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A B S T R A C T

Composite materials are widely utilised for rehabilitating critical load-bearing members, including the joints of
circular hollow section (CHS) structures, due to their enhanced performance and durability. The accurate pre-
diction of stress concentration factors (SCFs) in CHS joints is challenging because of the complex stress distri-
bution, especially under multiplanar loading conditions. Traditional empirical models predict SCFs only at
specific locations, such as the saddle and crown, which are insufficient under multiplanar loading as the
maximum SCF can occur elsewhere, potentially leading to inaccuracies in fatigue life estimations. This study
aims to address these limitations by developing new empirical models for SCF prediction across the weld toe at
the chord-brace interface. A comprehensive finite element analysis was conducted on 10,858 CFRP-reinforced
KT-joints with varying configurations under uniplanar, biplanar, and multiplanar bending loads. Artificial
neural networks (ANNs) were employed to create empirical models capable of predicting SCFs across diverse
load scenarios. The proposed models were validated experimentally on a typical KT-joint, demonstrating a
maximum error of less than 15 % at the location of peak SCF. These findings highlight the critical influence of
reinforcement properties, such as thickness, orientation and elastic modulus, on SCFs and fatigue life. Future
research should focus on enhancing the generalisability of these models to other CHS joints and considering
practical factors, including residual stresses from welding and environmental effects like temperature and
humidity.

Abbreviation
ANN Artificial neural networks
API American Petroleum Institute
CFRP Carbon fibre-reinforced polymers
CHS Circular hollow section
FE Finite element
FEA Finite element analysis
FRP Fibre-reinforced polymers
GFRP Glass fibre-reinforced polymers
HSS Hot-spot stress
IPB In-plane bending
MSE Mean Square Error
OPB Out-of-plane bending
R2 Coefficient of determination
SCF Stress concentration factors

ZPSS Zero Point Structural Stress
L Chord length
D Chord diameter
€ Ratio of the elastic modulus of reinforcement to the elastic

modulus of the joint
d Brace diameter
g Gap between braces
α Ratio of twice length to chord diameter
β Ratio of the brace diameter to the chord diameter
γ Ratio of chord diameter to twice its thickness
ζ Ratio of the circumferential gap to the chord diameter
η Ratio of reinforcement thickness to the chord thickness
ϴ Angle between inclined brace and chord axis
τ Ratio of brace thickness to chord thickness
ψ SCF reduction coefficient
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1. Introduction

Since the advent of fibre-reinforced polymer (FRP) composites, their
usage has grown exponentially. FRPs offer high specific strength and
stiffness, ease of application, adaptability to complex geometries, and
customizable properties. Beyond their widespread use in aerospace,
automotive, sports, and biomedical sectors, FRPs have gained accep-
tance in the repair and reinforcement of structural elements. Initially,
the application of composites in steel structures was limited to envi-
ronmental protection and the strengthening of secondary elements. Over
time, they have been employed to reinforce critical load-bearing struc-
tures, providing enhanced structural performance. Zhao et al. [1]
reviewed the composite reinforcement of hollow-section steel structures
and concluded that composites hold significant potential for retrofitting
steel structures. Similarly, Teng et al. [2] demonstrated that the appli-
cation of composites to existing structures can significantly enhance
their fatigue strength.

Joints are the most critical sections in circular hollow section (CHS)
structures and often require repair or reinforcement to maintain struc-
tural integrity, especially for facilities operating beyond their design life
[3]. Such reinforcement may also be needed to comply with revised
design codes or new legislative requirements with stricter standards.
Iqbal et al. [4] summarised various approaches used for reinforcing CHS
joints, identifying composites as a promising alternative for rehabili-
tating CHS joints. The first documented use of composites for rehabili-
tating CHS joints was by Pantelides et al. [5]. Since then, various studies
have explored the use of composites to strengthen tubular joints under
different conditions. Due to the complex variation of stress at the
interface of tubular members, analytical modelling is challenging. As a
result, numerous studies have explored the performance of
composite-reinforced CHS joints under different loading scenarios. The
studies focusing on strength enhancement include those by Fam et al.
[6], Chen et al. [7], Fu et al. [8], Lesani et al. [9–11], Prashob et al. [12],
Alembagheri et al. [13], and Yazdi et al. [14], with a focus on enhancing
ultimate load capacity, improving fatigue strength, or reducing stress
concentration factors (SCFs). Additionally, parametric equations and
probability distribution functions have been developed for various CHS
joints [15].

