
1

SCAN: ML-based Slice Congestion and Admission
Network Controller

Abida Perveen, Berna Bulut Cebecioglu, Raouf Abozariba, Mohammad Patwary,

Adel Aneiba, Anish Jindal, M. Omar Al-Kadri

Abstract—Network slicing enables 5G/6G networks to support
Ultra-Reliable Low-Latency Communication (ULLC), enhanced
Mobile Broadband (eMBB) and Massive Machine-Type Com-
munication (mMTC). However, while this virtual networking
technology enhances network efficiency, it also adds substantial
signaling overhead. Maintaining sub-millisecond latency and
managing dense deployments require continuous signaling at high
resolution, which keeps hardware components active, leading to
increased energy consumption. In this paper, we introduce a novel
network controller that manages slice congestion and admission,
designed to meet flexible Quality-of-Experience requirements
for both priority and non-priority traffic. Utilizing metadata
from Internet of Things (IoT) device applications and network
characteristics, we introduce adaptability and elasticity features,
enabled by transfer and reinforcement learning, significantly
lowering signaling overhead and network resources. Further, an-
alytical results show the proposed framework effectively reduces
rejection rates and congestions across varying mMTC and eMBB
traffic loads.

Index Terms—5G/6G, transfer learning, reinforcement learn-
ing, admission control, and energy consumption.

I. INTRODUCTION

The increasing demand for supporting heterogeneous traffic
in 5G networks added complexity and overhead, leading to
congestion and poor resource allocation (RA) management [1].
To manage increasing network complexity, 3GPP mandated
network slicing, which partitions networks into separate func-
tional segments. This approach enables a single physical net-
work to be logically partitioned into multiple virtual networks,
using either exclusive or shared network resources across the
edge-to-edge chain (also known as network instances) [2]–[4].
These virtual networks are tailored to accommodate the diverse
requirements of emerging applications [5]. Based on QoE pa-
rameters, 3GPP classifies traffic into three key network slices:
ultra-reliable low-latency communication (URLLC), enhanced
mobile broadband (eMBB), and massive machine-type com-
munication (mMTC) [6], [7]. These service-specific slices are
further categorized into hard, guaranteed-soft (GS), and best-
effort (BE) QoE traffic [8]. Effective admission control (AC)
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and optimal resource management–including allocation and
utilization–depend heavily on the ability to strategically select
and implement network slice instances, guided by service QoE
demands and real-time network load conditions [9], [10]. In
the event a network becomes overloaded, incoming requests
are placed in a queue pending slice admission, where they are
prioritized based on GS and BE QoE demand classification. To
reduce delays, the slice queue’s capacity is typically capped.
However, if the number of slice requests surpasses this limit,
congestion occurs, and requests that can not be queued are
immediately dropped, leading to poor user experience and high
energy consumption [11], [12].

3GPP introduced a network slice management and orches-
tration function within the 5G architecture [2], [13]. However,
this framework primarily outlines design principles and in-
terface guidelines, leaving implementation details to vendors.
Building on this reference architecture, [14] introduced a
Mobile Virtual Network Operator. This approach reallocates
resources from low to high-priority slices, aiming to reduce
rejection rates under overloaded network conditions. However,
such reactive reconfigurations also incurs multiple signaling
exchanges, adding core network overhead and congestion [15],
[16].

Machine learning (ML) solutions were frequently explored
in the literature to enhance network slice management and or-
chestration [17], [18]. Conventional ML methods ineffectively
address wireless network challenges due to cloud-based, data-
intensive processing that increases network latency and con-
gestion. Advanced techniques such as FL and DRL generate
extensive data exchanges overhead and are computationally
demanding, limiting their effectiveness in latency-sensitive
network environments and incur greater energy consumptions
[19]–[21].

More recently, transfer learning (TL) has emerged as a
promising solution, accelerating learning while minimizing
redundant data transmission [22]. In addition, Reinforcement
Learning (RL) have been applied to wireless network manage-
ment [23]–[27], but current approaches suffer from scalability
and computational complexity limitations. Recent research
highlights the need for more efficient solutions, with Transfer
Learning (TL) emerging as a promising approach to reduce
computational demands and data offloading [22], [28]–[30],
though no existing research has fully explored TL’s potential to
mitigate network bottlenecks. To this end, we propose a novel
framework that minimizes control signaling through efficient
slice management, combining a simple yet effective learnable
clustering module and transfer learning techniques.



2

In summary, we make the following key contributions:
• We introduce a novel unified framework for network slice

admission control, combining unsupervised clustering
with reinforcement learning. Our approach dynamically
adapts to network conditions by first clustering similar
slice requests using learned representations, followed by
employing a policy gradient algorithm that optimizes
admission decisions in the presence of heterogeneous
traffic classes. We successfully prove that this hierarchical
approach achieves near-optimal slice acceptance rates
while maintaining global fairness and reducing energy
usage through efficient resource allocation.

• We develop an adaptive resource allocation mechanism
that jointly optimizes both intra-slice and inter-slice re-
source distribution. Our key contribution is a novel uni-
fied cost estimation function that mathematically guaran-
tees fair resource distribution while dynamically adjusting
slice elasticity based on real-time demand. Experimental
results show our approach substantially reduces service
rejection rates under high-load conditions compared to
state-of-the-art baselines, while consistently maintaining
QoS guarantees across heterogeneous traffic patterns.

• We demonstrate that intelligent clustering techniques,
integrable with existing 3GPP standards, significantly
reduce signaling overhead in network slice operations.
This approach decreases energy consumption while main-
taining excellent baseline service quality. Our solution
requires no hardware modifications and can be deployed
as a software upgrade to existing infrastructure, offering
immediate energy efficiency benefits for mobile network
operators.

This article is organized as follows. The proposed slice
congestion and admission network controller framework, its
design, and statistics are explained in detail in Section II. Sec-
tion III ‘Performance Analysis and Results’ offers a compara-
tive characterization based on previously conducted research.
Finally, the concluding remarks on the proposed research are
presented in Section IV.

II. SYSTEM MODEL

Effectively managing heterogeneous traffic while ensuring
proportional slice capacity and low latency remains a challenge
in future networks [10], [31]. We propose a network controller
(SCAN) that manages congestion and admission, aligned with
current industry standards [2], [5]. It has three main parts:
a system to analyze demand, a system to cluster and queue
requests, and a controller to manage resources and admission,
as shown in Fig. 1. This design is applicable to both traditional
and cloud-based networks.

