
1
> SMCA-25-01-0239 <

Workload Balancing for Photolithography Machines
in Semiconductor Manufacturing via Estimation of

Distribution Algorithm Integrating Kmeans
Clustering

LiangChao Chen, Yan Qiao, Senior Member, IEEE, NaiQi Wu, Fellow, IEEE, Mohammadhossein Ghahramani,

YongHua Shao, and SiJun Zhan

Abstract—This work focuses on the scheduling of a

photolithography area with multiple machine groups and each one
consists of a predetermined number of photolithography machines
(PMs). PMs belonging to the same machine group should have
identical processing capacities. Additionally, all PMs are
designated with downward processing compatibility. This means
that the wafers requiring relatively low pattern precision can be
processed by the PMs used to deal with high pattern precision.
After executing a photolithography process, a circuit pattern is
transferred from an auxiliary resource called a reticle onto the
wafer surface. Moreover, when processing wafers with different
reticle and processing environment requirements, the machine
setup is necessary. With those complex processing requirements,
the objective is to minimize the difference between the longest and
shortest working time of PMs so as to balance the workloads
among all PMs. To do so, a mixed-integer linear programming
model is built and then solved by using CPLEX for the small-sized
problem. For medium- and large-sized problems, a designed
estimation of distribution algorithm integrating a Kmeans
clustering is constructed to improve the productivity of the
photolithography area. Comparison results show that the
proposed method outperforms the compared algorithms
regardless of problem sizes.

Index Terms—Estimation of distribution algorithm,
photolithography, scheduling, semiconductor manufacturing

I. INTRODUCTION
n semiconductor manufacturing, the photolithography
process is widely acknowledged as a bottleneck step due to
its reliance on highly expensive machines (i.e., steppers) for

production [1]. Moreover, the photolithography area serves as
the dispatching center of wafer fabs and controls the
performance of the whole manufacturing process [2-4]. Under
this situation, an efficient production schedule for the
photolithography area becomes necessary, making scheduling
analysis in photolithography areas important in modern
semiconductor fabs.

This work was supported in part by the Science and Technology

development fund (FDCT), Macau SAR, under Grant 0018/2021/A1, Grant
0011/2023/RIA1, and 0120/2024/RIA2. (Corresponding author: YanQiao.)

LiangChao Chen, Yan Qiao, and NaiQi Wu are with the Macao Institute of
Systems Engineering and Collaborative Laboratory for Intelligent Science and
Systems, Macau University of Science and Technology, Macau, China (e-mail:
liangchao_chen@163.com; yqiao@must.edu.mo ; nqwu@must.edu.mo).

In a photolithography area, raw wafers typically made of
silicon are placed into the photolithography machines (PMs)
where geometric circuit patterns are then printed on their
photoresist layers. To achieve this, auxiliary resources known
as reticles (or masks) are necessary which contain the required
circuit patterns that will be transferred onto wafer surfaces by
the ultraviolet (also known as UV in short) light provided by
PMs. Due to the considerable expense of reticles, for example,
a single reticle may exceed $100K in cost [5], it is a common
practice in semiconductor fabs where all reticles used are
different. The reticles required by wafers depend on their wafer
fabrication process requirements. Moreover, it should be
noticed that each reticle contains only one circuit pattern.
Therefore, if two raw wafers require identical circuit patterns,
they should share the same reticle.

The circuit pattern created on a wafer surface has a
corresponding pattern precision. To make the pattern precision
satisfied, only relying on reticles is not enough. PMs in use
should provide appropriate processing environments as well.
Notice that semiconductor fabs normally have different types
of PMs that can provide different processing environments to
meet the different pattern precision demands. To guarantee the
processing environment and reticle required by a raw wafer are
matched, before a PM starts to run, the machine setup is
necessary.

In this work, there exist three different situations for machine
setup. The first situation occurs for the reticle switching. There
are two different scenarios for performing reticle switching
since reticles are auxiliary resources. The first scenario is that
the required reticle is already stored in the internal buffer (also
known as the reticle pod) of a PM, while the second scenario is
that the required reticle should be manually delivered from
elsewhere [6] and then installed in the internal buffer.
Typically, such a manual delivery process takes around 15
minutes. Once a reticle is placed in the internal buffer, the
reticle switching process is automatically performed by the PM

Mohammadhossein Ghahramani is with the Birmingham City University,
Birmingham, UK (e-mail: mohammadhossein.ghahramani@bcu.ac.uk).

YongHua Shao and SiJun Zhan are with the AscenPower Semiconductors
Co., Ltd., Guangzhou 510000, China (e-mail:
yonghua.shao@ascenpower.com; james.zhan@ascenpower.com).

I

mailto:liangchao_chen@163.com
mailto:nqwu@must.edu.mo
mailto:yonghua.shao@ascenpower.com

2
> SMCA-25-01-0239 <

itself. This process is extremely fast, typically taking only a few
seconds.

The second situation of machine setup is recipe switching.
The recipe of a wafer at a PM mainly contains the processing
parameters, such as the required temperature and pressure.
Therefore, the recipe of a wafer could specify the processing
environment at a PM. The time used for recipe switching is
spent on adjusting the internal processing environment of a PM
to match the required one for the recipe of the upcoming wafers.
Given that each circuit pattern is associated with one specific
pattern precision that is related to the processing environment
in a PM, when there is a need to perform recipe switching in the
PM, this means that circuit patterns printed on two
consecutively processed wafer surfaces are different, and at the
same time, reticle switching is necessary. According to real-
world applications, the time required for recipe switching is
around 20 to 30 minutes. Importantly, when the recipe
switching is in progress, the reticle switching can be performed
simultaneously. Therefore, if there is a need to perform both
recipe and reticle switching, then the total time needed is
determined by the time spent on recipe switching.

The last situation of machine setup is machine initialization
preparation. The investigated photolithography area operates in
shifts. The duration of a shift depends on the number of raw
wafers needed to be processed. Before starting a new shift, PMs
are required to perform a machine initialization preparation if
the initial required recipe differs from the last one of the
previous shift. Notice that the time required for machine
initialization preparation is machine-dependent. Typically, the
machine initialization preparation takes around 60 minutes,
making it the most time-consuming process among the three
different situations of machine setup. Also, during the machine
initialization preparation period, reticle and recipe switching
can be performed simultaneously. Therefore, the time spent on
machine initialization preparation is sufficient to cover both the
recipe and reticle switching processes.

In general, the processing environment required for
achieving a high pattern precision is much stricter than those
for lower pattern precisions. Additionally, to improve machine
utilization, PMs are all designed with downward processing
compatibility. To describe such a downward processing
capability, let A be a set of integers representing pattern
precisions. Further, if Pattern Precision-a is higher than Pattern
Precision-l, a, l Î A, then l > a should hold. In the meantime,
based on the downward processing compatibility of each PM,
if a PM can serve raw wafers to achieve Pattern Precision-a,
then it can also serve raw wafers to achieve Pattern Precision-l.
Under such an operational mode, the processing capability of a
PM is defined as the highest pattern precision that it can handle.
This allows us to create multiple unrelated parallel machine
groups where PMs belonging to the same machine group should
have identical processing capabilities.

As reticles are auxiliary resources, their usage is flexible, i.e.,
reticles can be shared among different PMs. Hence, a raw wafer
can be processed at any PM capable of providing the suitable
processing environment to meet its pattern precision

requirement. Thus, there exists a scheduling problem of
assigning raw wafers to PMs while satisfying production
requirements. In fact, the lower the pattern precision required
by a raw wafer, the more PMs it can be assigned to. This is due
to the downward processing compatibility of PMs and the
flexible usage of reticles. Notice that the processing time of a
raw wafer processed at different PMs with different processing
capacities may be different.

Given that each PM comes at a significant cost, the number
of PMs is limited in a photolithography area. Besides, in real-
world applications, the photolithography area is arranged a
large number of raw wafers to process, resulting in the
workloads of PMs being extremely heavy. An uneven
distribution of workloads can lead to overloading certain PMs,
resulting in significant performance discrepancies (also known
as machine variance), which directly affects the quality
consistency of wafers produced by PMs. Therefore, the
distribution of workloads among PMs has a significant impact
not only on the productivity of the system but also on the
equipment longevity. Consequently, it is essential to find an
efficient schedule to balance machine workloads while
satisfying production requirements. Motivated by this real
application requirement, this work conducts a scheduling
analysis of a photolithography area with the objective of
minimizing the difference between the longest and shortest
working time of PMs, i.e., balancing the workloads among the
PMs.

For this complex manufacturing system, we first formulate it
as a mixed integer linear programming (MILP) model. Due to
the complexity of the system, optimal solutions are difficult to
obtain as the problem size grows. To address this challenge, we
propose an Estimation of Distribution Algorithm (EDA)
integrated with Kmeans clustering. The efficiency and
effectiveness of the proposed methods are evaluated through
extensive experiments on three problem sizes (small, medium,
and large) based on practical applications. For the small-sized
problem, the MILP model is solved by using CPLEX to obtain
the optimal solution, which serves as a benchmark for
evaluating the performance of proposed methods. For medium-
and large-sized practical problems, experimental results
demonstrate that our method balances computational efficiency
and solution quality, outperforming other popular
metaheuristics.

The rest of the work is arranged as follows. Section II
reviews the related studies. In Section III, after describing the
problem, we build a MILP model. Due to the complexity of the
addressed problem, Section IV constructs a metaheuristic
method to find high-quality solutions. Then, the performance of
the proposed method is analyzed and compared with some
existing methods by computational experiments in Section V.
Finally, conclusions are given in Section VI.

II. LITERATURE REVIEW

A. Photolithography Scheduling Problem
Scheduling challenges in photolithography areas are

extensively discussed in the literature under various processing

3
> SMCA-25-01-0239 <

constraints [5]. In early studies, although reticles are necessary
for printing circuit patterns on wafer surfaces, the reticle
requirements in semiconductor manufacturing are not given
much attention until the work in [7] is conducted. In [7], a
discrete-event simulation model coupled with a network flow is
employed to illustrate that managing reticles effectively in
semiconductor fabs can greatly improve manufacturing system
performance. After that, more and more studies focus on the
scheduling problems of photolithography areas by considering
reticle requirements as auxiliary resource constraints.

