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Abstract—The operational aspects of the Internet of Things
(IoT) are dependent on the security measures deployed to ensure
user privacy, protect user data and prevent smart devices from
being exploited for malicious activities. Traditional Intrusion De-
tection Systems often require collaboration from many individual
devices in the centralised system for data processing and decision-
making. However, centralised systems have some limitations in
terms of privacy and scalability. This paper proposes a federated
learning-based (FL) distributed framework for detecting and
mitigating intrusion while ensuring privacy in IoT networks. The
framework integrates two key security components: an intrusion
detection module that employs Neural Networks (NN) at the edge
device, and centralised aggregation systems that aggregate and
coordinate the aggregated model to edge devices. The centralised
system computes the global model using a weighted averaging
mechanism to accurately represent the relative importance of
each device’s local model. of each device’s contribution. This
ensures that the global model is the complete representation of
the overall data at the collaborating edge nodes. The framework
ensures privacy as data remains local to edge devices, and the
machine learning models are exchanged to the aggregation server.
By supporting heterogeneous data from various sources, the
framework demonstrates adaptability to diverse attack patterns
and device behaviours. The evaluation is conducted on het-
erogeneous datasets, including CICIDS2017, UNSW-NB15, and
KDD Cup 99 under heterogeneous scenarios, which represent
a wide range of intrusion scenarios, such as DDoS, Botnet
activities and malicious behaviours. With an increased number
of iterations and collaborators, the framework demonstrates
improved performance, achieving an average intrusion detection
accuracy of 99% across the three datasets. These results highlight
the importance of both the number of collaborators and iterations
in improving the overall model performance while preserving
privacy and minimising communication overhead.

Index Terms—Federated Learning, Collaborative Intrusion
Detection, Privacy-preservation, Internet of Things

I. INTRODUCTION

The Internet of Things (IoT) has emerged as a transforma-
tive technology as it brings drastic changes in various sectors
such as healthcare, transportation, agriculture, and industrial
automation. By 2025, the IoT market is projected to exceed
$1.5 trillion and billions of IoT devices worldwide. However,
the rapid growth of IoT networks has also exposed these
networks to cyber threats, which could bring huge financial
losses. Incidents such as the Mirai botnet [1] and the Ukrainian
power grid cyberattack are just examples to show the impact
of cyber attacks using IoT devices or attacks on IoT networks.
As IoT devices continue to grow there is a need for effective
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and collaborative security systems to protect the networks from
unwanted events.

Intrusion Detection Systems (IDS) have been widely used
to secure heterogeneous networks from malicious events. IDS
systems can employ signatures or ML models to identify
malicious events. Signature-based detection compares traffic
against known attack signatures and can achieve high accuracy
but fails to identify unknown or zero-day attacks. Anomaly
or ML-based detection systems identify deviations from the
established baseline model. These systems can detect novel
threats but often produce false positives due to their sensi-
tivity to normal variations. Hybrid methods combine these
approaches for improved coverage but add complexity and
computational overhead. ML-based IDS systems can achieve
high accuracy in heterogeneous systems while aggregating
and processing the raw data from different devices. However,
these systems process, aggregate and apply Machine learning
in the centralised setup. Although the centralised systems
achieve higher accuracy, they create a single point of failure,
a single point of unauthorized access, and a potential threat to
users’ privacy as trusted systems can misuse sensitive shared
data. Furthermore, the trusted system could use data without
user consent. As a result, privacy-preserving mechanisms
are needed that can achieve the trade-off between detection
performance and privacy.

Federated Learning (FL) can be used to achieve higher
accuracy without affecting the privacy of users and data
contributors. FL enables collaborators to process and apply
Machine Learning (ML) models to the local data at the
edge or device level. The learned machine learning model is
then shared with the centralised system instead of the raw
data. In this scenario, privacy is achieved as data remains
on the local device and only model updates are shared with
centralised systems. FL also reduces communication overhead
by transmitting only model updates, which are only a few
hundred bytes rather than raw data. However, the effectiveness
of FL depends on the quality of data used for training at the
local device. In real-world scenarios, devices may have varying
quality data, as some devices might have high-quality data,
while others might create their model on noisy or irrelevant
data. This heterogeneity of data might impact the overall
performance of the global model.

