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A B S T R A C T

Energy analysis during machine tool operations in manufacturing sector is becoming one of the prominent 
research avenues due to rising energy costs and environmental impact brought on by high energy consumption. 
Nevertheless, surface quality and production rates also hold significant value for overall optimization of any 
manufacturing setup. In fact, machinability of a material can only be assessed by collectively optimizing all 
machining responses. To address this shortcoming, multi-objective optimization of specific cutting energy, 
surface roughness, and material removal rate during turning of AISI 304L stainless steel was conducted at diverse 
machining parameters. Influential variables to include depth of cut, feed rate and cutting speed were taken as the 
input parameters. Efficient Taguchi design of experimentation was employed for formulation of L16 orthogonal 
array. Effect of each cutting parameter on the response variables was investigated using main effects plot and 
analysis of variance was done to ascertain influence of each input through its contribution ratio. Feed rate was 
found to be the most influential input with 88.94% contribution ratio for surface roughness and 57.29% 
contribution ratio for specific cutting energy. Cutting speed had contribution ratio of 31.56% for specific cutting 
energy. Subsequently, regression analysis was used to develop second-order mathematical models (95% confi-
dence level) to correlate input parameters with output responses. Contour plots were developed for visual 
comprehension of the relationship between input parameters and output responses. Grey relational analysis was 
used for multi objective optimization to identify optimum cutting combination which came to be at 1.4 mm 
depth of cut, 160 m/min cutting speed and 0.25 mm/rev feed rate.
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1. Introduction

The fast growth of the manufacturing sector has greatly benefited 
human civilization while also escalating the issues of resource scarcity 
and environmental pollution [1]. Machine tools are the fundamental 
component of machining systems and have an enormous energy con-
sumption. Data from the U.S energy yearbook [2] and related literature 
[3] suggests that the energy consumed in industrial setup contributes to 
50% of the world’s total energy consumption. Whereas out of the in-
dustrial energy breakdown, 90% of the total light manufacturing energy 
is expended in machining activities alone. Fossil fuels continue to be the 
main sources for energy creation despite the advancement of green en-
ergy technology. To fulfil the ever-increasing demands of industrial 
development, natural resources are being depleted quickly, which also 
contributes to an increase in carbon emissions. An adaptable, 
cost-effective, and environment friendly way to save energy is through 
its efficient consumption especially in the industrial setups. The concept 
of energy efficiency is not new, since due to rising energy costs, strict 
environmental regulations, and growing consumer awareness, energy 
efficiency has already become a top priority for the manufacturing 
sector during the past 20 years [4]. In this regard, many studies have 
been conducted on understanding and improving the energy consump-
tion characteristics of the machine tools. However, a thorough research 
and use of structured methodologies for comprehending the machine 
tool energy characteristics for many materials is still inadequate [5,6].

In an effort to increase machine tool energy efficiency, several re-
searchers have examined machine tools energy consumption charac-
teristics using different materials. Vijayaraghavan et al. [7] reported 
that reducing machine tool energy usage can significantly enhance the 
manufacturing sector’s environmental performance. Bagaber et al. [8] 
used response surface methodology (RSM) to undertake multi-objective 
optimization (MOO) of different response parameters including surface 
roughness (Ra), tool wear and power consumption while turning 316 
stainless steel with an uncoated carbide cutting tool under dry cutting 
conditions. It was concluded that by employing the optimum cutting 
conditions, a reduction of 14.94%, 13.98% and 4.71% in surface 
roughness, tool wear and power consumption respectively. Khan et al. 
[9] aimed at identifying optimum cutting conditions corresponding to 
low tool wear, low Ra, and low SCE in turning of Titanium Alloy 
(Ti–6Al–4V) under cryogenic, dry, and wet conditions. It focused on 
MOO based on Grey Relational Analysis (GRA) using feed rate (f), cut-
ting speed (v) and depth of cut (d) as input variables. The optimal cutting 
conditions resulted in an improvement of surface quality by 22% and 
tool wear by 30% and the energy used per unit volume decreased by 4%. 
Camposeco-Negrete et al. [10] used the Taguchi approach and Analysis 
of Variance (ANOVA) to optimize the cutting conditions when turning 
AISI 6061 T6 aluminum in order to reduce the energy consumption of 
the machine tool. The research showed that while a higher feed rate 
results in less energy being consumed, neverthesless it also results in 
increased surface Ra. Thus, it is important to realize that a set of cutting 
conditions that is optimal for one machining response may be the less 
suitable for another response. As a result, MOO is a more viable option 
than single-objective optimization. A tool-workpiece-based study [11] 
intending to analyze energy consumption during turning of Titanium 
alloy (Ti6Al4V) was carried out at different input cutting parameters. 
This study aimed to identify optimal cutting conditions conforming to 
the least amount of specific cutting energy (SCE) consumed which lead 
to significant energy savings. It was found that energy consumption was 
directly related with cutting speed and inversely related with f. In 
comparison, v was having much higher influence on energy consump-
tion than f .

