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Abstract—Intrusion Detection Systems (IDS) are crucial for 

network security, but their effectiveness often diminishes in 

dynamic environments due to outdated models and imbalanced 

datasets. This paper presents a novel Adaptive Intrusion 

Detection System (AIDS) that addresses these challenges by 

incorporating ensemble classifiers and dynamic retraining. The 

AIDS model integrates K-Nearest Neighbors (KNN), Fuzzy c-

means clustering, and weight mapping to improve detection 

accuracy and adaptability to evolving network traffic. The 

system dynamically updates its reference model based on the 

severity of changes in network traffic, enabling more accurate 

and timely detection of cyber threats. To mitigate the effects of 

imbalanced datasets, ensemble classifiers, including Decision 

Tree (DT) and Random Forest (RF), are employed, resulting in 

significant performance improvements. Experimental results 

show that the proposed model achieves an overall accuracy of 

97.7% and a false alarm rate (FAR) of 2.0%, outperforming 

traditional IDS models. Additionally, the study explores the 

impact of various retraining thresholds and demonstrates the 

model's robustness in handling both common and rare attack 

types. A comparative analysis with existing IDS models 

highlights the advantages of the AIDS model, particularly in 

dynamic and imbalanced network environments. The findings 

suggest that the AIDS model offers a promising solution for real-

time IDS applications, with potential for further enhancements 

in scalability and computational efficiency. 

Keywords—Regulated Adaptive IDS; IDS; KNN; Adaptive 

Intrusion Detection System. 

I. INTRODUCTION  

In the field of cybersecurity, the effectiveness of Intrusion 

Detection Systems (IDS) largely depends on their ability to 

adapt to the ever-changing nature of network environments. 

This paper introduces an advanced Adaptive Intrusion 

Detection System (AIDS) that utilizes regulated retraining to 

address challenges posed by dynamic network traffic patterns 

and imbalanced datasets. Traditional IDS models often suffer 

from outdated detection capabilities and high false alarm 

rates, particularly when handling evolving attack traffic and 

imbalanced datasets. Regulated retraining, as proposed in this 

paper, refers to the dynamic updating of the IDS model based 

on the severity of changes observed in network traffic, rather 

than on fixed time intervals. This approach allows the system 

to react promptly to significant changes in traffic patterns, 

thereby improving detection accuracy and reducing false 

positives. 

Regulated retraining stands in contrast to periodic 

retraining, where the system updates its model at predefined 

intervals regardless of traffic changes, and one-time training, 

where the model is trained only once and remains static. In 

regulated retraining, the threshold for initiating a retraining 

process is determined by detecting substantial deviations 

from normal traffic behavior. This adaptive strategy is crucial 

in dynamic environments, where the network traffic can shift 

due to various factors such as seasonal fluctuations in usage 

or the introduction of new attack methods [1]-[13]. 

The dynamic nature of network traffic poses significant 

challenges for IDS models, especially in terms of handling 

diverse and evolving attack types. Examples of such dynamic 

changes include sudden spikes in DoS (Denial of Service) 

attacks or emerging network vulnerabilities. These shifts can 

negatively impact the model’s ability to accurately identify 

malicious traffic, resulting in decreased detection accuracy 

and increased false alarms. For instance, attacks like U2R 

(User-to-Root) and R2L (Remote to Local) are often 

underrepresented in training datasets, leading to 

misclassification and missed detections. Therefore, the 

ability to update the IDS model dynamically, as proposed 

with regulated retraining, is essential for improving its 

robustness and performance. 

In addition to addressing dynamic traffic patterns, this 

paper explores the use of ensemble classifiers, specifically K-

Nearest Neighbors (KNN), Decision Tree (DT), and Random 

Forest (RF), to mitigate the effects of imbalanced datasets on 

detection accuracy. Ensemble methods combine multiple 

classifiers to improve prediction performance by leveraging 

their individual strengths. KNN, DT, and RF are chosen due 

to their ability to handle complex, high-dimensional data and 

their robustness in the face of imbalanced datasets. These 

classifiers are integrated into the AIDS model to enhance its 

detection capabilities and to ensure more reliable 

identification of both common and rare attack types. 