In this paper, we propose a novel privacy-preserving edge-
enabled weighted FL framework (WFL) to detect intrusions
in IoT networks. The proposed approach uses the privacy-
preserving properties of FL and introduces a weighted ag-
gregation mechanism to compute the aggregated model. The
weights assigned to each collaborator would help to consider
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the quality of the model contributed by different collaborators.
Specifically, the system employs Neural Networks (NN) to
train local models at the edge device and uses weighted
averaging for global model aggregation. The weights assigned
to each device reflect the trustworthiness and relevance of its
local model. This ensures that the global model would be
influenced more by high-quality and trustworthy updates, and
malicious collaborators might not influence the performance
of the system.

The major contributions of this research are as follows.
• We propose a new edge-enabled FL-based IDS frame-

work that enables models to be trained at the edge device,
and collaboration occurs across the collaborators. This
method guarantees that data remains either on the local
device or within the collaborators’ operating jurisdiction.
It achieves high detection accuracy and an acceptable
false positive rate while fully protecting the data privacy
of collaborators.

• We introduce a weighted aggregation mechanism that
assigns different weights to collaborators. These weights
have been computed according to the quality of relevance
of local data used to train the model. This process
would ensure that the global model is influenced more
by high-quality updates and improve the overall accuracy
and reliability of the intrusion detection system under
heterogeneous networks.

• We conduct an extensive evaluation of the proposed
system using three benchmark datasets: CICIDS2017,
UNSW-NB15, and KDD Cup 99. Our experiment results
demonstrate the efficacy of the proposed approach in
comparison to traditional centralised and self-learning
models.

The paper is organised as follows. Section II provides a
detailed review of existing research. Section III explains the
proposed methodology, including key technical approaches,
models, and techniques used. The experimental setup and
evaluation metrics are mentioned in section IV-A. Section V
discusses the evaluation results across different performance
metrics. Section VI concludes the paper with some future
directions.

II. RELATED WORKS

In terms of deployment, IDS can be broadly classified
into two categories: Host-Based IDS (HIDS) and Network-
Based IDS (NIDS). HIDS are deployed on individual devices
and monitor system-related activities, such as application files
and operating system operations. In contrast, NIDS analyses
network traffic by capturing and inspecting packet flows,
making it more suitable for defending against external attacks.
In terms of detection approach, IDS systems can be categorised
into signature-based detection and anomaly-based detection
systems [2], [3]. Within anomaly-based detection systems,
machine learning and Artificial Intelligence have been widely
used to identify intrusions within the network. Midi et al.
[4] proposed an IDS for IoT networks that is not limited
to specific protocols or applications. The system dynamically
adapts its detection strategies based on network characteristics.

Hodo et al. [5] employed a Multi-Layer Perceptron for an
offline IoT intrusion detection system (IDS). Their approach
analyses Internet packet traces to identify DoS and DDoS
attacks within IoT networks. However, this method analysed
traffic in an offline setting, which makes it unsuitable for real-
time detection and collaboration. Moustafa et al. [6] adopted
an ensemble-based network intrusion detection technique that
uses statistical flow features to classify malicious activities. Al-
Yaseen et al. [7] proposed a modified K-means algorithm to
optimise the training dataset by reducing its size and balancing
the data. This approach was used to train Support Vector
Machines and Extreme Learning Machines. These systems
normally require access to the whole data, which might be
a threat to user privacy if not properly protected.

FL systems address the challenge of privacy preservation
by enabling machine learning models to be trained locally
on devices while collaborating through model sharing to a
centralised or distributed aggregation system [8], [9], [10].
FL allows multiple distributed devices to collaboratively train
a shared model without exposing raw data. The system can
ensure privacy by using cryptographic systems, controlled
noise addition, or differential privacy [11], [12]. However,
these privacy-preserving methods can compromise detection
accuracy, as adding noise reduces model performance. Liu et
al. [13] proposed a blockchain-enabled FL system for intru-
sion detection in vehicular edge computing. It incorporates
multi-party aggregation, trust-based incentives, and Differ-
ential Privacy to enhance accuracy and privacy. Blockchain
integration introduces computational overhead, which may
strain resource-constrained devices. Li et al. [14] applied a
federated deep learning framework for detecting cyber threats
in industrial CPS. Their CNN-GRU-based model uses Paillier
encryption to ensure privacy, which significantly increases
communication and processing costs. Geyer et al. [15] in-
troduced a privacy-enhancing FL method with two phases:
participant selection and Gaussian noise addition to trained
models before exchanging them for a global model. This
approach prevents malicious inference of participants’ data.
The system guarantees strong privacy, but at the cost of
reduced model precision. Qu et al. [16] developed a verifiable,
privacy-enhanced FL framework ensuring training integrity
and confidentiality. The additional verification processes may
impact scalability in large systems. Yong et al. [17] presented
a privacy-preserving FL framework based on chained Secure
Multi-Party Computation. This method provides strong privacy
protections while maintaining performance levels comparable
to baseline FL algorithms. However, Secure Multi-Party Com-
putation is vulnerable to inference attacks as adversaries can
deduce sensitive information from encrypted communications.

