACC PR RE F1

(%) (R) (L) () | B)  (B) () (%) | (B) (%) (%) (%)

[139] 4S-DT 91.38 90.20 90.61 90.41 | 6845 7029 69.29 29.79 | 71.36 7129 71.85 71.57
[188] RotNet-DenseNet-121 9528 94.47 94.81 94.60 | 4524 34.62 41.40 3045 | 36.32 3855 37.80 28.77
[188] RotNet-ResNet20 79.35 7787 7592 7547|5893 7222 5893 5687 | 60.36 63.36 60.70 60.79
[189] SSL (SimCLR) 64.07 56.00 6328 57.02 |33.93 21.70 33.89 22.88 | 48.34 49.41 4834 46.67
[189] SSL (SRGAN) 4341 25.64 4341 29.01 | 65.03 77.40 65.19 5740|7290 73.89 71.99 7320
Ours CURVETE-ResNet-50 96.60 95.82 96.56 96.19 | 75.60 76.54 73.54 75.01 | 93.35 93.35 93.55 93.45

Ours CURVETE-DenseNet-121 | 95.77 9518 96.15 95.16 | 80.36 83.24 78.64 80.87 | 93.22 93.29 93.40 93.35

6.5 Summary

In this chapter, we introduced an SSL model called Curriculum Learning and Pro-
gressive Self-supervised Training for Medical Image Classification (CURVETE) to
enhance the feature transferability from a large number of unlabelled samples to a
new dataset with limited labelled samples of medical image datasets. CURVETE de-
signed to employ the anti-CL strategy with sample decomposition for training the
pretext task, where the model starts training with the highest level of granularity
decomposition, allowing the model to simplify the complex pattern first and un-
derstand the local structure with the dataset before going to a more complex task
with few subclasses within the granularity. By this process, the optimiser has more
flexibility to discover a wide range of solutions and recognise meaningful patterns
within the data, which enhances the learnt features to be more effective for a new
supervised task. In addition, CURVETE utilised anti-CL with CD in the downstream
task, which effectively handles the challenge of irregular class distributions, making
it a highly adaptable solution for tasks like medical image classification. We experi-
mentally demonstrated that CURVETE improves the generalisability across various
medical image datasets compared to traditional transfer learning and other training

models.






Chapter 7

Conclusion and Future Work

7.1 Overview

This thesis studies the impact of the data decomposition method on improving the
performance of medical image classification tasks and overcoming the challenges of
training medical image processing. The aim and objectives presented in this the-
sis focus on developing deep learning models to improve model performance and
address the challenges of medical image datasets, such as the limited number of
samples and overlapping classes.

The developed methods include: 1) developing a deep convolutional neural net-
work (DCNN) model to enhance feature transferability by simplifying class struc-
tures, enabling effective learning of complex patterns within medical datasets; 2)
introducing explainable and interpretable techniques to increase trust and usability
in the medical imaging field; 3) addressing overlapping class boundaries and miti-
gating the challenges posed by limited sample sizes; and 4) improving the extraction
of feature representations from the latent space to enable the model for better gener-
alisation and making the features more effective for various tasks.

Chapter 1 presents an introduction to artificial intelligence techniques, empha-
sising their applications in healthcare and the primary challenges encountered in
implementing these technologies. The motivation for addressing these challenges
in medical imaging is then highlighted, followed by the identification of the aims
and objectives for the work carried out in this thesis. Chapter 2 provides the nec-
essary background and theoretical explanations of key concepts and methods es-
sential for developing the contributions presented in this thesis. Chapter 3 reviews
the literature work conducted on medical image classification using transfer learn-
ing strategies, as well as state-of-the-art methods that employ self-supervised learn-
ing and recent advancements in curriculum learning strategies for medical image
processing. Chapter 4 discusses the first contribution, which addresses the first
three objectives in Section 1.5. This chapter presents the 45-DT model and its ad-
vanced version, XDecompo, which enhances feature transferability through affinity-
propagation-based class decomposition for downstream tasks. XDecompo has the
ability to improve the classification performance and overcome the issue of overlap-
ping distributions. Chapter 5 covers the second contribution, which addresses the
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first and third objectives in Section 1.5. This chapter introduces the CLOG-CD model,
utilising a curriculum learning strategy based on class decomposition to improve the
learning process and handle class imbalance. Finally, Chapter 6 addresses the first
and last two objectives in Section 1.5. It presents a self-supervised model that em-
ploys a curriculum-learning-based sample decomposition strategy to train a large
set of unlabelled samples. This approach enhances feature representations from the
pretext model and ultimately improves classification performance on downstream
tasks with small datasets.