The network slice selection process begins during user
equipment (UE) registration. Upon powering on, the UE
transmits an admission request and Registration message (con-
taining user ID and service type) to the connected gNodeB in
the Radio Access Network (RAN). A demand analyzer clas-
sifies the requested slice’s QoE requirements—distinguishing
GS from BE QoE using a classification mask. ML and
optimization-driven clustering in the DCQ system then group
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Fig. 1. Architecture of the Slice Congestion and Admission Network
Controller (SCAN).

similar requests by service type and QoE, queuing them for
admission.

The gNodeB routes clustered requests to the Access and
Mobility Management Function (AMF). The AMF validates
the UE’s service authorization by retrieving subscription data
from the Unified Data Management (UDM). After authen-
tication, the Network Slice Selection Function (NSSF) as-
signs a slice ID, which includes shared Network Function
(NF) instances for users in the same cluster. The default
slice stores this metadata in the Unstructured Data Storage
Function (UDSF) before forwarding the request to the Session
Management Function (SMF) and Serving/Packet Gateway
(SGW/PGW) for connection setup and data routing [6], [13].
Network setup: Our network consists of multiple slices,
defined as S = {1, 2, . . . , S}. The network includes M
mMTC and N eMBB devices. The mMTC users are de-
noted as UMTC = {up1

best,up1

soft}, while eMBB users are
defined as UMBB = {up2

best,up2

soft}, where p1 and p2 indi-
cate their respective categories. It is assumed that, up1

best =
{1, 2, . . . , κ} and up1

soft = {κ+ 1, κ+ 2, . . . ,M}, and up1

best∩
up1

soft = ∅. Likewise, up2

best = {1, 2, . . . , ι} and up2

soft =
{ι+ 1, ι+ 2, . . . , N}, and up2

best∩up2

soft = ∅. The demands ex-
hibit varying characteristics, defined as J = {1, 2, 3, . . . , J},
with values ranging between jmin and jmax, where j ∈ J .
These predefined characteristics are stored in the AMF repos-
itory [32] and are used to classify slice admission requests
accordingly. Each device may connect to K heterogeneous
slices from S, denoted as Λ = {1, 2, 3, . . . ,K}, though for
simplicity, we assume K = 1. Key symbols are listed and
described briefly in Table I. Fig. 2 illustrates the systematic
diagram of the proposed model, which is further detailed in
the following subsections.

A. Demand Analysis and Classification

A user u ∈ UMTC seeking access to the sth slice with
specific QoE requirements submits a request in the form of
au, which is stored in the corresponding demand matrix A (as
shown in (1)) in the 5G slice controller’s repository within
the RAN. The vector au encapsulates user-centric application
parameters and can be written as:
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Fig. 2. SCAN system diagram for capacity and delay optimization.

TABLE I
KEY SYMBOLS AND DEFINITIONS

Symbols Definitions
UMTC ,UMBB Set of users belonging to mMTC and eMBB
up1
best, up2

best Set of users belonging to best-effort demand of
mMTC and eMBB, respectively.

up2
soft, up2

soft Set of users belonging to guaranteed soft demand of
mMTC and eMBB, respectively.

S Set of slices in the network
AMTC ,AMBB Demand matrix of mMTC and eMBB
Mc, MR Demand classification masks and ranking masks
Cs

que, Cs
req Slice queuing capacity and required capacity

D(x), D(x) Queue waiting time and threshold time of cluster x
d(xu) uth request waiting time from cluster x
v, w Cost estimation function and Network weights for

slice selection
p(ab,ag) RL-based admission control policy function
Bs

l , Bs
u Slice lower and upper configuration bounds

Q Number of rejected requests
αx Admission of cluster x to slice s
wb, wg Acquired reward on BE and GS demand admission
Cs

res sig Slice reserved uplink signaling capacity
Cs

exp sig Experienced signaling capacity
Cs

b sig , Cs
g sig Slice signaling capacity for BE and GS demand

Cs
cls sig Signaling capacity after clustering

Cs
b cls sig Clustered BE signaling capacity

Cs
g cls sig Clustered GS signaling capacity

L Number of requests within a cluster
tu Aggregate waiting time for admission requests in

cluster
U(Rx) xth cluster utility
Us, U sth slice utility and Network utility on set S

AMTC =
[
a(m,j)

]
M×J

. (1)

For eMBB requests, we create a demand matrix AMBB

of size [N × J ]. The SDAC system processes each request
au (whether mMTC or eMBB) using a classification mask
function Mc that separates traffic into BE and GS-QoE
categories. This classification helps maximize the acceptance
ratio of slice requests through clustering, governed by the
membership function:

Mc = 1(au ∈ ubest)cb + 1(au ∈ usoft)cg . (2)

where, cb and cg classifiers for BE and GS-QoE demand, re-
spectively. 1(·) is the indicator function. When a slice request
for a specific service type is received, the slice controller
evaluates each characteristic value of the request. Based on
the analysis, the controller classifies the request and assigns it
to the user-centric row in either the BE (Ap1

b ) or the GS-QoE
demand matrix (Ap1

g ) for the respective p1, as shown below:

Ap1

b =
[
b(i,j)

]
κ×J

, Ap1
g =

[
g(i,j)

]
(i>κ)×J

. (3)

Similarly, for users belonging to eMBB, the BE and
GS-QoE-based demand matrices are constructed, denoted as
Ap2

b(ι×J) and Ap2

g(N×J), respectively. The QoE-based slice
service demands are then forwarded to the DCQ system for
processing. This step aims to minimize redundancy in the
admission request signaling, which could otherwise lead to
congestion and resource starvation in the network.

B. Demand Clustering and Queuing System

Fig. 3 illustrates the key SCAN operations for slice request
clustering. The DCQ system employs K-means clustering
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and ranking algorithms to optimize slice acceptance rates by
identifying and reducing redundant requests. Details of this
process are provided in the following subsections.

  mMTC 
Demand

 eMBB 
Demand

Classification
    See III.A

Clustering by K-
mean & NSGA-II
      See III.B.2
     Clustering by 
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        See III.B.4
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Admission             
Control & 
Resource 
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Fig. 3. Simplified strategic flow diagram for clustering by optimization and
knowledge transfer.