SCFs are widely used to estimate fatigue life through the structural
hot-spot stress (HSS) approach, especially during the design phase.
However, research on SCFs in CHS joints reinforced with composites has
mostly focused on axially loaded joints, as this is the simplest load case.
Bending loads on CHS joints can be categorised as in-plane bending
(IPB), out-of-plane bending (OPB), or different combinations of these
planar loads. A few studies, as summarised in Table 1, have investigated
planar bending loads. To our knowledge, multiplanar bending loads,
although commonly encountered in practice, have not been investigated
[15].

The behaviour of SCFs in CHS joints under multiplanar bending loads
differs from that under planar loads. Under simultaneous IPB and OPB,
the maximum SCF occurs between the crown and saddle positions,

depending on the relative magnitude of the load components. In
contrast, under pure planar loads, the location of maximum SCF is fixed
at the crown for IPB and the saddle for OPB [25]. Accurate determina-
tion of maximum SCF is essential for reliable fatigue life estimation
using HSS and S-N curves. The HSS can be calculated by superimposing
stresses based on SCFs and nominal loads in each planar direction [26].
However, this approach requires that the SCFs at various positions in
each planar direction are known.

Gulati et al. [27] suggested calculating SCFs at eight specific points,
while Iqbal et al. [28,29] and Rasul et al. [30–33] proposed empirical
models to determine SCFs at 15-degree intervals. This study builds on
these models by developing empirical equations that provide SCFs at
every 15◦. This enables the HSS to be interpolated across 360◦ and the
peak HSS to be identified. Although recent studies have proposed
empirical equations for SCF estimation between the crown and saddle
points, various composite-reinforced CHS joint configurations remain
unexplored [15]. Furthermore, the optimal orientation of fibre rein-
forcement under multiplanar loads has rarely been investigated.
Recently, Iqbal et al. [34] found that aligning the fibre reinforcement
orthogonal to the weld toe results in the greatest reduction in SCF. This
study follows the same reinforcement orientation and experimentally
validates the findings of Iqbal et al. [34].

Hosseini et al. [16] conducted the first study on SCFs in
composite-reinforced CHS joints subjected to IPB and OPB, reporting a
significant reduction in the SCF. Nassiraei et al. [17] achieved up to 40
% reduction in SCF in composite-reinforced T/Y-joints subjected to IPB
and developed parametric equations for SCF at the heel and toe posi-
tions. Subsequently, Nassiraei et al. [18] studied T/Y-joints under OPB,
concluding that the reduction in SCF increases with an increase in
thickness and elastic modulus of the composite reinforcement, and
proposed an equation for SCF at the saddle point. Another study
examined CFRP-reinforced X-joints under OPB, reporting a 23 %
reduction in SCF [19] and a 37 % reduction in SCF for X-joints under IPB
[20].

Zavvar et al. [21] analysed composite-reinforced KT-joints under
various IPB and OPB configurations and proposed various equations for
SCFs at the crown, saddle, heel, and toe. Hosseini et al. [22] also
investigated SCF in T/Y-joints subjected to IPB and OPB, and developed
empirical models for SCF estimation at the crown (for IPB) and saddle
(for OPB). Mohamed et al. [23] employed the ZPSS approach for
CFRP-reinforced T/Y-joints subjected to either IPB or OPB moments and
proposed equations for the toe under IPB and the saddle under OPB.
More recently, Reshoe et al. [24] studied T/Y-joints under IPB, and
proposed parametric models that incorporate material properties, such
as the elastic modulus and thickness of the composite reinforcement and
the steel joint, alongside geometric parameters. While all these studies
focused on uniplanar bending loads, this paper advanced to explore the
composite reinforcement of CHS KT-joints under multiplanar bending
loads.