In general, scheduling problems in photolithography areas
can be formulated as integer programming or MILP models. It
is well known that exact algorithms (such as the branch-and-
bound algorithm) can be used to obtain the optimal solution.
However, Cakici and Mason [8] state that the scheduling
problem with the consideration of reticle requirements is NP-
hard, supported by its reduction to a well-established NP-hard
problem. Once a problem is examined as NP-hard, exact
algorithms would fail to solve it efficiently, especially when
dealing with large-scale instances [9]. Doleschal et al. [10] also
state that employing discrete event simulation and
mathematical programming approaches are not feasible for
solving complex scheduling problems in photolithography
areas. They arrive at this conclusion through an analysis of the
limitations of these methods and demonstrate the need for more
efficient approaches through simulation experiments and
practical application. Under these situations, other more
efficient and effective approaches are necessary.

It is worth mentioning that heuristic algorithms are widely
used in photolithography scheduling problems. Heuristic
algorithms often generate solutions quickly, making them well-
suited for handling large-scale problems. In [8], two different
heuristics are proposed to minimize the total weighted
completion time of PMs with the consideration of reticle
requirements. In [11], a time extended objective-oriented Petri
nets (EOPNs) is constructed based on a multiple-objective
scheduling and real-time dispatching approach. In addition to
the proposed EOPNs, a priority-ranking algorithm with four
performance objectives is introduced to give a high-quality
initial scheduling guidance. In [10], a heuristic scheduling rule
called the solver-based reticle allocation approach is proposed.
The effectiveness of the solver-based reticle allocation
approach is verified by comparing it with classical rule-based
dispatching approaches on both the representative test data and
real-world cases. Based on the studies reviewed above, it can
be concluded that heuristic algorithms have problem-specific
natures that result in a better performance for addressing
particular types of problems.

With the continuous advancement in semiconductor
manufacturing, the industry is witnessing a progressive
sophistication in its manufacturing processes. To address the
growing complexity of manufacturing processes and improve
the productivity, metaheuristics are increasingly employed to
pursue high-quality solutions. In [6], a scheduling problem with
dual resource constraints which are machine resource and
reticle resource constraints is addressed. To do so, two mixed-

integer programming models and an improved naked mole-rat
algorithm are introduced. Experiments show that the improved
naked mole-rat algorithm outperforms the genetic algorithm
(GA) and the variable neighborhood search algorithm. In [12],
a metaheuristic called memetic algorithm is applied to solve the
scheduling problem in a photolithography workshop. The
effectiveness of the memetic algorithm is evaluated by two
criteria which are weighted flow time and the number of
processed products. In [13], a two-phase decoding GA is
proposed to minimize the idle time for all machines with
complex constraints, such as photo mask availability, available
machines for jobs, and limited waiting time. In [14], an
imperialist competitive algorithm with the connection of a
predictive neural network is proposed for addressing the
scheduling problem in a dynamic environment under the
consideration of wafer arrival constraints, dedicated machines
constraints, and auxiliary resources constraints.

B. Unrelated Parallel Machine Scheduling Problem
The scheduling problems in photolithography areas can be

treated as unrelated parallel machine scheduling problems
(UPMSPs) mentioned in [6, 12]. Thus, studies about UPMSPs
in other manufacturing systems can also provide a rich source
of inspiration and potential solution approaches.

In [15], an UPMSP is examined in bar-turning manufacturing.
In their work, an MILP model is proposed for solving small-
sized instances and introduces a two-step approach that
employs a relaxed version of the proposed MILP model
followed by a heuristic algorithm for large-sized instances. Li
et al. [16] propose several heuristics that rely on the best fit
longest processing time rule to address a scheduling problem of
the unrelated parallel batch processing machines with the
objective of minimizing the completion time of the last job.
Further, many studies consider machine or job setup time
before a processing process starts which is similar to the
problem addressed in this work. In [17], a non-preemptive
UPMSP with job sequence and machine-dependent setup time
is examined by a constraint programming model with two
customized branching strategies. Afzalirad and Rezaeian [18]
propose a GA along with an artificial immune system to solve
an UPMSP incorporating sequence-dependent setup time. Also,
Arroyo and Leung [19] address an UPMSP where each job has
an arbitrary job size and non-zero ready time. They provide the
lower bound of the problem and formulate it as an MILP model.
Then, they propose an iterated greedy algorithm to tackle the
problem and show its effectiveness with comparisons to GA,
artificial bee optimizer, and simulated annealing algorithm.

C. Summary
Based on the no free lunch theorem [20], no optimization

technique can claim to be the best for all situations, whether for
general or specific ones. Thus, to achieve superior optimization
results, most studies reviewed above employ an approach that
combines different solution methodologies. By considering the
practical demands from the investigated wafer fab, the
addressed scheduling problem of the photolithography area in
this work differs from the abovementioned studies in terms of

4
> SMCA-25-01-0239 <

the following two aspects: 1) there are three different situations
of machine setup, i.e., reticle switching, recipe switching, and
machine initialization preparation; and 2) PMs are all designed
with downward processing compatibility. To the best
knowledge of authors, there is no research report with the
consideration of the two aspects. This motivates us to conduct
this work.

III. PROBLEM FORMULATION

A. Problem Description

To well describe the addressed scheduling problem, some
notations are introduced as follows. Additionally, all notations
used are summarized in Table A in Supplementary File. The
layout of the investigated photolithography area is shown in
Fig. 1.

The total number of pattern precisions is represented by NA
and A is a set of pattern precisions, where A = {1, 2, …, a, …,
N1}. Notice that a smaller value of pattern precision indicates a
higher precision required by the pattern. For Pattern Precision-
a, it has a corresponding set of reticles represented by ba.
Similarly, N2 represents the number of elements in ba, where βa
= {1, 2, …, u, …, N2}. This means that the reticle in ba should
be processed at a PM that can handle Pattern Precision-a. Note
that each reticle is associated with a unique pattern precision.
Besides, the total number of machine groups is denoted by N3
and G = {1, 2, …, g, …, N3} represents the set of machine
groups. In this work, the number of machine groups matches
the number of pattern precisions, resulting in N3 = N1.
Moreover, if the highest pattern precision that Machine Group-
g can handle is Pattern Precision-a, then a = g holds. In other
words, the highest pattern precision that Machine Group-g can
handle is Pattern Precision-g. In this way, each pattern precision
can be dealt with by at least one machine group. The set of PMs
belonging to Machine Group-g is denoted as Gg and the number
of PMs in Gg is represented by N4, where Gg = {1, 2, …, n, …,
N4}.

In semiconductor fabs, each reticle is unique since it is quite
expensive. Therefore, the reticles are tight resources in fabs.
Thus, to improve the productivity of PMs, raw wafers requiring
the same reticle (implying that they should be processed under
the same precision requirements) are desired to be continuously
processed in a PM so as to reduce the significant setup time. To
do so, all raw wafers requiring Pattern Precision-a and Reticle-

u can be treated as a job denoted as Oau, where a Î A, u Î βa.
As mentioned, jobs with lower pattern precision requirements
can be processed at more PMs. As shown in Fig. 1, O11 can only
be assigned to a PM of Machine Group-1 for processing, while
O21 can be assigned to a PM of both Machine Group-1 and
Machine Group-2 for processing. Accordingly, the key of the
addressed scheduling problem is to assign jobs to PMs with the
objective of minimizing the difference between the longest and
shortest working time of PMs.

In practice, a PM is allowed to equip several reticles in its
reticle pod with the same pattern precision. In other words, the
reticles simultaneously equipped in a PM should have the same
pattern precision or require the same processing environment.
When those reticles need to switch, the time is quite short. Also,
when a PM continuously processes raw wafers with the same
reticle, there is no need to switch reticles or recipes. Under such
a situation, the processing time of a job is determined by the
number of such raw wafers and the processing time required
for each wafer. Additionally, the processing time of a wafer is
determined by both the assigned PM and the pattern precision
it requires. Let NWau represent the number of raw wafers made
up of Oau and Pga indicate the processing time of a raw wafer
processed at a PM of Machine Group-g with required Pattern
Precision-a. To calculate the processing time of each job at each
PM, we have
 Tgnau = Xgnau ´ NWau ´ Pga, " g Î G, n Î Gg, a Î A, u Î ba,
 (1)
where Xgnau is a binary variable. If Oau is assigned to be
processed at PM-n of Machine Group-g, then Xgnau = 1;
otherwise, Xgnau = 0. With Equation (1), the time needed for
processing Oau at PM-m of Machine Group-g (i.e., Tgnau) can be
obtained.

There is a fact that wafer products with a higher pattern
precision are more valuable. According to real production
demands, the PM starts to process raw wafers with the highest
pattern precision. Therefore, the processing sequence of raw
wafers at each PM follows a descending order with respect to
the pattern precision, i.e., such a sequence starts from a wafer
with the highest pattern precision and ends to the one with the
lowest pattern precision. Thus, at a PM, when the processing
for all jobs requiring Pattern Precision-a is completed, the
processing for jobs requiring Pattern Precision-l can start,
where a, l Î A, a < l. Notice that the reticles simultaneously
equipped in a PM should have the same pattern precision. When
the PM should handle some jobs with different pattern
precision, the PM should perform a recipe switching to prepare
the processing environment, and at the same time the required
reticles by these jobs should be equipped into the PM. The
recipe switching time is quite long such that it is sufficient to
cover the time required for reticle switching, even if the
required reticle should be manually delivered from elsewhere.
Besides, when the PM handles the jobs requiring the reticles
that have been equipped in the PM, the reticle switching
processes can be automatically performed accordingly. Note
that PMs belonging to the same machine group have identical
reticle switching times. Let STg represents the time needed for

Fig. 1. Layout of a photolithography area.