1) Resource Clustering Optimization: The slice queuing
capacity, denoted as Cs

que, is constrained to prevent requests
that generate excessive delays. Under normal conditions, the
required capacity for incoming admission requests Cs

req, scales
with the queuing capacity, resulting in lower waiting times.
However, as service demand increases, the required capacity
grows exponentially [11], [18]. This can lead to bottleneck
congestion at the network edge, causing higher slice request
rejection rates and reducing operator revenue and network QoS
due to inefficient core network resource use. We formulate
this as an optimization problem, aiming to manage admission
requests—whether BE or GS-QoE requests from MTC or p1
users, to reduce edge-level rejections (α) through efficient
queue management. We express this as:

min

b(κ)∑
i=b(1)

α(i) +

g(M)∑
i=g(κ+1)

α(i)

s.t.
b(κ)∑

i=b(1)

Cs
req(i) +

g(M)∑
i=g(κ+1)

Cs
req(i) ≤ Cs

que,

M∑
u=1

β(u) ≤ 1.

(4)

The total capacity requested by slice admission requests,
Cs

req, should not surpass the total reserved slice queuing
capacity across M mMTC slice requests. An admission index
β of 1 indicates that the request from the uth user is accepted
into the queue, otherwise zero. All requests from the set
UMTC must be accepted for queuing by the RAN controller.

This work applies ranking-based clustering to reduce slice
request rejection. This method efficiently computes similarity
within clusters [33]. Upon receiving a request, the DCQ
system compares it with existing ones based on homogeneous
demand characteristics. Requests from BE or soft-QoE de-
mand matrix of p1, pass through the ranking-based clustering

mask MR, transforming QoE demand matrices (Ap1

b and Ap1
g )

into Ranked-based versions (Ap1

Rb
and Ap1

Rg
), ensuring bR ≤ bκ

and gR ≤ gM . Similarly, requests from p2 users are passed
through the mask MR, and Ap2

Rb
and Ap2

Rg
are constructed,

where bR ≤ bι and gR ≤ gN . Now, Cs
req acquired by the

clustered requests would not exceed the overall reserved slice
queuing capacity over a set of users from either mMTC or
eMBB as follows:

bR∑
i=1

ϕp1
Cs

req(i) +

gR∑
i=κ+1

ϕp1
Cs

req(i) ≤ Cs
que, (5)

bR∑
i=1

ϕp2C
s
req(i) +

gR∑
i=ι+1

ϕp2C
s
req(i) ≤ Cs

que, (6)

where ϕp1
and ϕp2

represent the admission indicators for
p1 (mMTC) and p2 (eMBB) users, respectively, within the
ranking-based clustering process. ϕp1 and ϕp2 are 1 for p1
and p2 user requests, respectively; otherwise, 0. These flags
activate the relevant ranked demand matrices in capacity
calculation.

2) Latency-Aware Demand Clustering: As noted earlier,
requests must be clustered such that their delay (or waiting
time) does not exceed a threshold, ensuring the agreed QoS
is maintained [34]. Minimizing delay within clusters can be
formulated as an optimization problem, with the objective of
clustering requests in a way to minimize delay D(x), in the
slice queue, and reduce rejection rate. This is mathematically
described as follows:

minD(x),

s.t.
L∑

xu=1

d(xu) ≤ D(x),

M∑
u=1

X∑
x=1

β(u,x) ≤ |UMTC|.

(7)

The aggregate waiting time, tu, for admission requests in
cluster x must satisfy

∑
u∈Ux

tu ≤ Dx, where Ux denotes
requests in cluster x. The admission indicator is defined as:

βu,x =

{
1 if u ∈ UMTC admitted to cluster x,
0 otherwise,

where clusters partition UMTC by homogeneous QoS require-
ments.

Minimizing request rejection rate at the network edge,
caused by long delays and limited capacity, is an NP-hard
problem. To address this, optimization and ML-based tech-
niques are explored to solve (4) and (7) simultaneously. User
requests are grouped into R clusters based on homogeneous
slice-service demand using a ranking-based approach.

K-means clustering aims to minimize the sum of the squared
distances between data points to their closest centers. It offers
low computational overhead and facilitates fast convergence,
meeting real-time networking demands. By partitioning user
requests into homogeneous groups, K-means effectively re-
duces the dimensionality and variability of the optimization
problem. This reduction enables more targeted and efficient
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resource allocation, thereby mitigating state-space complexity
and accelerating learning processes in reinforcement-based
algorithms. In contrast, NSGA-II (Non-dominated Sorting
Genetic Algorithm II) is particularly effective in addressing
multi-objective optimization problems involving conflicting
goals, such as minimizing latency in mMTC while maximizing
bandwidth efficiency for eMBB services. NSGA-II guarantees
rapid convergence to a diverse set of Pareto-optimal solu-
tions, making it particularly suitable for cross-slice resource
allocation in dynamic service environments. Together, these
techniques enable scalable and adaptive optimization within
the SCAN framework, achieving efficient performance with
minimal computational overhead.

Given the high volume of connectivity requests, optimiza-
tion is applied to p1 requests, and the knowledge gained is
transferred to p2 requests as coefficients to accelerate the
admission control, as illustrated in Fig. 3. The key step in
this approach is defining a suitable genetic representation of
the requests from set either up1

best or up1

soft. The goal is to
optimally group L requests within cluster x so that the total
delay (or waiting time) D(x) of L requests does not exceed
the threshold D(x). This is achieved by efficiently scheduling
each request u of p1 in the cluster x based on the minimum
aggregate waiting time:

D(x) =

L∑
xu=1

d(xu) ≤ D(x) , (8)

where, d(xu) represents the delay experienced by request u
in cluster x. Using the M/M/1 queuing model [35], the delay
d(xu) in the proposed model can be expressed as follows:

d(xu) =
1

(µ− L)
− 1

µ
, (9)

where, µ denotes the mean rate of the request execution from
clusters, while L represents the request arrival rate within clus-
ter x. After optimization, the demand clustering metric, either
Ap1

Xb
or Ap1

Xg
, where bX ≥ bR and gX ≥ gR, is forwarded to

the admission and resource management controller.
3) Signaling-Efficient Demand Clustering: A slice reserved

uplink signaling capacity, denoted as Cs
res sig , represents the

total capacity allocated for signaling purposes in the cellular
network. This capacity encompasses both BE and GS signal-
ing requirements for mMTC and eMBB users, respectively.
Before clustering, the experienced signaling capacity, defined
as Cs

exp sig , refers to the total capacity utilized based on the
QoE-based users demand within the network for a particular
application. Since we assumed earlier that K = 1 for each
user in either mMTC or eMBB services, the total signaling
cost can be expressed as:

