
1 
> SMCA-25-01-0239 < 
 

Workload Balancing for Photolithography Machines 
in Semiconductor Manufacturing via Estimation of 

Distribution Algorithm Integrating Kmeans 
Clustering 

 
LiangChao Chen, Yan Qiao, Senior Member, IEEE, NaiQi Wu, Fellow, IEEE, Mohammadhossein Ghahramani, 

YongHua Shao, and SiJun Zhan 
 

  
Abstract—This work focuses on the scheduling of a 

photolithography area with multiple machine groups and each one 
consists of a predetermined number of photolithography machines 
(PMs). PMs belonging to the same machine group should have 
identical processing capacities. Additionally, all PMs are 
designated with downward processing compatibility. This means 
that the wafers requiring relatively low pattern precision can be 
processed by the PMs used to deal with high pattern precision. 
After executing a photolithography process, a circuit pattern is 
transferred from an auxiliary resource called a reticle onto the 
wafer surface. Moreover, when processing wafers with different 
reticle and processing environment requirements, the machine 
setup is necessary. With those complex processing requirements, 
the objective is to minimize the difference between the longest and 
shortest working time of PMs so as to balance the workloads 
among all PMs. To do so, a mixed-integer linear programming 
model is built and then solved by using CPLEX for the small-sized 
problem. For medium- and large-sized problems, a designed 
estimation of distribution algorithm integrating a Kmeans 
clustering is constructed to improve the productivity of the 
photolithography area. Comparison results show that the 
proposed method outperforms the compared algorithms 
regardless of problem sizes. 
 
Index Terms—Estimation of distribution algorithm, 
photolithography, scheduling, semiconductor manufacturing 

I. INTRODUCTION 
n semiconductor manufacturing, the photolithography 
process is widely acknowledged as a bottleneck step due to 
its reliance on highly expensive machines (i.e., steppers) for 

production [1]. Moreover, the photolithography area serves as 
the dispatching center of wafer fabs and controls the 
performance of the whole manufacturing process [2-4]. Under 
this situation, an efficient production schedule for the 
photolithography area becomes necessary, making scheduling 
analysis in photolithography areas important in modern 
semiconductor fabs. 
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In a photolithography area, raw wafers typically made of 
silicon are placed into the photolithography machines (PMs) 
where geometric circuit patterns are then printed on their 
photoresist layers. To achieve this, auxiliary resources known 
as reticles (or masks) are necessary which contain the required 
circuit patterns that will be transferred onto wafer surfaces by 
the ultraviolet (also known as UV in short) light provided by 
PMs. Due to the considerable expense of reticles, for example, 
a single reticle may exceed $100K in cost [5], it is a common 
practice in semiconductor fabs where all reticles used are 
different. The reticles required by wafers depend on their wafer 
fabrication process requirements. Moreover, it should be 
noticed that each reticle contains only one circuit pattern. 
Therefore, if two raw wafers require identical circuit patterns, 
they should share the same reticle. 

The circuit pattern created on a wafer surface has a 
corresponding pattern precision. To make the pattern precision 
satisfied, only relying on reticles is not enough. PMs in use 
should provide appropriate processing environments as well. 
Notice that semiconductor fabs normally have different types 
of PMs that can provide different processing environments to 
meet the different pattern precision demands. To guarantee the 
processing environment and reticle required by a raw wafer are 
matched, before a PM starts to run, the machine setup is 
necessary. 

In this work, there exist three different situations for machine 
setup. The first situation occurs for the reticle switching. There 
are two different scenarios for performing reticle switching 
since reticles are auxiliary resources. The first scenario is that 
the required reticle is already stored in the internal buffer (also 
known as the reticle pod) of a PM, while the second scenario is 
that the required reticle should be manually delivered from 
elsewhere [6] and then installed in the internal buffer. 
Typically, such a manual delivery process takes around 15 
minutes. Once a reticle is placed in the internal buffer, the 
reticle switching process is automatically performed by the PM 

Mohammadhossein Ghahramani is with the Birmingham City University, 
Birmingham, UK (e-mail: mohammadhossein.ghahramani@bcu.ac.uk). 

YongHua Shao and SiJun Zhan are with the AscenPower Semiconductors 
Co., Ltd., Guangzhou 510000, China (e-mail: 
yonghua.shao@ascenpower.com; james.zhan@ascenpower.com). 

I 

mailto:liangchao_chen@163.com
mailto:nqwu@must.edu.mo
mailto:yonghua.shao@ascenpower.com


2 
> SMCA-25-01-0239 < 
 
itself. This process is extremely fast, typically taking only a few 
seconds. 

The second situation of machine setup is recipe switching. 
The recipe of a wafer at a PM mainly contains the processing 
parameters, such as the required temperature and pressure. 
Therefore, the recipe of a wafer could specify the processing 
environment at a PM. The time used for recipe switching is 
spent on adjusting the internal processing environment of a PM 
to match the required one for the recipe of the upcoming wafers. 
Given that each circuit pattern is associated with one specific 
pattern precision that is related to the processing environment 
in a PM, when there is a need to perform recipe switching in the 
PM, this means that circuit patterns printed on two 
consecutively processed wafer surfaces are different, and at the 
same time, reticle switching is necessary. According to real-
world applications, the time required for recipe switching is 
around 20 to 30 minutes. Importantly, when the recipe 
switching is in progress, the reticle switching can be performed 
simultaneously. Therefore, if there is a need to perform both 
recipe and reticle switching, then the total time needed is 
determined by the time spent on recipe switching. 

The last situation of machine setup is machine initialization 
preparation. The investigated photolithography area operates in 
shifts. The duration of a shift depends on the number of raw 
wafers needed to be processed. Before starting a new shift, PMs 
are required to perform a machine initialization preparation if 
the initial required recipe differs from the last one of the 
previous shift. Notice that the time required for machine 
initialization preparation is machine-dependent. Typically, the 
machine initialization preparation takes around 60 minutes, 
making it the most time-consuming process among the three 
different situations of machine setup. Also, during the machine 
initialization preparation period, reticle and recipe switching 
can be performed simultaneously. Therefore, the time spent on 
machine initialization preparation is sufficient to cover both the 
recipe and reticle switching processes. 

In general, the processing environment required for 
achieving a high pattern precision is much stricter than those 
for lower pattern precisions. Additionally, to improve machine 
utilization, PMs are all designed with downward processing 
compatibility. To describe such a downward processing 
capability, let A be a set of integers representing pattern 
precisions. Further, if Pattern Precision-a is higher than Pattern 
Precision-l, a, l Î A, then l > a should hold. In the meantime, 
based on the downward processing compatibility of each PM, 
if a PM can serve raw wafers to achieve Pattern Precision-a, 
then it can also serve raw wafers to achieve Pattern Precision-l. 
Under such an operational mode, the processing capability of a 
PM is defined as the highest pattern precision that it can handle. 
This allows us to create multiple unrelated parallel machine 
groups where PMs belonging to the same machine group should 
have identical processing capabilities. 

As reticles are auxiliary resources, their usage is flexible, i.e., 
reticles can be shared among different PMs. Hence, a raw wafer 
can be processed at any PM capable of providing the suitable 
processing environment to meet its pattern precision 

requirement. Thus, there exists a scheduling problem of 
assigning raw wafers to PMs while satisfying production 
requirements. In fact, the lower the pattern precision required 
by a raw wafer, the more PMs it can be assigned to. This is due 
to the downward processing compatibility of PMs and the 
flexible usage of reticles. Notice that the processing time of a 
raw wafer processed at different PMs with different processing 
capacities may be different. 

Given that each PM comes at a significant cost, the number 
of PMs is limited in a photolithography area. Besides, in real-
world applications, the photolithography area is arranged a 
large number of raw wafers to process, resulting in the 
workloads of PMs being extremely heavy. An uneven 
distribution of workloads can lead to overloading certain PMs, 
resulting in significant performance discrepancies (also known 
as machine variance), which directly affects the quality 
consistency of wafers produced by PMs. Therefore, the 
distribution of workloads among PMs has a significant impact 
not only on the productivity of the system but also on the 
equipment longevity. Consequently, it is essential to find an 
efficient schedule to balance machine workloads while 
satisfying production requirements. Motivated by this real 
application requirement, this work conducts a scheduling 
analysis of a photolithography area with the objective of 
minimizing the difference between the longest and shortest 
working time of PMs, i.e., balancing the workloads among the 
PMs. 