Overall, this thesis is summarised through two final sections. First, we discuss
how the objectives of this work have been accomplished, highlighting the develop-
ment of our three contributions. This section also considers potential implications
and perspectives on the contributions presented. Finally, we outline prospective di-
rections for future research to build upon this work.

7.2 Research Summary

In the context of medical image processing, convolutional neural networks (CNNs)
have achieved remarkable success and gained the trust of many researchers. How-
ever, challenges remain that can complicate the training of deep learning models and
limit their clinical applicability and reliability. One major challenge is the scarcity of
labelled data, as expert annotation is both time-consuming and resource-intensive.
Another significant challenge is the overlapping between classes, which is com-
monly seen in medical datasets. This issue can affect the model’s ability to accu-
rately distinguish between classes, leading to poor performance. Addressing these
challenges is critical for increasing model robustness, generalisability, and eventu-
ally usability in real-world clinical applications.

To effectively address the challenges outlined in Section 1.5, several solution el-
ements have been proposed, see Fig. 1.6. Class decomposition has gained atten-
tion as a preprocessing step in machine learning pipelines to handle irregular data
distributions more effectively. By focusing on smaller, more homogenous groups,
this method enables the model to better capture the distinct features of each sub-
class, leading to improved generalisation when handling data irregularities [8]. In
addition, self-supervised learning addresses the challenge of limited labelled data
by leveraging large amounts of unlabelled data to learn meaningful representations
without extensive manual annotation. These learnt representations can then be fine-
tuned for downstream tasks, improving performance and reducing the dependency
on labelled datasets. Another notable approach is the curriculum learning strategy.
It aims to improve the training process and enhance the generalisability of deep
learning models, particularly when working with complex image datasets. Instead
of presenting all information at once, curriculum learning organises the learning
process into stages. These stages start with simpler information and gradually intro-
duce more challenging concepts. This incremental approach helps the model build



7.2. Research Summary 125

its understanding progressively and accelerates the convergence of the training pro-
cess.

We achieved our research objectives in Section 1.5 by introducing three research
contributions. We designed, developed, and implemented our first contribution, 45-
DT and its developed version, XDecompo, which is presented in Chapter 4. This
contribution addresses the first three objectives in Section 1.5 which are: (1) de-
veloping a DCNN model to improve feature transferability between decomposed
classes and simplify the complex structure within medical datasets; (2) incorporat-
ing explainable techniques into the machine learning model; and (3) addressing the
challenges of overlapping classes and limited sample sizes. 4S-DT and XDecompo
are designed to address challenges related to limited labelled samples and irregular
distributions. They achieve this by utilising self-supervised learning based on the
sample decomposition method for training a large number of unlabelled samples.
For the downstream task, 45-DT employs a predefined clustering algorithm to di-
vide each class into a specific number of sub-classes. In contrast, XDecompo is guided
by a non-parametric clustering method in the downstream task. This approach en-
ables XDecompo to automatically identify meaningful class boundaries. As a result,
it enhances the model’s ability to capture relevant patterns that might be missed
by traditional parametric clustering methods. Furthermore, XDecompo incorporates
an explainability component that highlights critical pixels that contribute to classi-
fication, providing insights into how class decomposition improves the precision of
extracted features. The effectiveness and implementation of the class decomposition
method motivated us to introduce the second contribution in this thesis as follows:

* Introducing the class decomposition process as a powerful tool for curriculum
learning strategy can lead to enhancing the learning process and improving
the classification performance.

