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This study addresses the challenge of partial shading in solar photovoltaic (PV) systems, 
which limits power output in conventional configurations. To enhance efficiency, this 
research explores both static and dynamic reconfiguration strategies, integrating a 
switch matrix to adapt to diverse shading conditions. The static approach employs 
Sudoku puzzle pattern for matrix structuring, while the dynamic approach utilizes a 
controllable switching matrix within electrical array reconfiguration (EAR) to respond 
to environmental variability. The methodology involves simulating a 3 × 3 PV array in 
MATLAB Simulink to assess power optimization across varying shading scenarios. 
Findings reveal that incorporating the switch matrix significantly improves power 
output, offering valuable insights for scalable PV systems under partial shading. This 
work emphasizes the switch matrix's critical role in enhancing both flexibility and 
performance in PV arrays. 
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1. Introduction 
 

The increasing importance of solar photovoltaic (PV) systems in renewable energy highlights their 
critical role in sustainable electricity generation. However, maximizing PV efficiency remains a 
challenge, particularly under partial shading conditions (PSCs). Common obstructions, such as passing 
clouds, nearby structures, or seasonal debris, can cast shadows on PV modules, leading to substantial 
irradiance imbalances [1,2]. These shading effects reduce light absorption in affected cells, decrease 
the output current, and thereby compromise the performance of the entire PV array. Additionally, 
shading may cause localized overheating, known as "hot spots," which can further damage cells and 
reduce the lifespan of the modules [3]. 

To mitigate power losses and protect shaded cells, bypass diodes are often integrated into PV 
systems. These diodes allow current to bypass shaded cells, minimizing overall power loss and 
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reducing the risk of hot spot formation [4]. However, bypass diodes introduce additional complexity 
to the system by creating multiple peaks in the power-voltage (P-V) characteristics of PV arrays [5]. 
These multiple peaks make it difficult for traditional maximum power point tracking (MPPT) systems 
to locate the true global maximum, especially under complex shading patterns [6]. As a result, bypass 
diodes can lead to suboptimal energy extraction, limiting the effectiveness of MPPT in maintaining 
peak system performance [7]. 

Given these challenges, research has increasingly focused on methods that minimize reliance on 
bypass diodes by employing optimized PV array patterns and adaptable reconfiguration solutions to 
enhance energy capture under partial shading conditions [8]. While MPPT systems typically use 
converter-based algorithms to maximize power output [9,10], scaling these converters across large 
PV installations presents practical limitations due to high costs and operational complexity [11]. 
Consequently, researchers are exploring reconfiguration techniques classified into static and 
dynamic methods as cost-effective solutions to minimize mismatch losses and enhance energy 
output in partially shaded environments [12-16]. Studies have shown that these reconfiguration 
techniques can significantly narrow the gap between theoretical PV capacity and real-world 
performance, offering a promising direction for future PV system design. 

Regarding basic configuration, the literature documents various PV array layouts including 
simple-series (SS), parallel (P), series-parallel (SP), total-cross-tied (TCT), bridge-link (BL), and 
honeycomb (HC) structures all with different capacities for minimizing mismatch losses [17-24]. 
Studies reveal that TCT and BL configurations outperform others in reducing shading-induced losses 
and improving reliability [25-28]. The introduction and assessment of the effectiveness of an 
Adaptive Cross-Tied (A-CT) configuration with a switch matrix demonstrated superiority over 
traditional setups through extensive analyses, achieving a power enhancement ranging from 2.71% 
to 6.98% under various shading conditions compared to the SP configuration [29]. Despite these 
advancements, the TCT configuration can still encounter performance limitations if shading affects 
an entire row, thereby curtailing the arrays output current [30-32]. To address such constraints, static 
reconfiguration techniques have been proposed.  Among the widely explored methods, the Sudoku 
reconfiguration achieved a 10.44% improvement in maximum power output, while the Optimal 
Sudoku reconfiguration achieved 10.64%, both outperforming conventional TCT when a 4×4 sub-
array at the center is shaded [33]. Subsequent advancements led to Advanced Sudoku [34] and Hyper 
Sudoku [35] configurations, which further improved shading management by refining alignment 
across shading levels and module orientations. Despite this significant gain, Sudoku-based 
configurations often require extensive interconnecting cables, leading to increased installation 
complexity and associated costs [36]. To enhance these benefits further, researchers have 
investigated optimized patterns such as non-symmetrical [37], Four-Square [38], Magic-Square [39], 
Dominance Square [40], and Skyscraper [41] configurations. These arrangements retain a similar 
structural layout while achieving greater efficiency in reducing mismatch power loss (MPL). Notably, 
these advanced patterns demonstrate substantial improvements in power generation by more 
effectively redistributing shading across rows compared to traditional TCT configurations. 