Masmiati et al. [12] used Response Surface Methodology (RSM) to 
predict the Ra, cutting force, and residual stress during machining of 
S50C medium carbon steel. Bhushan et al. [13] optimized the cutting 
parameters to minimize the machine tool energy consumption while 
maximizing the tool life. Saidi et al. [14] reported significance of 

employing optimal cutting parameters, based on desirability function, 
that influenced Ra, material removal rate (MRR) and tangential force to 
achieve quality and productivity. The study provided some insight into 
the relationship between Ra and productivity enhancement. Balaji et al. 
[15] carried out optimization of cutting parameters, namely Ra and tool 
vibrations, in drilling of AISI 304 stainless steel. DOE was based on 
Taguchi orthogonal array and the influence of parameters was analyzed 
through ANOVA. Du et al. [16] examined the energy consumption 
behavior in dry turning of AISI 304 and performed MOO involving three 
parameters namely microhardness, energy consumption and Ra. This 
study also used ANOVA and regression analysis to analyze the influence 
of cutting condition on responses and develop correlations. Ultra-high 
temperature (UHT) alloys were analyzed [17] through in-depth in-
vestigations, modeling and optimization during micro electro-discharge 
machining (μ − EDM). Surface feature including effusion holes were 
researched using a copper-tungsten (Cu − W) hybrid tool electrode. Fault 
detection in glass fiber reinforced polymer was researched using 
recurrent neural networks (RNN) and modified particle swarm optimi-
zation (mPSO) techniques [18]. It was concluded that multiple trans-
verse cracks can be predicted with more than 99% accuracy. Similarly in 
another study available in literature [19], analytical, finite element 
method, and neural network techniques were used to observe crack 
location and its depth resulting from fibre orientation effect in 
fibre-reinforced composites (FRP). FRC beams were also used in another 
research [20] for diagnosis of faults using artificial intelligence (AI)
technique. It was seen that neuro-fuzzy hybrid technique can give ac-
curate results. In another noteworthy work [21], position and extension 
of fault resulting from its natural frequency, mode shape curvature and 
fibre orientation is located in composite material structure. Fuzzy-neuro 
hybrid technique was employed for the purpose. Aluminium metal 
matrix composite (AMMC) beams were assessed [22] for cracks using 
finite element method in another significant work available in literature. 
Natural frequency and deferent mode shapes were analyzed to observe 
the behavior of AMMC beam structure.

A recent work [23] conducted turning of hardened AISI H13 with 
novel S3P-ALTiSiN coated carbide tool under minimum quantity lubri-
cation conditions using cutting speed, nose radius, depth of cut, and feed 
as input variables. Tool life index was used to highlight the cost effec-
tiveness of employed insert using Gilberts machining economic model. 
Tool nose radius was found to have 36.65% and 53.88% contribution 
ratios for Ra and tool vibration respectively. Hard turning of function-
ally graded specimen was carried out under Nanofluid-assisted mini-
mum quantity lubrication (NFMQL) for analysis of surface integrity 
[24]. Taguchi L27 orthogonal array was formulated based on spindle 
speed, axial feed rate and depth of cut. The recommended machining 
conditions under NFMQL was shown to yield ecofriendly and sustainable 
manufacturing. Optimization through modeling of surface integrity 
during machining of AISI 4340 steel with coated ceramic tool was 
accomplished [25]. Response surface methodology was adopted to 
identify optimum cutting condition combination for ideal surface 
roughness. Parametric optimization using pressure, temperature and 
nozzle tip distance was achieved employing silicon carbide abrasive and 
quartz tool-workpiece interaction [26]. Grey relational analysis was 
used to optimize MRR and displacement of cut.