For this complex manufacturing system, we first formulate it 
as a mixed integer linear programming (MILP) model. Due to 
the complexity of the system, optimal solutions are difficult to 
obtain as the problem size grows. To address this challenge, we 
propose an Estimation of Distribution Algorithm (EDA) 
integrated with Kmeans clustering. The efficiency and 
effectiveness of the proposed methods are evaluated through 
extensive experiments on three problem sizes (small, medium, 
and large) based on practical applications. For the small-sized 
problem, the MILP model is solved by using CPLEX to obtain 
the optimal solution, which serves as a benchmark for 
evaluating the performance of proposed methods. For medium- 
and large-sized practical problems, experimental results 
demonstrate that our method balances computational efficiency 
and solution quality, outperforming other popular 
metaheuristics. 

The rest of the work is arranged as follows. Section II 
reviews the related studies. In Section III, after describing the 
problem, we build a MILP model. Due to the complexity of the 
addressed problem, Section IV constructs a metaheuristic 
method to find high-quality solutions. Then, the performance of 
the proposed method is analyzed and compared with some 
existing methods by computational experiments in Section V. 
Finally, conclusions are given in Section VI. 

II. LITERATURE REVIEW 

A. Photolithography Scheduling Problem 
Scheduling challenges in photolithography areas are 

extensively discussed in the literature under various processing 
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constraints [5]. In early studies, although reticles are necessary 
for printing circuit patterns on wafer surfaces, the reticle 
requirements in semiconductor manufacturing are not given 
much attention until the work in [7] is conducted. In [7], a 
discrete-event simulation model coupled with a network flow is 
employed to illustrate that managing reticles effectively in 
semiconductor fabs can greatly improve manufacturing system 
performance. After that, more and more studies focus on the 
scheduling problems of photolithography areas by considering 
reticle requirements as auxiliary resource constraints.  

In general, scheduling problems in photolithography areas 
can be formulated as integer programming or MILP models. It 
is well known that exact algorithms (such as the branch-and-
bound algorithm) can be used to obtain the optimal solution. 
However, Cakici and Mason [8] state that the scheduling 
problem with the consideration of reticle requirements is NP-
hard, supported by its reduction to a well-established NP-hard 
problem. Once a problem is examined as NP-hard, exact 
algorithms would fail to solve it efficiently, especially when 
dealing with large-scale instances [9]. Doleschal et al. [10] also 
state that employing discrete event simulation and 
mathematical programming approaches are not feasible for 
solving complex scheduling problems in photolithography 
areas. They arrive at this conclusion through an analysis of the 
limitations of these methods and demonstrate the need for more 
efficient approaches through simulation experiments and 
practical application. Under these situations, other more 
efficient and effective approaches are necessary. 

It is worth mentioning that heuristic algorithms are widely 
used in photolithography scheduling problems. Heuristic 
algorithms often generate solutions quickly, making them well-
suited for handling large-scale problems. In [8], two different 
heuristics are proposed to minimize the total weighted 
completion time of PMs with the consideration of reticle 
requirements. In [11], a time extended objective-oriented Petri 
nets (EOPNs) is constructed based on a multiple-objective 
scheduling and real-time dispatching approach. In addition to 
the proposed EOPNs, a priority-ranking algorithm with four 
performance objectives is introduced to give a high-quality 
initial scheduling guidance. In [10], a heuristic scheduling rule 
called the solver-based reticle allocation approach is proposed. 
The effectiveness of the solver-based reticle allocation 
approach is verified by comparing it with classical rule-based 
dispatching approaches on both the representative test data and 
real-world cases. Based on the studies reviewed above, it can 
be concluded that heuristic algorithms have problem-specific 
natures that result in a better performance for addressing 
particular types of problems. 

With the continuous advancement in semiconductor 
manufacturing, the industry is witnessing a progressive 
sophistication in its manufacturing processes. To address the 
growing complexity of manufacturing processes and improve 
the productivity, metaheuristics are increasingly employed to 
pursue high-quality solutions. In [6], a scheduling problem with 
dual resource constraints which are machine resource and 
reticle resource constraints is addressed. To do so, two mixed-

integer programming models and an improved naked mole-rat 
algorithm are introduced. Experiments show that the improved 
naked mole-rat algorithm outperforms the genetic algorithm 
(GA) and the variable neighborhood search algorithm. In [12], 
a metaheuristic called memetic algorithm is applied to solve the 
scheduling problem in a photolithography workshop. The 
effectiveness of the memetic algorithm is evaluated by two 
criteria which are weighted flow time and the number of 
processed products. In [13], a two-phase decoding GA is 
proposed to minimize the idle time for all machines with 
complex constraints, such as photo mask availability, available 
machines for jobs, and limited waiting time. In [14], an 
imperialist competitive algorithm with the connection of a 
predictive neural network is proposed for addressing the 
scheduling problem in a dynamic environment under the 
consideration of wafer arrival constraints, dedicated machines 
constraints, and auxiliary resources constraints. 

B. Unrelated Parallel Machine Scheduling Problem 
The scheduling problems in photolithography areas can be 

treated as unrelated parallel machine scheduling problems 
(UPMSPs) mentioned in [6, 12]. Thus, studies about UPMSPs 
in other manufacturing systems can also provide a rich source 
of inspiration and potential solution approaches. 

In [15], an UPMSP is examined in bar-turning manufacturing. 
In their work, an MILP model is proposed for solving small-
sized instances and introduces a two-step approach that 
employs a relaxed version of the proposed MILP model 
followed by a heuristic algorithm for large-sized instances. Li 
et al. [16] propose several heuristics that rely on the best fit 
longest processing time rule to address a scheduling problem of 
the unrelated parallel batch processing machines with the 
objective of minimizing the completion time of the last job. 
Further, many studies consider machine or job setup time 
before a processing process starts which is similar to the 
problem addressed in this work. In [17], a non-preemptive 
UPMSP with job sequence and machine-dependent setup time 
is examined by a constraint programming model with two 
customized branching strategies. Afzalirad and Rezaeian [18] 
propose a GA along with an artificial immune system to solve 
an UPMSP incorporating sequence-dependent setup time. Also, 
Arroyo and Leung [19] address an UPMSP where each job has 
an arbitrary job size and non-zero ready time. They provide the 
lower bound of the problem and formulate it as an MILP model. 
Then, they propose an iterated greedy algorithm to tackle the 
problem and show its effectiveness with comparisons to GA, 
artificial bee optimizer, and simulated annealing algorithm. 

C. Summary 
Based on the no free lunch theorem [20], no optimization 

technique can claim to be the best for all situations, whether for 
general or specific ones. Thus, to achieve superior optimization 
results, most studies reviewed above employ an approach that 
combines different solution methodologies. By considering the 
practical demands from the investigated wafer fab, the 
addressed scheduling problem of the photolithography area in 
this work differs from the abovementioned studies in terms of 
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the following two aspects: 1) there are three different situations 
of machine setup, i.e., reticle switching, recipe switching, and 
machine initialization preparation; and 2) PMs are all designed 
with downward processing compatibility. To the best 
knowledge of authors, there is no research report with the 
consideration of the two aspects. This motivates us to conduct 
this work. 

III. PROBLEM FORMULATION 

A. Problem Description 

To well describe the addressed scheduling problem, some 
notations are introduced as follows. Additionally, all notations 
used are summarized in Table A in Supplementary File. The 
layout of the investigated photolithography area is shown in 
Fig. 1. 

The total number of pattern precisions is represented by NA 
and A is a set of pattern precisions, where A = {1, 2, …, a, …, 
N1}. Notice that a smaller value of pattern precision indicates a 
higher precision required by the pattern. For Pattern Precision-
a, it has a corresponding set of reticles represented by ba. 
Similarly, N2 represents the number of elements in ba, where βa 
= {1, 2, …, u, …, N2}. This means that the reticle in ba should 
be processed at a PM that can handle Pattern Precision-a. Note 
that each reticle is associated with a unique pattern precision. 
Besides, the total number of machine groups is denoted by N3 
and G = {1, 2, …, g, …, N3} represents the set of machine 
groups. In this work, the number of machine groups matches 
the number of pattern precisions, resulting in N3 = N1. 
Moreover, if the highest pattern precision that Machine Group-
g can handle is Pattern Precision-a, then a = g holds. In other 
words, the highest pattern precision that Machine Group-g can 
handle is Pattern Precision-g. In this way, each pattern precision 
can be dealt with by at least one machine group. The set of PMs 
belonging to Machine Group-g is denoted as Gg and the number 
of PMs in Gg is represented by N4, where Gg = {1, 2, …, n, …, 
N4}. 