Dominance Square technique enhances PV array performance but adds significant structural 
complexity, which complicates its application [42]. In contrast, the Skyscraper configuration yields 
similar benefits in MPL but relies on lengthy interconnections, which can lead to notable power losses 
and limit peak power output [43]. The Zig-Zag configuration, particularly under row shading 
conditions, offers an effective alternative by dispersing shading across the array to reduce MPL to as 
low as 5%, thereby significantly increasing maximum power output compared to conventional TCT 
[44]. Similarly, the Addition Progression Structure configuration arranges modules in a progressive 
pattern without altering their interconnections, resulting in MPL reductions of 11.6% to 38.3% and 
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increasing maximum power output by approximately 1% to 38% across varying shading conditions 
[45]. Innovative design approaches inspired by gaming strategies are demonstrated in the chessboard 
configuration [46], which is particularly noteworthy for its ability to mitigate power losses across 
various shading conditions. This configuration achieves reductions of approximately 22.7% to 43.7% 
compared to TCT and 25% to 42.3% lower than SP. Similarly, the 8 Queens configuration [47] 
consistently shows lower mismatch power losses when compared to TCT, with reductions ranging 
from 3.42% to 22.74%. This indicates its effectiveness in minimizing power losses across various 
shading conditions. The suggested Magic Matrix Shifting (MMS) technique outperformed TCT in 
different shading scenarios [48]. The range of percentage reductions of MMS compared to TCT is 
from 28.3% to 56.7%. This indicates that under varying shading conditions, the effectiveness of the 
MMS design in reducing power loss varies significantly, demonstrating its potential advantages in 
optimizing photovoltaic systems. By optimizing PV array performance to generate more power and 
reduce the impact of partial shading, the Row-Constrained Swapping (RCS) configuration [49] 
decreases the number of shaded panels that need to be relocated by 30%, leading to an increase in 
overall power generation.  

Dynamic reconfiguration approaches stand out for their ability to adapt in real time using a 
switching matrix that adjusts module connections based on current shading patterns [50,51]. The 
Electrical Array Reconfiguration (EAR) technique adjusts the array's topology in response to 
irradiance changes, enhancing power output even in shaded conditions. By modifying the electrical 
connections of PV modules without altering their physical arrangement, this method effectively 
mitigates the negative impacts of partial shading. An EAR strategy employing a controllable switching 
matrix has shown a 3% increase in energy output compared to static configurations [52], and an 
overall improvement of approximately 29% in output power relative to these static setups [53]. For 
instance, the study by [54] explores the practical integration of a switch matrix into a solar power 
system, demonstrating effective energy control in a computer-simulated reconfigurable setup 
connected to a small Unmanned Aerial Vehicle (UAV) propulsion system. The integration of a switch 
matrix with Incremental Conductance MPPT and volt-per-hertz (V/f) control effectively tackles the 
challenges posed by partial shading, leading to improved power extraction and enhanced overall 
system efficiency [55,56].  