Realizing the significance of energy efficiency combined with its 
optimization along several other response parameters, this study un-
dertook AISI 304L austenitic stainless steel for its MOO during turning. 
AISI 304/304L steel has well-known applications primarily because of 
its resistance to corrosion in structures, higher strength levels, varied 
fabrication properties, resistance to extreme temperatures as well as it 
being resistant to food-processing conditions, organic chemicals, dye-
stuffs, and a wide range of inorganic compounds [27]. It is also widely 
employed in storage of liquefied gases, cryogenic equipment, appli-
ances, culinary equipment, medical equipment, transportation, 
waste-treatment plants, and other consumer items. AISI 304L, having 
less than 0.08% carbon, has additional fabrication applications due to its 
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weldability [28]. Although, rather relatively soft and highly ductile 
when annealed, austenitic stainless steels undergo substantial work 
hardening while being machined which can lead to excessive tool wear 
or even breakage [29]. Their high ductility renders it difficult to get 
good machining results. Poor chip breaking and formation of the 
build-up edge at the cutting face are both common occurrences. They 
adhere very strongly to the tool while being machined, and when a chip 
is formed, it can carry a part of the tool with it leading to an unpre-
dictable tool wear performance [30]. Furthermore, as compared to other 
forms of stainless steels, austenitic steels ones have poor thermal con-
ductivity which results in the building up of heat at the tool face readily. 
Consequently, their significant thermal expansion causes workpiece 
distortion or poor dimensional accuracy during machining [31,32]. The 
combination of these factors makes these steels difficult to machine. 
Numerous efforts have been undertaken to enhance the machinability of 
austenitic stainless steels [33]. Cutting parameter optimization is 
beneficial for producing highly precise and effective machining [34]. To 
investigate the relation among the cutting parameters and machining 
performance, various studies utilized the Taguchi technique and ANOVA 
as discussed previously and also reported by previous researchers. [35,
36]. Furthermore, the GRA is frequently employed as an effective 
technique to carry out MOO of cutting conditions [37] considering both 
technical specifications and environmental performance.

Based on the aforementioned literature, it can be deduced that MOO 
has replaced single-objective optimization for collectively improving 
cutting parameters. For maximizing cutting performance, enhancing 
machined surface quality, lowering machining energy consumption, and 
raising productivity, the MOO of Ra in combination with SCE and MRR is 
very significant. For this reason, the present study constructs prediction 
models for SCE, Ra, and MRR and analyses the influence of cutting pa-
rameters on the three responses using ANOVA. It also focuses on MOO to 
contribute to sustainability, productivity and efficiency of machine tool 
machining for the AISI 304L stainless steel alloy. By investigating dry 
machining, which reduce the reliance on cutting fluids, this study pro-
motes more sustainable and environmentally friendly manufacturing 
practices, aligning with the objectives of sustainable development goals.

2. Research motivation

Research motivation for this work was drawn from the need of 
collectively optimization of vital machining responses to enhance the 
prospects of sustainability and to improve the productivity and effi-
ciency of machining processes. Currently no comprehensive research 
work is available regarding analysis of SCE consumption beyond 100 m/ 
min v, in combination of other machining responses. The unavailability 
of such studies, based upon crucial outputs including Ra, SCE and MRR 
being representative of sustainability and productivity index of any 
machining system, is identified as a significant research gap. Hence 
research goals were selected based on formulation of comprehensive 
analysis of vital productivity and sustainability indices working with 
influential machining inputs. The contribution of envisioned work in-
cludes the study of individual and collective effects of input parameters 
on system output. Moreover, system productivity (Ra and MRR) and 
sustainability (SCE) is planned to be optimized through use of MOO. 
Intended work output is assumed to be of interest to various industries in 
general and manufacturing industry in particular. Machining of steel 
presents obstacles due to its low thermal conductivity and work hard-
ening resulting in higher cutting temperatures as well as elevated cutting 
forces. This causes accelerated tool wear which amounts to higher 
machining costs and receded product surface integrity. The work also 
holds value due to the wide applications of AISI 304/304L stainless steel 
across number of industries including aerospace, medical, automotive 
and food processing owing to their high durability, biocompatibility and 
corrosion resistance.