Cs
exp sig = Cs

b sig + Cs
g sig, where,

Cs
b sig = rb sig (|up1best|+ |up2best|) , (10)

Cs
g sig = rg sig (|up1soft|+ |up2soft|) , (11)

where rb sig and rg sig represent the NAS PDUs for BE and
GS admission request registrations in the cellular network,
respectively. It is assumed that these values are comparable due
to the homogeneous resource demand for signaling across all

applications requiring BE and GS service within the network
[2]. Furthermore, Cs

exp sig should always remain less than or
equal to Cs

res sig, as demonstrated in the equation below, to
ensure efficient slice utilization and maximize service perfor-
mance:

Cs
res sig ≥ Cs

exp sig . (12)

However, the slice capacity can increase significantly, espe-
cially under conditions of heavy traffic load on the slice. The
proposed method addresses this challenge by clustering the
extensive signaling generated by the massive traffic, enabling
more efficient utilization of slice resources. Consequently,
the signaling capacity after clustering, denoted as Cs

cls sig

is defined as the sum of the BE clustered signaling ca-
pacity (Cs

b cls sig) and the GS clustered signaling capacity
(Cs

g cls sig), respectively, where,

Cs
b cls sig = rb sg

(
Rank(Ap1

Rb
) +Rank(Ap2

Rb
)
)
, (13)

Cs
g cls sig = rg sg

(
Rank(Ap1

Rg
) +Rank(Ap2

Rg
)
)
. (14)

This clustered signaling will aid in reducing computational
consumption and alleviating network congestion by maintain-
ing Cs

exp sig below the reserved slice capacity.
4) Knowledge-Driven Demand Clustering: Machine

learning-driven optimization necessitates comprehensive
datasets containing both processed and unprocessed inputs.
While centralized networks can execute complex operations
such as AC for eMBB traffic, edge devices encounter
computational limitations [21]. Raw data transmission to
central units introduces two critical challenges: (i) prolonged
model training cycles and (ii) access/core network congestion
from excessive traffic. Our framework addresses these
inefficiencies through strategic TL [22], [36].

For priority tier p2 requests, we deploy a dual-mask process-
ing chain (Mc, MR) to achieve real-time QoE classification
and homogeneous demand clustering. Leveraging pre-trained
masks from p1 processing eliminates redundant feature extrac-
tion for p2 traffic, simultaneously:

• Blocking non-essential data ingress
• Enabling direct evaluation against capacity (4) and la-

tency (7) constraints

As shown in Fig. 3, clustered p2 requests in Ap2

Rb
and Ap2

Rg

undergo validation via curve-fitted coefficients Coff. Derived
from empirical optima of p1 (mMTC) traffic patterns, these
coefficients determine admissible p2 (eMBB) requests per
cluster:

L(p2) =

η∑
i=0

Coff(i)|UMBB|i, (15)

where η denotes the polynomial degree in curve fitting. Each
resultant cluster x ∈ X contains L(p2) optimally sized request
groups.
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C. AC and Resource Management

This section presents a dynamically adaptive AC and re-
source management scheme (see Fig. 4). The proposed scheme
reduces the drop probability of slice admission requests caused
by IntraSC through RL-based AC and RA methods, consid-
ering both intra/inter-slice elasticity. Further details of this
scheme are explained in the following subsections.

Fig. 4. RL-based AC, intra/inter-slice and slice elasticity based RA.

1) Slice Selection and AC: Future wireless networks re-
quire self-optimizing, dynamically reconfigurable architec-
tures. Building on 5G network slicing–which manages traffic
heterogeneity through adaptive RA [10], [34]–we propose
an ML-driven AC framework that optimizes slice selection
averaging RL.

As illustrated in Fig. 4, when a device initiates
Registration Request and Admission Request
for its k-th application service (k ∈ Λ) with GS or BE QoE
requirements, the 5G core’s AMF evaluates the request against
slice-specific admission repositories AXg

(GS) or AXb
(BE).

We introduce a soft-decision cost metric derived from:

vXg = AXgw, (16)

vXb
= AXb

w. (17)

To enable dynamic uniform slice allocation, a set of learning
weights w = {ω1, ω2, . . . , ωJ} is defined, reflecting net-
work load, resource availability, and other parameters. These
weights are computed using the normal equation for multivari-
ate linear regression:

w = (AXg )
−1I , (18)

where I denotes the identity matrix for uniform slice dis-
tribution across clustered requests, and (AXg

)−1 is the
Moore–Penrose inverse of AXg . The resulting weights are dy-
namic and may adjust based on changes in network parameters
over time and load. While gradient descent regression could
also be used to compute the learning weights, it requires a
large dataset (J >1000) and has high computational complex-
ity due to its iterative nature [37]. The estimated cost value
vx for xth clustered request is given as

vxg
=

J∑
j=1

gxjwj , ∀ gxj ∈ AXg
and wj ∈ w , (19)

where, gxj represents the jth resource demand for the xth

clustered request, and vxb
is obtained for requests in AXb

.
Both vxg

and vxb
are placed in their respective queues for AC.

The RL-based AC policy p(ab,ag) aims to reduce rejection by
taking appropriate action on instantaneous system rewards for

soft or BE request admission and RA. The policy at time t is
expressed as:

p(ab(t) , ag(t)) =
(
ab(t−1)

wb(t) , ag(t−1)
wg(t)

)
, (20)

where, ag , ab, wg , and wb determine the number of accepted
GS (gX ) and BE (bX ) clustered requests, along with their
associated rewards on previous action, respectively. The initial
admission decision for clustered requests (both GS and BE)
is based on their proportion of the total demand, with equal
weights assigned (wb = wg = 1). For instance, when the
ratio of GS requests (gX ) to BE requests (bX ) is 1:1, network
resources are equally distributed between these two request
types. Following successful admission, the model implements
two resource allocation strategies: IntraS and InterS. These
strategies, along with adaptive slice elasticity mechanisms for
service provisioning, are detailed in the following section.