Sharma et al., [14] explore strategies to address partial shading in PV systems, emphasizing that 
modifying the connections of solar PV sub-modules through a switching matrix can effectively reduce 
power loss. While these dynamic techniques offer flexibility, they often require additional 
components such as sensors, controllers, and switching devices, which can increase system 
complexity and cost. The authors [57-60] note that traditional techniques based on irradiance 
equalization may not yield optimal solutions under all shading conditions, indicating the need for 
advanced optimization methods. Integrating innovative approaches with these optimization 
techniques can further elevate PV array performance. An economical two-stage reconfiguration 
method employing a TCT configuration and a genetic algorithm demonstrated enhanced power 
output in extensive PV installations [61,62]. R. Kumar Pachauri et al., [63] proposed Vommi 
Optimization Algorithm (VOA) to enhance the performance of PV systems under partial shading 
conditions. The algorithm optimizes the Global Maximum Power Point (GMPP) while more effectively 
minimizing power losses compared to traditional methods like Particle Swarm Optimization (PSO) 
[64,65] and TCT approach. Empirical evaluations show that VOA consistently achieves higher power 
outputs, with a recorded GMPP of 990W, significantly exceeding TCT performance of 862.6W and 
PSO performance of 956 W. These findings demonstrate the effectiveness of VOA in optimizing PV 
arrays under complex shading conditions. Ahmed Fathy et al., [66] introduced the Honey Badger 
Algorithm (HBA) to effectively reduce power loss in PV arrays subjected to partial shading and 
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random module failures, achieving output power enhancements of 7.92% to 42.18% compared to 
the SP configuration without reconfiguration, while outperforming traditional techniques like the 
Wild Horse Optimizer (WHO) [67], Artificial Gorilla Troops Optimizer (GTO) [68], and PSO in both 
power generation and execution time. Recent advancements have integrated predictive algorithms 
with optimization techniques to overcome the limitations of static and dynamic reconfigurations in 
PV arrays. For instance, combining genetic algorithms with TCT configurations—such as the Binary 
Firefly Algorithm (BFA) [69]—has demonstrated promising results in optimizing power output for 
large-scale PV systems. The BFA is particularly effective in selecting the switching matrix 
configuration that maximizes power output under varying daily conditions.  

Through comprehensive analyses, the introduction and evaluation of the Adaptive Cross-Tied (A-
CT) configuration utilizing a switch matrix demonstrated its superiority over conventional setups [70]. 
A study addressing the challenge of reduced power output in large PV plants introduced a 
reconfiguration approach that combines a feed-forward neural network with a switch matrix [71,72]. 
This method predicts shading rates, simplifies installation procedures, enhances reliability, and 
provides economic benefits. The implementation of relay-based switch matrices using single-pole, 
double-throw (SPDT) and double-pole, double-throw (DPDT) relays has proven to be a more cost-
effective approach, reducing the required switch count while maintaining system reliability and 
optimizing operational parameters [73,74]. Calcabrini et al., [75] describe a switching matrix for a 6-
block module featuring 27 switches, where connections to the positive and negative terminals can 
be managed with a single MOSFET, while the remaining bidirectional switches are implemented using 
two back-to-back MOSFETs. The authors in [76] introduced a switch matrix that modifies the 
connections of modules within the array to achieve effective shading dispersion. This approach 
ensures optimal configuration of the switches, balancing the irradiance across each row of the 
photovoltaic array [52]. The summary of pros and cons of the PV configuration methods is shown in 
Table 1. 

While previous studies have demonstrated the effectiveness of the static configurations [33-49] 
in dispersing shading to enhance power output, these setups remain labor-intensive due to the need 
for manual panel relocation. This limitation highlights the need for an approach that enables flexible 
reconfiguration without physical adjustments. Addressing this gap, the present study introduces a 
switch matrix to automate the Sudoku technique, allowing for electrical reconfiguration of PV panels 
and improved shade dispersion to maximize power output. This research expands on these 
developments by evaluating 3×3 PV array in MATLAB Simulink under various PSCs to assess both 
static and dynamic reconfiguration strategies. The findings aim to provide insights into enhancing the 
efficiency, reliability, and economic feasibility of PV systems under partial shading, thus contributing 
to scalable and resilient renewable energy technologies. The remainder of the paper is organized as 
follows: Section 2 outlines the methodology employed in the study; Section 3 presents the results 
obtained from the evaluation of the proposed approach; and Section 4 discusses the conclusions 
drawn from the findings. 
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Table 1 
Summary of pros and cons of different PV configuration methods 
Configuration 
methods 

Pros Cons 

Simple-Series (SS) - Simplest configuration, easy to 
implement [17]. 

- Highly susceptible to shading; 
power generation drops significantly 
under partial shading conditions [17]. 

Parallel (P) - Reduces voltage levels, making it 
suitable for specific applications [18]. 

- Requires more cabling, which 
increases complexity and costs [18]. 

Series-Parallel (SP) - Balances power output by combining 
series and parallel setups [19]. 

- Moderate shading resilience; still 
vulnerable to performance loss under 
partial shading [19]. 