3. Experimental details

In this study, an AISI 304L workpiece of 340 mm length, 220 mm 
outer diameter and 13 mm wall thickness was used for experimentation 
on a heavy duty YIDA ML-300 CNC turning center machine. Chemical 
composition of the workpiece material, found through XRF (X-ray 
fluorescence) analysis, and its mechanical properties are given in Ta-
bles 1 and 2 respectively. An aluminum mandrel fitted into the hollow 
workpiece was used to support it through the tailstock. Experimentation 
was carried out under dry conditions using PVD coated CNMG 120408 
NN LT 10 cutting insert made by Lamina. The range of cutting conditions 
suggested by the manufacturer for this insert are; d = 0.5–5 mm, f =
0.2–0.4 mm/rev, and v = 170–270 m/min. The tool holder used is 
PCLNL2525 M12 by Walter. All the experiments were repeated twice 
using a fresh cutting edge each time to minimize experimental errors 
and ensure repeatability. Machine tool specifications are tabulated in 
Table 3. The workpiece setup is shown in Fig. 1.

3.1. Appearance and morphology

V, d, and f were chosen as input parameters whereas Ra and SCE 
were the measured response parameters. MRR was calculated analyti-
cally. Ra of the machined surface, after each experiment, was measured 
using Time-3110 Ra tester. The tester is placed at the machined surface 
for the roughness measurement, as shown in Fig. 2. As the sensitive 
probe at its bottom traverses horizontally, it also moves vertically to 
trace the surface irregularities. The movement from these irregularities 
is converted into electronic signals which are further converted and 
displayed in the form of roughness measurement values Ra or Rz (ten- 
point mean roughness).

To ensure that the error is kept to a minimum, the calibration of the 
tester was performed before taking the roughness measurements by 
making use of the calibration plate, as per instructions given in the 
manual. To reduce the influence of observational mistakes, three read-
ings were recorded after each experiment. Each experimental run was 
repeated twice to further reduce the observational inconsistencies.

For SCE measurement, an authenticated two-cycle approach [38] 
was employed according to which two values of power, air cut power 
(P − air) and actual power (P − actual), are measured using a power 
measuring instrument. This approach has been employed in a number of 
other researches [39,40]. In the first cycle, P − air is measured such that 
all the components of the machine are energized, and the cycle is per-
formed under the required cutting conditions without performing the 
actual cutting process. In the second cycle, P − actual is measured such 
that the tool is engaged with the workpiece performing the actual cut-
ting process under the required cutting conditions. After the experi-
mental measurements, the power consumed to remove the material 
during machining of the workpiece, the cutting power, Pcut (W), is 
measured using equation (1). 

Pcut =Pactual − Pair (1) 

SCE (J /mm3), the energy required by the machine tool to remove a 
unit volume of the workpiece material, is then calculated by equation 
(2). 

SCE=
Pcut

MRR
(2) 

Where material removal rate, MRR (mm3 /s), is given by equation 
(3). 

MRR= v × f × d (3) 

In present study, the values of P − air and P − actual for each 
experiment were measured using Yokogawa CW 240 clamp-on power 
analyzer that measures 10 values of instantaneous power per second. 
Fig. 3 depicts the two-cycle approach showing P − air and P − actual 
values recorded by the power analyzer.
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3.2. Design of experiment

The DOE was based on the recommended cutting conditions range 
for stainless steels by the tool manufacturer and as reported in the 

literature [41,42] as given in Table 4. Taguchi design of experiments 
(L16), having four levels and three input parameters, given in Table 5, 
was employed for investigation of cutting conditions and the corre-
sponding responses. This L16 experimental design array yields 16 rows 
and 3 columns based on which the responses were measured, as shown 
in Table 6. Dry cutting conditions were used in the trials as the benefits 
of using cutting fluids are not enunciated during high-speed machining 
as well as due to the concerns of sustainable metal cutting operations 
[43]. For the purpose of reducing error in the experimental data, the 
response to each cutting condition was measured twice.

4. Results and analysis

The response data collected for Ra and SCE, shown in Table 6, was 
analyzed using a number of techniques. ANOVA was employed to 

Table 1 
Chemical composition of AISI 304L

Cr Ni Mn Cu C Si Zn Mo P S Fe

18.5 8.1 0.68 0.4 0.018 0.5 0.25 0.2 0.02 0.01 Balance

Table 2 
Properties of AISI 304L

Density (g/cm3) Modulus of Elasticity (GPa) Yield Strength (MPa) Ultimate Tensile Strength (MPa) Hardness (HB) Elongation (%) Thermal Conductivity (W/m. 
K)

8 193 215 505 123 70 16.2

Table 3 
Machine tool specifications.