In semiconductor fabs, each reticle is unique since it is quite 
expensive. Therefore, the reticles are tight resources in fabs. 
Thus, to improve the productivity of PMs, raw wafers requiring 
the same reticle (implying that they should be processed under 
the same precision requirements) are desired to be continuously 
processed in a PM so as to reduce the significant setup time. To 
do so, all raw wafers requiring Pattern Precision-a and Reticle-

u can be treated as a job denoted as Oau, where a Î A, u Î βa. 
As mentioned, jobs with lower pattern precision requirements 
can be processed at more PMs. As shown in Fig. 1, O11 can only 
be assigned to a PM of Machine Group-1 for processing, while 
O21 can be assigned to a PM of both Machine Group-1 and 
Machine Group-2 for processing. Accordingly, the key of the 
addressed scheduling problem is to assign jobs to PMs with the 
objective of minimizing the difference between the longest and 
shortest working time of PMs. 

In practice, a PM is allowed to equip several reticles in its 
reticle pod with the same pattern precision. In other words, the 
reticles simultaneously equipped in a PM should have the same 
pattern precision or require the same processing environment. 
When those reticles need to switch, the time is quite short. Also, 
when a PM continuously processes raw wafers with the same 
reticle, there is no need to switch reticles or recipes. Under such 
a situation, the processing time of a job is determined by the 
number of such raw wafers and the processing time required 
for each wafer. Additionally, the processing time of a wafer is 
determined by both the assigned PM and the pattern precision 
it requires. Let NWau represent the number of raw wafers made 
up of Oau and Pga indicate the processing time of a raw wafer 
processed at a PM of Machine Group-g with required Pattern 
Precision-a. To calculate the processing time of each job at each 
PM, we have 
 Tgnau = Xgnau ´ NWau ´ Pga, " g Î G, n Î Gg, a Î A, u Î ba,
  (1) 
where Xgnau is a binary variable. If Oau is assigned to be 
processed at PM-n of Machine Group-g, then Xgnau = 1; 
otherwise, Xgnau = 0. With Equation (1), the time needed for 
processing Oau at PM-m of Machine Group-g (i.e., Tgnau) can be 
obtained. 

There is a fact that wafer products with a higher pattern 
precision are more valuable. According to real production 
demands, the PM starts to process raw wafers with the highest 
pattern precision. Therefore, the processing sequence of raw 
wafers at each PM follows a descending order with respect to 
the pattern precision, i.e., such a sequence starts from a wafer 
with the highest pattern precision and ends to the one with the 
lowest pattern precision. Thus, at a PM, when the processing 
for all jobs requiring Pattern Precision-a is completed, the 
processing for jobs requiring Pattern Precision-l can start, 
where a, l Î A, a < l. Notice that the reticles simultaneously 
equipped in a PM should have the same pattern precision. When 
the PM should handle some jobs with different pattern 
precision, the PM should perform a recipe switching to prepare 
the processing environment, and at the same time the required 
reticles by these jobs should be equipped into the PM. The 
recipe switching time is quite long such that it is sufficient to 
cover the time required for reticle switching, even if the 
required reticle should be manually delivered from elsewhere. 
Besides, when the PM handles the jobs requiring the reticles 
that have been equipped in the PM, the reticle switching 
processes can be automatically performed accordingly. Note 
that PMs belonging to the same machine group have identical 
reticle switching times. Let STg represents the time needed for 

 
Fig. 1. Layout of a photolithography area. 
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reticle switching at any PM of Machine Group-g. Then, with 
the consideration of reticle switching, the total time for 
processing jobs requiring Pattern Precision-a at PM-n of 
Machine Group-g is denoted as Tgna. To obtain Tgna, we have 
 Tgna = ∑ 𝑇!"#$$Îb!  + (Hgna + (∑ 𝑇!"#$$Îb! ) - 1)´ STg, " g Î 
G, n Î Gg, a Î A,  (2) 
where ∑ 𝑇!"#$$Îb!  is the sum of total processing time for all 
jobs requiring Pattern Precision-a at PM-n of Machine Group-
g. The rest part (Hgna + (∑ 𝑇!"#$$Îb!  - 1) ´ STg is the total time 
needed for reticle switching processes. Hgna is a binary variable. 
If there is no job requiring Pattern Precision-a processed at PM-
n of Machine Group-g (i.e., ∑ 𝑇!"#$$Îb!  = 0), then Hgna = 1; 
otherwise, Hgna = 0. As a result, Hgna + (∑ 𝑇!"#$$Îb! ) - 1 gives 
the reticle switching times. Let Tgn denote the total working 
time of PM-n belonging to Machine Group-g. Then, Tgn can be 
calculated by adding the consideration of recipe switching and 
machine initialization preparation. To do so, we introduce the 
following equation (3). 
 Tgn = Qgn ´ SCgn + ∑ 𝑇!"#

%"
#&!  + ∑ ∑ (𝑍!"#' 	´	𝑆!#')

%"
'&#()

%"-)
#&! , " 

g Î G, n Î Gg,  (3) 
In Equation (3), Qgn is a binary variable. If the machine 

initialization preparation is necessary for PM-n of Machine 
Group-g, then Qgn = 1; otherwise, Qgn = 0. Accordingly, SCgn 
denotes the time required for machine initialization preparation 
of PM-n belonging to Machine Group-g. Besides, ∑ 𝑇!"#

%"
#&!  is 

the sum of total working time for PM-n of Machine Group-g to 
process jobs with different pattern precision requirements. The 
rest part ∑ ∑ (𝑍!"#' 	´	𝑆!#')

%"
'&#()

%"-)
#&!  gives the time spent on 

switching recipes. Among them, Zgnal is a binary variable and if 
there is a need to switch the recipe from achieving Pattern 
Precision-a to Pattern Precision-l at PM-n of Machine Group-
g, then Zgnal = 1; otherwise, Zgnal = 0. Additionally, Sgal 
represents the time required for recipe switching from 
achieving Pattern Precision-a to Pattern Precision-l at any PM 
of Machine Group-g. 

Before presenting the mathematical programming model, we 
give the following assumptions: 1) the processing capability of 
each PM is known in advance; 2) both the reticle and recipe 
required by each job are known in advance; 3) the number of 
raw wafers to be processed in a shift is deterministic in advance; 
4) there is no cancellation of jobs; 5) the processing activity 
cannot be interrupted once it has started; and 6) once a PM starts 
to process a job, it cannot process others until this job is 
completed. 

B. Mathematical Programming Model 
The established MILP model contains three types of 

constraints: 1) job assignment constraints (to determine the 
values of Xgnau and Hgna); 2) recipe switching constraints (to 
determine the value of Zgnal); and 3) machine initialization 
preparation constraints (to determine the value of Qgn). 
Constraints are shown below. 
1) Job assignment constraints 

Each job should be assigned to one PM only, which can be 

ensured by Constraint (4) shown as follows. Additionally, to 
guarantee that each PM can handle the jobs assigned to it, 
Constraint (5) is necessary. Constraint (5) makes sure that if a 
job requires Pattern Precision-a, it cannot be assigned to any 
PM belonging to Machine Group-g, where g > a. Then, the 
value of Hgna can be determined by Constraints (6) and (7). 
Notice that, B is a large enough integer. 
 ∑ ∑ 𝑋!"#$

%#
"=)

%$
!=)  = 1, " a Î A, u Î ba, (4) 

 Xgnau = 0, " g Î G, n Î Gg, a Î A, u Î ba, g > a, (5) 
∑ 𝑋!"#$$Îb!  ³ 1 - Hgna, " g Î G, n Î Gg, a Î A,  (6) 
∑ 𝑋!"#$$Îb!  £ B ´ (1 - Hgna), " g Î G, n Î Gg, a Î A, (7) 
2) Recipe switching constraints 

Constraints (8) - (18) are added into the established MILP 
by considering the recipe switching situations at each PM. 
 Zgnal £ ∑ 𝑋!"'$

%%
$=) , " g Î G, n Î Gg, l Î A, (8) 

 Zgnal £ ∑ 𝑋!"#$
%%
$=) , " g Î G, n Î Gg, a Î A, (9) 

 ∑ 𝑍!"#'#
'&)  = 0, "g Î G, n Î Gg, a Î A, (10) 

∑ 𝑍!"#'
%"
'&#()  £ 1, " g Î G, n Î Gg, a Î {1, …, N1 - 1}, (11) 

∑ ∑ 𝑍!"#'
%"
'&#()

%"*)
#&!  £ N1 - g, " g Î {1, …, N3 - 1}, n Î Gg, 

  (12) 
By Constraints (8) and (9), the prerequisite of a recipe 

switching from achieving Precision-a to Precision-l is that both 
Precision-a and Precision-l are required by jobs, i.e., if Zgnal = 
1, then Xgnau = 1 and Xgnlu = 1 hold. Moreover, Constraint (10) 
ensures that the recipe switching is performed from achieving a 
higher pattern precision to a lower one, thereby guaranteeing 
that the processing sequence of jobs follows a descend order 
with respect to the pattern precision. 