¢ The usage of curriculum learning with different granularities of decomposition
allows for handling irregularities and complexities within the dataset. This ap-
proach simplifies the local structure within the classes, making the data easier
to manage and analyse.

¢ Adapting anti-curriculum learning with different oscillations of granularity
decomposition enables the model to capture meaningful features at different
levels and enhances its understanding of specific patterns within the dataset.
This ultimately enriches feature learning and can improve performance, espe-
cially on complex data such as medical imaging.

Therefore, we designed, developed, and implemented "CLOG-CD: Curriculum
Learning based on Oscillating Granularity of Class Decomposed Medical Image
Classification" as our second contribution in Chapter 5. This contribution aims to
achieve the first and third objectives outlined in Section 1.5 which are specifically
about: (1) improving the feature transferability between classes and simplifying the
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complex structure; and (2) designing a DCNN model to enhance the classification
performance and handling the overlapping distributions. CLOG-CD was designed
to improve classification performance by simplifying the complex classification task
and coping with any irregularities in the data distribution, which is a very com-
mon problem in the medical imaging domain. The model starts training at a high
granularity level, where it faces a challenging classification task involving the max-
imum number of sub-classes. By leveraging the class decomposition approach, this
challenge is mitigated as the complex classes are broken down into smaller, more
homogeneous sub-classes. This enables the model to focus on learning the most rel-
evant features within these simpler structures, making the classification task more
manageable. Gradually, the model integrates this learnt knowledge as it transi-
tions to fewer sub-classes (low granularity), refining its understanding of the class
boundaries. This strategy not only speeds up training and promotes faster conver-
gence but also handles irregularities and complexities in the dataset, resulting in
improved performance. In CLOG-CD, deep local features are extracted from the
dataset through the encoder layer of a convolutional auto-encoder. These features
are then clustered using the k-means algorithm to generate different granularities of
decomposition. For downstream task training, an anti-curriculum learning strategy
is combined with class decomposition, starting at the highest granularity level (i.e.,
the most challenging task with the maximum number of sub-classes), and gradu-
ally the convergence weights are fine-tuned toward lower granularity levels (sim-
pler classification tasks with fewer classes). CLOG-CD model has been compared
with different training strategies and relevant models in the field, as shown in Table
5.2 and Table 5.3 in Chapter 5. The obtained results demonstrated that CLOG-CD
outperformed all other models and showed how the integration of the class decom-
position method and curriculum learning strategy with different oscillation steps
has significantly improved the model’s performance.

Both XDecompo and CLOG-CD illustrate the effectiveness of the class decompo-
sition method in improving feature transferability and classification accuracy for
medical images, which faced challenges such as irregular class representation. In
addition, utilising the anti-curriculum learning strategy with the class decomposi-
tion method in CLOG-CD allows the model to control the learning process by first
addressing the most complex tasks and simplifying complex patterns within each
sub-class before moving on to easier tasks. This progressive approach enables the
model to leverage what it has learnt from complex patterns, promoting a deeper un-
derstanding. These observations motivated us to introduce the third contribution in
this thesis including;:

¢ Integrating curriculum learning with sample decomposition in training the un-
labelled samples allows the model to discover more meaningful patterns and
latent structures within the data. This strategy improves the feature transfer-
ability to a new task, resulting in better performance in downstream applica-
tions.
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¢ Utilising the class decomposition method with the curriculum learning strat-
egy in the downstream task enhances the model’s performance and effectively

addresses the irregular distribution within the dataset.

* Implementing a single oscillation step between the granularity levels enables
the model to capture more detailed information through different levels of

granularity decomposition, leading to better performance.