While all these studies focused on uniplanar bending loads, this
paper advances the field by exploring the composite reinforcement of
CHS KT-joints under multiplanar bending loads. Despite the significant
progress in understanding SCFs in composite-reinforced CHS joints,
there remains a lack of research on multiplanar bending conditions,
which frequently occur in practical applications. Furthermore, the
optimal reinforcement orientation for maximum SCF reduction has been
sparsely investigated.

This study aims to address these gaps by developing empirical
models to predict SCFs under multiplanar bending loads at 15-degree
intervals around the joint interface. Additionally, it investigates the in-
fluence of reinforcement orientation on SCF reduction and validates the
findings experimentally. The novelty of this work lies in its ability to
provide a comprehensive framework for SCF estimation and its potential
applications in enhancing the design and durability of CHS structures.

Table 1
Literature on SCFs in bending loaded CHS joints with composite reinforcement.

S. No. Literature reference Joint Load

1. Hosseini et al. [16] T/Y-joint OPB, IPB
2. Nassiraei et al. [17] T/Y-joint IPB
3. Nassiraei et al. [18] T/Y-joint OPB
4. Nassiraei et al. [19] X-joint OPB
5. Nassiraei et al. [20] X-joint OPB
6. Zavvar et al. [21] KT-joint OPB, IPB
7. Hosseini et al. [22] T/Y-joint OPB, IPB
8. Mohamed et al. [23] T/Y-joint OPB, IPB
9. Rashnooie et al. [24] T/Y-joint IPB
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2. Methodology

This study utilises finite element analysis (FEA) using ANSYS
Workbench to understand the stress field behaviour at the brace-chord
interface of gapped KT-joints [35]. Several other studies have also
employed FEA to explore the behaviour of CHS joints using ANSYS [12,
16,19,36–41] and ABAQUS [7–11,14,16,18,21,22,42–53], highlighting
the broad applicability and acceptance of these tools for such research.
Various KT-joint sizes were simulated, and the outcomes were employed
to develop empirical models for rapid SCF estimation.

The FEA in this study was conducted with certain idealised as-
sumptions. Residual stresses resulting from welding and fabrication
processes were not incorporated into the model, as they might affect the
stress distribution and SCFs. Additionally, the analysis assumed
geometrically perfect welds, disregarding common imperfections such
as undercuts or incomplete fusion, which could influence the results.
The material properties and boundary conditions were also idealised,
excluding potential variations due to environmental factors such as
temperature fluctuations, moisture, or UV exposure. These

simplifications are necessary for computational feasibility, but may limit
the direct applicability of the results to real-world conditions.

Relying solely on FEA for every joint may not be practical due to the
required time, expertise, and computational resources. Therefore, these
empirical models provide an efficient alternative for SCF estimation
[15]. The behaviour of KT-joints was first analysed under both IPB and
OPB individually, followed by the combination of these results to un-
derstand the response under multiplanar bending loads. A detailed
breakdown of the methodology is provided in the following subsections.

2.1. Identification of critical parameters and their range

A typical KT-joint was modelled in ANSYS Workbench using the
DesignModeler, where all geometric inputs were defined as parameters.
The range of these inputs was established based on commonly used
structural sizes and values referenced in the literature [25], considering
typical joint configurations in practical applications and engineering
guidelines. The selected ranges ensure that the model is applicable to a
variety of configurations while accounting for practical material and
manufacturing constraints. The geometric and composite reinforcement
parameters were expressed in dimensionless form to cover a wide range
of joint configurations, ensuring that the results remain applicable
across different sizes and material types. The upper and lower bounds of
these parameters were chosen to reflect typical engineering practices
and material capabilities, as well as literature recommendations. A
sensitivity analysis was performed to identify the critical parameters
that influence SCF. Table 2 presents the identified parameters along with
their respective ranges.