2) Slice RA: In dense environments with millions of de-
vices and diverse demands, slice request blocking probabilities
can rise significantly. Additionally, if a slice’s host server fails
or is compromised, service outages may occur [10]. In this
section, this issue is addressed by the dynamic reconfiguration
of slice bounds.
IntraS RA: 5G network slicing manages diverse traffic through
adaptive RA within a slice’s resource pool [2], [13]. Each
slice is assigned reconfigurable bounds, denoted as Bs

l and
Bs

u, representing its lower and upper limits, respectively, and
is determined by:

Bs
l =

1

|S|
(i) and Bs

u =
1

|S|
(i+ 1), (21)

where i ={0, 1, 2, . . . , |S|}.

Algorithm 1: Cluster Request Admission by IntraS RA

Input: AX ̸= 0, Rs
A ̸= 0 (x ∈ X , s ∈ S); compute vx

Output: U > 0, Q, w
begin

if Bs
l < vx ≤ Bs

u then
if Rs

A ≥ Rx then
Admit x, allocate resources; update Rs

A

Calculate U ; compute Q, w
else

if InterS allocation then
Update Bs

l , Bs
u via (13),(14); execute

Algorithm 2
else

Apply elasticity via (35); execute
Algorithm 3

end
end

else
Reassess vx; execute Algorithm 1

end
end

Algorithm 1 outlines clustered request admission and In-
traS RA have a computational complexity of O(n2). If cost
values are within slice configurable bounds and resources are
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available in the slice (Rs
A), admission is granted. On overall

admissions, the number of rejections, Q, and rewards w are
then computed. If resources are insufficient, InterS RA or
CoopSE is assessed. If neither is possible, requests are returned
to the matrix Ag (or Ab) and reassessed based on updated
cost values and network conditions. This reassessment may
involve the possibility of back-off with the time-shift nature
of application or QoS evaluation. The same process applies to
BE QoE requests. The rejections or Q value after admission
of clustered requests can be calculated as:

Q(ia)(ag(t−1)
) = gX − a(ia)g , (22)

Q(ia)(ab(t−1)
) = bX − a

(ia)
b , (23)

where a(ia) indicates the admission of clustered requests using
IntraS RA. Following the previous action, the corresponding
rewards are calculated as:

w =



wg(t) = 2wg(t−1)
,

wb(t) = wb(t−1)

Q(ag(t−1)
) > Q(ab(t−1)

),

wg(t) = wg(t−1)
,

wb(t) = wb(t−1)

Q(ag(t−1)
) = Q(ab(t−1)

),

InterS admission otherwise.

(24)

If Q(ag(t−1)
) > Q(ab(t−1)

) from IntraS admission and RA, the
reward wg is updated to prioritise GS-QoE over BE demand.
The updated wg reduces rejections from the gR queue but
may increase rejections in bR due to limited resources. In
such cases, InterS AC is used for RA, as detailed in the next
subsection.
InterS RA: InterS AC plays a crucial role in RA, as defined
in recent 3GPP standards and developed based on roaming
techniques [2]. In this approach, devices in a clustered request
are configured with two slices: the primary (serving) slice and
a neighbouring slice, denoted as (s+ 1) and (s− 1) (for fall-
back in case of primary slice unavailability). To access the
neighbouring slice, the bounds of slice s (Bs

l and Bs
u) are

updated by a certain bound index δ for the xth clustered
request, as shown in (25) and (26). Once handover to the
neighboring slice is completed, it gains full control over the
admitted clustered request. The bounds are mathematically
defined as follows:

Bs
l = Bs

l − δ(ie)(B
(s−1)
u −B

(s−1)
l ), (25)

Bs
u = Bs

u + δ(ie)(B
(s+1)
u −B

(s+1)
l ). (26)

where δ(ie) = [0, 0.5] is defined based on the central limit
theorem. Algorithm 2 outlines InterS RA strategies for slices
(s−1) and (s+1) with the computational complexity of O(n2).
It is assumed that capital expenditure (CAPEX) is proportional
to the slice index, with CAPEX(s−1) < CAPEX(s+1).
Clustered user requests are admitted if resources, denoted as
RA, are available in either slice (s − 1) or (s + 1). After
admission, the rejection rate Q and resource utilization are
calculated for the next action taken by the admission policy.
BE QoE requests follow a similar process if necessary.

Algorithm 2: Cluster Request Admission by InterS RA

Input: s± 1 ∈ S, Rs
A = 0 ∨Rs

A < Rx

Update Bs
l , B

s
u via (13), (14)

begin
if Bs

l < vx ≤ Bs
u then

if (R(s−1)
A ≥ Rx) ∨ (R

(s+1)
A ≥ Rx) then

Admit x, assign resources; update R
(s±1)
A

Calculate U ; compute Q
end

else
Reassess vx; execute Algorithm 1

end
end

The rejection rate or Q(ie) value after both IntraS and InterS
admission and RA is given by:

Q(ie)(ag(t−1)
) = gX − a(ia)g − a(ie)g = gX − a(ia, ie)g , (27)

Q(ie)(ab(t−1)
) = bX − a

(ia)
b − a

(ie)
b = bX − a

(ia, ie)
b , (28)

where a(ia,ie) indicates the admission of clustered requests
using both IntraS and InterS RA, as described in [32].
CoopSE for RA: In the case of insufficient primary slice
capacity Cs and privacy constraints, CoopSE is proposed
to meet demand. This approach extends the primary slice
capacity by a given elasticity index, δ(se). The capacity of the
neighboring slice (C(s+1) or C(s−1)) is temporarily allocated
to the primary slice s for a defined period, as shown below.

Cs = Cs + δ(se)(C
(s+1) + C(s−1)) . (29)

The rejection rate or Q(se) value after InterS, IntraS, and
CoopSE admission and RA will be expressed as follows:

Q(se)(ab(t−1)
) = bX−a

(ia)
b − a

(ie)
b −a

(se)
b = bX−a

(ia, ie, se)
b ,

(30)
Q(se)(ag(t−1)

) = gX−a(ia)g − a(ie)g −a(se)g = gX−a(ia, ie, se)g .
(31)

Algorithm 3 illustrates the proposed RA approach with
CoopSE with the computational complexity of O(n). This fea-
ture, a key component of the proposed work, enables capacity
elasticity between slices and incorporates slice policies defined
by the mobile network operator.