Existing research has not considered heterogeneous data and
has mostly focused on evaluating the approaches over a single
type of dataset. Evaluating the impact of different types of
data on FL-based ID is important because data heterogeneity
significantly influences model performance. IoT devices and
edge networks often generate different data, which can lead
to challenges in model convergence, accuracy, and generali-
sation. It is important to understand how different data types,
such as attack patterns, system configurations, and network
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behaviours. These features affect the performance of FL-based
IDS while ensuring privacy with minimal communication
overheads.

III. PROPOSED FRAMEWORK AND THREAT MODEL

In this section, we describe our proposed framework and
the associated threat model.

A. System Architecture

The centralised systems may have privacy concerns as
raw data from the participating or collaborating devices is
transferred to the centralised system for processing and ap-
plying machine learning. The centralised system is not only a
single point of attack or failure, but the centralised system
could also misuse the data without the user’s consent. FL
mitigates security and privacy risks by processing data on the
client’s device directly. FL-based systems facilitate collabo-
ration between edge devices or end-users without using their
private data. In FL setup, there can be several data owners
or collaborators such as {F1, . . . , FN}, which process the
data {D1, . . . , DN} and train the ML model {M1, . . . ,MN}
locally at the each device or edge. The model Mn is then
exchanged to a centralised system for an aggregate model
update. The centralised system aggregates them and updates
devices with the aggregated model

In traditional FL, all participating devices contribute equally
to the global model. However, in a real-world scenario, collab-
orators are not contributing equally to the global model. Some
devices may have trained their local model on several data
points, and others may have trained their model over a limited
or noisy dataset. This scenario should be considered while
aggregating the local models. Therefore, We used Weighted
FL to minimise the impact of heterogeneous collaboration.
By considering weights assigned to different edge devices
or collaborators, Weighted FL ensures that the global model
has incorporated the data from trusted sources with high
weight and assigns a small weight to malicious collaborators.
The assigned weights reflect the importance of each device’s
contribution and ensure that the global model is influenced
more by high-quality, trustworthy, and relevant updates. The
proposed Intrusion Detection System combines the privacy
properties of FL and the weighted aggregation by assigning
weights to collaborating devices. The system comprises two
primary components: the server and the edge node, or the
collaborators. The server acts as a central entity responsible
for aggregating models contributed by edge nodes, assigning
weight to the collaborators and coordinating the updated model
with the collaborators. The edge nodes are distributed and
train local models on their respective local raw data. The
system architecture is represented in figure 1, which mainly
consists of the collaborators (edge devices) and the centralised
aggregation system. The operations are mentioned below.

1) The trusted centralised system is the major component of
proposed FL-based IDS systems. The system aggregates
local models reported by the edge devices and computes
the global model. The weighted averaging method has

Fig. 1: FL System Architecture with Edge Nodes

been used for aggregating the scores from the collabo-
rators.

2) The edge device is responsible for three major functions:
1) the processing of local data and applying ML training
on the local data, 2) the exchange of the ML model to
the centralised system, and 3) updating the local model
after receiving an update from the centralised system.
The edge device can use any Machine learning or AI
system to train the model. In this paper, we used the
Neural Networks algorithm to train the local model.
The whole process ensures privacy as local models are
trained independently at the local device, as raw data
does not leave the edge or device.

3) Each edge device shares the computed ML model with
the centralised system for global model aggregation. The
raw data remains securely withheld on the edge device.