5
> SMCA-25-01-0239 <

reticle switching at any PM of Machine Group-g. Then, with
the consideration of reticle switching, the total time for
processing jobs requiring Pattern Precision-a at PM-n of
Machine Group-g is denoted as Tgna. To obtain Tgna, we have
 Tgna = ∑ 𝑇!"#$$Îb! + (Hgna + (∑ 𝑇!"#$$Îb!) - 1)´ STg, " g Î
G, n Î Gg, a Î A, (2)
where ∑ 𝑇!"#$$Îb! is the sum of total processing time for all
jobs requiring Pattern Precision-a at PM-n of Machine Group-
g. The rest part (Hgna + (∑ 𝑇!"#$$Îb! - 1) ´ STg is the total time
needed for reticle switching processes. Hgna is a binary variable.
If there is no job requiring Pattern Precision-a processed at PM-
n of Machine Group-g (i.e., ∑ 𝑇!"#$$Îb! = 0), then Hgna = 1;
otherwise, Hgna = 0. As a result, Hgna + (∑ 𝑇!"#$$Îb!) - 1 gives
the reticle switching times. Let Tgn denote the total working
time of PM-n belonging to Machine Group-g. Then, Tgn can be
calculated by adding the consideration of recipe switching and
machine initialization preparation. To do so, we introduce the
following equation (3).
 Tgn = Qgn ´ SCgn + ∑ 𝑇!"#

%"
#&! + ∑ ∑ (𝑍!"#' 	´	𝑆!#')

%"
'&#()

%"-)
#&! , "

g Î G, n Î Gg, (3)
In Equation (3), Qgn is a binary variable. If the machine

initialization preparation is necessary for PM-n of Machine
Group-g, then Qgn = 1; otherwise, Qgn = 0. Accordingly, SCgn
denotes the time required for machine initialization preparation
of PM-n belonging to Machine Group-g. Besides, ∑ 𝑇!"#

%"
#&! is

the sum of total working time for PM-n of Machine Group-g to
process jobs with different pattern precision requirements. The
rest part ∑ ∑ (𝑍!"#' 	´	𝑆!#')

%"
'&#()

%"-)
#&! gives the time spent on

switching recipes. Among them, Zgnal is a binary variable and if
there is a need to switch the recipe from achieving Pattern
Precision-a to Pattern Precision-l at PM-n of Machine Group-
g, then Zgnal = 1; otherwise, Zgnal = 0. Additionally, Sgal
represents the time required for recipe switching from
achieving Pattern Precision-a to Pattern Precision-l at any PM
of Machine Group-g.

Before presenting the mathematical programming model, we
give the following assumptions: 1) the processing capability of
each PM is known in advance; 2) both the reticle and recipe
required by each job are known in advance; 3) the number of
raw wafers to be processed in a shift is deterministic in advance;
4) there is no cancellation of jobs; 5) the processing activity
cannot be interrupted once it has started; and 6) once a PM starts
to process a job, it cannot process others until this job is
completed.

B. Mathematical Programming Model
The established MILP model contains three types of

constraints: 1) job assignment constraints (to determine the
values of Xgnau and Hgna); 2) recipe switching constraints (to
determine the value of Zgnal); and 3) machine initialization
preparation constraints (to determine the value of Qgn).
Constraints are shown below.
1) Job assignment constraints

Each job should be assigned to one PM only, which can be

ensured by Constraint (4) shown as follows. Additionally, to
guarantee that each PM can handle the jobs assigned to it,
Constraint (5) is necessary. Constraint (5) makes sure that if a
job requires Pattern Precision-a, it cannot be assigned to any
PM belonging to Machine Group-g, where g > a. Then, the
value of Hgna can be determined by Constraints (6) and (7).
Notice that, B is a large enough integer.
 ∑ ∑ 𝑋!"#$

%#
"=)

%$
!=) = 1, " a Î A, u Î ba, (4)

 Xgnau = 0, " g Î G, n Î Gg, a Î A, u Î ba, g > a, (5)
∑ 𝑋!"#$$Îb! ³ 1 - Hgna, " g Î G, n Î Gg, a Î A, (6)
∑ 𝑋!"#$$Îb! £ B ´ (1 - Hgna), " g Î G, n Î Gg, a Î A, (7)
2) Recipe switching constraints

Constraints (8) - (18) are added into the established MILP
by considering the recipe switching situations at each PM.
 Zgnal £ ∑ 𝑋!"'$

%%
$=) , " g Î G, n Î Gg, l Î A, (8)

 Zgnal £ ∑ 𝑋!"#$
%%
$=) , " g Î G, n Î Gg, a Î A, (9)

 ∑ 𝑍!"#'#
'&) = 0, "g Î G, n Î Gg, a Î A, (10)

∑ 𝑍!"#'
%"
'&#() £ 1, " g Î G, n Î Gg, a Î {1, …, N1 - 1}, (11)

∑ ∑ 𝑍!"#'
%"
'&#()

%"*)
#&! £ N1 - g, " g Î {1, …, N3 - 1}, n Î Gg,

 (12)
By Constraints (8) and (9), the prerequisite of a recipe

switching from achieving Precision-a to Precision-l is that both
Precision-a and Precision-l are required by jobs, i.e., if Zgnal =
1, then Xgnau = 1 and Xgnlu = 1 hold. Moreover, Constraint (10)
ensures that the recipe switching is performed from achieving a
higher pattern precision to a lower one, thereby guaranteeing
that the processing sequence of jobs follows a descend order
with respect to the pattern precision.

Constraints (11) and (12) ensure that PMs can start to process
a job requiring a different pattern precision after they have
finished all jobs requiring the current pattern precision. To do
so, Constraint (11) limits the number of times for the recipe
switching from achieving one pattern precision to a lower
pattern precision being one at most. Additionally, Constraint
(12) ensures that the total times of recipe switching processes
at each PM of Machine Group-g should not exceed N1 - g. To
illustrate the purpose of Constraint (12), an example is adopted
in which N1 = 5 and g = 3. In this example, the pattern precisions
handled by PMs of Machine Group-3 are: Pattern Precision-3,
Pattern Precision-4, and Pattern Precision-5. According to
Constraint (12), the maximum number of times for recipe
switching processes should not exceed N1 - g = 2. Given that
the pattern precision handled by a PM starts from the highest
one (i.e., Pattern Precision-3), the recipe switching process with
the maximum number of times should be: Pattern Precision-3
® Pattern Precision-4 ® Pattern Precision-5. It can be
observed that the times for recipe switching equals two.
Therefore, it can be concluded that the recipe switching times
for other recipe switching sequences in this example should be
smaller than two. However, if the recipe switching is required
from achieving Pattern Precision-3 to Pattern Precision-5
directly, Constraints (8) - (12) are not enough to guarantee this.
Thus, the following constraints are added into the established

6
> SMCA-25-01-0239 <

MILP.
 Ygna ³ Xgnau, " g Î G, n Î Gg, a Î A, u Î ba, (13)
 Ygna £ ∑ 𝑋!"#$$Îb! , " g Î G, n Î Gg, a Î A, (14)
 1 - ((∑ 𝑌!"+'

+&#) - Ygnl - Ygna) ´ B £ Vgnal, " g Î G, n Î Gg, a,
l Î A, (15)
 Vgnal £ (1 - Ygnq) ´ B, " g Î G, n Î Gg, a, q, l Î A, a < q < l,
 (16)
 Zgnal ³ 1 - ((∑ 𝑌!"+'

+&#)) - Ygnl - Ygna) ´ B - (1 - Ygnl) ´ B - (1
- Ygna) ´ B, " g Î G, n Î Gg, a, l Î A, a < l, (17)
 Zgnal £ ((∑ 𝑌!"+'

+&#) - Ygnl - Ygna) ´ S + (1 - Ygnl) ´ B + (1 -
Ygna) ´ B + Vgnal ´ B, " g Î G, n Î Gg, a, l Î A, a < l, (18)

Ygna is a binary variable. Further, Ygna = 1 if there exists at
least one job requiring Pattern Precision-a processed at PM-n
of Machine Group-g; otherwise, Ygna = 0. The value of Ygna is
also determined according to the value of Xgna by Constraints
(13) and (14). Notice that, the value of Ygna is opposite to the
value of Hgna. Also, a binary variable Vgnal is introduced. It
indicates that if the recipe switching from achieving Pattern
Precision-a to Pattern Precision-l directly, then Vgnal = 1;
otherwise, Vgnal = 0. Then, by Constraints (17) and (18), the
value of Zgnal can be determined.
3) Machine initialization preparation constraints

As described, if the first recipe of the current shift differs
from the last one of the previous shift, a machine initialization
preparation is needed. Since recipes are employed to achieve
different pattern precisions, the need for machine initialization
preparation can be determined by comparing the pattern
precisions required by the related jobs.

For PM-n of Machine Group-g, Dgn denotes the pattern
precision required by the first job to be processed in the current
shift, while dgn denotes the pattern precision required by the last
processed job of the previous shift. Notice that, dgn is known in
advance. Then, to determine the value of Dgn, Constraints (19)
- (23) are proposed.
 Wgnl £ ∑ 𝑌!"#'

#=) ´ B, " g Î G, n Î Gg, l Î A, (19)
 Wgnl ³ ∑ 𝑌!"#'

#=) ´ S, " g Î G, n Î Gg, l Î A, (20)
 ∑ 𝑊!"'

%"
'&) ³ 1 - Fgn, " g Î G, n Î Gg, (21)

 ∑ 𝑊!"'
%"
'&) £ B ´ (1 - Fgn), " g Î G, n Î Gg, (22)

 Dgn = (N1 - ∑ 𝑊!"'
%"
'=) + 1) - (N1 + 1 - dgn) ´ Fgn, " g Î G, n

Î Gg, (23)
Among these constraints, ∑ 𝑌!"#'

#=) calculates the total
number of pattern precisions, ranging from Pattern Precision-1
to Pattern Precision-l, required by jobs at PM-n of Machine
Group-g. Furthermore, a binary variable Wgnl is introduced. If
∑ 𝑌!"#'
#=) ³ 1, then Wgnl = 1; otherwise, Wgnl = 0. Moreover, if

Wgnl = 1, then Wgnq = 1, where l, qÎ A and l £ q. Therefore, if
∑ 𝑊!"'
%"
'=) ³ 1, it implies that there is at least one job assigned

to be processed at PM-n of Machine Group-g. Conversely, if
∑ 𝑊!"'
%"
'=) = 0, indicating that there is no job assigned to be

processed at PM-n of Machine Group-g, then Dgn should be
equal to dgn. To ensure this, an additional binary variable Fgn is
adopted such that if ∑ 𝑊!"'