Total-Cross-Tied 
(TCT) 

- Effective in reducing shading-induced 
mismatch losses [25,26]. 

- Limited effectiveness if shading 
impacts an entire row, reducing 
output current [30,31]. 

Bridge-Link (BL) - Improves reliability and shading 
resilience [27]. 

- Increases system complexity and 
installation cost [28]. 

Honeycomb (HC) - Efficient mismatch loss reduction; 
suitable for partial shading [24]. 

- Increased cabling and setup 
complexity [24]. 

Adaptive Cross-Tied 
(A-CT) 

- Superior power enhancement under 
various shading conditions, with 2.71% 
to 6.98% gains over SP setup [29]. 

- Complexity in configuration; may 
require additional components like 
switch matrices [29]. 

Sudoku 
Reconfiguration 

- Reduces mismatch losses significantly; 
achieved 10.44% to 10.64% 
improvement in power output [33]. 

- High cabling requirements, leading 
to increased cost and installation 
complexity [36]. 

Advanced 
Sudoku/Hyper 
Sudoku 

- Enhanced shading management; 
further improves alignment and power 
output compared to Sudoku [34,35]. 

- High installation complexity and 
cost due to increased cabling [36]. 

Non-Symmetrical 
Configurations 

- Reduces mismatch losses without high 
interconnection requirements [37]. 

- Complexity in setup and design; 
may require unique layouts for each 
PV array [37]. 

Four-
Square/Magic-
Square 

- Effectively reduces mismatch losses; 
maintains simple structural layout 
[38,39]. 

- High installation complexity; limited 
practical application due to intricate 
design [38]. 

Dominance Square - Efficient mismatch loss reduction; 
improves overall performance [40]. 

- Significant structural complexity; 
challenging to implement practically 
[42]. 

Skyscraper - Comparable to Dominance Square in 
reducing mismatch losses; good under 
row shading [41]. 

- Increased power loss due to long 
interconnections [43]. 

Zig-Zag - Effective under row shading; reduces 
mismatch power losses to as low as 5% 
[44]. 

- Installation complexity; requires 
specific arrangement and additional 
cabling [44]. 

Addition 
Progression 
Structure 

- Reduces mismatch losses by 11.6% to 
38.3%; increases power output by up to 
38% [45]. 

- Limited applicability across different 
shading scenarios; may need 
customization for different arrays 
[45]. 

Chessboard 
Configuration 

- Reduces power losses effectively, 
especially under various shading 
conditions [46]. 

- Complexity in layout; may be difficult 
to implement in standard PV systems 
[46]. 

8 Queens 
Configuration 

- Consistently reduces mismatch losses 
across shading scenarios [47]. 

- Limited practicality due to complex 
cabling and layout requirements [47]. 

Magic Matrix 
Shifting (MMS) 

- Effective in reducing power losses 
(28.3% to 56.7%) under diverse shading 
conditions [48]. 

- Increased system complexity; may 
require advanced control 
mechanisms for optimal performance 
[48]. 
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Row-Constrained 
Swapping (RCS) 

- Decreases need to relocate shaded 
panels by 30%, increasing power 
generation [49]. 

- Complexity in dynamic 
reconfiguration; may be difficult to 
implement in large installations [49]. 

Electrical Array 
Reconfiguration 
(EAR) 

- Real-time adaptability to shading 
changes, achieving 3% to 29% power 
gains over static setups [52,53]. 

- Requires additional components 
like sensors and controllers, 
increasing system cost and 
complexity [50]. 

Relay-based 
Switching Matrix 

- Cost-effective solution; reduces the 
number of switches while maintaining 
reliability [73,74]. 

- Limited to certain configurations; 
complexity increases with larger PV 
arrays [73,74]. 

Switch Matrix with 
Algorithms (e.g., 
VOA, HBA) 

- Reduces power losses effectively; 
shows superior output compared to 
traditional methods [63,66]. 

- Complexity in implementation; may 
require specialized knowledge to 
configure and optimize algorithms 
[63,66]. 

Feed-Forward 
Neural Network 
with Switch Matrix 

- Predicts shading rates and simplifies 
installation, offering economic benefits 
[71,72]. 

- Complexity and cost due to 
advanced components like neural 
networks; requires skilled operation 
[71,72]. 