4) The centralised system receives updates from the col-
laborating devices and computes the global model. We
used weighted averages for the global model as we have
assigned different weights to different collaborators.
The weights can be assigned based on the reputation
and trustworthiness of collaborators. This means that
devices or collaborators with higher scores are given
greater influence in shaping the global model. This trust-
aware weighting helps mitigate the impact of potentially
malicious or low-quality contributors. The trust scores
are computed by estimating the deviation of the local
model from the global model parameters. Local models
that significantly deviate from the expected output may
indicate malicious or adversarial behaviours and would
receive lower trust scores.

5) The updated global model is redistributed to the edge
device or collaborators, who then apply it to their local
data for the classification and decision. This iterative
process continues until the model achieves the desired
accuracy or convergence.

The weighted averaging mechanism can enable devices with
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less relevant data or malicious collaborators to negatively
impact the performance of the global model. This approach
not only improves the accuracy and reliability of the intrusion
detection process but also ensures that the system achieves
reliable performance even under evolving threat landscapes.
The process ensures privacy as model updates cannot be used
to infer the behaviour of individual collaborators.

B. Threat Model

In this paper, we used an honest-but-curious (semi-honest)
threat model where we assume that the collaborating entities
and the central server execute the protocol operations correctly
but may try to infer sensitive information from the data or the
model update. We assume that collaborating clients are not
providing false results regarding model updates and that the
centralised server operates honestly. We assume participants
are not malicious and do not deviate from the protocol or
actively disrupt the system.

IV. EXPERIMENTAL SETUP AND PERFORMANCE METRICS

A. Experimental Setup

We evaluate the performance of FL-enabled IDS using
widely used datasets CICIDS2017, UNSW-NB15, and KDD
Cup 99 datasets. After preprocessing and cleaning, each
dataset is divided into subsets to simulate multiple clients.
For example, the dataset can be split by attack types across
clients, and each client receives a fixed number of data
points. In our experiments, we distributed the dataset across
10 clients, each receiving 10% of the specified traffic type.
The splitting process has been maintained carefully so that
each node contains the same class distribution across all
subsets. This step is crucial to prevent data skew and biased
training on some nodes. Each subset of data is assigned
to an individual FL node. The FL training process involves
simulating collaboration among 10 nodes for 10 iterations.
Each node computes updates based on the local training and
sends the model to a centralised server. At the central server,
the received updates from all nodes are aggregated using
Weighted Federated Averaging. The aggregated updates are
sent back to the participating nodes, where edge nodes can
apply them to their local data to evaluate the performance.

B. Evaluation Metrics

We used the following metrics to evaluate the performance
of the system: Accuracy: Accuracy measures the proportion
of correctly classified samples (both normal and attack) out
of the total samples. A higher accuracy value indicates better
overall model performance. False Positive Rate (FPR): refers
to the proportion of benign activities incorrectly classified
as malicious by an Intrusion Detection System (IDS). It is
a critical metric in evaluating the performance of IDS, as a
high FPR can lead to unnecessary alerts, wasted resources,
and decreased system reliability. True Positive Rate (TPR):
measures the proportion of actual intrusions correctly identi-
fied by the system as an intrusion. A high TPR ensures that
most attacks are successfully detected, reducing the risk of

Fig. 2: Accuracy for FL under different iterations and 10 nodes

undetected threats in the system. Iteration: In FL, iteration
is a key performance measure which helps to understand how
quickly the system is converging. In this paper, an iteration
refers to a single round of communication and model updates
between the central server and the participating devices.

V. PERFORMANCE RESULTS

In this section, we analyse the results for different perfor-
mance metrics.

A. Accuracy over Iterations

Figure 2 shows the performance of an FL model under
three datasets: CICIDS2017, UNSW-NB15, and KDD Cup 99
for ten iterations and ten nodes (collaborators). In this setup,
each node uses the same type of dataset one by one. The
accuracy increases with the number of iterations, which shows
that FL performs well over time. The CICIDS2017 dataset
shows the highest accuracy throughout the iterations, reaching
close to 98% by the 10th iteration. The slow improvement
in accuracy shows that the global model benefits significantly
from early iterations. UNSW-NB15 achieves an accuracy of
97% by the final iteration. The KDD Cup 99 dataset has the
lowest accuracy, starting at around 88% and steadily reaching
approximately 96% by the 10th iteration. The class imbalance
in this dataset may limit its ability to leverage the full potential
of the neural network models at the edge device.