%"
'=) ³ 1, then Fgn = 0; otherwise, Fgn

= 1. Finally, the pattern precision required by the first job to be
processed in the current shift at each PM can be determined by
Constraint (23).

Finally, the value of Qgn is determined based on the values of
Dgn and dgn as shown in Constraints (24) - (28). Notice that, a
and b are two binary variables, and their sum should be equal
to one as shown in Constraint (24).
 A + b = 1, (24)
 a ´ B + (dgn - Dgn) ³ Qgn, " g Î G, n Î Gg, (25)
 b ´ B + (Dgn - dgn) ³ Qgn, " g Î G, n Î Gg, (26)
 Qgn ³ (dgn - Dgn) ´ S, " g Î G, n Î Gg, (27)
 Qgn ³ (Dgn - dgn) ´ S, " g Î G, n Î Gg, (28)

Further, the maximum and minimum working time of PMs
are denoted as TMAX and TMIN, respectively.
 Tgn ³ 0, " g Î G, n Î Gg, (29)
 TMAX ³ Tgn, " g Î G, n Î Gg, (30)
 TMIN £ Tgn, " g Î G, n Î Gg, (31)

Constraint (29) ensures that the total working time of each
PM should be greater than or equal zero. Besides, Constraints
(30) and (31) illustrate that the total working time of each PM
should be within the range [TMIN, TMAX]. The objective of the
addressed problem is to minimize the difference between TMAX
and TMIN such that the workloads at PMs can be balanced. Then,
an MILP model can be established as follows:
 MILP: Minimize (TMAX - TMIN) (32)

Subject to: (4) - (31)

IV. PROCEDURE OF PROPOSED APPROACH
As mentioned above, the addressed problem can be

formulated as an MILP. However, the computational time
required for solving an MILP increases exponentially as the
problem size grows [21]. Thus, exact solutions are suitable for
small-sized problems. For larger-sized problems, it is advisable
to apply metaheuristic algorithms, which are problem-scale
independent and use intelligent ways to guide the search for
high-quality solutions [9, 22-24].

To solve the addressed scheduling problem, the EDA
introduced in [25] is adopted. EDAs are a class of stochastic
optimization techniques. Different from traditional
evolutionary algorithms (such as GA) that rely on crossover and
mutation to explore the solution space, EDAs take a sampling
approach based on a probability model to generate high-
qualities solutions. This unique searching strategy enables EDA
to capture the relationship between different variables by
updating the probability model at each iteration. In this work, a
designed EDA (DEDA) is proposed, and its main procedures
are: 1) individual encoding and population initialization; 2)
fitness calculation; 3) probability model initialization, update,
and creation of new population; and 4) greedy local
improvement.

A. Individual Encoding and Population Initialization
This work applies integer coding for individual representation.

An example is used to illustrate the applied coding approach.
Assume that there are three machine groups and each one contains
three PMs. Each PM is assigned a specific Arabic number, starting

7
> SMCA-25-01-0239 <

with a PM in Machine Group-1 as one and ending with a PM in
Machine Group-3 as nine. By doing so, PMs are numbered with
different Arabic numbers from one to nine. Similarly, this
numbering approach is also applied to jobs. Each job is assigned
a specific Arabic number, starting with the job requiring Pattern
Precision-1 and using Reticle-1 as one. Subsequently, the job
requiring Pattern Precision-1 and using Reticle-2 is numbered as
two. Jobs continue to be numbered in this way until all jobs
requiring Pattern Precision-1 are numbered. Then, jobs requiring
Pattern Precision-2 can start to be numbered.

EDAs rely on a population of g individuals to search for high-
quality solutions. In this work, each individual is denoted as Px, x
Î ℕg = {1, 2, …, g}. Let |•| denote the number of elements in a set
or the size of a list. Px = [px_1, px_2, …, px_½J½], where J is the set
of jobs. Here, px_j represents the PM that Job-j is assigned to, j Î
J. Then, the population of g individuals is denoted by Qg = {Px| x
Î ℕg}. The schematic diagram of a population is shown in Fig. 2.
It can be found that the size of an individual is determined by the
number of jobs.

Undoubtedly, the number of jobs far exceeds the number of
PMs in real-world production. In this work, individuals (i.e., job
assignments) are randomly generated initially. This may result in
some PMs having no jobs to process. When such a situation arises,
the generated individual is not a high-quality one due to the
unbalanced workloads among PMs. Moreover, it is well known
that having a diverse and high-quality initial population is
beneficial for evolutionary search [26]. In many existing studies,
the initial population for solving scheduling problems is improved
by initialization strategies or using simple heuristics. Thus, in this
work, Algorithm 1 is proposed to improve the quality of a
randomly generated initial population denoted as Qg.

The main idea of Algorithm 1 is to assign a job to a PM if it
currently has no jobs to process. This idea is applied to each
individual of the initial population, as shown in Statement 1). By
Statement 2), two sets J and d are used to record the numbers
representing PMs and jobs, respectively. Initially, both J and d
are all empty. By Statements 3) - 5), the number representing each
PM that has at least one job to process is recorded in J. Notice
that, Px, j = px_j, j Î J. Also, elements in a set should be unique.
Therefore, if the number of Arabic numbers recorded in J is less
than the total number of all PMs, then at least one PM has no jobs
to process. Notice that, the numbers representing PMs are all
summarized in the set M, where m Î M.

If Statement 6) holds, Statements 7) and 8) are used to identify
the PM that has no jobs to process. In Statement 8), JMm is a set
made up of the numbers representing the jobs assigned to be
processed at the PM-m. If the number of elements in JMm equals
zero, then PM-m is examined as the one with no jobs to process.
When such a situation occurs, all numbers representing the jobs
that can be moved to be processed at the PM-m will be recorded
in d. This is achieved by Statements 9) - 12). For Job-j, the
numbers representing the PMs that can process it are summarized
in the set MJj, MJj Í M. However, before recording the number
representing a job in d, it should ensure that this job is not the only
one at its current PM. To do so, Statement 11) is necessary. If there
are numbers in d (i.e., if Statement 13) holds), a number is
randomly selected from d and then the job represented by this
number is assigned to PM-m by modifying the individual coding.
This is achieved by Statements 14) and 15). Notice that,
Randomint(1, |d|)) is a function used to randomly select an integer
within the range [1, |d|].

Algorithm 1: Initial population improvement
Input: Qg,
Output: Qg
1) For x ¬ 1 to g
2) J = Æ, d = Æ;
3) For j ¬ 1 to |J|
4) If Px, j not in J
5) J È {Px, j};
6) If |J| < |M|
7) For m ¬ 1 to |M|
8) If |JMm| = 0
9) For j ¬ 1 to |J|
10) If m in MJj
11) If |𝑱𝑴P&,(| > 1
12) d = d È {j};
13) If |d| > 0
14) z = Randomint(1, |d|);
15) New-P,,d) = m;

B. Fitness Calculation
To evaluate the quality of an individual, Algorithm 2 is

proposed to calculate its fitness value. Statements 1) - 2) aim to
identify the numbers representing the jobs assigned to be
processed at each PM. For Job-j of Individual-x, the number
representing its assigned PM is Px,j. Next, the number
representing Job-j is recorded in the set 𝑱𝑴P&,(. Subsequently, the
processing sequence of jobs at each PM should be determined. By
Statements 1) - 2), the initial processing sequence of jobs at PM-
m is represented by Em. Notice that, Em is a sorting list made up of
job numbers from small to large. Besides, L𝑬*,(and D𝑬*,(
respectively denote the required pattern precision and reticles of
the j-th Job at PM-m, j Î {1, …, ½Em½}. Statements 6) - 7) are
proposed to ensure that jobs requiring a higher pattern precision
are given higher processing priority, thereby ensuring the
processing sequence of wafers is a descending order with respect

Fig. 2. Schematic diagram of population.

2 3 5 1

Job-1

2 6 3

Job-|J|

𝛱1

1 5 4 2 4 2 1𝛱2

1 5 4 2 4 2 1𝛱x

𝛩𝛾

𝜋1 −1 𝜋1 −2 𝜋1 −3 𝜋1 −4 𝜋1 −|J|−2 𝜋1 −|J|−1 𝜋1 −|J|

𝜋2 −1 𝜋2 −2 𝜋2 −3 𝜋2 −4 𝜋2 −|J|−2 𝜋2 −|J|−1 𝜋2 −|J|

𝜋𝑥 −1 𝜋𝑥 −2 𝜋𝑥 −3 𝜋𝑥 −4 𝜋𝑥 −|J|−2 𝜋𝑥 −|J|−1 𝜋𝑥 −|J|

Job-1 Job-|J|

Job-1 Job-|J|

8
> SMCA-25-01-0239 <

to the pattern precision. Notice that, Equations 8) - 18) of the
MILP model are addressed by Statements 3) - 7).

After determining the processing sequences of jobs at all PMs,
the total working time of PM-m denoted as Tm can be calculated
by Statements 8) - 17). Statements 9) - 10) are used to calculate
the total processing time of all jobs processed at PM-m, where
pc(Em,j) denotes the processing time of the j-th processed Job at
PM-m. Statements 11) - 12) are used to calculate the time spent
on machine initialization preparation, where lwm represents the
pattern precision required by the last processed job of the previous
shift and L𝑬*," denotes the pattern precision required by the first
job of the current shift. If lwm and L𝑬*," are different, then there
exists a machine initialization preparation at PM-m and the time
needed for such a preparation is denoted as MSm. Statements 9),
13), and 14) - 17) are used to calculate the total time spent on
recipe switching or reticle switching. When a PM starts to process
a different job, reticle switching is always necessary. At this time,
whether there is a recipe switching requirement should be further
determined by Statement 14). If Statement 14) holds, it indicates
that both reticle switching and recipe switching are required and
the total time needed for them is governed by the time taken for
the recipe switching represented by 𝑆𝑊L𝑬*,(,L𝑬*,)

. However, If
Statement 14) is not true, then there exists the reticle switching
only and the time needed for the reticle switching is represented
by 𝑆𝑇D𝑬*,(,D𝑬*,)

. 2). Equations 19) - 28) of the proposed MILP

model are addressed by Statements 8) - 17).
After Statements 8) - 17) are done, Statements 18) and 19) can

identify the PMs with the longest and shortest working time,
respectively, which corresponds to Equations 29) - 31) of the
proposed MILP model. Finally, the fitness value of Individual-x
denoted as Fx is given by Statement 20).