Machine Tool Manufacturer Spindle 
Power

Total 
Power

Max 
Speed

Max 
Turning 
Diameter

ML-300 
Computer 
Numeric 
Control

YIDA Precision 
Machinery 
Company, 
Taiwan

15 kW 26 kW 3500 
rpm

250 mm

Fig. 1. Workpiece setup.

Fig. 2. Response measuring setup.
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examine how much each input parameter influences the output 
response. The main effects plots were created to depict the trend of each 
response parameter under various cutting conditions. Then, the regres-
sion analysis was used to create second-order mathematical models that 
correlate the chosen input variables with the output responses. These 
models predict the output responses for various input parameter com-
binations without actually performing the experiments thus saving time 

and resources. Contour plots were created to have better visual obser-
vation of the relation between a response variable and two input vari-
ables. Finally, GRA was employed to carry out the MOO of the three 
responses by identifying the optimal parameter combination. Main ef-
fects plots and regression model for grey relational grade (GRG) were 
also developed to predict the collective output response for any number 
of input parameter combinations within the specified range.

4.1. Surface roughness

The effects of various input variables on Ra were assessed through 
ANOVA findings as shown in Table 7. Here it can be observed that input 
variables have different influence on output parameter. f is found to 
have the most notable effect on output response Ra with 88.94% 
contribution ratio followed by v (6.04%) and d (2.4%). This finding for 
Ra agree with a number of reported findings [44–46]. The dynamics of 
these occurrences were analyzed by examining the main effects plot.

The main effects plot for Ra, shown in Fig. 4, indicates that f has a 
highly increasing effect on Ra but it decreases with increase in v with 
relatively much lesser effect as compared to f . d has somewhat 
increasing effect on Ra but it stands insignificant. The high impact of f 
on Ra is mainly attributed to its geometric contribution since with in-
crease in f, the peaks and crests of the machined surface are also 
increased in width [47]. Microgroove are imparted on the surface at 
elevated f which stretches and increases the surface roughness. Addi-
tionally, the increase in vibrations at the tool-workpiece interface due to 
higher f is also another reason for increased in Ra [48]. In case of v, BUE 
is developed at lower cutting speeds inducing chatter and degrading the 
surface roughness. d had an insignificant effect on surface integrity as 
shown in Fig. 4. The optimal value of Ra is attained at v = 200 m/min, f 
= 0.10 mm/rev and d = 1.0 mm.

Based on the experimental results for Ra, second-order mathematical 
model is developed at 95% confidence level and is given in equation (5). 
The presented model has its determination coefficient value R2 =
97.38%, employing that it is a statistically significant and adequate 

Fig. 3. Power consumption values for d = 1.5 mm, v = 80 m/min and f =
0.15mm/rev.

Table 4 
Recommended cutting condition ranges.

Machining Parameter Range

v (m/min) 50–300
f (mm/rev) 0.1–0.35
d (mm) 0.1–4

Table 5 
Recommended cutting condition ranges.

Input Parameter Level 1 Level 2 Level 3 Level 4

v (m/min) 80 120 160 200
f (mm/rev) 0.10 0.15 0.20 0.25
d (mm) 1 1.4 1.8 2.2

Table 6 
Experimental results.

Exp. 
No.

D 
(mm)

V 
(m/min)

F 
(mm/rev)

Ra (μm) SCE (J/mm3) MRR 
(mm3/s)

Trial 1 Trial 2 Trial 1 Trial 2

1 1 80 0.1 0.64 0.62 2.23 2.18 133
2 1 120 0.15 1.07 1.04 1.90 1.92 300
3 1 160 0.2 1.19 1.18 1.65 1.70 533
4 1 200 0.25 1.65 1.59 1.40 1.35 833
5 1.4 80 0.15 1.19 1.15 1.96 1.94 280
6 1.4 120 0.1 0.69 0.74 1.97 1.99 280
7 1.4 160 0.25 1.84 1.76 1.32 1.31 933
8 1.4 200 0.2 1.26 1.31 1.56 1.59 933
9 1.8 80 0.2 1.81 1.86 2.00 1.98 480
10 1.8 120 0.25 1.79 1.79 1.60 1.63 900
11 1.8 160 0.1 0.61 0.60 2.05 2.04 480
12 1.8 200 0.15 0.99 0.96 1.79 1.80 900
13 2.2 80 0.25 2.08 2.02 1.91 1.89 733
14 2.2 120 0.2 1.41 1.39 1.83 1.80 880
15 2.2 160 0.15 1.08 1.12 1.89 1.86 880
16 2.2 200 0.1 0.58 0.63 1.92 1.90 733

Table 7 
ANOVA for Ra.