A comparison between these ensemble classifiers is 

conducted to evaluate their effectiveness in the context of the 

proposed system. This analysis will provide insights into how 
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each model contributes to the overall detection performance 

and help determine the most suitable classifier for various 

network conditions. The rationale behind selecting these 

classifiers is to address the challenges associated with 

network traffic imbalance, which is often a significant barrier 

to accurate IDS performance [14]. 

The main objectives of this research are to (1) investigate 

the effectiveness of regulated retraining in improving IDS 

performance in dynamic network environments, (2) compare 

the performance of ensemble classifiers (KNN, DT, and RF) 

in handling imbalanced datasets, and (3) evaluate the impact 

of these techniques on detection accuracy and false alarm 

rates. These objectives are aligned with the goal of 

developing an IDS model that is not only accurate but also 

adaptable and practical for real-world applications. 

To evaluate the proposed model, empirical evaluations 

are performed, using a variety of metrics including accuracy, 

false alarm rate (FAR), and detection precision. The 

evaluation criteria will provide a comprehensive assessment 

of the model’s performance, comparing it against traditional 

IDS models and showcasing the improvements brought about 

by regulated retraining and ensemble classifiers. 

Furthermore, potential limitations such as computational 

complexity and scalability will be discussed to provide a 

balanced view of the approach’s applicability in real-world 

IDS scenarios. 

The remainder of the paper is structured as follows: 

Section 2 reviews existing IDS training models, including 

one-time training, periodic retraining, and regulated 

retraining. Section 3 provides an analysis of the strengths and 

weaknesses of these models. Section 4 details the design and 

implementation of the proposed Adaptive IDS model 

(AIDS), including the integration of ensemble classifiers and 

the retraining process. Section 5 presents the experimental 

results and performance evaluation of the AIDS model. 

Finally, Section 6 concludes the paper and discusses future 

directions for improving IDS models. 

II. LITERATURE REVIEW 

Recently, the area of intrusion detection systems (IDS) 

has observed meaningful improvements targeted at adapting 

to the continuously progressing environment of cyber threats 

[13]-[18]. The review in the paper is divided into three key 

training models: one-time training, periodic retraining, and 

regulated retraining. The one-time training model begins with 

a reference model at the outset [19][20], during which 

periodic retraining implies organized updates at specific 

intervals [21]. In contrary, regulated retraining adjusts the 

model based on the seriousness of adjustments in network 

traffic [22]-[24]. This part feeds an initial identification of 

different training approaches, setting the point for the 

successive discovery of the proposed adaptive IDS model. 

The one-time training approach, whilst computationally 

effective directly to its lack of necessity for periodic model 

updates [21][66]-[70], meets various disadvantages. It 

struggles to adapt to altering network traffic patterns and 

rising cyber threats, indicating reduced detection accuracy 

[25]. Imbalanced datasets extremely impair its weaknesses, 

causing askew model performance and rising leaning to 

misclassification errors [26]. Also, its static nature gets it 

exposed to adversarial attacks, as attackers can exploit known 

vulnerabilities or avoid detection methods [27]. 

One substantial benefit of the regular retraining model is 

its capability to adapt to changing network environments by 

regularly renewing the reference model [28]-[30]. However, 

one remarkable constraint is the challenge of concluding the 

optimum retraining periods. Deciding overly common 

intervals can enforce needless computational overhead and 

resource consumption, in contrast, occasional intervals may 

indicate obsolete models and lowered detection efficacy [31]. 

Likewise, the computational rate linked with repeated 

retraining can be expensive for resource-constrained 

conditions, limiting the feasibility of the approach [31]. An 

alternative disadvantage of the regular retraining model is its 

weakness in false alarms in retraining intervals [32]-[35]. 

Like the reference model experiences updates, there is an 

interim period of modification anywhere the IDS may 

construct false positives or misclassify normal traffic, 

interrupting normal processes [12][21][36][37]. 

A substantial advantage of the regulated retraining model 

is its adaptability to a progressing network environment. By 

modifying the reference model in reaction to modifications in 

network traffic patterns, the IDS can conserve high detection 

accuracy and essentially capture evolving cyber threats [38]. 