Algorithm 2: Fitness calculation
Input: Px
Output: Fx
1) For j ¬ 1 to |J|
2) 𝑱𝑴P&,(= 𝑱𝑴P&,(È {i};
3) For m ¬ 1 to |M|
4) For j ¬ 1 to ½Em½
5) For z ¬ j + 1 to ½Em½
6) If L𝑬*,(> L𝑬*,)
7) Em,j, Em,z = Em,z, Em,j;
8) For m ¬ 1 to |M|
9) For j ¬ 1 to ½Em½
10) Tm = Tm + pc(Em,j);
11) If lwm ¹ L𝑬*,"
12) Tm = Tm + MSm;
13) For z ¬ j + 1 to ½Em½
14) If L𝑬*,(¹ L𝑬*,)

15) Tm = Tm + 𝑆𝑊L𝑬*,(,L𝑬*,)
;

16) Else
17) Tm = Tm + 𝑆𝑇D𝑬*,(,D𝑬*,)

;

18) Tmax = max(Tm, m Î M);
19) Tmin = min(Tm, m Î M);
20) Fx = Tmax - Tmin;

C. Probability Model Initialization, Update, and Creation of
New Population

EDA describes population evolution trends by a probabilistic
model. The representation of a probability model is described
as a ½J½ ´ ½M½ matrix denoted by

p(X) =

⎣
⎢
⎢
⎡
𝑝(𝑋),)) 𝑝(𝑋),/) … 𝑝(𝑋),|𝑴|)
𝑝(𝑋/,)) 𝑝(𝑋/,/) … 𝑝(𝑋/,|𝑴|)

⋮ ⋮ ⋮ ⋮
𝑝(𝑋|𝑱|,)) 𝑝(𝑋|𝑱|,/) … 𝑝(𝑋|𝑱|,|𝑴|)⎦

⎥
⎥
⎤
,

where J is the set of jobs and M is the set of PMs. Then, p(Xj,m)
indicates the probability of Job-j assigned to be processed at
PM-m, j Î J and m Î M. Notice that, if m Î M - MJj, then
p(Xj,m) is marked as “None”. Here, “None” is used to indicate
that such a probability does not exist. Initially, the probability
model is set to a uniform distribution state. To achieve this,
p(Xj,m) = p(Xj,m¢) =)

½𝑴𝑱(½
, where j Î J, m, m¢ Î MJj.

After the initialization of the probability model, the next is to
select a subset of candidate individuals (also known as elite
individuals) to update the probability model. Here, we examine
two different selection approaches, illustrated by using a same
case shown in Fig. 3 (a) and (b). In general, elite individuals are
selected based on their fitness values in most of the existing
studies. To exemplify this method, Fig. 3 (a) shows that the top
1/3 individuals with the lowest (best) fitness values are chosen
to be elite individuals. Although elite individuals have high
qualities, there is a possibility of them being excessively similar.
Here, “similar” refers to that two different elite individuals have
a significant portion of identical elements. There is no doubt
that such a similarity can result in a rapid increase in the

Fig. 3. Two approaches to select elite individuals.

0

Fitness
values

Individuals

0 Individuals

Elite individuals

(a)

(b)

Cluster = 1

Elite individuals
=	 Elite−cluster1
+ Elite−cluster2
+ Elite−cluster3

Fitness
values

Cluster = 2
Cluster = 3

Elite−𝐜𝐥𝐮𝐬𝐭𝐞𝐫𝟏 Elite−𝐜𝐥𝐮𝐬𝐭𝐞𝐫𝟐 Elite−𝐜𝐥𝐮𝐬𝐭𝐞𝐫𝟑

9
> SMCA-25-01-0239 <

probability of certain elements within the probability model,
potentially causing the EDA to be easily trapped in local optima.
To avoid this, the second approach is considered by dividing
the population into multiple clusters. Furthermore, a
proportional number of individuals from each cluster are
selected as elite individuals. As shown in Fig. 3 (b), the number
of clusters is three. For each cluster, a proportion of 1/3
individuals with the best fitness values are selected such that the
total number of elite individuals matches the one in Fig. 3 (a).
By doing so, the diversity of the elite individuals in Fig. 3 (b)
can be higher than that in Fig. 3 (a).

To divide a population into multiple clusters, a Manhattan
distance-based Kmeans (MD-Kmeans) clustering approach is
adopted as shown in Algorithm 3. The effectiveness of Kmeans
clustering has been verified in [27]. Let N5 denote the number
of clusters and Ck, k Î {1, …, N5}, denote Cluster-k. Initially,
all clusters are set as empty sets by Statement 1). Then, there
are three steps to group g individuals into N5 clusters.
1) Step 1: Manhattan distance calculation between any two
different individuals

The Manhattan distance (MD) calculation is achieved by
Statements 2) - 6). As shown in Statement 5), the following
equation is necessary.
mdxx¢ = ∑ ½P,,2 	-	P,¢,2½

½𝑱½
2	=) , " x, x¢ Î ℕg = {1, 2, …, g}. (33)

In equation (33), md is a g ´ g zero matrix used to record the
MD between any two individuals for a population of g
individuals. Accordingly, mdxx¢ is used to represent the MD of
Individuals x and x¢. Notice that, mdxx¢ = mdx¢x.
2) Step 2: The initial centroid selection for each cluster from
the dataset

By Step 2, individuals from the population are selected. Let
µk, k Î {1, …, N5}, be the centroid of Cluster-k. The initial
centroids are given by selecting random individuals from the
population as shown in Statement 7).
3) Step 3: The centroids updating

Step 3 is done by Statements 9) - 20). Notice that, the third
step is repeatedly performed by a loop procedure. If the flag is
less than N5, then the loop continues. By Statements 11) - 14),
each individual is included in a cluster (set) whose centroid has
the minimum MD to it. Subsequently, Statements 15), 17), and
18) are used to obtain a new centroid for each cluster. To do so,
the following equation is needed.

µk,f = ∑ (𝛱,,4)
½𝑪,½
,&) / |Ck|, f Î {1, …, ½µk½}, k Î {1, …, N5}.

 (34)
In equation (34), the f-th element of µk is obtained by the

mean of all corresponding elements of individuals assigned to
Cluster-k. If a centroid does not move (i.e., the new centroid is
equal to the current one), then the flag is added by one. This is
achieved by Statements 16) and 19). If all centroids do not move
(i.e., when the flag is equal N5), then the loop ends.

Algorithm 3: MD-Kmeans clustering approach
Input: N5, g
Output: Ck, k Î {1, …, N5}

1) Set Ck = Æ, k Î {1, …, N5};
2) md = 0g ´ g;
3) For i ¬ 1 to g
4) For j ¬ i + 1 to g
5) mdi,j = ∑ ½P6,7	-	P2,7½

½𝑱½
7	=) ;

6) mdj,i = Mdi,j;
7) Randomly select N5 individuals as µk, k Î {1, …,

N5};
8) flag = 0;
9) While flag < N5
10) flag = 0;
11) For z ¬ 1 to g
12) For h ¬ 1 to N5
13) If mdz,h = min(mdz,k, k Î {1, …, N5})
14) Ch = Ch È {Pz};
15) For k ¬ 1 to N5
16) rk = µk;
17) For f ¬ 1 to ½µk½
18) µk,f = ∑ (𝛱,,4)

½𝑪,½
,&) / |Ck|;

19) If µk = rk
20) flag = flag + 1;
After the selection of elite individuals, Algorithm 4 is

employed to update the probability model. Let ep denote the set
made up of elite individuals and the average fitness value of
elite individuals is denoted as Ave_f = ∑ 𝐹𝒆𝒑-

|𝒆𝒑|
6	=) / |ep|, where

𝐹𝒆𝒑- represents the fitness value of Individual-i of ep obtained
by Algorithm 2. Besides, two ½J½´½M½ zero matrixes B and
W are used to record the times of jobs assigned to PMs and the
sum of fitness values of individuals, respectively. Notice that,
B and W can guide the update of the probability model.

Statements 4) - 8) are used to update the elements in both B
and W. As shown in Statement 6), z is the number representing
the PM that Job-j of Elite Individual-i is assigned to. Then, the
times for Job-j assigned to be processed at PM-m denoted by
Bj,z should be added by one. Additionally, the fitness value of
Elite Individual-i is added to Wj,z, where Wj,z represents the sum
of fitness values of individuals in which Job-j is assigned to
PM-z. Subsequently, the probability model is updated by B and
W as shown in Statements 9) - 18). Notice that, the updated
probability model keeps part of the historical experience from
the last probability model by a learning rate denoted as a = iter
/ Maxiter. As iter and Maxiter respectively represent the current
iteration number and the maximum number of iterations, the
updates to the probability model rely more on historical
experience with iteration proceeds. If Wi,j < Ave_f ´ Bi,j, which
means that Job-j assigned to PM-m has a positive impact on the
fitness values, then P(Xi,j) can be increased by l, where l is a
value randomly generated within the range [0, P(Xi,j)) by the
function Random(0, P(Xi,j)). Conversely, if Wi,j > Ave_f ´ Bi,j,
then P(Xi,j) should be decreased by l.