The results show that the accuracy improves as the edge
device collaborates with the local model through the col-
laboration cycle. The improved accuracy has been observed
in the first few iterations (e.g., 1–4), because of the initial
aggregation of local models. However, the accuracy increases
very slowly during the later collaboration cycles (e.g., from
8–10 iterations). This shows that the model converges very
slowly towards the model’s optimal performance. This iterative
collaboration shows that FL achieves higher accuracy as the
local models have been trained over heterogeneous and diverse
data sources.

It is important to analyse the impact of using multiple
datasets in an FL setup. This would allow us to evaluate
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(a) Accuracy

(b) False Positive Rate

Fig. 3: Performance evaluation under heterogeneous datasets

the behaviour of the detection model under diverse data. In
this experiment, we assigned different datasets to specific
groups of nodes to simulate heterogeneity. Specifically, the
CICIDS2017 dataset was equally divided across four nodes,
the UNSW-NB15 dataset was distributed across three nodes,
and the KDD Cup 99 dataset was distributed across three
nodes. This approach enabled us to evaluate the combined
impact of these datasets on the accuracy and FPR across
multiple iterations. Figure 3 shows the accuracy and FPR
for all nodes over different iterations. It can be seen that
the accuracy is increased as compared to when the model is
trained on the same datasets and achieves higher accuracy as
collaboration goes on. This reflects improved performance as
compared to a scenario where the same dataset is distributed
across all nodes. The use of diverse datasets significantly
improves detection accuracy and reduces the FPR in fewer
iterations. This shows that combining datasets with different
traffic and attack characteristics enriches the global model’s
learning process. This diversity can sometimes pose challenges
for model convergence, particularly in cases where attack
patterns are limited or differ significantly across collaborating
devices.

B. Accuracy Under Different ML Models

The objective of this experiment is to evaluate the effective-
ness of an ensemble-based FL approach for intrusion detection
using CICIDS2017, UNSW-NB15, and KDD Cup 99. The goal

Fig. 4: Accuracy of FL systems under different Machine
learning Models at Client Side.

is to simulate real-world scenarios where the global model
is supplied with models trained on diverse traffic patterns
and attack types. The experimental setup involves 10 edge
nodes having different ML models. We used two nodes each
for specific ML models, that is KNN, SVM, Decision Tree,
Neural Network, and Random Forest. The experiment focuses
on training localised models on subsets of these datasets at the
edge nodes and aggregating them to create a global model at
the centralised system. Furthermore, test data is also created by
merging samples from all datasets to ensure diverse evaluation.
The edge nodes retain subsets representative of their local
data. After local training, the model is reported to a centralised
system which applies the model to its testing data for inclusion
in the global model. The global model is then sent to the edge
device to apply it to the local data. The process continues until
the convergence; however, we have used 10 iterations in this
experiment.

Figure 4 shows accuracy at the edge nodes considering the
respective ML model and the global model which aggregates
these local models to improve overall accuracy. The results
show that the accuracy improves over iterations and collabo-
ration. For example, SVM begins with a baseline accuracy
of (77.5%) and achieves an accuracy close to 82% after
10 iterations. Its performance improvement is consistent but
slower compared to more complex models. Similarly, the
neural network achieves an accuracy of 87.5% during the first
iteration and manages to achieve an accuracy of around 95%
by the 10th iteration. This suggests that neural networks are
highly adaptable to FL frameworks due to their capacity to
model complex relationships in the data.

The global model presents the aggregated result of all local
models’ updates, following an ensemble learning approach.
Over iterations, the global model incorporates diverse insights
from local models, reducing both false positives and false
negatives, as seen in the steadily increasing accuracy. Its
performance lies between the best-performing local models
(neural network and random forest). This suggests that the
global aggregation effectively combines the strengths of indi-
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TABLE I: Evaluation Metrics for Intrusion Detection Across Different Numbers of Nodes

Metric Dataset 2 Nodes 4 Nodes 6 Nodes 8 Nodes 10 Nodes

Accuracy
CICIDS2017 0.98 0.98 0.99 0.99 0.99
UNSW-NB15 0.93 0.94 0.95 0.95 0.96
KDD Cup 99 0.91 0.93 0.94 0.94 0.95