 
2. Methodology  

 
In our research, we used MATLAB Simulink to simulate a 3×3 PV array system, shown in Figure 1. 

The main focus of our investigation was to explore different ways of rearranging the PV panels using 
a switch matrix inspired by problem-solving methods similar to Sudoku puzzles. To conduct a 
thorough analysis, we referred to the specifications of the PV panel outlined in Table 2. 

The reconfiguration of PV panels employed switch matrices, as depicted in Figure 2. Each PV panel 
necessitated two switches for the process. In total, 18 switches (Group A Switch Matrix) were used 
for the 9 PV panels, employing ideal switches in Matlab Simulink for simulation. To prepare for 
reconfiguration scenarios, an additional 36 switches (Group B Switch Matrix) were added to redirect 
the circuit and improve power output during partial shading. 

 

 
Fig. 1. Simulink-based configuration of 3×3 PV Panel Array and Switch Matrix 
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Fig. 2. Simulink-based configuration of Switch Matrix 

 
Table 2 
Matlab Simulink PV module specifications 
Parameters  Specification 

Open circuit Voltage, VOC 4.5 V 
Short circuit Current, ISC 7.8 A 
Maximum Voltage, Vm 3.6 V 
Maximum Current, Im 7.4 A 
Maximum Power, Pm 26.64 W 
Cells per module (Ncell) 60 
Temperature coefficient of VOC -0.36099 %/C 
Temperature coefficient of Isc 0.102 %/C 

 
The switching configurations begin with identifying the current configuration of the PV panel 

array, which can either utilize the TCT or the Sudoku configuration. Following this, real-time data is 
collected from the system to analyze environmental conditions that may affect performance. Based 
on this analysis, the optimal configuration is determined to maximize power output. A decision is 
made regarding the switch configuration type, either activating the TCT logic or the Sudoku logic, 
both executed through switching systems. Once the chosen logic is in operation, the performance of 
the switches is continuously monitored to ensure effective functionality. Periodic maintenance 
checks are conducted to assess the need for any switch maintenance; if maintenance is required, 
appropriate actions are taken to ensure the switches are operating optimally. If no maintenance is 
necessary, the system continues its operation while remaining open to adjustments in configuration 
based on ongoing performance data. This structured approach ensures that the PV system operates 
efficiently, adapting to changing conditions while maintaining reliability. Figure 3 illustrates the 
overall process flow for managing the switching configurations. 

Table 3 presents the states of Group A Switch Matrix and Group B Switch Matrix switches during 
TCT configuration and Sudoku reconfiguration, as illustrated in Figure 4. Our study covered four 
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specific partial shading conditions: Random, Long, and Narrow (LN), Uneven Column (UC), and 
Uneven Row (UR), as illustrated in Figure 5. 

In a quantitative assessment, we document the power output for each configuration under four 
specific partial shading conditions. This thorough analysis provides a comprehensive understanding 
of switch matrix-based reconfiguration strategies. These strategies, inspired by Sudoku, significantly 
impact the power output. The study specifically focuses on a 3 × 3 PV array system. The simulation 
results explain how adjusting configurations with switch matrices can improve power generation in 
different shading conditions. It is important to note that both TCT and Sudoku configurations use 
switch matrices. 

 
Start

Identify Current 
Configuration

Collect Real-Time Data

Analyze Environmental
Conditions

Determine Optimal 
Configuration

Switch Configuration 
Type

TCT Sudoku

Activate TCT Logic with 
Switches

Activate Sudoku Logic with 
Switches

Monitor Switches Performance

Maintenance Check 
Required?

Perform Maintenance on 
Switches

Continue Operation

Adjust 
Configuration?