The parameters listed in Table 2 were selected based on a compre-
hensive review of the literature and practical considerations, such as
manufacturing limits and material properties. For instance, the range of
Young’s modulus for FRP was chosen to encompass typical values
observed in CFRP materials (0–230 GPa), with the lower bound repre-
senting an unreinforced joint (Efrp = 0), and the upper bound repre-
senting the maximum modulus found in high-performance CFRP. These
parameter ranges allow for the assessment of a variety of real-world
conditions, while the limitations on the maximum values reflect
design constraints and material availability in current engineering
practice. These choices ensure that the model can be applied to a broad
range of composite-reinforced CHS KT-joints.

Table 2
Identification and range of critical parameters defining reinforced CHS KT-joint.

Parameters Range Reference / Logic

τ = t/T 0.3–0.7 [54]
γ = D/2T 12–20 [54]
α = 2L/D 5–40 [55,56]
β = d/D 0.4–0.8 [54]
ζ = g/D 0.25–0.5 [57–59]
€ = Efrp/Esteel 0–1.1 Derived based on Efrp and Esteel
η = tfrp/T 0–0.8 Derived based on tfrp and T
Inclined brace angle, Θ 30–75◦ [54]
Gap between adjacent braces, g

(mm)
100 [59]

Brace thickness (all), t (mm) 3–10 Manufacturing limit
(assumption)

Chord thickness, T (mm) 3–10 Manufacturing limit
(assumption)

Chord length, L (mm) 1800–3000 αmax, Dmax, αmin, and Dmin

Brace diameter, d (mm) 80–320 βmax, Dmin, and Dmax

Chord diameter, D (mm) 200–400 D ≥150 [55], γmax and Tmax
Young’s modulus of Steel, Esteel

(GPa)
211 [60]

Young’s modulus of FRP, Efrp
(GPa)

0–230 Minimum: 0, Max: 230 GPa
[61]

Thickness of FRP, tfrp (mm) 0–5 Min = unreinforced,
Max = half of Dmax

Fig. 1. Meshed model: (a) KT-joint (b) with reinforcement.
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2.2. Finite element modelling

The parametric geometry of the KT-joint was modelled using the
DesignModeler of ANSYS Workbench to simulate the structural response
under various types of bending loads. A MATLAB code was used to
generate the required number of equidistant design points within the
defined parameter range. The KT-joint was meshed using the Structural
module of ANSYS Workbench. The meshed used high-order solid ele-
ments to ensure accurate stress distribution in the simulations. ANSYS
automatically assigns the appropriate element type based on geometry
and meshing criteria. The choice of higher-order elements ensures reli-
able stress distribution predictions, which is critical for determining
accurate SCFs.

The joint volume was partitioned into various zones, and a relatively
fine mesh was used at the critical regions. Various parametric sizing
controls were applied to generate an acceptable mesh. Mesh indepen-
dence was assessed by comparing the maximum percentage difference in
SCF. If the difference in SCF was below 5 %, the number of elements was
progressively reduced. This process was repeated until the error excee-
ded 5 %. These sizing controls created various numbers of elements for
different design configurations of KT-joint within the defined geometric
range. A typical KT-joint, sized according to the joint in Ahmadi et al.
[62], was meshed using these finalised controls, resulting in 223,630
elements, as shown in Fig. 1. The applied composite reinforcement was
meshed separately, comprising 76,234 elements. IPB and OPB were
applied on the central brace of the joint and fixed from the chord ends.

Loads were incrementally increased during the simulation to ensure
numerical stability.

The stress behaviour at the weld toe, as depicted in Fig. 2, can be
significantly magnified due to the combined effect of geometry and weld
notches. Since the weld notch effect is included in the S-N curves, it
needs to be excluded through extrapolation of the stress on the weld toe,
as recommended by Niemi et al. [63]. Specifically, the stresses at 0.4T
and 1.4T (where T is the chord thickness) were linearly extrapolated to
compute the HSS. The calculation was performed using Eqs. (2)–(4) [21,
48]. The stress magnitudes at reference points 1 and 2 (σ1 and σ2) are
essential for determining the HSS. The positions of the weld notch and
reference points are specified in global coordinates.