Source DF Seq SS Adj SS Adj MS F-Value P-Value CR (%)

d 3 0.163 0.163 0.054 6.73 0.002 2.40
v 3 0.410 0.410 0.137 16.91 0.000 6.04
f 3 6.031 6.031 2.010 249.00 0.000 88.94
Error 22 0.178 0.178 0.008 ​ ​ 2.62
Total 31 6.781 ​ ​ ​ ​ 100.00

S = 0.0899 R-Sq = 97.38% R-Sq (Pred) = 94.46%.
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model. Fig. 5 depicts the comparison of experimental roughness values 
and the predicted values based on the regression model (presented in 
equation (4)). 

Ra = − 0.991 + 1.226d − 0.00609v + 13.51f − 0.2103d2 + 0.000020v2

− 4.96 f2 − 0.00080d × v − 1.929d × f − 0.00827v × f
(4) 

The contour plot of Ra versus v and f is given in Fig. 6. Since d has an 
insignificant effect on Ra, no contour plot is generated to see its effect. 
The lighter portion of the plot represents lower values of roughness 
while the darker areas represent the higher Ra values. It can be seen that 
the regions get darker as the value of f increases; towards the bottom 
right of the plot. So, if better surface finish is to be obtained, the cutting 
parameters should be chosen such that they are from left and upper 
regions of the graph (lower f and higher v).

4.2. Specific cutting energy

SCE is an important machining response being indicative of system 
sustainability. Table 8 presents the analysis of variance results high-
lighting contribution ratios of individual input parameters. SCE is 
mainly dictated by f and v with 57.29% and 31.56% contribution ratios 
respectively. d has a relatively minute effect on SCE with a meagre 
8.31% contribution ratio. Next, main effects plot are generated to better 

comprehend the effects of input with their underlying mechanics of 
cutting.

The main effects plot for SCE, shown in Fig. 7, visually depicts the 
relative influence of each input parameter on SCE. A clear decreasing 
pattern is observed for SCE with increases in both v and f . v is directly 
related to the cutting zone temperature as concluded by Fan et al. [49] 
and Shaw [50]. With increase in cutting zone temperature at higher 
cutting speeds, the thermal softening effect is enhanced resulting in 
lower cutting forces and in turn lower SCE. Similarly, at higher feed 
rates, the amount of dissipating heat recedes [51] causing the cutting 
zone temperature to elevate. This results in lower SCE owing to greater 
thermal softening. The thermal softening occurs because of the lower 
thermal conductivity of the stainless-steel alloy due to which it gets 
heated up at high v and gets soften. This behavior is in line with other 
related studies [52,53]. Optimal cutting condition for SCE is observed to 
occur at v = 200 m/min, f = 0.25 mm/rev and d = 1.4 mm.

From the experimental findings for SCE, second-order mathematical 

Fig. 4. Main effects plot for Ra.

Fig. 5. Experimental vs Predicted values of Ra.

Fig. 6. Contour plot of Ra vs v and f.

Table 8 
ANOVA for Ra.

Source DF Seq SS Adj SS Adj MS F-Value P-Value CR (%)

d 3 0.145 0.145 0.048 21.44 0.000 8.31
v 3 0.552 0.552 0.184 81.46 0.000 31.56
f 3 1.002 1.002 0.334 147.84 0.000 57.29
Error 22 0.050 0.050 0.0023 ​ ​ 2.84
Total 31 1.749 ​ ​ ​ ​ 100.00

S = 0.0475 R-Sq = 97.16% R-Sq (Pred) = 93.99%.

Fig. 7. Main effects plot for SCE.
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model was generated as is given in equation (6). The presented model 
has R2 = 96.48%, employing that it is a statistically significant and 
adequate model. Fig. 8 depicts the comparison of experimental SCE 
values and the predicted values based on the regression model (pre-
sented in equation (5)). 

SCE= 2.765 − 0.404d − 0.00116v − 1.59f + 0.1575d2 + 0.000018v2

− 6.09f2 − 0.002157d × v + 1.339d × f − 0.01559v × f
(5) 

The contour plot of SCE versus v and f is given in Fig. 9. Since again, d 
has an insignificant effect on SCE, contour plot including d is not plotted. 
It can be seen that the regions get lighter as the values of v and f increase; 
towards the right and upper portion of the plot. So, if lower SCE con-
sumption is to be obtained, the cutting parameters should be chosen 
such that they are from the right and upper regions of the graph (higher f 
and higher v).