End

No

Yes No

Yes

 
Fig. 3. Flowchart of the relay-based 
switching configuration process for 
PV arrays utilizing TCT and sudoku 
patterns 
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Fig. 4. (a) TCT configuration, (b) Sudoku 
configuration, (c) Levels of irradiance under 
partial shading conditions 

 
Table 3 
State of switches in Switch Matrices of 3×3 PV Panel Array with TCT and Sudoku 
configuration 

State of switches in Group A Switch Matrix TCT Sudoku 

S1, S2, S3, S4, S5, S6 ON ON 
S7, S8, S9, S10, S11, S12 ON OFF 
S13, S14, S15, S16, S17, S18 ON OFF 

State of switches in Group B Switch Matrix TCT Sudoku 

A1, A2, A3, A4 OFF OFF 
B1, B2, B3, B4 OFF OFF 
C1, C2, C3, C4 OFF OFF 
E1, E2 OFF ON 
D3, D4 & F3, F4 OFF ON 
D1, D2 & F1, F2 OFF OFF 
E3, E4 OFF OFF 
H1, H2 OFF ON 
G3, G4 & I3, I4 OFF ON 
G1, G2 & I1, I2 OFF OFF 
H3, H4 OFF OFF 
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Fig. 5. Different partial shading conditions (a) random, (b) 
long and narrow, (c) uneven column, (d) uneven row 

 

3. Results and Discussions  
 

Figure 6 displays the impact of various shading conditions on the photovoltaic (PV) characteristic 
curves for each configuration, while Table 4 details the shading scenarios alongside corresponding 
power outputs. A comparative performance analysis of TCT and Sudoku configurations under 
different shading conditions reveals distinct advantages and limitations for each approach. Under 
Random partial shading, TCT achieved a higher power output of 97.41W compared to 96.36W for 
Sudoku, suggesting that TCT may better manage unpredictable shading. However, in the Long and 
Narrow shading scenario, Sudoku outperformed TCT, achieving 137.7W compared to 135.5W, likely 
due to the optimized layout inherent to the Sudoku configuration. 

 

  
(a)                                                                                (b) 
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(c)                              (d) 

Fig. 6. (a) P-V curves under random shading, (b) P-V curves under LN shading, (c) P-V curves under 
UC shading, (d) P-V curves under UR shading 

 
Table 4  
Maximum output power for TCT configuration and Sudoku reconfiguration 
under four different partial shading conditions 

Configuration 
Maximum Output Power (W) 

Random  LN  UC   UR  

TCT 97.41 135.5 159.7 186.2 
Sudoku 96.36 137.7 166.8 186.2 

 
In the case of Uneven Column shading, Sudoku configuration again demonstrated superior 

performance, generating 166.8W compared to 159.7W for TCT. Conversely, both configurations 
showed identical results under Uneven Row shading, each producing a power output of 186.2W, 
indicating that neither configuration held a distinct advantage under row-specific shading. 

These findings demonstrate the importance of selecting configurations suited to specific shading 
conditions for optimized PV output. While TCT shows resilience to random shading, Sudoku’s 
structured approach is advantageous in organized shading patterns, such as Long and Narrow or 
Uneven Column scenarios. Figure 6 visually represents these differences, while Table 4 quantitatively 
supports the configurations' strengths and weaknesses under various shading patterns. 

Implementing Sudoku, however, involves labor-intensive manual reconfiguration. The 
integration of a switch matrix addresses this challenge, enabling dynamic adjustments electronically 
and enhancing the practicality and efficiency of Sudoku without physical repositioning. This capability 
is especially beneficial in scenarios where frequent shading pattern changes demand adaptable PV 
configurations 

Further analysis suggests that TCT consistently outperforms Sudoku in random shading scenarios, 
consistent with findings in previous studies [38]. Sudoku, however, remains advantageous under 
column specific shading like Uneven Column, with comparable outcomes to TCT in row-specific 
scenarios. Significant differences in performance under the Long and Narrow shading condition 
indicate the need for further investigation to understand how variations in irradiance and array 
layout affect outcomes. 
 
4. Conclusions 
 

This comparative analysis emphasizes the critical importance of aligning photovoltaic 
configurations with specific shading patterns and practical implementation challenges to maximize 
energy output. The study highlights the unique advantages of the TCT and Sudoku configurations, 
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demonstrating how each respond to particular shading patterns. The integration of a switch matrix 
notably enhances efficiency by simplifying reconfiguration processes, underscoring the potential for 
practical and scalable implementation. To validate the robustness of the reconfiguration strategies, 
future work should focus on large-scale PV arrays, particularly those with non-uniform shapes, to 
assess adaptability and performance. The promising results from the switch matrix in smaller arrays 
encourage further testing and development in diverse real-world conditions, ultimately advancing 
PV technology for a range of applications. 
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