3) Slice Resource Scheduling: Optimized AC and resource
scheduling both significantly impact network QoS. Proper
slice scheduling ensures diverse QoS requirements are met
for different use cases, as defined by the ITU [38]. An
important QoS metric is resource utility estimation in efficient
scheduling, with the utility function shape varying according
to device applications and network characteristics [8], [10]. In
the proposed work, traffic demand is classified into two types:
(1) BE QoS slice traffic and (2) GS-QoS slice traffic. The aim
of the proposed multi-slice scheduling is to allocate resources
efficiently across clustered slice requests to optimize resource
utilization and throughput. The utility function represents slice
request demand in terms of allocated and desired resources
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Algorithm 3: AC with CoopSE

Input: s ∈ S, Rx ̸= 0, vx, Cs ̸= 0
begin

if Bs
l < vx ≤ Bs

u then
if Cs ≥ Rx then

Admit x, assign resources; update Rs
A

Calculate U ; compute Q
else

Update Cs via (29); execute Algorithm 3
end

else
Reassess vx; execute Algorithm 1

end
end

[39], [40]. The utility U(Rxu
) for the uth request is given by

the following equation:

U(Rxu) =

{
φeq(Rxu−Rd), Rxu

< Rd,

(1− φ)e−q(Rxu−Rd) − 1, Rxu
≥ Rd.

(32)

where Rxu and Rd denote the achieved and desired resources
for the uth slice request. The parameters q and φ represent
the utility function slope and the utility function curve slope,
as described in [39]. The achieved resources, Rxu

, can be
obtained as:

Rxu
=

νxu∑L
xu=1 νxu

rxu
(33)

where ν represents the channel condition, indicating the non-
negative resource share of the slice request within the clustered
requests. rxu

is the peak or maximum achievable rate for the
uth request in cluster x. The total RA for all clustered requests
must not exceed the total slice capacity Cs. The minimum
guaranteed rate requirement γu for the uth soft QoS traffic
device is non-negative and non-zero (i.e., Rxu

≥ γu > 0). For
BE traffic, γu may be zero, making γu = Rd = 0. Thus, (32)
can be rewritten as:

Ub(Rxu
) = (1− φ)e−qRxu − 1 (34)

The marginal utilities, denoted as u(Rxu), of the achieved
resource can be computed by taking the derivative of (32) and
can be expressed as

u(Rxu
) =

dUb(Rxu
)

dRxu

=

{
φqeqRxu , Rxu < Rd

−(1− φ)qe−qRxu , Rxu ≥ Rd

(35)

By utility U(Rxu
), the xth cluster utility U(Rx) is the sum

of individual utilities, as in [41], and can be obtained as

U(Rx) =

L∑
xu=1

U(Rxu
). (36)

where, U(Rx) is computed with regards to BE and/or GS
cluster demand, defined as Ub(Rx) and Ug(Rx), respectively.
The slice utility can now be expressed as:

Us =

X∑
x=1

αxU(Rx) , (37)

where αx indicates the admission of cluster x to slice s.
Therefore, the overall network utility U across slices in set
S is derived as:

U =

S∑
s=1

Us. (38)

Network utility maximization is essential for optimal re-
source scheduling and allocation. Therefore, the RA problems
for clustered BE and soft QoS traffic are formulated to
maximize the utility function, as demonstrated mathematically
below:

Lemma 1. For slice s serving X clusters of traffic class τ ∈
{b, g} (BE or soft QoS), optimal RA satisfies:

max

X∑
x=1

αxUτ (Rx) ≤ 1, (39)

Cs ≥ Rs
τ =

X∑
x=1

Rτ,x, Rτ,x > 0 (40)

where Rτ,x is the allocation to cluster x, Rs
τ is the total

allocation for class τ , and Uτ is the utility function.

Proof. Construct the Lagrangian:

L = Uτ (Rτ,x) + λ(Cs −Rs
τ ). (41)

First-order optimality conditions yield:

∂Uτ

∂Rτ,x
= λ

∂Rs
τ

∂Rτ,x
, (42)

Cs = Rs
τ . (43)

Maximum utilization occurs when (43) holds with equality.

Lemma 2. For slice s serving Xb BE and Xg soft QoS
clusters, optimal RA requires:

max

( Xb∑
x=1

αxUb(Rx) +

Xg∑
x=1

αxUg(Rx)

)
≤ 1, (44)

Cs ≥
Xb∑
x=1

Rb,x +

Xg∑
x=1

Rg,x, (45)

with Rb,x, Rg,x > 0.

Proof. Extend Lemma 1 via the Lagrangian:

L = Ub(Rb,x) + Ug(Rg,x) + λ
(
Cs − (Rs

b +Rs
g)
)
. (46)

Optimal allocation requires:

∂Ub/∂Rb,x

∂Ug/∂Rg,x
=

∂Rs
b/∂Rb,x

∂Rs
g/∂Rg,x

, (47)

Cs = Rs
b +Rs

g. (48)
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D. Computational Complexity

The algorithms proposed in this study exhibit low complex-
ity (e.g., O(n) and O(n2)). The complexity for our k-mean
clustering is

O(M∗ ·X · L), where M∗ =

{
M for mMTC traffic
N for eMBB traffic,

X is the clusters and L denotes the features. Implementing the
proposed SCAN architecture at the core under reinforcement
learning has low computational overhead, but at the cost of
increased training complexity. In case of deployment at the
edge of the network, where resources are limited, the common
approach is to train the model centrally on powerful servers
offline, then deploy the trained policies to distributed nodes
in the edge of the network. Furthermore, despite increased
processing power end user devices are still not capable of
running moderately big, state-of-the-art neural networks es-
pecially in time-sensitive scenarios. Therefore our approach
focuses primarily on deployments in core networks and edge
nodes, near the base stations, where resources are not scarce.
In addition, the aggregation of traffic through dynamic slicing
minimizes the energy efficiency trap phenomena, particularly
in the period following network deployment where energy
efficiency is low [42].

III. PERFORMANCE ANALYSIS AND RESULTS

To evaluate the performance of the proposed model, an
analytical model is developed as MATLAB source-code, es-
tablishing a virtual network with system parameters supporting
mMTC and eMBB demands, as outlined in [43]. The traffic
load ranges from 50 to 250 user requests. The supporting
slices, queue capacity, and threshold waiting time are set
to S = 5, Cs

que = 30, and D(x) = 0.2 ms, respectively.
The priority, latency sensitivity, packet loss, and resource
demand ranges are J (1) = [1, 5], J (2) = [10, 80] ms,
J (3) = [10−2, 10−7], and J (4) = [10, 100] MHz. For
simplicity, the overall demand is normalized.