Furthermore, regulated re-training permits the IDS to reduce 

false alarms by concentrating retraining efforts on 

occurrences with significant changes from the norm, thus 

improving operating productivity [27][39]-41]. 

Additionally, the regulated retraining model presents an 

adaptable frame for controlling imbalanced datasets [42][43]. 

By highlighting retraining based on the seriousness of 

alterations, the IDS can assign resources more effectively and 

moderate the impact of data lopsidedness on detection 

execution [44]-[46]. 

However, the regulated retraining model presents further 

challenges. A restriction is necessary for effective threshold 

determination to initiate retraining. Establishing applicable 

thresholds needs precise consideration of circumstances such 

as network flexibility and attack difficulty [47][48], which 

can be demanding to calculate correctly [47][49]. 

Furthermore, ensemble classifiers can alleviate the 

influence of imbalanced datasets by linking the strong points 

of single classifiers and presenting stronger predictions 

among all classes of network traffic [17][50]-[54]. 

This highlights the importance of adaptability in Intrusion 

Detection Systems (IDS) and the effectiveness of the 

proposed adaptive model [61]-[65]. Via dynamical updates of 

the reference model in reaction to modifications in network 

traffic strictness, the model presents advanced detection 

performance and reduced false alarms. Furthermore, the 

integration of ensemble classifiers delivers additional 

improvements [71]-[80], principally in confronting 

imbalanced dataset problems. These conclusions highlight 

the importance of adaptive and dynamic tactics in 

successfully responding to evolving cyber threats. 
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III. AN OVERVIEW OF THE TRAINING MODELS 

This section investigation is segmented into three primary 

components: the one-time training strategy, periodic 

retraining strategy, and regulated retraining strategy. Fig. 1 

provides an overview of these investigative paths.  

One-time training denotes the traditional IDS method 

where the reference model is established once at the outset 

and maintained despite environmental changes. Periodic 

retraining involves systematically updating the reference 

model at preset intervals. On the other hand, regulated 

retraining is determined not by fixed time intervals but by the 

severity of changes. The investigation progressed 

incrementally, utilizing insights from prior models as a 

foundation for further enhancements. 

The exploration of the regulated retraining approach 

aimed to address the challenge posed by continual alterations 

in both normal and attack traffic patterns. This involved 

defining a triggering approach and establishing a threshold 

level to activate classifier retraining. The inherent challenge 

lies in striking a balance between detection sensitivity and 

maintaining detection accuracy without compromise. 

A. One-time Training Model 

The Baseline Model, also referred to as the One-time 

training Model in this paper, acts as a foundational point of 

comparison against the forthcoming A-IDS Model detailed in 

this Section.  

In this configuration, the reference model is established at 

the commencement of operations, while the ongoing 

detection or recognition process persists continuously. The 

pivotal element within this model is the classifier. Within this 

study, K-nearest neighbors (KNN) employed to create binary 

classifiers for classifying Normal, Probe, DoS, U2R, and 

R2L. KNN was implemented as outlined by Devi and 

Sumanjani [55]. 

During the training process, 2,163 traffic connections 

were utilized, with random selection from various traffic 

classes. The distributions of these connections were as 

follows: 700 Normal connections, 700 Probe connections, 

700 DoS connections, 11 U2R connections, and 52 R2L 

connections. The KNN training stage produced five class-

specific classifiers: Normal classifier, Probe classifier, DoS 

classifier, U2R classifier, and R2L classifier. The Baseline 

Model underwent testing on the dataset, and its classification 

performance is summarized in Table I, which presents the 

confusion matrix. 

The first column of the matrix indicates the correct 

classification of Normal traffic as Normal (92.58%), 

misclassifications as Probe (0.01%), DoS (0.06%), U2R 

(0.01%), and R2L (0.01%). Conversely, the second column 

displays misclassifications of Probe traffic as Normal 

(0.01%), correct classifications as Probe (94.28%), 

misclassifications as DoS (0.04%), and so forth. Notably, the 

results highlight the difficulty in accurately classifying U2R 

traffic, with a success rate of 9.09%. This challenge may stem 

from imbalanced data, as U2R has the smallest dataset, 

representing only 0.0008% of the Normal data (11 out of 

13449). This data imbalance, with a ratio of 11:13449 

compared to Normal traffic, poses a significant hurdle for 

machine learning algorithms. 