False Positive Rate
CICIDS2017 0.04 0.03 0.03 0.02 0.02
UNSW-NB15 0.07 0.06 0.05 0.04 0.04
KDD Cup 99 0.10 0.09 0.08 0.07 0.06

True Positive Rate
CICIDS2017 0.97 0.98 0.99 0.99 0.99
UNSW-NB15 0.91 0.92 0.93 0.94 0.94
KDD Cup 99 0.91 0.92 0.93 0.94 0.95

vidual models. It can be seen that the global model consistently
outperforms local models, which are not achieving higher
accuracy, as these local models are not contributing with good
strength during the model aggregation. The accuracy of the
global model follows the same pattern as the models which
perform well at the local level, for example, it follows the
random forest model, especially towards higher iterations.
This indicates that random forest contributes significantly to
global aggregation. It can also be noted that the global model
also benefits from the diversity of insights provided by other
models, especially the neural network.

C. Performance with Number of Collaborators

FL facilitates collaboration with the exchange of ML models
among edge devices. The performance metrics, such as accu-
racy, FPR, and TPR are affected by the number of participating
edge devices as shown in Table I. The TPR measures the
number of samples correctly identified as malicious to the
total number of malicious samples. The TPR would increase
with the number of participating collaborators. For instance, in
the CICIDS2017 dataset, TPR increased from 0.81 with only
one collaborator to 0.96 when the number of collaborators
reached 10. This increase in TPR reflects that collaboration
among multiple collaborators considers diverse traffic patterns
with the increased number of collaborators. In this setup, each
collaborator considers their own traffic patterns and contributes
towards creating a global model. Similar behaviour has been
observed in the UNSW-NB15 and KDD Cup 99 datasets,
where TPR increases from 0.75 to 0.93 and 0.70 to 0.93,
respectively with the number of collaborators. A small FPR
reflects that the system can classify normal traffic as normal
with a higher percentage. The results show that FPR decreases
as the number of collaborators increases. For example, in
the CICIDS2017 dataset, FPR decreases from 0.18 with one
node to 0.04 with ten nodes. By aggregating data from
multiple collaborators, FL reduces the risk of misclassifying
normal instances as attacks. Similar patterns have been seen
in the UNSW-NB15 and KDD Cup 99 datasets, where FPR
reduces from 0.23 to 0.06 and 0.28 to 0.07, respectively.
These results highlight the ability of FL to achieve a more
balanced representation of the data when more collaborators
contribute to the training process. Accuracy also improves with
the number of collaborators. For the CICIDS2017 dataset,
accuracy increases from 0.84 with one client to 0.97 with
ten clients. The same behaviour has been observed in the
UNSW-NB15 and KDD Cup 99 datasets, where accuracy
improves from 0.79 to 0.95 and 0.74 to 0.94, respectively.

This steady increase highlights the scalability of FL as more
collaborators join the collaborative process. As the number of
collaborators increases, the global model benefits from greater
data heterogeneity, which improves its ability to generalise
across diverse scenarios.

VI. CONCLUSION

Traditional Intrusion Detection Systems primarily rely on
centralised architectures that aggregate and process sensitive
data from distributed devices. These systems could provide
acceptable accuracy and effective detection but pose a serious
threat to data privacy. These privacy issues highlighted the
need for a model where data is processed at the device
level and collaboration is achieved through exchanging the
learned information, for example ML model. FL decentralises
the training process by enabling local devices to train the
model by using local data and then transfer the learned
model to the centralised system for model aggregation and
update. This decentralised approach enhances data privacy
while maintaining model performance. This paper presented
the FL-based IDS system for IoT networks, which enables
data to be processed at the edge nodes under an honest but
curious threat model. We evaluated the data for three datasets
and different evaluation metrics. We used NN ML at the
client level to learn the local Model and weight averaging
of the centralised server while assigning different weights to
collaborators. The FL approach achieves high accuracy across
various metrics, comparable to traditional centralised systems.
For example, CICIDS2017 achieves an accuracy of 98% after
10 iterations, with significant improvements in TPR and a
small FPR. Similarly, UNSW-NB15 and KDD Cup 99 exhibit
steady improvements in detection metrics, highlighting FL’s
ability to classify data correctly. As a part of future work, we
are looking for a malicious model where the participating node
might poison the data in two aspects: poisoning the model after
learning, and poisoning the dataset used for model learning.
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