Constraints (11) and (12) ensure that PMs can start to process 
a job requiring a different pattern precision after they have 
finished all jobs requiring the current pattern precision. To do 
so, Constraint (11) limits the number of times for the recipe 
switching from achieving one pattern precision to a lower 
pattern precision being one at most. Additionally, Constraint 
(12) ensures that the total times of recipe switching processes 
at each PM of Machine Group-g should not exceed N1 - g. To 
illustrate the purpose of Constraint (12), an example is adopted 
in which N1 = 5 and g = 3. In this example, the pattern precisions 
handled by PMs of Machine Group-3 are: Pattern Precision-3, 
Pattern Precision-4, and Pattern Precision-5. According to 
Constraint (12), the maximum number of times for recipe 
switching processes should not exceed N1 - g = 2. Given that 
the pattern precision handled by a PM starts from the highest 
one (i.e., Pattern Precision-3), the recipe switching process with 
the maximum number of times should be: Pattern Precision-3 
® Pattern Precision-4 ® Pattern Precision-5. It can be 
observed that the times for recipe switching equals two. 
Therefore, it can be concluded that the recipe switching times 
for other recipe switching sequences in this example should be 
smaller than two. However, if the recipe switching is required 
from achieving Pattern Precision-3 to Pattern Precision-5 
directly, Constraints (8) - (12) are not enough to guarantee this. 
Thus, the following constraints are added into the established 
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MILP. 
 Ygna ³ Xgnau, " g Î G, n Î Gg, a Î A, u Î ba, (13) 
 Ygna £ ∑ 𝑋!"#$$Îb! , " g Î G, n Î Gg, a Î A, (14) 
 1 - ((∑ 𝑌!"+'

+&# ) - Ygnl - Ygna) ´ B £ Vgnal, " g Î G, n Î Gg, a, 
l Î A,  (15) 
 Vgnal £ (1 - Ygnq) ´ B, " g Î G, n Î Gg, a, q, l Î A, a < q < l,
  (16) 
 Zgnal ³ 1 - ((∑ 𝑌!"+'

+&# )) - Ygnl - Ygna) ´ B - (1 - Ygnl) ´ B - (1 
- Ygna) ´ B, " g Î G, n Î Gg, a, l Î A, a < l, (17) 
 Zgnal £ ((∑ 𝑌!"+'

+&# ) - Ygnl - Ygna) ´ S + (1 - Ygnl) ´ B + (1 - 
Ygna) ´ B + Vgnal ´ B, " g Î G, n Î Gg, a, l Î A, a < l, (18) 

Ygna is a binary variable. Further, Ygna = 1 if there exists at 
least one job requiring Pattern Precision-a processed at PM-n 
of Machine Group-g; otherwise, Ygna = 0. The value of Ygna is 
also determined according to the value of Xgna by Constraints 
(13) and (14). Notice that, the value of Ygna is opposite to the 
value of Hgna. Also, a binary variable Vgnal is introduced. It 
indicates that if the recipe switching from achieving Pattern 
Precision-a to Pattern Precision-l directly, then Vgnal = 1; 
otherwise, Vgnal = 0. Then, by Constraints (17) and (18), the 
value of Zgnal can be determined. 
3) Machine initialization preparation constraints 

As described, if the first recipe of the current shift differs 
from the last one of the previous shift, a machine initialization 
preparation is needed. Since recipes are employed to achieve 
different pattern precisions, the need for machine initialization 
preparation can be determined by comparing the pattern 
precisions required by the related jobs. 

For PM-n of Machine Group-g, Dgn denotes the pattern 
precision required by the first job to be processed in the current 
shift, while dgn denotes the pattern precision required by the last 
processed job of the previous shift. Notice that, dgn is known in 
advance. Then, to determine the value of Dgn, Constraints (19) 
- (23) are proposed. 
 Wgnl £ ∑ 𝑌!"#'

#=)  ´ B, " g Î G, n Î Gg, l Î A, (19) 
 Wgnl ³ ∑ 𝑌!"#'

#=)  ´ S, " g Î G, n Î Gg, l Î A, (20) 
 ∑ 𝑊!"'

%"
'&)  ³ 1 - Fgn, " g Î G, n Î Gg, (21) 

 ∑ 𝑊!"'
%"
'&)  £ B ´ (1 - Fgn), " g Î G, n Î Gg, (22) 

 Dgn = (N1 - ∑ 𝑊!"'
%"
'=)  + 1) - (N1 + 1 - dgn) ´ Fgn, " g Î G, n 

Î Gg,  (23) 
Among these constraints, ∑ 𝑌!"#'

#=)  calculates the total 
number of pattern precisions, ranging from Pattern Precision-1 
to Pattern Precision-l, required by jobs at PM-n of Machine 
Group-g. Furthermore, a binary variable Wgnl is introduced. If 
∑ 𝑌!"#'
#=)  ³ 1, then Wgnl = 1; otherwise, Wgnl = 0. Moreover, if 

Wgnl = 1, then Wgnq = 1, where l, qÎ A and l £ q. Therefore, if 
∑ 𝑊!"'
%"
'=)  ³ 1, it implies that there is at least one job assigned 

to be processed at PM-n of Machine Group-g. Conversely, if 
∑ 𝑊!"'
%"
'=)  = 0, indicating that there is no job assigned to be 

processed at PM-n of Machine Group-g, then Dgn should be 
equal to dgn. To ensure this, an additional binary variable Fgn is 
adopted such that if ∑ 𝑊!"'

%"
'=)  ³ 1, then Fgn = 0; otherwise, Fgn 

= 1. Finally, the pattern precision required by the first job to be 
processed in the current shift at each PM can be determined by 
Constraint (23). 

Finally, the value of Qgn is determined based on the values of 
Dgn and dgn as shown in Constraints (24) - (28). Notice that, a 
and b are two binary variables, and their sum should be equal 
to one as shown in Constraint (24). 
 A + b = 1, (24) 
 a ´ B + (dgn - Dgn) ³ Qgn, " g Î G, n Î Gg, (25) 
 b ´ B + (Dgn - dgn) ³ Qgn, " g Î G, n Î Gg, (26) 
 Qgn ³ (dgn - Dgn) ´ S, " g Î G, n Î Gg, (27) 
 Qgn ³ (Dgn - dgn) ´ S, " g Î G, n Î Gg, (28) 

Further, the maximum and minimum working time of PMs 
are denoted as TMAX and TMIN, respectively. 
 Tgn ³ 0, " g Î G, n Î Gg, (29) 
 TMAX ³ Tgn, " g Î G, n Î Gg, (30) 
 TMIN £ Tgn, " g Î G, n Î Gg, (31) 

Constraint (29) ensures that the total working time of each 
PM should be greater than or equal zero. Besides, Constraints 
(30) and (31) illustrate that the total working time of each PM 
should be within the range [TMIN, TMAX]. The objective of the 
addressed problem is to minimize the difference between TMAX 
and TMIN such that the workloads at PMs can be balanced. Then, 
an MILP model can be established as follows: 
 MILP: Minimize (TMAX - TMIN) (32) 

Subject to: (4) - (31) 

IV. PROCEDURE OF PROPOSED APPROACH 
As mentioned above, the addressed problem can be 

formulated as an MILP. However, the computational time 
required for solving an MILP increases exponentially as the 
problem size grows [21]. Thus, exact solutions are suitable for 
small-sized problems. For larger-sized problems, it is advisable 
to apply metaheuristic algorithms, which are problem-scale 
independent and use intelligent ways to guide the search for 
high-quality solutions [9, 22-24]. 

To solve the addressed scheduling problem, the EDA 
introduced in [25] is adopted. EDAs are a class of stochastic 
optimization techniques. Different from traditional 
evolutionary algorithms (such as GA) that rely on crossover and 
mutation to explore the solution space, EDAs take a sampling 
approach based on a probability model to generate high-
qualities solutions. This unique searching strategy enables EDA 
to capture the relationship between different variables by 
updating the probability model at each iteration. In this work, a 
designed EDA (DEDA) is proposed, and its main procedures 
are: 1) individual encoding and population initialization; 2) 
fitness calculation; 3) probability model initialization, update, 
and creation of new population; and 4) greedy local 
improvement. 