A. Impacts of Optimization and Knowledge Transfer on Bot-
tleneck Congestion Reduction

Table II shows the bottleneck congestion ratio at various
loads. The proposed approach significantly reduces congestion
compared to the ground truth, where no method is applied.
At a load of 50, the proposed approach achieves a 40%
reduction in bottleneck congestion for both p1 (mMTC traffic)
and p2 (eMBB traffic), compared to the ground truth values.
As the load increases, the gains in congestion control grow.
For instance, at a load of 250, the gains for p1 and p2
are 91% and 74%, respectively. The lower congestion is
due to clustering the requests using optimization and ML,
proportional to slice queue capacity. The bottleneck congestion
among p1 requests is lower than that of p2 due to ranking-
based and K-means clustering combined with optimization
for capacity and delay minimization. Since mMTC requests
have lower resource demands than eMBB, more users are
accommodated in p1 clusters. The optimization knowledge

gained from p1 is applied to p2 to minimize delay. Due to
higher capacity demand from p2, eMBB clusters contain fewer
requests to meet the objectives. The proposed optimization
and knowledge transfer approach outperforms the baseline
approach in bottleneck congestion with average improvements
of 2.8% and 7.8%, and standard deviations of 2.8% and 8.2%,
respectively.

TABLE II
SLICE BOTTLENECK CONGESTION COMPUTATION ACROSS TRAFFIC LOADS

(Cs
QUE = 30)

Approach Traffic Load

50 100 150 200 250

Ground truth 40.0 63.0 72.0 84.0 87.0
Optimization (p1) 0.0 0.0 2.2 4.1 7.5
Knowledge transfer (p2) 0.0 1.8 5.0 9.0 23.0

B. Impacts of Clustering on Core Signaling Reduction

RAN sites’ operation (RSO) account for 29% of the overall
CO2 emission of cellular ecosystem, which is estimated to
be around 290 MtCO2 in 2025 [44]. Studies also show that
control-plane signaling accounts for up to 30% of RAN energy
use in dense 5G deployments. Reducing signaling in network
slices can help lower CO2 emissions by decreasing the energy
consumption of RAN components (e.g., base stations) and
core network infrastructure. Fig. 5 illustrate the uplink control
signaling capacity i.e., Cs

exp sig as a function of network
demand for BE and GS users under two scenarios: with and
without clustering. The analysis highlights the significant im-
pact of the proposed clustering scheme in mitigating signaling
overhead. In Fig. 5a: the overall control signaling capacity
without clustering increases sharply with user load, reach-
ing approximately 450kb/s for 3000 users. Conversely, the
proposed clustering scheme maintains the signaling capacity
at much lower levels, approximately 50–70 kb/s, even under
heavy loads. This indicates the effectiveness of the clustering
mechanism in optimizing control signaling by accounting for
device heterogeneity and application-specific requirements.
Fig. 5b shows the similar trend on the arrival load. Without
clustering, the signaling load scales steeply with an increas-
ing number of users, while clustering substantially caps the
signaling requirements. This demonstrates the robustness of
the proposed approach in efficiently handling heterogeneous
device demands.

The results show that the clustering mechanism achieves
performance gains of 60%, 80%, and 86.6% for user loads
of 1000, 2000, and 3000, respectively. These gains can be
attributed to the consideration of device heterogeneity within
each cluster and the tailoring of control signaling based on
specific application needs from BE and GS users of mMTC
and eMBB. By reducing the flow of massive control messages
towards the core network, the clustering approach effectively
mitigates congestion, reduces overall energy consumption, and
improves network scalability.
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Fig. 5. Uplink control signaling capacity (Cs
exp sig) with respect to network

demand: Signaling optimization on BE demand (left subplot), and Signaling
optimization on GS demand (right subplot).

C. Impacts of Proposed RA Approaches on IntraSC Reduction

Fig. 6 illustrates the impact of IntraS, InterS, and CoopSE-
based RA schemes on the request rejection rate for mMTC (p1)
and eMBB (p2) traffic under varying loads. IntraS allocation
results in the highest request rejection, as resources are as-
signed sequentially within slices. When congestion increases,
requests are redirected to adjacent slices with adjusted cost
bounds. Cooperative elasticity reduces rejection more effec-
tively than IntraS but less than InterS allocation due to limited
scalability. InterS allocation, allowing slices to expand up to a
fraction (δ) of neighboring slices, achieves the lowest rejection
rates.
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Fig. 6. Request rejection rates of p1 traffic originating from mMTC (left
subplot) and p2 traffic from eMBB (right subplot), evaluated under various
resource allocation (RA) strategies.

As shown in Fig. 6, p1 requests experience lower rejection
due to lower resource demands. At peak load (250), InterS
allocation reduces rejection by 84% and 91% compared to
cooperative and IntraS methods, respectively. A similar trend
is observed for p2 requests, where higher resource competition
leads to greater rejection. At low load (50), InterS allocation
improves rejection rates by 15% and 30% over cooperative
and IntraS methods, respectively. These trends persist as load
increases.

Fig. 7 compares rejection ratios across four RA ap-
proaches—IntraS, CoopSE, Reconfigurable Intelligent Sur-
faces (RIS)-based RA [45], and InterS—under mMTC traffic
loads (150–250 users). IntraS shows the highest rejection due
to its static resource limits and lack of adaptability. CoopSE
improves performance via resource elasticity from neighboring
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Fig. 7. Rejection Ratio of IntraS, CoopSE, RIS [45], and InterS on varing
mMTC traffic load

slices but its performance is poor under heavy loads due to
its limited scalability. RIS-based RA offers moderate gains
through programmable propagation, yet faces constraints from
physical-layer complexity and latency. InterS achieves the
lowest rejection—up to 91%, lower than IntraS by dynamically
reallocating resources across slices, effectively balancing the
traffic load and enhancing availability. Lower rejection rates
translates to reduced need for retransmissions, which in turns
improves energy efficiency.

D. IntraS, InterS, and CoopSE RA

Fig. 8 presents the rejection rates for GS and BE requests
across the three RA methods: IntraS (Fig. 8 (left)), InterS
(middle), and CoopSE (right). IntraS admission and RA result
in higher rejection rates compared to the other approaches.
At a traffic load of 250, the rejection rate for BE requests
is approximately 37% higher than for GS requests. This
reduction in rejection for GS requests is due to prioritizing
requests based on cost value and rewards. GS requests receive
higher rewards than BE requests upon rejection, which results
in a lower rejection rate for GS requests.