Based on the analysis, it can be concluded that the SCE decreases 
significantly as f rises, which is consistent with research findings made 
by Bagaber and Yusoff [8], according to which there is a negative as-
sociation between energy consumption and f. A faster f will shorten the 
time needed to machine the material, which will lead to less energy 
consumption during cutting. Furthermore, in spite of the fact that high 
power is needed for high v and f , the SCE actually decreases as v and f 
increase. As demonstrated by work of Parida and Maity’s [54], this 
result might be interpreted as indicating that the cutting force reduces as 
the v and f increase. The reason being that the contact time and friction 
time of the cutting zone are decreased as both these parameters rise. 
Meanwhile, thermal softening of the workpiece’s surface also results in a 
decrease in the material’s shear strength, which lowers the cutting force 
and subsequently the SCE. Additionally, as the v and f increase, the MRR 
also increases at even higher rates than the power consumption and 
since SCE is the ratio of power consumed and MRR, this reduces the 
actual SCE consumption. The analysis also revealed that SCE and d in the 
chosen range do not significantly correlate. As a result, choosing a 
higher f and v is critically important to reduce SCE.

5. Multi Objective Optimization

MOO deals with decision-making for problems that calls for the 
simultaneous optimization of various competitive and frequently 
incompatible objectives. The influence and relation between several 
parameters in a multi-response problem are intricate and somewhat 
ambiguous. This is stated as grey, which represents inaccurate and 

ambiguous information. With the aid of grey relational grading, the GRA 
evaluates the complex uncertainty among the several responses in the 
given system and optimizes it. Consequently, a multi-response optimi-
zation problem is simplified to a single relational grade optimization 
problem which can then be ranked to obtain best and worst combination 
of input parameters [55]. In this study, GRA was performed using given 
below steps, whereas data is presented in Table 9.

5.1. Normalization of the data

First, preprocessing of Ra, SCE and MRR experimental results was 
performed to eliminate the impact of various units involved. Equation 
(6) was used to preprocess the original data sequence in case of Ra and 
SCE where it follows “smaller, the better” whereas, in case of MRR 
where it follows “the larger, the better”. Equation (7) was used to pre-
process and normalize the initial data.

All the equations used in GRA study were taken from study [56,57]. 

Zij =
max

(
yij, i = 1,2,….n

)
− yij

max
(

yij, i = 1,2,….n
)
− min

(
yij, i = 1,2,….n

) (6) 

Zij =
yij − min

(
yij, i = 1,2,….n

)

max
(

yij, i = 1,2,….n
)
− min

(
yij, i = 1,2,….n

) (7) 

Where yij represents the actual values of the responses, max 
(

yij

)
and 

min 
(

yij

)
are the highest and lowest values respectively for each 

Fig. 8. Experimental vs Predicted values for SCE.

Fig. 9. Contour plot of SCE vs v and f.

Table 9 
Experimental results.

Sr. No. Normalized Data GRC GRG Rank

Ra SCE MRR Ra SCE MRR

1 0.985 0.000 0.000 0.971 0.333 0.333 0.546 11
2 0.689 0.331 0.208 0.617 0.428 0.387 0.477 14
3 0.597 0.596 0.500 0.553 0.553 0.500 0.535 12
4 0.297 0.934 0.875 0.416 0.883 0.800 0.700 3
5 0.606 0.285 0.183 0.559 0.411 0.380 0.450 15
6 0.923 0.252 0.183 0.866 0.401 0.380 0.549 10
7 0.171 1.000 1.000 0.376 1.000 1.000 0.792 1
8 0.528 0.708 1.000 0.515 0.631 1.000 0.715 2
9 0.147 0.244 0.433 0.370 0.398 0.469 0.412 16
10 0.176 0.663 0.958 0.378 0.597 0.923 0.633 7
11 1.000 0.180 0.433 1.000 0.379 0.469 0.616 8
12 0.745 0.461 0.958 0.662 0.481 0.923 0.689 5
13 0.000 0.343 0.750 0.333 0.432 0.667 0.477 13
14 0.446 0.437 0.933 0.474 0.470 0.882 0.609 9
15 0.655 0.368 0.933 0.592 0.442 0.882 0.639 6
16 0.999 0.331 0.750 0.998 0.428 0.667 0.697 4
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response whereas Zij represent the normalized values for each corre-
sponding data set.