A. Individual Encoding and Population Initialization 
This work applies integer coding for individual representation. 

An example is used to illustrate the applied coding approach. 
Assume that there are three machine groups and each one contains 
three PMs. Each PM is assigned a specific Arabic number, starting 
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with a PM in Machine Group-1 as one and ending with a PM in 
Machine Group-3 as nine. By doing so, PMs are numbered with 
different Arabic numbers from one to nine. Similarly, this 
numbering approach is also applied to jobs. Each job is assigned 
a specific Arabic number, starting with the job requiring Pattern 
Precision-1 and using Reticle-1 as one. Subsequently, the job 
requiring Pattern Precision-1 and using Reticle-2 is numbered as 
two. Jobs continue to be numbered in this way until all jobs 
requiring Pattern Precision-1 are numbered. Then, jobs requiring 
Pattern Precision-2 can start to be numbered.  

EDAs rely on a population of g individuals to search for high-
quality solutions. In this work, each individual is denoted as Px, x 
Î ℕg = {1, 2, …, g}. Let |•| denote the number of elements in a set 
or the size of a list. Px = [px_1, px_2, …, px_½J½], where J is the set 
of jobs. Here, px_j represents the PM that Job-j is assigned to, j Î 
J. Then, the population of g individuals is denoted by Qg = {Px| x 
Î ℕg}. The schematic diagram of a population is shown in Fig. 2. 
It can be found that the size of an individual is determined by the 
number of jobs. 

Undoubtedly, the number of jobs far exceeds the number of 
PMs in real-world production. In this work, individuals (i.e., job 
assignments) are randomly generated initially. This may result in 
some PMs having no jobs to process. When such a situation arises, 
the generated individual is not a high-quality one due to the 
unbalanced workloads among PMs. Moreover, it is well known 
that having a diverse and high-quality initial population is 
beneficial for evolutionary search [26]. In many existing studies, 
the initial population for solving scheduling problems is improved 
by initialization strategies or using simple heuristics. Thus, in this 
work, Algorithm 1 is proposed to improve the quality of a 
randomly generated initial population denoted as Qg.  

The main idea of Algorithm 1 is to assign a job to a PM if it 
currently has no jobs to process. This idea is applied to each 
individual of the initial population, as shown in Statement 1). By 
Statement 2), two sets J and d are used to record the numbers 
representing PMs and jobs, respectively. Initially, both J and d 
are all empty. By Statements 3) - 5), the number representing each 
PM that has at least one job to process is recorded in J. Notice 
that, Px, j = px_j, j Î J. Also, elements in a set should be unique. 
Therefore, if the number of Arabic numbers recorded in J is less 
than the total number of all PMs, then at least one PM has no jobs 
to process. Notice that, the numbers representing PMs are all 
summarized in the set M, where m Î M. 

If Statement 6) holds, Statements 7) and 8) are used to identify 
the PM that has no jobs to process. In Statement 8), JMm is a set 
made up of the numbers representing the jobs assigned to be 
processed at the PM-m. If the number of elements in JMm equals 
zero, then PM-m is examined as the one with no jobs to process. 
When such a situation occurs, all numbers representing the jobs 
that can be moved to be processed at the PM-m will be recorded 
in d. This is achieved by Statements 9) - 12). For Job-j, the 
numbers representing the PMs that can process it are summarized 
in the set MJj, MJj Í M. However, before recording the number 
representing a job in d, it should ensure that this job is not the only 
one at its current PM. To do so, Statement 11) is necessary. If there 
are numbers in d (i.e., if Statement 13) holds), a number is 
randomly selected from d and then the job represented by this 
number is assigned to PM-m by modifying the individual coding. 
This is achieved by Statements 14) and 15). Notice that, 
Randomint(1, |d|)) is a function used to randomly select an integer 
within the range [1, |d|]. 

Algorithm 1: Initial population improvement 
Input: Qg, 
Output: Qg 
1) For x ¬ 1 to g 
2)  J = Æ, d = Æ; 
3)  For j ¬ 1 to |J| 
4)   If Px, j not in J 
5)    J È {Px, j}; 
6)   If |J| < |M| 
7)    For m ¬ 1 to |M| 
8)     If |JMm| = 0 
9)      For j ¬ 1 to |J| 
10)       If m in MJj 
11)        If |𝑱𝑴P&,(| > 1 
12)         d = d È {j}; 
13)      If |d| > 0 
14)       z = Randomint(1, |d|); 
15)       New-P,,d) = m; 

B. Fitness Calculation 
To evaluate the quality of an individual, Algorithm 2 is 

proposed to calculate its fitness value. Statements 1) - 2) aim to 
identify the numbers representing the jobs assigned to be 
processed at each PM. For Job-j of Individual-x, the number 
representing its assigned PM is Px,j. Next, the number 
representing Job-j is recorded in the set 𝑱𝑴P&,(. Subsequently, the 
processing sequence of jobs at each PM should be determined. By 
Statements 1) - 2), the initial processing sequence of jobs at PM-
m is represented by Em. Notice that, Em is a sorting list made up of 
job numbers from small to large. Besides, L𝑬*,(  and D𝑬*,( 
respectively denote the required pattern precision and reticles of 
the j-th Job at PM-m, j Î {1, …, ½Em½}. Statements 6) - 7) are 
proposed to ensure that jobs requiring a higher pattern precision 
are given higher processing priority, thereby ensuring the 
processing sequence of wafers is a descending order with respect 

 
Fig. 2. Schematic diagram of population. 
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to the pattern precision. Notice that, Equations 8) - 18) of the 
MILP model are addressed by Statements 3) - 7). 

After determining the processing sequences of jobs at all PMs, 
the total working time of PM-m denoted as Tm can be calculated 
by Statements 8) - 17). Statements 9) - 10) are used to calculate 
the total processing time of all jobs processed at PM-m, where 
pc(Em,j) denotes the processing time of the j-th processed Job at 
PM-m. Statements 11) - 12) are used to calculate the time spent 
on machine initialization preparation, where lwm represents the 
pattern precision required by the last processed job of the previous 
shift and L𝑬*," denotes the pattern precision required by the first 
job of the current shift. If lwm and L𝑬*," are different, then there 
exists a machine initialization preparation at PM-m and the time 
needed for such a preparation is denoted as MSm. Statements 9), 
13), and 14) - 17) are used to calculate the total time spent on 
recipe switching or reticle switching. When a PM starts to process 
a different job, reticle switching is always necessary. At this time, 
whether there is a recipe switching requirement should be further 
determined by Statement 14). If Statement 14) holds, it indicates 
that both reticle switching and recipe switching are required and 
the total time needed for them is governed by the time taken for 
the recipe switching represented by 𝑆𝑊L𝑬*,( ,L𝑬*,)

. However, If 
Statement 14) is not true, then there exists the reticle switching 
only and the time needed for the reticle switching is represented 
by 𝑆𝑇D𝑬*,( ,D𝑬*,)

. 2). Equations 19) - 28) of the proposed MILP 

model are addressed by Statements 8) - 17). 
After Statements 8) - 17) are done, Statements 18) and 19) can 

identify the PMs with the longest and shortest working time, 
respectively, which corresponds to Equations 29) - 31) of the 
proposed MILP model. Finally, the fitness value of Individual-x 
denoted as Fx is given by Statement 20).  