HSS = σ1 +

(
σ1 − σ2

Δ2

)

Δ1 (2)

Δ1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x)2 + (y1 − y)2 + (z − z)2
√

(3)

Δ2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x2 − x1)
2
+ (y2 − y1)

2
+ (z2 − z1)

2
√

(4)

where
σ1 = principal stress at reference point 1
σ2 = principal stress at reference point 2
Δ1 = distance between weld toe and reference point 1
Δ2 = distance between reference point 1 and reference point 2
(x, y, z) = position coordinates of weld toe

Fig. 2. Stress extrapolation at the weld toe [64].

Fig. 3. Experimental validation of the FE model: (a) geometry (b) SCF comparison.
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(x1, y1, z1) = position coordinates of reference point 1
(x2, y2, zz) = position coordinates of reference point 2
The finite element model was validated through static testing. Fig. 3

presents the comparison of SCF. The difference in numerical and
experimental SCF values was below 8.6 %, validating the FE model.
Once validated, the numerical model was reinforced with CFRP (carbon
fibre-reinforced polymer composite). The optimal reinforcement strat-
egy involves wrapping unidirectional composites with fibres oriented
orthogonally to the weld toe [65]. The green-coloured area in Fig. 4
represents the composite wrapping around the central brace-chord
interface, while the yellow-coloured area indicates the reinforcement
applied to the inclined brace-chord interface. The lines illustrate the
fibre directions in the composite reinforcement. Since SCF is a local
phenomenon, it is primarily affected by the reinforcement at the inter-
face, as represented in yellow in Fig. 4. Although the SCF was mainly
reduced by reinforcing the interface area, for simplicity, 80 % of the
joint area was reinforced. This decision was made to ensure that the
interface region is fully covered with reinforcement, preventing any is-
sues during finite element model generation. This approach also avoids
the risk of incomplete or unsuccessful mesh generation, which could
compromise the accuracy of the simulations. The joint was reinforced
with CFRP, where the elastic modulus and thickness of composite
reinforcement were defined as variables. Fig. 4 illustrates the rein-
forcement schematic.

Given that the mechanical response of composite materials primarily
depends on the properties of the fibres, epoxy, and fabrication process;
several CFRPs were used in the simulations. It was found that the pri-
mary difference lies in the elastic modulus along the fibre direction,
while other properties exhibited minimal variation. The impact of these
properties on SCF was analysed, and the reinforcement material prop-
erties, except for the elastic modulus (E1), were fixed. The maximum E1
value was selected for Carbon/Epoxy-T700–12 K [61], and simulations
were conducted across the entire range of values, from zero to the
maximum E1. Table 3 lists the properties of some CFRPs in this range.
The elastic modulus along the fibre direction was defined as a ratio (€)
between the modulus of the composite material and the base joint

material for empirical modelling.
In addition to experimental validation, it was essential to ensure

mesh-independent structural response across all design points. A vari-
able was introduced to control the sizing parameters of the mesh used in
the experimentally validated model, and the mesh was optimized
through a convergence study. This study was conducted for joints with
lower, middle, and upper dimension ranges, as shown in the three rows
of Fig. 5. It was observed that while a coarser mesh was sufficient for
larger joints, a finer mesh was required for smaller dimensions. The
mesh convergence study demonstrated that the factor of 0.8 provided an
optimal balance between mesh quality and computational efficiency.
This factor was applied uniformly across all sections, ensuring that the
mesh density across the joint and CFRP reinforcement was consistent
and appropriate for accurate results. Various size controls were defined
for different sections of the joint, and altering the mesh control factor
affected the mesh density across all regions. A common mesh control
factor of 0.8 was chosen for all subsequent simulations. This factor en-
sures mesh-independent results in the entire range for all the planar load
configurations, as shown in Fig. 5.