Algorithm 4: Probability model update
Input: ep, p(X), a
Output: p(X)

10
> SMCA-25-01-0239 <

1) Ave_f = ∑ 𝐹𝒆𝒑-
|𝒆𝒑|
6	=) / |ep|;

2) B = 0½J½´½M½;
3) W = 0½J½´½M½;
4) For i ¬ 1 to |ep|
5) For j ¬ 1 to |J|
6) z = epi,j;
7) Bj,z = Bj,z + 1;
8) Wj,z = Wj,z + 𝐹𝒆𝒑-;
9) For i ¬ 1 to |J|
10) For j ¬ 1 to |M|
11) If Bi,j > 0
12) l = Random(0, P(Xi,j));
13) If Wi,j < Ave_f ´ Bi,j
14) P(Xi,j) = a ´ P(Xi,j) + (1 - a) ´ (Bi,j / |ep|))

+l;
15) Elif Wi,j > Ave_f ´ Bi,j
16) P(Xi,j) = a ´ P(Xi,j) + (1 - a) ´ (Bi,j / |ep|))

- l;
17) Else
18) P(Xi,j) = a ́ P(Xi,j) + (1 - a) ́ (Bi,j / |ep|));
After updating the probability model, a new population is

created by applying the roulette wheel selection (RWS). In this
work, RWS aims to select a PM for each job according to the
probability model. To ensure a proper application of RWS, the
total probability of all selectable parts equals one. However, it
may occur that ∑ 𝑝(𝑋2,;)½𝑴½

;=) , j Î J does not equal one after the
probability model updates. To address this situation, the
normalization processing is performed. By doing so, the
probability of PM-m that will be selected for processing Job-j
is equal to p(Xj,m) / ∑ 𝑝(𝑋2,;)½𝑴½

;=) .

D. Greedy Local Improvement
The objective of the addressed problem is to minimize the

difference between the longest and shortest working time of
PMs. With such an objective, the improvement for an individual
can be quickly achieved by adjusting job assignments for the
PMs with the longest and shortest working time. To do so,
reassigning jobs from the PM with the longest working time to
others or reassigning jobs from other PMs to the one with the
shortest working time may work. Inspired by this thought,
Algorithm 5 introduces a greedy local improvement approach.
Different from the initial population improvement (Algorithm
1) that aims to make each PM just have jobs to process, the
greedy local improvement employs a greedy strategy. This
greedy strategy tries every feasible job reassignment for the
PMs with the longest and shortest working time to find the one
that provides the highest fitness value improvement until no
further improvement can be achieved.

Notice that, the greedy local improvement is repeatedly
performed by a loop procedure to improve the quality of the
given individual Px, x Î g. The termination condition for this
loop is that the flag should be greater than or equal one. At first,
the flag is set as zero by Statement 1). Then, there are three main
steps to perform greedy local improvement shown as follows.

1) Step 1: Identify the longest and shortest working time PMs
The first step is to identify the PMs with the longest and

shortest working time and their representing numbers are
denoted as Max and Min, respectively. This step is
accomplished by Statements 3) - 7), where Tm represents the
total working time of PM-m, m Î M. Moreover, Ji and Jf are
two empty sets used to record individuals and fitness values,
respectively. Then, by Statement 9), the given individual Px and
its corresponding fitness value Fx are stored in Ji and Jf,
respectively.
2) Step 2: Reassigning jobs to longest working time PM

The second step is to generate new individuals by reassigning
a job at the PM with the longest working time to other PMs.
This is achieved by Statements 5) - 9). The numbers
representing jobs assigned to be processed at the PM with the
longest working time are summarized in the set 𝑱𝑴!"#. Then,
the numbers representing PMs that Job-j, j Î 𝑱𝑴!"#, can be
moved to is summarized in the set MJj - {Max}. The greedy
nature is demonstrated by reassigning Job-j to each PM whose
number is in MJj - {Max}. Then, |𝑱𝑴!"#| ´ |MJj - {Max}|
new individuals and their corresponding fitness values are
stored in Ji and Jf, respectively.
3) Step 3: Reassigning jobs to shortest working time PM

Similarly, the third step is to generate new individuals by
reassigning a job to the PM with the shortest working time from
other PMs. This is achieved by Statements 15) - 19). Notice
that, J - 𝑱𝑴<6" is a set made up of all jobs except the ones that
are already at the PM with the shortest working time. By
Statements 15) - 16), whether a job can be reassigned to the
PM with the shortest working time is determined by checking
if the number representing this PM is in the set of numbers
representing PMs capable of processing this job. Similarly, if
Statement 16) holds, a newly generated individual and its
corresponding fitness value are then stored in Ji and Jf,
respectively.

After performing the above-mentioned three steps, if the
individual with the best fitness values recorded in Ji is different
from Px, it then replaces Px and the loop continues; otherwise,
the flag is set as one such that the loop ends. Notice that, all new
individuals stored in Ji have only one element different from
Px. Thus, in each loop iteration, at most one job reassignment
is executed.

Algorithm 5: Greedy local improvement
Input: Px,
Output: Px
1) flag = 0;
2) While flag < 1
3) For m ¬ 1 to |M|
4) If Tm = max(Tk, k Î {1, …, |M|})
5) Max = m;
6) If Tm = min(Tk, k Î {1, …, |M|})
7) Min = m;
8) Ji = Æ, Jf = Æ;

11
> SMCA-25-01-0239 <

9) Ji = Ji È {Px}, Jf = Jf È {Fx};
10) For j ¬ 1 to |𝑱𝑴<#,|
11) For m ¬ 1 to |MJj - {Max}|
12) New-Px = Px;
13) New-P,,=<.!&(

 = 𝑴𝑱2*;
14) Ji = Ji È {New-Px}, Jf = Jf È {New-Fx};
15) For j ¬ 1 to |J - 𝑱𝑴<6"|
16) If Min in MJj
17) New-Px = Px;
18) New-P,,2 = Min;
19) Ji = Ji È {New-Px}, Jf = Jf È {New-Fx};
20) For z ¬ 1 to |Ji|
21) If Fz = min(Fk, k Î {1, …, |Ji|})
22) New-Px = Pz;
23) If New-Px = Px
24) flag = 1;
25) Else
26) Px = New-Px;

E. Proposed DEDA

The flowchart of DEDA is shown in Fig. 4. In DEDA, if the
population diversity at the current iteration decreases by
comparing with the last iteration, the number of clusters is
added by one. Conversely, if the diversity increases, the number
of clusters is reduced by one. To prevent the number of clusters
from becoming excessively large or too small, the lower and
upper bounds of the number of clusters are set as two and five,
respectively. Moreover, the initial number of clusters is an
integer randomly generated within the range [2, 5].

Due to the greedy nature, Algorithm 5 undoubtedly requires
high computational costs. As a result, the greedy local

improvement is only performed if the average fitness value of
the newly generated population becomes worse. When such a
situation arises, the number of individuals randomly selected
for the greedy local improvement is determined by the
following equation.
Ngi = é(ave_fi - ave_f(i-1)) / ave_fi) ´ gù, i Î {2, …, Max_iter},
 (35)
where ave_fi denotes the average fitness value of the i-th
Iteration and g is the population size. With the ceiling function
é•ù, the number of selected individuals of the i-th Iteration
represented by Ngi is ensured to be an integer. Moreover,
selected individuals should be different.

V. EXPERIMENTS

A. Data set
The proposed approach is tested on instances from the

investigated wafer fab. For the small-sized problem, there are
42 jobs made up of 5230 raw wafers for processing at three
different machine groups that have three, two, and three PMs,
respectively. For the medium-sized problem, there are 72 jobs
made up of 12775 raw wafers for processing at five different
machine groups that have three, two, three, two, and four PMs,
respectively. For the large-sized problem, there are 120 jobs
made up of 20060 raw wafers for processing at ten different
machine groups that have three, two, three, two, four, five, three,
two, three, and three PMs, respectively. The details of these
three problems can be found in Tables B - D in Supplementary
File. In Table B, explanations for each data are provided, and
these explanations are applicable to Tables C and D as well.

B. Parameter Setting and Experiment Design
All experiments are conducted on a personal computer

equipped with 8GB of RAM and an Apple M2 processor. All
algorithms are implemented by using Python 3.8 and the MILP
model is solved by CPLEX 12.9.

It is well known that suitable parameter settings can result in
a good performance of metaheuristic algorithms. To find the
most suitable combination of parameters, a statistical method
called the Taguchi method proposed by Genichi Taguchi is
applied in this work and the process is given in Supplementary
File. As a result, the best parameter settings for DEDA are:
population size = 100, iterations for DEDA = 200, and
percentage of population selected as elite individuals = 25%.

After completing the parameter settings of DEDA, its
effectiveness and efficiency in solving the addressed problem
should be verified. To do so, a series of comparison
experiments are conducted which can be divided into three parts:
1) demonstrate the effectiveness of Algorithm 1 (initial
population improvement); 2) examine the efficiency of
Algorithm 5 (greedy local improvement); and 3) compare the
best fitness values achieved by DEDA with those obtained by
other popular metaheuristics. To obtain statistically significant
results, each comparison experiment is repeated for 30 times.

C. Experimental Results and Analysis
1) Initial population improvement evaluation

Fig. 4. Flowchart of DEDA

Start

Input data and parameters

If the termination
condition is met

Yes Output the best individual of
the population

End
No

Update the diversity of the population

Determine the number of clusters and partition the population into clusters

Create a new population

Initialize population, probability model, and the diversity of the population

Perform greedy local improvement

If the average fitness value of the new
population is greater than the current population

Yes

No

Select elite individuals

Update the probability model by elite individuals

12
> SMCA-25-01-0239 <

To evaluate the effectiveness of Algorithm 1, comparison
experiments are conducted by comparing the average fitness of
a randomly generated population with the average fitness of its
improved version after applying Algorithm 1. Then, a total of
180 experiments are done. The experimental results for three
different cases are summarized in Fig. 5. As shown in Fig. 5 (a),
(b), and (c), Algorithm 1 is highly effective for all problem sizes.
In each experiment, Algorithm 1 consistently improves the
average quality of the initial population. Additionally, it is
noteworthy that as the problem size increases, the improvement
effect of Algorithm 1 on the initial population becomes more
significant.

2) Greedy local improvement evaluation
To evaluate the effectiveness of Algorithm 5, comparison

experiments are conducted by comparing the fitness value of a
randomly generated individual with the fitness value of its
improved version by applying Algorithm 5. Also, 180
experiments are needed in total. Experimental results for three
different cases are summarized in Fig. 6 (a), (b), and (c),
showing that local improvement performs well across all
problem sizes. In this work, the greedy local improvement is
considered as a single-solution metaheuristic with a termination
condition if it falls into a local optimum.

3) Performance evaluation of DEDA
For the last part of the comparison experiments, we conduct

two types of comparisons: 1) comparisons between CPLEX and
DEDA using the small-sized case and 2) comparisons between
the DEDA and three other metaheuristics for medium-sized and
large-sized cases. Totally, 300 experiments are done.