Algorithm 2: Fitness calculation 
Input: Px 
Output: Fx 
1) For j ¬ 1 to |J| 
2)  𝑱𝑴P&,( = 𝑱𝑴P&,( È {i}; 
3) For m ¬ 1 to |M| 
4)  For j ¬ 1 to ½Em½ 
5)   For z ¬ j + 1 to ½Em½ 
6)    If L𝑬*,( > L𝑬*,) 
7)     Em,j, Em,z = Em,z, Em,j; 
8) For m ¬ 1 to |M| 
9)  For j ¬ 1 to ½Em½ 
10)   Tm = Tm + pc(Em,j); 
11)   If lwm ¹ L𝑬*," 
12)    Tm = Tm + MSm; 
13)   For z ¬ j + 1 to ½Em½ 
14)    If L𝑬*,( ¹ L𝑬*,) 

15)     Tm = Tm + 𝑆𝑊L𝑬*,( ,L𝑬*,)
; 

16)    Else 
17)     Tm = Tm + 𝑆𝑇D𝑬*,( ,D𝑬*,)

; 

18) Tmax = max(Tm, m Î M); 
19) Tmin = min(Tm, m Î M); 
20) Fx = Tmax - Tmin; 

C. Probability Model Initialization, Update, and Creation of 
New Population 

EDA describes population evolution trends by a probabilistic 
model. The representation of a probability model is described 
as a ½J½ ´ ½M½ matrix denoted by  

p(X) = 

⎣
⎢
⎢
⎡
𝑝(𝑋),)) 𝑝(𝑋),/) … 𝑝(𝑋),|𝑴|)
𝑝(𝑋/,)) 𝑝(𝑋/,/) … 𝑝(𝑋/,|𝑴|)

⋮ ⋮ ⋮ ⋮
𝑝(𝑋|𝑱|,)) 𝑝(𝑋|𝑱|,/) … 𝑝(𝑋|𝑱|,|𝑴|)⎦

⎥
⎥
⎤
, 

where J is the set of jobs and M is the set of PMs. Then, p(Xj,m) 
indicates the probability of Job-j assigned to be processed at 
PM-m, j Î J and m Î M. Notice that, if m Î M - MJj, then 
p(Xj,m) is marked as “None”. Here, “None” is used to indicate 
that such a probability does not exist. Initially, the probability 
model is set to a uniform distribution state. To achieve this, 
p(Xj,m) = p(Xj,m¢) = )

½𝑴𝑱(½
, where j Î J, m, m¢ Î MJj. 

After the initialization of the probability model, the next is to 
select a subset of candidate individuals (also known as elite 
individuals) to update the probability model. Here, we examine 
two different selection approaches, illustrated by using a same 
case shown in Fig. 3 (a) and (b). In general, elite individuals are 
selected based on their fitness values in most of the existing 
studies. To exemplify this method, Fig. 3 (a) shows that the top 
1/3 individuals with the lowest (best) fitness values are chosen 
to be elite individuals. Although elite individuals have high 
qualities, there is a possibility of them being excessively similar. 
Here, “similar” refers to that two different elite individuals have 
a significant portion of identical elements. There is no doubt 
that such a similarity can result in a rapid increase in the 

 
Fig. 3. Two approaches to select elite individuals. 
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probability of certain elements within the probability model, 
potentially causing the EDA to be easily trapped in local optima. 
To avoid this, the second approach is considered by dividing 
the population into multiple clusters. Furthermore, a 
proportional number of individuals from each cluster are 
selected as elite individuals. As shown in Fig. 3 (b), the number 
of clusters is three. For each cluster, a proportion of 1/3 
individuals with the best fitness values are selected such that the 
total number of elite individuals matches the one in Fig. 3 (a). 
By doing so, the diversity of the elite individuals in Fig. 3 (b) 
can be higher than that in Fig. 3 (a). 

To divide a population into multiple clusters, a Manhattan 
distance-based Kmeans (MD-Kmeans) clustering approach is 
adopted as shown in Algorithm 3. The effectiveness of Kmeans 
clustering has been verified in [27]. Let N5 denote the number 
of clusters and Ck, k Î {1, …, N5}, denote Cluster-k. Initially, 
all clusters are set as empty sets by Statement 1). Then, there 
are three steps to group g individuals into N5 clusters. 
1) Step 1: Manhattan distance calculation between any two 
different individuals 

The Manhattan distance (MD) calculation is achieved by 
Statements 2) - 6). As shown in Statement 5), the following 
equation is necessary.  
mdxx¢ = ∑ ½P,,2 	-	P,¢,2½

½𝑱½
2	=	) , " x, x¢ Î ℕg = {1, 2, …, g}. (33) 

In equation (33), md is a g ´ g zero matrix used to record the 
MD between any two individuals for a population of g 
individuals. Accordingly, mdxx¢ is used to represent the MD of 
Individuals x and x¢. Notice that, mdxx¢ = mdx¢x. 
2) Step 2: The initial centroid selection for each cluster from 
the dataset 

By Step 2, individuals from the population are selected. Let 
µk, k Î {1, …, N5}, be the centroid of Cluster-k. The initial 
centroids are given by selecting random individuals from the 
population as shown in Statement 7). 
3) Step 3: The centroids updating 

Step 3 is done by Statements 9) - 20). Notice that, the third 
step is repeatedly performed by a loop procedure. If the flag is 
less than N5, then the loop continues. By Statements 11) - 14), 
each individual is included in a cluster (set) whose centroid has 
the minimum MD to it. Subsequently, Statements 15), 17), and 
18) are used to obtain a new centroid for each cluster. To do so, 
the following equation is needed. 

µk,f = ∑ (𝛱,,4)
½𝑪,½
,&)  / |Ck|, f Î {1, …, ½µk½}, k Î {1, …, N5}. 

  (34) 
In equation (34), the f-th element of µk is obtained by the 

mean of all corresponding elements of individuals assigned to 
Cluster-k. If a centroid does not move (i.e., the new centroid is 
equal to the current one), then the flag is added by one. This is 
achieved by Statements 16) and 19). If all centroids do not move 
(i.e., when the flag is equal N5), then the loop ends. 

Algorithm 3: MD-Kmeans clustering approach 
Input: N5, g 
Output: Ck, k Î {1, …, N5} 

1) Set Ck = Æ, k Î {1, …, N5}; 
2) md = 0g ´ g; 
3) For i ¬ 1 to g 
4)  For j ¬ i + 1 to g 
5)   mdi,j = ∑ ½P6,7	-	P2,7½

½𝑱½
7	=	) ; 

6)   mdj,i = Mdi,j; 
7) Randomly select N5 individuals as µk, k Î {1, …, 

N5}; 
8) flag = 0; 
9) While flag < N5 
10)  flag = 0; 
11)  For z ¬ 1 to g 
12)   For h ¬ 1 to N5 
13)    If mdz,h = min(mdz,k, k Î {1, …, N5}) 
14)     Ch = Ch È {Pz}; 
15)  For k ¬ 1 to N5 
16)   rk = µk; 
17)   For f ¬ 1 to ½µk½ 
18)    µk,f = ∑ (𝛱,,4)

½𝑪,½
,&)  / |Ck|; 

19)   If µk = rk 
20)    flag = flag + 1; 
After the selection of elite individuals, Algorithm 4 is 

employed to update the probability model. Let ep denote the set 
made up of elite individuals and the average fitness value of 
elite individuals is denoted as Ave_f = ∑ 𝐹𝒆𝒑-

|𝒆𝒑|
6	=	)  / |ep|, where 

𝐹𝒆𝒑- represents the fitness value of Individual-i of ep obtained 
by Algorithm 2. Besides, two ½J½´½M½ zero matrixes B and 
W are used to record the times of jobs assigned to PMs and the 
sum of fitness values of individuals, respectively. Notice that, 
B and W can guide the update of the probability model. 

Statements 4) - 8) are used to update the elements in both B 
and W. As shown in Statement 6), z is the number representing 
the PM that Job-j of Elite Individual-i is assigned to. Then, the 
times for Job-j assigned to be processed at PM-m denoted by 
Bj,z should be added by one. Additionally, the fitness value of 
Elite Individual-i is added to Wj,z, where Wj,z represents the sum 
of fitness values of individuals in which Job-j is assigned to 
PM-z. Subsequently, the probability model is updated by B and 
W as shown in Statements 9) - 18). Notice that, the updated 
probability model keeps part of the historical experience from 
the last probability model by a learning rate denoted as a = iter 
/ Maxiter. As iter and Maxiter respectively represent the current 
iteration number and the maximum number of iterations, the 
updates to the probability model rely more on historical 
experience with iteration proceeds. If Wi,j < Ave_f ´ Bi,j, which 
means that Job-j assigned to PM-m has a positive impact on the 
fitness values, then P(Xi,j) can be increased by l, where l is a 
value randomly generated within the range [0, P(Xi,j)) by the 
function Random(0, P(Xi,j)). Conversely, if Wi,j > Ave_f ´ Bi,j, 
then P(Xi,j) should be decreased by l. 