Therefore, based on the above observations, we designed, developed, and im-
plemented a model named “CURVETE: Curriculum Learning and Progressive Self-
supervised Training for Medical Image Classification” presented in Chapter 6. This
contribution achieves the first and last two objectives outlined in Section 1.5 which
are about: (1) developing a CNN model that simplifies class structures, enabling
better feature transferability to new tasks; (2) designing a DCNN model that has the
ability to address the challenges of limited annotated datasets and manage irregu-
larities in data distribution; and (3) developing a generalisable model that enhances
the extraction of feature representations from the source task, ensuring their effec-
tiveness and adaptability for various target tasks. CURVETE is a developed self-
supervised framework that employs curriculum learning with a sample decomposi-
tion to train on a large set of unlabelled samples within a pretext model to improve
robustness and enhance its capability to extract meaningful information from the
data. The learnt features are then fine-tuned for a downstream task with a limited
number of labelled samples, where the anti-curriculum learning combined with the
class decomposition method effectively addresses irregular data distribution.

Based on these objectives, we achieved our aim of introducing DCNN models
to boost convergence and enhance the classification performance of medical image
datasets, particularly those with overlapping distributions and limited annotated

samples.

7.3 Limitations

Although this thesis has introduced developed CNN models to improve medical
image classification, it has some challenges. First, the training process was compu-
tationally intensive and time-consuming, which may limit scalability. Therefore, an
optimiser is required to effectively fine-tune the large number of parameters and
reduce the model’s complexity.

Additionally, although the datasets used were imbalanced, the proposed models
aimed to reduce the impact of overlapping within classes through different tech-
niques such as curriculum learning and data decomposition. However, they did
not specifically address class imbalance as an isolated issue. Integrating alternative
techniques to solve imbalanced datasets could potentially enhance the quality of de-

composition and further improve model performance.
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7.4 Future Work

In computer vision, CNNs remain dominant and have achieved significant success
across various fields due to their inductive biases, which enable them to effectively
capture relationships between neighbouring features of an image using pooling and
filters. However, the Vision Transformer (ViT) has recently demonstrated remark-
able results, often outperforming convolutional neural networks in certain scenarios
while requiring fewer computational resources for pre-training [190]. Unlike tra-
ditional CNNSs, which rely on local receptive fields and convolution operations to
extract features, VIT utilises self-attention mechanisms to capture long-range de-
pendencies within images. This ability to model global relationships makes ViT par-
ticularly promising for complex medical image datasets, where fine-grained pattern
recognition and accurate feature extraction are crucial for improving classification
accuracy.

In future work, we plan to experiment with the ViT architecture in combination
with data decomposition and a curriculum learning strategy to evaluate its potential
to enhance model performance for medical image classification tasks. Due to its
ability to capture long-range dependencies and model global relationships, it holds
great promise in medical imaging, where fine-grained pattern recognition is crucial.
This work will offer valuable insights into the applicability of ViT within the medical
imaging domain, particularly for complex datasets.

Moreover, future work could explore the use of advanced strategies for solv-
ing the issues of the imbalanced dataset [191]. Class imbalance in medical image
datasets can be addressed using various preprocessing techniques, such as sampling
methods, which aim to balance the class distribution by directly modifying the data
space. Another effective method is hybrid sampling, which combines different sam-
pling methods (e.g., oversampling and undersampling) to overcome the limitations
of each individual approach. In our future work, we will investigate the use of hy-
brid sampling techniques to evaluate their effectiveness in improving classification
accuracy and handling class imbalance more efficiently.

In conclusion, this thesis contributes to the field of medical image analysis by de-
veloping a DCNN model that enhances feature transferability, enabling more accu-
rate and efficient classification performance. Moreover, it introduces novel models
incorporating a curriculum learning strategy with data decomposition to improve
the training process and enhance generalisation across a variety of medical image
datasets.
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