The boundary conditions for the chord ends vary between pinned
and fixed [67]. Both ends of the chord and inclined braces were fixed
and load was applied to the central brace, as shown in Fig. 6. Static
Structural simulation was conducted in the linear elastic range of ma-
terial [68,69]. For steel, a linear elastic model was employed [60]. For
CFRP, the material was modelled as a linear elastic orthotropic material
with variable Young’s modulus based on the range of properties derived
from the literature and earlier simulations [8,61,66]. The choice of a
linear elastic simulation was justified based on the assumption that the
applied loads are within the elastic limit of both materials. While
nonlinear effects, such as plasticity in steel and progressive failure in
CFRP, could influence the response under extreme loading conditions,
the structural HSS approach determines the fatigue strength entirely
based on elastic behaviour. Material non-linearity and crack propaga-
tion are important but beyond the scope of this approach and this study.
Since SCF is independent of the load magnitude when the stress in the
joint is within the elastic limit [25]; any load within the elastic range
could be used [70]. The applied IPB and OPB loads are defined by Eq. (5)
[71].

σb = 32dM
/[
d4 − (d − 2t)4

]
(5)

where
d = brace diameter
M = bending moment
t = brace thickness

Fig. 4. Schematic of CFRP reinforcement of CHS KT-joint.

Table 3
Composite materials used for simulations [8,61,66].

Mechanical
properties

Carbon/ epoxy
(T300–5208)

Carbon/ epoxy
(AS/3501)

Carbon/Epoxy-
T700–12K

E1(GPa) 132 138 230
E1(GPa) 10.8 8.96 40
v12 0.24 0.3 0.27
G12(GPa) 5.7 7.1 14.3
G13(GPa) 5.7 7.1 14.3
G23(GPa) 3.4 2.82 14.3

M. Iqbal et al. Results in Engineering 25 (2025) 103745 

5 



2.3. ANN and empirical modelling

The results obtained from simulations of various KT-joint design
configurations under IPB and OPB were used to train artificial neural

networks (ANN) [72]. Dimensionless parameters representing the joint
geometry and CFRP reinforcement were defined as inputs, while the SCF
at the interface was set as the output. A single hidden layer with 10
neurons was employed, as shown in Fig. 7. The network architecture

Fig. 5. Mesh sensitivity: IPB: (a), (b) and (c); OPB: (d), (e) and (f).

Fig. 6. Boundary conditions: (a) IPB (b) OPB.
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included input, hidden, and output layers, with the tan-sigmoid acti-
vation function applied to the hidden layer, and a linear activation
function used for the output layer. The tan-sigmoid function is
commonly used in neural networks to introduce nonlinearity, helping
the model learn complex patterns, while the linear activation in the
output layer allows for the prediction of continuous values. This com-
bination has been widely employed in engineering applications for tasks
such as regression and prediction due to its simplicity and effectiveness
in capturing both nonlinear and linear relationships within the data. The
choice of these activation functions aligns with typical practices in ANN
modelling for structural and material properties prediction.

The ANN was trained using the Levenberg-Marquardt back-
propagation algorithm. The Levenberg-Marquardt algorithm was
selected for training due to its efficiency in handling large datasets while
providing fast convergence, which is essential when working with
complex, nonlinear problems. This algorithm combines the benefits of

both the Gauss-Newton method and gradient descent, making it suitable
for ensuring robust and accurate predictions. The training process
involved validation using a separate dataset to prevent overfitting, while
cross-validation techniques were employed to enhance the generaliza-
tion capability of the model. Training continued until the mean squared
error (MSE) was less than 0.01 and the coefficient of performance
exceeded 0.99 [29]. The trained network was exported to MATLAB as a
function for further use. Additionally, the weights and biases from the
best epoch were used to develop empirical equations to estimate the SCF
in KT-joints under various configurations of bending loads.

2.4. Experimental validation

The developed empirical models were validated under IPB, OPB, and
simultaneous application of both load components. A simplified test rig
was designed for this purpose, incorporating a cable-pulley arrangement

Fig. 7. Architecture of the ANN.
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for load application, as shown in Fig. 9. Dead weights were attached to
the cable to apply the precalculated load in the desired direction. For the
uniplanar and biplanar load cases, loads were applied incrementally
using a cable-pulley arrangement to ensure precise control over the
applied forces. In the uniplanar loading case, only one loading direction
(either IPB or OPB) was applied. In the biplanar case, both IPB and OPB
were applied separately in a controlled manner to simulate real-world
conditions. For the multiplanar loading case, both IPB and OPB were
applied simultaneously in their respective directions. In all cases, the
load was increased gradually to prevent sudden stress changes and
ensure stability.