Algorithm 4: Probability model update 
Input: ep, p(X), a 
Output: p(X) 
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1) Ave_f = ∑ 𝐹𝒆𝒑-
|𝒆𝒑|
6	=	)  / |ep|;  

2) B = 0½J½´½M½; 
3) W = 0½J½´½M½; 
4) For i ¬ 1 to |ep| 
5)  For j ¬ 1 to |J| 
6)   z = epi,j; 
7)   Bj,z = Bj,z + 1; 
8)   Wj,z = Wj,z + 𝐹𝒆𝒑-; 
9) For i ¬ 1 to |J| 
10)  For j ¬ 1 to |M| 
11)   If Bi,j > 0 
12)    l = Random(0, P(Xi,j)); 
13)    If Wi,j < Ave_f ´ Bi,j 
14)     P(Xi,j) = a ´ P(Xi,j) + (1 - a) ´ (Bi,j / |ep|)) 

+l; 
15)    Elif Wi,j > Ave_f ´ Bi,j 
16)     P(Xi,j) = a ´ P(Xi,j) + (1 - a) ´ (Bi,j / |ep|)) 

- l; 
17)    Else 
18)     P(Xi,j) = a ́  P(Xi,j) + (1 - a) ́  (Bi,j / |ep|)); 
After updating the probability model, a new population is 

created by applying the roulette wheel selection (RWS). In this 
work, RWS aims to select a PM for each job according to the 
probability model. To ensure a proper application of RWS, the 
total probability of all selectable parts equals one. However, it 
may occur that ∑ 𝑝(𝑋2,;)½𝑴½

;=) , j Î J does not equal one after the 
probability model updates. To address this situation, the 
normalization processing is performed. By doing so, the 
probability of PM-m that will be selected for processing Job-j 
is equal to p(Xj,m) / ∑ 𝑝(𝑋2,;)½𝑴½

;=) . 

D. Greedy Local Improvement 
The objective of the addressed problem is to minimize the 

difference between the longest and shortest working time of 
PMs. With such an objective, the improvement for an individual 
can be quickly achieved by adjusting job assignments for the 
PMs with the longest and shortest working time. To do so, 
reassigning jobs from the PM with the longest working time to 
others or reassigning jobs from other PMs to the one with the 
shortest working time may work. Inspired by this thought, 
Algorithm 5 introduces a greedy local improvement approach. 
Different from the initial population improvement (Algorithm 
1) that aims to make each PM just have jobs to process, the 
greedy local improvement employs a greedy strategy. This 
greedy strategy tries every feasible job reassignment for the 
PMs with the longest and shortest working time to find the one 
that provides the highest fitness value improvement until no 
further improvement can be achieved. 

Notice that, the greedy local improvement is repeatedly 
performed by a loop procedure to improve the quality of the 
given individual Px, x Î g. The termination condition for this 
loop is that the flag should be greater than or equal one. At first, 
the flag is set as zero by Statement 1). Then, there are three main 
steps to perform greedy local improvement shown as follows. 

1) Step 1: Identify the longest and shortest working time PMs 
The first step is to identify the PMs with the longest and 

shortest working time and their representing numbers are 
denoted as Max and Min, respectively. This step is 
accomplished by Statements 3) - 7), where Tm represents the 
total working time of PM-m, m Î M. Moreover, Ji and Jf are 
two empty sets used to record individuals and fitness values, 
respectively. Then, by Statement 9), the given individual Px and 
its corresponding fitness value Fx are stored in Ji and Jf, 
respectively.  
2) Step 2: Reassigning jobs to longest working time PM 

The second step is to generate new individuals by reassigning 
a job at the PM with the longest working time to other PMs. 
This is achieved by Statements 5) - 9). The numbers 
representing jobs assigned to be processed at the PM with the 
longest working time are summarized in the set 𝑱𝑴!"#. Then, 
the numbers representing PMs that Job-j, j Î 𝑱𝑴!"#, can be 
moved to is summarized in the set MJj - {Max}. The greedy 
nature is demonstrated by reassigning Job-j to each PM whose 
number is in MJj - {Max}. Then, |𝑱𝑴!"#| ´ |MJj - {Max}| 
new individuals and their corresponding fitness values are 
stored in Ji and Jf, respectively.  
3) Step 3: Reassigning jobs to shortest working time PM 

Similarly, the third step is to generate new individuals by 
reassigning a job to the PM with the shortest working time from 
other PMs. This is achieved by Statements 15) - 19). Notice 
that, J - 𝑱𝑴<6" is a set made up of all jobs except the ones that 
are already at the PM with the shortest working time. By 
Statements 15) - 16), whether a job can be reassigned to the 
PM with the shortest working time is determined by checking 
if the number representing this PM is in the set of numbers 
representing PMs capable of processing this job. Similarly, if 
Statement 16) holds, a newly generated individual and its 
corresponding fitness value are then stored in Ji and Jf, 
respectively. 

After performing the above-mentioned three steps, if the 
individual with the best fitness values recorded in Ji is different 
from Px, it then replaces Px and the loop continues; otherwise, 
the flag is set as one such that the loop ends. Notice that, all new 
individuals stored in Ji have only one element different from 
Px. Thus, in each loop iteration, at most one job reassignment 
is executed. 

Algorithm 5: Greedy local improvement 
Input: Px, 
Output: Px 
1) flag = 0; 
2) While flag < 1 
3)  For m ¬ 1 to |M| 
4)   If Tm = max(Tk, k Î {1, …, |M|}) 
5)    Max = m; 
6)   If Tm = min(Tk, k Î {1, …, |M|}) 
7)    Min = m; 
8)  Ji = Æ, Jf = Æ; 
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9)  Ji = Ji È {Px}, Jf = Jf È {Fx}; 
10)  For j ¬ 1 to |𝑱𝑴<#,| 
11)   For m ¬ 1 to |MJj - {Max}| 
12)    New-Px = Px; 
13)    New-P,,=<.!&(

 = 𝑴𝑱2*; 
14)    Ji = Ji È {New-Px}, Jf = Jf È {New-Fx}; 
15)  For j ¬ 1 to |J - 𝑱𝑴<6"| 
16)   If Min in MJj 
17)    New-Px = Px; 
18)    New-P,,2 = Min; 
19)    Ji = Ji È {New-Px}, Jf = Jf È {New-Fx}; 
20)  For z ¬ 1 to |Ji| 
21)   If Fz = min(Fk, k Î {1, …, |Ji|}) 
22)    New-Px = Pz; 
23)    If New-Px = Px 
24)     flag = 1; 
25)    Else 
26)     Px = New-Px; 

E. Proposed DEDA  

The flowchart of DEDA is shown in Fig. 4. In DEDA, if the 
population diversity at the current iteration decreases by 
comparing with the last iteration, the number of clusters is 
added by one. Conversely, if the diversity increases, the number 
of clusters is reduced by one. To prevent the number of clusters 
from becoming excessively large or too small, the lower and 
upper bounds of the number of clusters are set as two and five, 
respectively. Moreover, the initial number of clusters is an 
integer randomly generated within the range [2, 5]. 

Due to the greedy nature, Algorithm 5 undoubtedly requires 
high computational costs. As a result, the greedy local 

improvement is only performed if the average fitness value of 
the newly generated population becomes worse. When such a 
situation arises, the number of individuals randomly selected 
for the greedy local improvement is determined by the 
following equation. 
Ngi = é(ave_fi - ave_f(i-1)) / ave_fi) ´ gù, i Î {2, …, Max_iter}, 
  (35) 
where ave_fi denotes the average fitness value of the i-th 
Iteration and g is the population size. With the ceiling function 
é•ù, the number of selected individuals of the i-th Iteration 
represented by Ngi is ensured to be an integer. Moreover, 
selected individuals should be different.  

V. EXPERIMENTS 

A. Data set 
The proposed approach is tested on instances from the 

investigated wafer fab. For the small-sized problem, there are 
42 jobs made up of 5230 raw wafers for processing at three 
different machine groups that have three, two, and three PMs, 
respectively. For the medium-sized problem, there are 72 jobs 
made up of 12775 raw wafers for processing at five different 
machine groups that have three, two, three, two, and four PMs, 
respectively. For the large-sized problem, there are 120 jobs 
made up of 20060 raw wafers for processing at ten different 
machine groups that have three, two, three, two, four, five, three, 
two, three, and three PMs, respectively. The details of these 
three problems can be found in Tables B - D in Supplementary 
File. In Table B, explanations for each data are provided, and 
these explanations are applicable to Tables C and D as well. 

B. Parameter Setting and Experiment Design 
All experiments are conducted on a personal computer 

equipped with 8GB of RAM and an Apple M2 processor. All 
algorithms are implemented by using Python 3.8 and the MILP 
model is solved by CPLEX 12.9. 

It is well known that suitable parameter settings can result in 
a good performance of metaheuristic algorithms. To find the 
most suitable combination of parameters, a statistical method 
called the Taguchi method proposed by Genichi Taguchi is 
applied in this work and the process is given in Supplementary 
File. As a result, the best parameter settings for DEDA are: 
population size = 100, iterations for DEDA = 200, and 
percentage of population selected as elite individuals = 25%. 