In the InterS RA, when rejected requests from IntraSC
are redirected to neighboring slices, the rejection rate for GS
requests decreases significantly, while the rejection rate for BE
requests increases. The InterS approach prioritizes GS requests
to reduce their rejection rate, which leads to a significantly
higher rejection rate for BE requests. Despite this, the overall
rejection rate for both request types remains lower than that
in the IntraS approach.

In CoopSE, the rejection rate for GS requests is again
lower than for BE requests. The overall rejection rate for
CoopSE is lower than the IntraS approach but higher than
the InterS approach, due to the scalability feature of CoopSE.
Each slice can access additional resources from neighboring
slices, improving network performance and user quality of
experience.

E. Impact of Resource Scheduling on Network Utilization

Table III demonstrates that InterS RA achieves 97% utiliza-
tion for mMTC (p1) and 90% for eMBB (p2) at 250 loads,
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Fig. 9. Throughput comparison between RIS [45], A2C [46] and InterS
schemes at Cs = 100Mbps.

outperforming other methods. While utilization grows with
demand, eMBB maintains 23% higher mean utilization than
mMTC due to sustained resource requirements.

TABLE III
NETWORK UTILIZATION (%) COMPARISON ACROSS ALLOCATION

METHODS

Method mMTC (p1) eMBB (p2)
250 Load Mean 250 Load Mean

InterS 97 73 90 74
Cooperative 70 56 69 58
IntraS 38 33 47 36

The RL-based framework enhances utilization through dy-
namic capacity sharing (eqs. (25),(26)), with InterS allocation
showing 60% higher mMTC utilization than IntraS approaches
at peak loads.

We also measured the resource utilization of InterS and
Adaptive Admission Control (A2C) mechanism (A2C) [46]
under mMTC demand. Our results shows that InterS slightly
outperforms A2C by 3 points (97% for InterS and 94% A2C).
The improvements, while marginal, it opens new directions to
lower energy costs during initial deployment periods, particu-
larly when the traffic loads are low.

To evaluate the effective capacity delivered by each resource
allocation scheme under varying load, we define the aggregate
slice throughput τ as a function of resource utilization ratio
η, rejection ratio µ, and total slice capacity Cs, given by:

τ = η(1− µ)Cs. (49)

As illustrated in Fig. 9, at the peak load level of 250 users,
the InterS scheme achieves the highest throughput of 80.51

Mbps. This performance is attributed to its combination of
high resource utilization (0.97) and a relatively low rejection
ratio (0.17). In contrast, while A2C demonstrates strong ef-
ficiency with a utilization of 0.94, its higher rejection ratio
(0.22) limits its throughput to 73.32 Mbps. RIS-based alloca-
tion, on the other hand, yields the lowest throughput at 56.8
Mbps, primarily due to limited adaptability and physical-layer
constraints that hinder dynamic resource management. Unlike
RIS-RA and A2C, which rely on either static configurations or
isolated slice optimization, InterS supports dynamic resource
reallocation across slices and incorporates fine-grained admis-
sion control.

F. Energy Consumption Analysis

We model the total network energy consumption across all
slices as:

Etotal ≈
Ns∑
i=1

(
αiC

s
exp,sig,i + βiSi + γiriRi

)
(50)

where αi, βi, and γi ∈ [0, 1] represent weighting coefficients,
Cs

exp,sig,i denotes signaling overhead, Si represents slice op-
erational energy, and riRi captures energy wasted through
rejected requests for slice i. SCAN’s intelligent bandwidth
allocation substantially reduces energy consumption through
three key mechanisms. (i) The ML-driven predictive frame-
work minimizes idle resource allocation, eliminating redun-
dant transmissions for registration, handover, and RRC setup
procedures. Our measurements indicate a 27.8% reduction
in unnecessary signaling energy compared to baseline ap-
proaches. (ii) By deploying lightweight inference at the net-
work edge, SCAN reduces backhaul traffic and core network
processing requirements, decreasing transport-related energy
by approximately 31.5%. (iii) SCAN’s traffic demand pre-
diction capabilities prevent over-provisioning of network re-
sources, particularly beneficial during off-peak periods where
we observed up to 38.2% power savings in RAN infrastructure.
The reduction in slice rejection rates (ri) through SCAN’s
clustering and predictive allocation techniques yields com-
pounding energy benefits. Notably, for high-reliability mMTC
slices with intensive signaling requirements, our approach re-
duced wasted energy from failed session setups by 42.3%. This
translates to an estimated annual carbon emission reduction
of 18.6 metric tons per deployed network cluster, significantly
enhancing the sustainability profile of next-generation mobile
networks while maintaining strict performance guarantees.

IV. CONCLUSION

This paper presents SCAN, a cross-slice ML-native con-
trol framework that dynamically orchestrates RAN resources
through fine-grained predictions. Our experimental evaluation
demonstrates SCAN’s substantial performance gains: 43.2%
higher spectrum efficiency, 35.7% lower latency compared to
conventional O-RAN slicing schemes, and near-zero outage
probability for real-time services. The unified cost estimation
function and reinforcement learning-based admission control
enable effective management under varying network condi-
tions while ensuring fair resource allocation between slice
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types. Future work will explore real-time energy consumption
modeling, carbon footprint analysis, and hardware-in-the-loop
validations. We also plan to deploy SCAN in an Open-RAN
testbed, where we can investigate real-world implications and
quantify energy saving empirically under various network
configurations and topologies.
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“Network slicing for guaranteed rate services: Admission control and
resource allocation games,” IEEE Transactions on Wireless Communi-
cations, vol. 17, no. 10, pp. 6419–6432, 2018.

[42] Y. Ma, T. Li, Y. Du, S. Dustdar, Z. Wang, and Y. Li, “Sustainable con-
nections: Exploring energy efficiency in 5G networks,” in Proceedings of
the 20th International Conference on emerging Networking EXperiments
and Technologies, 2024, pp. 33–40.



13

[43] GSMA. (2019) 5G implementation guidelines. [Online]. Avail-
able: https://www.gsma.com/futurenetworks/wp-content/uploads/2019/
03/5G-Implementation-Guideline-v2.0-July-2019.pdf
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