For the small-sized case, an optimal solution can be obtained
by solving the established MILP through CPLEX. Results
collected from 30 times of independent experiments are
summarized in Table I. The average running time (147.891
seconds) of DEDA is three times more than the average running
time (33.706 seconds) of CPLEX. Notice that, the minimum
fitness value obtained by DEDA is the same as the one given
by CPLEX. Although DEDA achieves the optimal value (545)
only once, the average fitness value of 30 times experiments
provided by it is 566.53 which is quite acceptable in practical
applications. To address practical production problems
efficiently, it is often advisable to obtain a good solution
quickly rather than pursuing the optimal solution with a long
computation time [28]. Typically, CPLEX is programmed to
stop running if the elapsed time exceeds 3600 seconds [9].

Fig. 5. Comparative experiment results for three cases.

(a) Small-size case

(b) Medium-size case

(c) Large-size case

Fig. 6. Comparative experiment results for three cases.

(a) Small-size case

(b) Medium-size case

(c) Large-size case

13
> SMCA-25-01-0239 <

Under this situation, if CPLEX cannot output the optimal
solution within 3600 seconds, then the addressed problem is
treated as unsolvable by CPLEX in this work. Unfortunately,
CPLEX cannot solve medium- or large-sized problems.

TABLE I
EXPERIMENTAL RESULTS FOR SMALL-SIZE CASE

 CPLEX DEDA
Maximum fitness value (s) 736
Minimum fitness value (s) 545
Average fitness value (s) 545 566.53

Maximum running time (s) 36.608 164.377
Minimum running time (s) 31.250 129.168
Average running time (s) 33.706 147.891

To evaluate the efficiency of DEDA for solving medium- and
large-sized problems, the comparison experiments are carried
out between DEDA and other three metaheuristic algorithms,
including GA, Grey Wolf Optimizer (GWO), and MixPso. As
demonstrated by the outcomes of the second part of the
comparison experiments, the greedy local improvement has a
significantly positive impact on the search for high-quality
solutions. Thus, the greedy local improvement is also adopted
in these three compared algorithms for fair comparisons.
Besides, it is essential to guarantee that the running time of each
metaheuristic algorithm should be approximately equal. The
running time for each case is determined by DEDA which
serves as the termination criterion for the other three algorithms.
For medium- and large-sized problems, the running times for
all these three compared metaheuristics are set as 199.345 and
2685.679 seconds, respectively.

The experimental results for medium- and large-sized
collected from 30 times of independent experiments are
summarized in Table H in Supplementary File, where k denotes
the k-th experiment. It can be found from Table H that DEDA
outperforms the other three metaheuristics for both medium-
and large-sized problems. Especially, for the large-sized
problem, the worst fitness value obtained by DEDA is superior
to the best fitness values provided by the other three compared
metaheuristics. Furthermore, the box plots corresponding to
Table H are drawn in Fig. 7 (a) and (b). Boxplot is a visual graph
that is efficient in evaluating the performance of algorithms. As
shown in Fig. 7, each box in a box plot represents the data
distribution of one specific group within the dataset. i.e., the
performance of one algorithm. For each box, there are three
lines which are upper, median, and lower lines used to represent
the maximum, median, and minimum values of a group,
respectively. Moreover, the height of a box shows the data
stability of a group. As shown in both Fig. 7 (a) and (b), it is
obvious that DEDA outperforms the other three compared
metaheuristics in terms of both the best fitness values obtained
and the algorithmic stability. The boxplots in Fig. 7
demonstrates DEDA’s stability, with smaller and more compact
boxes (the yellow and purple boxplots) compared to other
algorithms, indicating a concentrated distribution of results.
DEDA also exhibits very few outliers, confirming its
consistency and minimal deviation from the main distribution.
Furthermore, the median (the thick horizontal line) is near the

center of the DEDA’s box, suggesting that the results are
symmetrically distributed around the median. Among the
compared metaheuristics, GA exhibits better performance than
MixPSO and GWO, especially for the large-sized problem.

To enhance the reliability of the observed performance
differences among these algorithms, significance tests are
employed. The method applied to perform significance tests is
the Mann-Whitney U-test, a non-parametric statistical method.
It compares the medians of two independent samples, making
it suitable for situations under which the data does not follow a
normal distribution. In statistical analysis, a smaller P-value (P-
value £ 1e-5) usually indicates greater statistical significance,
making the observed differences more reliable. The outcomes
of Mann-Whitney U-test are also shown in Fig. 7. The findings
consistently reveal a substantial difference (P-value £ 1e-5)
between DEDA and each of the other three compared
algorithms regarding their average fitness values. These
outcomes strongly indicate the superior effectiveness of DEDA.
By executing the computational experiments, it is suggested
that DEDA is the preferred solution for addressing the
scheduling problem in this work.

Fig. 7. Box plots for medium and large sizes problems.

14
> SMCA-25-01-0239 <

VI. CONCLUSION
This work aims at solving the scheduling problem of the

photolithography area in semiconductor manufacturing. The
objective of the addressed problem is to minimize the difference
between the longest and shortest working time of PMs. We first
develop an MILP model that involves job assignment and
machine setup constraints. Such an MILP model is used to
obtain the optimal solution for the small-sized problem. To
overcome the computational complexity of addressing
medium- and large-sized problems, a designed DEDA
integrated with Kmeans clustering is constructed. The key of
DEDA to generate high-quality solutions lies in a probability
model, which is updated by elite individuals at each iteration.
To select these elite individuals, an MD-Kmeans clustering
approach is applied. Additionally, efficient approaches are
proposed to improve the quality of the initial population and a
given individual.

To verify the effectiveness of the proposed approaches,
comparison experiments are divided into three parts and carried
out for different size problems. The first and second parts of
comparison experiments demonstrate the effectiveness of the
proposed algorithms in improving the quality of the initial
population and a given individual. The third part of comparison
experiments shows that the solution quality obtained by DEDA
is better than other metaheuristic algorithms (i.e., GA, MixPSO,
and GWO) regardless of problem sizes. Besides, the
algorithmic stability of DEDA is the best among these four
metaheuristic algorithms.

This work is conducted based on the fact that there is no tool
failure or cancellation of jobs. Our future work can take
uncertain arrival time of jobs and abnormal events into account
for the scheduling problems of photolithography areas in
semiconductor manufacturing.

REFERENCES
[1] E. Akcalt, K. Nemoto, and R. Uzsoy, “Cycle-time improvements for

photolithography process in semiconductor manufacturing,” IEEE Trans.
Semicond. Manuf., vol. 14, no. 1, pp. 48-56, 2001.

[2] P. Zhang, Y. Lv, and J. Zhang, “An improved imperialist competitive
algorithm based rolling horizon strategy for photolithography machines
scheduling,” IFAC-PapersOnLine, vol. 49, no. 12, pp. 1295-1300, 2016.

[3] D. Y. Sha, S. Y. Hsu, Z. H. Che, and C. H. Chen, “A dispatching rule for
photolithography scheduling with an on-line rework strategy,” Comput.
Ind. Eng., vol. 50, no. 3, pp. 233-247, 2006.

[4] B. H. Zhou, X. Li, and R. Y. Fung, “Dynamic scheduling of
photolithography process based on Kohonen neural network,” J. Intell.
Manuf., vol. 26, pp. 73-85, 2015.

[5] L. Mönch, J. W. Fowler, S. Dauzère-Pérès, S. J. Mason, and O. Rose, “A
survey of problems, solution techniques, and future challenges in
scheduling semiconductor manufacturing operations,” J. Sched., vol. 14,
pp. 583-599, 2011.

[6] H. Chen, P. Guo, J. Jimenez, Z. S. Dong, and W. Cheng, “Unrelated
parallel machine photolithography scheduling problem with dual resource
constraints,” IEEE Trans. Semicond. Manuf., vol. 36, no. 1, pp. 100-112,
2022.

[7] S. L. M. De Díaz, J. W. Fowler, M. E. Pfund, G. T. Mackulak, and M.
Hickie, “Evaluating the impacts of reticle requirements in semiconductor
wafer fabrication,” IEEE Trans. Semicond. Manuf., vol. 18, no. 4, pp. 622-
632, 2005.

[8] E. Cakici and S. J. Mason, “Parallel machine scheduling subject to
auxiliary resource constraints,” Prod. Plann. Control, vol. 18, no. 3, pp.
217-225, 2007.

[9] L. Chen, S. Zhang, N. Wu, Y. Qiao, Z. Zhong, and T. Chen, “Optimization
of inventory space in smart factory for integrated periodic production and
delivery scheduling,” IEEE Trans. Comput. Soc. Syst., 2022.

[10] D. Doleschal, G. Weigert, A. Klemmt, and F. Lehmann, “Advanced
secondary resource control in semiconductor lithography areas: From
theory to practice,” in Proc. Winter Simul. Conf. (WSC), 2013, pp. 3879-
3890.

[11] Y. F. Lee, Z. B. Jiang, and H. R. Liu, “Multiple-objective scheduling and
real-time dispatching for the semiconductor manufacturing system,”
Comput. Oper. Res., vol. 36, no. 3, pp. 866-884, 2009.

[12] A. Bitar, S. Dauzère-Pérès, C. Yugma, and R. Roussel, “A memetic
algorithm to solve an unrelated parallel machine scheduling problem with
auxiliary resources in semiconductor manufacturing,” J. Sched., vol. 19,
no. 4, pp. 367-376, 2016.

[13] T. Y. Hong, C. F. Chien, H. K. Wang, and H. Z. Guo, “A two-phase
decoding genetic algorithm for TFT-LCD array photolithography stage
scheduling problem with constrained waiting time,” Comput. Ind. Eng.,
vol. 125, pp. 200-211, 2018.

[14] P. Zhang, X. Zhao, X. Sheng, and J. Zhang, “An imperialist competitive
algorithm incorporating remaining cycle time prediction for
photolithography machines scheduling,” IEEE Access, vol. 6, pp. 66787-
66797, 2018.