After completing the parameter settings of DEDA, its 
effectiveness and efficiency in solving the addressed problem 
should be verified. To do so, a series of comparison 
experiments are conducted which can be divided into three parts: 
1) demonstrate the effectiveness of Algorithm 1 (initial 
population improvement); 2) examine the efficiency of 
Algorithm 5 (greedy local improvement); and 3) compare the 
best fitness values achieved by DEDA with those obtained by 
other popular metaheuristics. To obtain statistically significant 
results, each comparison experiment is repeated for 30 times.  

C. Experimental Results and Analysis 
1) Initial population improvement evaluation 

 
Fig. 4. Flowchart of DEDA 
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To evaluate the effectiveness of Algorithm 1, comparison 
experiments are conducted by comparing the average fitness of 
a randomly generated population with the average fitness of its 
improved version after applying Algorithm 1. Then, a total of 
180 experiments are done. The experimental results for three 
different cases are summarized in Fig. 5. As shown in Fig. 5 (a), 
(b), and (c), Algorithm 1 is highly effective for all problem sizes. 
In each experiment, Algorithm 1 consistently improves the 
average quality of the initial population. Additionally, it is 
noteworthy that as the problem size increases, the improvement 
effect of Algorithm 1 on the initial population becomes more 
significant. 

2) Greedy local improvement evaluation 
To evaluate the effectiveness of Algorithm 5, comparison 

experiments are conducted by comparing the fitness value of a 
randomly generated individual with the fitness value of its 
improved version by applying Algorithm 5. Also, 180 
experiments are needed in total. Experimental results for three 
different cases are summarized in Fig. 6 (a), (b), and (c), 
showing that local improvement performs well across all 
problem sizes. In this work, the greedy local improvement is 
considered as a single-solution metaheuristic with a termination 
condition if it falls into a local optimum.  

3) Performance evaluation of DEDA 
For the last part of the comparison experiments, we conduct 

two types of comparisons: 1) comparisons between CPLEX and 
DEDA using the small-sized case and 2) comparisons between 
the DEDA and three other metaheuristics for medium-sized and 
large-sized cases. Totally, 300 experiments are done. 

For the small-sized case, an optimal solution can be obtained 
by solving the established MILP through CPLEX. Results 
collected from 30 times of independent experiments are 
summarized in Table I. The average running time (147.891 
seconds) of DEDA is three times more than the average running 
time (33.706 seconds) of CPLEX. Notice that, the minimum 
fitness value obtained by DEDA is the same as the one given 
by CPLEX. Although DEDA achieves the optimal value (545) 
only once, the average fitness value of 30 times experiments 
provided by it is 566.53 which is quite acceptable in practical 
applications. To address practical production problems 
efficiently, it is often advisable to obtain a good solution 
quickly rather than pursuing the optimal solution with a long 
computation time [28]. Typically, CPLEX is programmed to 
stop running if the elapsed time exceeds 3600 seconds [9]. 

 
Fig. 5. Comparative experiment results for three cases. 

(a) Small-size case

(b) Medium-size case

(c) Large-size case

 
Fig. 6. Comparative experiment results for three cases. 

(a) Small-size case

(b) Medium-size case

(c) Large-size case
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Under this situation, if CPLEX cannot output the optimal 
solution within 3600 seconds, then the addressed problem is 
treated as unsolvable by CPLEX in this work. Unfortunately, 
CPLEX cannot solve medium- or large-sized problems. 

TABLE I 
EXPERIMENTAL RESULTS FOR SMALL-SIZE CASE 

 CPLEX DEDA 
Maximum fitness value (s)  736 
Minimum fitness value (s)  545 
Average fitness value (s) 545 566.53 

Maximum running time (s) 36.608 164.377 
Minimum running time (s) 31.250 129.168 
Average running time (s) 33.706 147.891 

To evaluate the efficiency of DEDA for solving medium- and 
large-sized problems, the comparison experiments are carried 
out between DEDA and other three metaheuristic algorithms, 
including GA, Grey Wolf Optimizer (GWO), and MixPso. As 
demonstrated by the outcomes of the second part of the 
comparison experiments, the greedy local improvement has a 
significantly positive impact on the search for high-quality 
solutions. Thus, the greedy local improvement is also adopted 
in these three compared algorithms for fair comparisons. 
Besides, it is essential to guarantee that the running time of each 
metaheuristic algorithm should be approximately equal. The 
running time for each case is determined by DEDA which 
serves as the termination criterion for the other three algorithms. 
For medium- and large-sized problems, the running times for 
all these three compared metaheuristics are set as 199.345 and 
2685.679 seconds, respectively.  

The experimental results for medium- and large-sized 
collected from 30 times of independent experiments are 
summarized in Table H in Supplementary File, where k denotes 
the k-th experiment. It can be found from Table H that DEDA 
outperforms the other three metaheuristics for both medium- 
and large-sized problems. Especially, for the large-sized 
problem, the worst fitness value obtained by DEDA is superior 
to the best fitness values provided by the other three compared 
metaheuristics. Furthermore, the box plots corresponding to 
Table H are drawn in Fig. 7 (a) and (b). Boxplot is a visual graph 
that is efficient in evaluating the performance of algorithms. As 
shown in Fig. 7, each box in a box plot represents the data 
distribution of one specific group within the dataset. i.e., the 
performance of one algorithm. For each box, there are three 
lines which are upper, median, and lower lines used to represent 
the maximum, median, and minimum values of a group, 
respectively. Moreover, the height of a box shows the data 
stability of a group. As shown in both Fig. 7 (a) and (b), it is 
obvious that DEDA outperforms the other three compared 
metaheuristics in terms of both the best fitness values obtained 
and the algorithmic stability. The boxplots in Fig. 7 
demonstrates DEDA’s stability, with smaller and more compact 
boxes (the yellow and purple boxplots) compared to other 
algorithms, indicating a concentrated distribution of results. 
DEDA also exhibits very few outliers, confirming its 
consistency and minimal deviation from the main distribution. 
Furthermore, the median (the thick horizontal line) is near the 

center of the DEDA’s box, suggesting that the results are 
symmetrically distributed around the median. Among the 
compared metaheuristics, GA exhibits better performance than 
MixPSO and GWO, especially for the large-sized problem. 

To enhance the reliability of the observed performance 
differences among these algorithms, significance tests are 
employed. The method applied to perform significance tests is 
the Mann-Whitney U-test, a non-parametric statistical method. 
It compares the medians of two independent samples, making 
it suitable for situations under which the data does not follow a 
normal distribution. In statistical analysis, a smaller P-value (P-
value £ 1e-5) usually indicates greater statistical significance, 
making the observed differences more reliable. The outcomes 
of Mann-Whitney U-test are also shown in Fig. 7. The findings 
consistently reveal a substantial difference (P-value £ 1e-5) 
between DEDA and each of the other three compared 
algorithms regarding their average fitness values. These 
outcomes strongly indicate the superior effectiveness of DEDA. 
By executing the computational experiments, it is suggested 
that DEDA is the preferred solution for addressing the 
scheduling problem in this work. 

 
Fig. 7. Box plots for medium and large sizes problems. 
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VI. CONCLUSION 
This work aims at solving the scheduling problem of the 

photolithography area in semiconductor manufacturing. The 
objective of the addressed problem is to minimize the difference 
between the longest and shortest working time of PMs. We first 
develop an MILP model that involves job assignment and 
machine setup constraints. Such an MILP model is used to 
obtain the optimal solution for the small-sized problem. To 
overcome the computational complexity of addressing 
medium- and large-sized problems, a designed DEDA 
integrated with Kmeans clustering is constructed. The key of 
DEDA to generate high-quality solutions lies in a probability 
model, which is updated by elite individuals at each iteration. 
To select these elite individuals, an MD-Kmeans clustering 
approach is applied. Additionally, efficient approaches are 
proposed to improve the quality of the initial population and a 
given individual. 

To verify the effectiveness of the proposed approaches, 
comparison experiments are divided into three parts and carried 
out for different size problems. The first and second parts of 
comparison experiments demonstrate the effectiveness of the 
proposed algorithms in improving the quality of the initial 
population and a given individual. The third part of comparison 
experiments shows that the solution quality obtained by DEDA 
is better than other metaheuristic algorithms (i.e., GA, MixPSO, 
and GWO) regardless of problem sizes. Besides, the 
algorithmic stability of DEDA is the best among these four 
metaheuristic algorithms. 

This work is conducted based on the fact that there is no tool 
failure or cancellation of jobs. Our future work can take 
uncertain arrival time of jobs and abnormal events into account 
for the scheduling problems of photolithography areas in 
semiconductor manufacturing. 
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