SCFs were recorded using 48 strain gauges affixed to the chord near
the weld toe. These gauges were installed at 24 stations along the weld
toe, and the recorded strains were used to determine the HSS through
linear extrapolation. SCF, the ratio of HSS to the nominal stress, is
expressed in Eq. (1). Precise positioning of the joint was ensured to avoid
any residual stress during the bolting process. Potential sources of error,
including measurement inaccuracies, misalignment of the load cable,
and the time required for strain gauges to stabilize, were carefully
addressed to ensure accurate and reliable data acquisition. The geo-
metric details of the tested joint are illustrated in Fig. 8, and the test
setup used for the experimental validation is shown in the same figure. A
cable-and-pulley arrangement was used for load application.

SCF =
HSS

σnominal
(1)

3. Results and discussion

The peak HSS was observed around the crown for IPB and around the
saddle point for OPB, consistent with the results of Ahmadi et al. [73].
However, under simultaneous IPB and OPB loading, the location of the

peak HSS shifted between the crown and saddle points, depending on
the relative magnitudes of the applied loads. A typical KT-joint was
modelled based on the geometric dimensions provided by Ahmadi et al.
[62] and simulated under various configurations of bending loads to
elaborate on these findings. When IPB and OPB were applied simulta-
neously, the location of the peak HSS shifted, as shown in Fig. 10.

Five typical IPB-to-OPB load ratios were simulated—4:1, 2:1, 1:1,
1:2, and 1:4—to examine the effect of the relative magnitudes of the
load components. In these ratios, "1″ represents a nominal load of 30
MPa. With an IPB of 30 MPa and OPB values of 30, 60, and 120 MPa, the
peak HSS occurred at 15◦ for the first two cases and shifted to the saddle
location in the third case. The percentage difference between the peak
HSS and the HSS at the saddle or crown was insignificant in these sce-
narios. However, when an OPB of 30 MPa was combined with IPB loads
of 30, 60, and 120 MPa, the peak HSS occurred at 15◦, 30◦, and 45◦ from
the saddle point (between the crown and saddle). In these cases, the
percentage differences in peak HSS from the HSS at the crown or saddle
position were 10 %, 37 %, and 24 %, respectively, indicating significant
variation. Thus, it can be concluded that the position of peak HSS is
influenced by the relative magnitudes of IPB and OPB.

A total of 5429 designs were simulated for both IPB and OPB load
cases. The simulation data was used to train ANNs, with the details
summarised in Table 4. The generated data were used to train an ANN,
achieving a COP of 0.9993 and 0.99939, and an MSE of 0.000319 and
0.0015 for IPB and OPB, respectively. The weights and biases of the best
epoch from the trained ANN were used to develop empirical equations
for rapid estimation of SCF in composite reinforced KT-joints subjected
to IPB, as given by Eqs. (6) and (7). Similarly, the trained ANN was used
to develop equations for SCF in KT-joints under OPB, as given by Eqs. (8)
and (9).
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The empirical models developed for SCF estimation under uniplanar
loads can be extended to estimate the combined HSS for composite-
reinforced KT-joints subjected to multiplanar loads. By superimposing
the HSS values obtained from uniplanar loads at the 24 positions along
the weld toe, the combined HSS can be estimated. This combined HSS is
used to identify the peak HSS, which allows for the estimation of fatigue
life when used with the S-N curve.

The recorded strains for IPB are shown in Fig. 11. These strains were
converted into SCFs, as presented in Fig. 12. The difference between the
experimental and predicted SCFs in the region of maximum SCF was less
than 10 %, which is within acceptable limits.

The same KT-joint was then subjected to OPB, and the strain

response was recorded. The measured strains and the corresponding
SCFs are presented in Fig. 13 and Fig. 14, respectively. The results
indicate a close match between the experimental SCF and the FEA-based
SCF. The maximum difference in the region of maximum SCF was less
than 8.5 %, which is within the acceptable limit.