[15] C. E. N. Bastos and L. C. Resendo, “Two-step approach for scheduling
jobs to non-related parallel machines with sequence dependent setup
times applying job splitting,” Comput. Ind. Eng., vol. 145, 106500, 2020.

[16] X. Li, Y. Huang, Q. Tan, and H. Chen, “Scheduling unrelated parallel
batch processing machines with non-identical job sizes,” Comput. Oper.
Res., vol. 40, no. 12, pp. 2983-2990, 2013.

[17] R. Gedik, D. Kalathia, G. Egilmez, and E. Kirac, “A constraint
programming approach for solving unrelated parallel machine scheduling
problem,” Comput. Ind. Eng., vol. 121, pp. 139-149, 2018.

[18] M. Afzalirad and J. Rezaeian, “Resource-constrained unrelated parallel
machine scheduling problem with sequence dependent setup times,
precedence constraints and machine eligibility restrictions,” Comput. Ind.
Eng., vol. 98, pp. 40-52, 2016.

[19] J. E. C. Arroyo and J. Y. T. Leung, “An effective iterated greedy algorithm
for scheduling unrelated parallel batch machines with non-identical
capacities and unequal ready times,” Comput. Ind. Eng., vol. 105, pp. 84-
100, 2017.

[20] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, 1997.

[21] M. A. Bragin, “Survey on Lagrangian relaxation for MILP: importance,
challenges, historical review, recent advancements, and opportunities,”
Ann. Oper. Res., vol. 333, no. 1, pp. 29-45, 2024.

[22] Y. Qiao, S. Zhang, N. Wu, X. Wang, Z. Li, M. Zhou, and T. Qu, “Data-
driven approach to optimal control of ACC systems and layout design in
large rooms with thermal comfort consideration by using PSO,” J. Clean.
Prod., vol. 236, 117578, 2019.

[23] Y. Qiao, N. Wu, Y. He, Z. Li, and T. Chen, “Adaptive genetic algorithm
for two-stage hybrid flow-shop scheduling with sequence-independent
setup time and no-interruption requirement,” Expert Syst. Appl., vol. 208,
118068, 2022.

[24] Y. I. Kim and H. J. Kim, “Rescheduling of unrelated parallel machines
with job-dependent setup times under forecasted machine breakdown,”
Int. J. Prod. Res., vol. 59, no. 17, pp. 5236-5258, 2020

[25] H. Mühlenbein and G. Paass, “From recombination of genes to the
estimation of distributions I. Binary parameters,” in Parallel Problem
Solving from Nature, 1996, pp. 178-187.

[26] Y. Pan, K. Gao, Z. Li and N. Wu, “A Novel Evolutionary Algorithm for
Scheduling Distributed No-Wait Flow Shop Problems,” IEEE Trans. Syst.,
Man, Cybern. Syst., vol. 54, no. 6, pp. 3694-3704, June 2024

[27] W. Xiong, Y. Qiao, L. Bai, M. Ghahramani, N. Wu, P. Hsieh, and B. Liu,
“Wafer reflectance prediction for complex etching process based on K-
means clustering and neural network,” IEEE Trans. Semicond. Manuf.,
vol. 34, no. 2, pp. 207-216, 2021.

[28] H. Zhang, S. Yao, S. Zhang, J. Leng, L. Wei, and Q. Liu, “A block-based
heuristic search algorithm for the two-dimensional guillotine strip
packing problem,” Eng. Appl. Artif. Intell., vol. 134, no. 108624, 2024.

15
> SMCA-25-01-0239 <

LiangChao Chen received two B.S. degrees
in Mechanical Design Manufacture and
Automation, and English from East China
Jiaotong University, Nanchang, China, in
2019, respectively. In 2022, he received the
M.S. degree in Intelligent Technology from
Macau University of Science and
Technology (MUST), Macao. He is currently

pursuing the Ph.D degree in Intelligent Science and Systems
with the Institute of Systems Engineering and Collaborative
Laboratory for Intelligent Science and Systems, Macau
University of Science and Technology, Macao. His current
interests include scheduling and optimization, reinforcement
learning, and smart manufacturing systems.

Yan Qiao (Senior Member, IEEE) received
the B.S. and Ph.D. degrees in industrial
engineering and mechanical engineering
from Guangdong University of Technology,
Guangzhou, China, in 2009 and 2015,
respectively. From September 2014 to
September 2015, he was a Visiting Student
with the Department of Electrical and

Computer Engineering, New Jersey Institute of Technology,
Newark, NJ, USA. From January 2016 to December 2017, he
was a Post-Doctoral Research Associate with the Institute of
Systems Engineering, Macau University of Science and
Technology, Macau. He is currently an Associate Professor
with the Institute of Systems Engineering and the Department
of Engineering Science, Faculty of Innovation Engineering,
Macau University of Science and Technology. He has over 100
publications, including one book chapter and more than 50
regular articles in IEEE Transactions. Besides, he was a
recipient of the QSI Best Application Paper Award Finalist of
the 2011 IEEE International Conference on Automation
Science and Engineering, the Best Student Paper Award from
the 2012 IEEE International Conference on Networking,
Sensing and Control, the Best Conference Paper Award Finalist
of the 2016 IEEE International Conference on Automation
Science and Engineering, the Best Student Paper Award
Finalist of the 2020 IEEE International Conference on
Automation Science and Engineering, and the 2021 Hsue-Shen
Tsien Paper Award from IEEE/CAA Journal of Automatica
Sinica. He is an Associate Editor of IEEE Robotics and
Automation Magazine.

NaiQi Wu (Fellow, IEEE) received the B.S.
degree in electrical engineering from Anhui
University of Science and Technology,
Huainan, China, in 1982, and the M.S. and
Ph.D. degrees in systems engineering from
Xi’an Jiaotong University, Xi’an, China, in
1985 and 1988, respectively. From 1988 to
1995, he was with Shenyang Institute of
Automation, Chinese Academy of Sciences,

Shenyang, China. From 1995 to 1998, he was with Shantou
University, Shantou, China. He moved to Guangdong

University of Technology, Guangzhou, China, in 1998. He
joined Macau University of Science and Technology, Taipa,
Macau, in 2013. He was a Visiting Professor with Arizona State
University, Tempe, AZ, USA, in 1999; New Jersey Institute of
Technology, Newark, NJ, USA, in 2004; the University of
Technology of Troyes, Troyes, France, from 2007 to 2009; and
Evry University, Evry, France, from 2010 to 2011. He is
currently a Chair Professor with the Institute of Systems
Engineering and the Department of Engineering Science,
Faculty of Innovation Engineering, Macau University of
Science and Technology. He is the author or co-author of one
book, five book chapters, and more than 250 journal articles.
His research interests include production planning and
scheduling, manufacturing system modeling and control,
discrete event systems, Petri net theory and applications,
intelligent transportation systems, and energy systems. He was
an Associate Editor of IEEE Transactions on Systems, Man,
and Cybernetics, Part C; IEEE Transactions on Automation
Science and Engineering; and IEEE Transactions on Systems,
Man, and Cybernetics: Systems. He was the Editor-in-Chief of
Industrial Engineering Journal. He is an Associate Editor of
Information Sciences.

Mohammadhossein Ghahramani
obtained his B.S. and M.S. degrees in
Information Technology Engineering
from Amirkabir University of
Technology-Tehran Polytechnic. He
earned his Ph.D. in Computer
Technology and Application from
Macau University of Science and
Technology in 2018. He was a member

of the Insight Centre for Data Analytics and a Research Fellow
at University College Dublin, Ireland. Currently, he is an
Assistant Professor of Data Science at Birmingham City
University, UK. His research interests include smart systems,
artificial intelligence, optimization, smart cities, and IoT. Dr
Ghahramani has published over ten peer-reviewed journal
papers as the first author in reputable journals and has received
several awards, including the Best Automation Paper in
Technology by the IEEE Robotics and Automation Society. He
serves as a co-chair of the IEEE SMCS Technical Committee
on AI-based Smart Manufacturing Systems and as an Associate
Editor of IEEE Internet of Things Journal.

YongHua Shao received the M.S.
degree in Chemical Engineering from
East China University of Science and
Technology, Shanghai, China. He is
currently the General Manager of the
Wafer Fab in AscenPower
Semiconductors. Previously, he served
as a process engineer in the Thin Films
Department at TSMC (Shanghai), where
he was responsible for the acceptance of

new equipment, the introduction of new processes, and
production ramp-up. He then held positions as the Process

16
> SMCA-25-01-0239 <

Section Head in both the Thin Films and Diffusion Departments
at Advanced Semiconductor Manufacturing in Shanghai, where
he focused on capacity expansion, yield improvement, and cost
control. He led the development of key processes including the
COOLMOS superjunction process and backside hydrogen
implantation process for IGBTs. Later, he served as a senior
engineer and head of the Thin Films Department at Tampines
Factory of GlobalFoundries (Singapore), where he focused on
establishing thin film process systems and product introduction.
During his tenure at GTA Semiconductor, he was a key figure
in establishing the first silicon carbide production line in China,
successfully developing critical SiC processes such as high-
temperature gate oxide, high-temperature implantation, and
high-temperature activation.

Sijun Zhan received his B.S. degree in
Process Equipment and Control Engineering
from Yangtze University, Jingzhou, China.
He is currently the Head of the
Manufacturing Department at AscenPower
Semiconductors. Previously, he worked as a
Manufacturing Engineer at Semiconductor

Manufacturing International Corporation, where he was
responsible for the construction of automation systems,
equipment layout planning, and production capacity evaluation
and ramp-up. He then served as a Senior Production Control
Engineer at FAB7 of GlobalFoundries (Singapore), focusing on
capacity expansion, production planning, and cycle time
improvement projects. He led the development and
optimization of ThinFilm/Etch automatic setups, RTD
automatic testing, and dispatch priority settings, as well as the
implementation of the FCOD VDUMMY automatic gatepass
system. He also worked as a Principal Engineer at Yangtze
Memory Technologies, where he was in charge of new factory
layout planning, capacity planning, equipment qualification
schedules, and full automation system releases. During his
tenure at IKAS Industries, he served as the key CIM lead for
MES, EAP, FDC, and RTD software modules, acting as a
consultant and project manager (PMP certified) during system
deployment and implementation.