5.2. Grey relational coefficients calculation

In the next step, the normalized values were used to calculate the 
grey relational coefficients (GRC), which relates the ideal response value 
to the experimental value, using equation (8). GRG converts multiple 
GRC into a single combined factor. 

γ
(
Zo,Zij

)
=

Δmin + ξΔmax
Δoj(k) + ξΔmax

(8) 

Where γ is the required GRC, Δmin and Δmax represent the smallest and 
largest values of the deviation sequence Δoj and ξ is the distinguishing or 
identification coefficient. The distinguishing coefficient (ξ), has value 
ranging from 0 to 1. Usually and in this study, to assign equal weight to 
all the responses, the value of ξ was taken as 0.5. Otherwise, different 
weightage can be assigned to different response parameters as deter-
mined by manufacturer, based on customer requirement of the set pol-
icy. The deviation sequence is given by equation (9). 

Δoj(k)=
⃒
⃒Zo(k) − Zij(k)

⃒
⃒ (9) 

Where Zo(k) and Zij(k) represent the reference and comparability 
sequence respectively.

5.3. Grey relational coefficients calculation

After calculating GRCs, the grey relational grades (GRG) for each set 
of cutting conditions were calculated using equation (10). 

GRG(Zo, Zij)=
1
n
∑n

k=1
γ(Zo,Zij) (10) 

Where n is the number of response variables. GRG is the overall repre-
sentative of the quality characteristics. Maximizing the obtained grey 
relationship grade will yield the optimum results.

5.4. Rank calculation

The final step was to rank all the experiments from 1 to 16 as per 
their corresponding GRG values such that the one having maximum 
value of GRG is ranked 1 and the one having minimum value of GRG is 
ranked 16. The experimental run having the rank 1 was chosen as having 
optimal parametric combination for multi-responses.

The data is tabulated in Table 9 based on the four steps given above.
Experiment no. 7, with input cutting conditions of d = 1.4 mm, v =

160 m/min and f = 0.25 mm/rev, has the highest value of GRG which 
means that this combination of cutting condition is ideal for simulta-
neous optimization of the machining process. A mathematical model 
(R2 = 97.38%) was also generated for predicting GRG values for any 
combination of input parameters. The model is given in equation (11)
while the comparison between experimental and predicted GRG values 
based on this model is presented in Fig. 10. 

GRG=1.289 − 0.167d − 0.00343v − 7.70f − 0.0688 d2 − 0.000006v2

+12.10 f2 +0.002419d× v+ 0.940 d× f +0.02109v× f
(11) 

6. Conclusion

In the current research, effects of vital machining input were 
analyzed in terms of output responses during turning of 304L stainless 
steel under dry conditions. Analysis of variance, main effects plot and 
contour plots were used to quantify the influence of each input. Subse-
quently, collective optimization of responses was conducted using grey 

relational analysis. Following conclusions were drawn during the course 
of the work. 

1. Analysis of variance of Ra identified f as the most influential with 
88.94% contribution ratio followed by v with 6.04% contribution 
ratio. d was found to be insignificant.

2. Change in v and f were found to have opposite effects on Ra with v 
inversely and f directly proportional to Ra. Optimum value for Ra is 
valued to be at 200 m/min v, 0.1 mm/rev f and 1.0 mm d.

3. Contour plot marked low f and high v was as the desired combination 
for improved Ra values.

4. In case of SCE, f and v were seen to be significant with 57.29% and 
31.56% contribution ratios.

5. SCE was found to decrease with increase in both v and f owing to the 
thermal softening effects associated with higher cutting zone tem-
perature. SCE was seen to optimize at 200 m/min v, 0.25 mm/rev f 
and 1.4 mm d.

6. Optimum values of SCE were observed to occur at high v and high f 
combinations as highlighted by contour plot.

7. Regression models developed for SCE and Ra level had determina-
tion coefficients 96.48% and 97.38% respectively. whereas deter-
mination coefficient for GRG regression model came out to be 
97.38% developed at 95% confidence level.

8. Based on GRA, run no 7 at 160 mm/min v, 0.25 mm/rev f and 1.4 
mm d was measured to be the optimal combination of input pa-
rameters for collective optimization of system sustainability and 
productivity.
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