The fabricated joint was experimentally tested under multiplanar
bending loads, i.e., loads with components in both the IPB and OPB
directions. Following the same methodology used for the previous load
cases, strains were recorded and used to determine the HSS at 24 posi-
tions along the weld toe of the chord-central brace interface in the KT-
joint. The recorded strains are presented in Fig. 15, and the corre-
sponding HSS values are shown in Fig. 16. Three configurations of IPB

Fig. 8. Dimensions of the KT-joint used for experimental validation.
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were tested: 1:1, 1:2, and 2:1. The combined effect of IPB and OPB loads
was considered in this study. The interaction between these loading
types was investigated through the principle of superposition, which
assumes that the total stress response is the sum of the individual stress
responses caused by each loading type. IPB and OPB loads can have
significant interactions, with the location of maximum SCF being
influenced by the direction and magnitude of the applied loads. The
superposition of these bending loads can lead to non-intuitive stress
distributions, potentially shifting the location of peak SCFs and intro-
ducing stress concentrations in regions that would not be as critical

under single-axis loading.
Fig. 16 indicates that the position of maximum SCF depends on the

relative magnitudes of IPB and OPB, necessitating models capable of
estimating SCF at intermediate points between the crown and saddle.
These visualizations show how the superposition of the bending mo-
ments influences the stress concentration areas, especially in regions
where the maximum SCF occurs. The stress distribution and location of
the maximum SCF are affected by the magnitude and direction of the
applied loads. The maximum difference in the region of peak SCF was
less than 15 %, falling within the acceptable threshold determined by

Fig. 9. Setup for testing KT-joint: (a) IPB (b) OPB.
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the difference between experimental and numerical results reported by
Ahmadi et al. [70].

The empirical models developed in this study are specifically
designed for KT-joints subjected to bending loads applied to the central
brace. These models are applicable under various uniplanar, bi-planar,

and multiplanar load configurations. However, it is important to note
that these models are not directly transferable to other types of CHS
joints, as different joint geometries and loading conditions would
require separate modelling efforts. Each type of joint must have specific
empirical models developed using the same methodology employed in
this study, including finite element simulations and artificial neural
networks. This approach highlights the need for future research to
develop tailored models for other joint configurations, ensuring their
accuracy and applicability.

4. Conclusion

This study analysed 10,858 CFRP-reinforced circular hollow section
KT-joints under various bending load configurations. The magnitude of

Fig. 10. KT-joint under bending loads: (a) HSS (b) position of peak HSS.

Table 4
Details of ANN used for empirical modelling.

S.
No.

Load
case

# of
simulations

Coefficient of
performance

Mean square
error

1. IPB 10858 0.994321 0.000271
2. OPB 10858 0.99714 0.001455

Fig. 11. Strains recorded in KT-joint subjected to IPB.
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Fig. 12. SCFs in KT-joint subjected to IPB.

Fig. 13. Strains recorded in KT-joint subjected to OPB.

Fig. 14. SCFs in KT-joint subjected to OPB.

Fig. 15. Strain normal to the weld profile in KT-joint under IPB-OPB.
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the Stress Concentration Factor (SCF) was primarily influenced by the
thickness, orientation, and elastic modulus of the reinforcement. Arti-
ficial neural network models were trained using the simulation data, and
empirical models were developed for determining SCF and hot-spot
stress (HSS) in CFRP-reinforced KT-joints under uniplanar and multi-
planar bending loads at 24 positions along the weld toe at the chord-
brace interface. The novel empirical models accurately predict the
peak HSS, enabling realistic estimation of fatigue life using the respec-
tive S-N curves. These models were experimentally validated, with a
maximum error of less than 15 % at the location of peak HSS, which is
within the acceptable range. This study provides valuable insights into
the impact of CFRP reinforcement on stress concentration factors under
complex loading scenarios, contributing to enhanced structural design
and optimisation strategies. Future research can address the assump-
tions made in this study, such as the exclusion of residual stresses and
weld imperfections, and explore their influence on SCFs and hot-spot
stress predictions. Additionally, investigating the effects of environ-
mental factors such as temperature or moisture variations and alterna-
tive reinforcement materials could further enhance the applicability of
these findings.
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