TABLE I. CONFUSION MATRIX FOR THE REFERENCE MODEL OVERALL 

ACCURACY 92.14% 

 Normal Probe DDoS U2R R2L 

pred 
Normal 

643 
(92.58) 

9 
(0.01) 

14 
(0.02) 

7 
(63.63) 

6 
(11.53) 

pred 

Probe 

8 

(0.01) 

660 

(94.28) 

37 

(0.05) 

0 

(0.0) 

0 

(0.0) 

pred 
DDoS 

42 
(0.6) 

31 
(0.04) 

648 
(92.57) 

1 
(9.09) 

5 
(9.1) 

pred 

U2R 

2 

(0.01) 

0 

(0.0) 

0 

(0.0) 

1 

(9.09) 

0 

(0.0) 

pred 
R2L 

5 
(0.01) 

0 
(0.0) 

1 
(0.001) 

2 
(18.18) 

41 
(78.84) 

 

Beyond the low recall (True Positive) rate, U2R traffic 

faces a considerable issue, with 63.63% being erroneously 

identified as Normal connections. This false negative 

scenario is highly undesirable, as it means that the system 

perceives malicious traffic as benign Normal traffic. The 

overall performance of the Baseline system, encompassing 

accuracy and false alarm rates across all 8 sub-datasets, is 

illustrated in Fig. 2. 

In general, the performance in the fourth dataset was 

subpar. There is a decline in accuracy coupled with an 

increase in false alarms. This decline might be attributed to 

absence of the Probe instances from the training dataset 4, 

causing them to struggle in recognizing these instances. 

Addressing this issue involves learning and incorporating the 

changes observed in dataset-4 into the reference model. By 

doing so, the results for the rest of the datasets can potentially 

be enhanced. The accuracy will be improved by including 

more data for the Probe class as will be shown in the regulated 

model later. 

One-Time training Periodic training Regulated training Adaptive model

 

Fig. 1. An overview of the training models 
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Fig. 2. Accuracy and false alarm rate (FAR) for reference Model over 8 

datasets 

B. Regular Re-training Model 

An alternative updating approach is referred to as regular 

(periodic) retraining. The idea involves updating the 

reference model at regular intervals. In this method, the 

training stage is carried out on a scheduled, recurring basis. 

Conversely, the limitations of a periodic retraining model 

could be mitigated if the optimal retraining time could be 

identified. Unfortunately, determining the ideal lifespan of a 

reference model is a challenging and nearly impossible task, 

given the unpredictable changes in network traffic and the 

emergence of new attacks. The constraints of this periodic 

retraining approach have been recognized within the 

framework of a worst-case scenario, as illustrated in Fig. 3. 

 

Fig. 3. Drawbacks in periodic retraining scenarios 

Let T-1, T, T+1, … T+n denote fixed time intervals for 

periodic retraining, where n represents a multiple of the 

interval units. Let tq denote the instantaneous time when the 

pattern in network traffic changes, and P0 represents the 

original traffic, while P' and P'' signify alterations in traffic 

patterns at different times. Over time, the original pattern (P0) 

evolves from P0 to P'. If this transformation occurs at a 

specific instance tq where (tq > T-1) and (tq << T), this 

scenario is considered too late for retraining to take place at 

the current time, T. Conversely, if P0 transitions to P'' at tq, 

where (tq > T), this situation is referred to as training that is 

too early, as it fails to accommodate changes occurring 

immediately after retraining. 

In both critical scenarios, the system may generate 

elevated false alarms and false negative rates. The latter 

situation occurs when P0 remains unchanged and persists at 

T-1 and T. Retraining is conducted regardless of necessity, 

leading to unnecessary retraining and resource wastage. 

Substantial alterations in traffic patterns can detrimentally 

impact detection performance if the reference model remains 

unchanged (outdated). It is imperative for the reference 

model to be updated promptly in accordance with the severity 

of changes. 

C. Regulating Adaptive Model 

In this model, the updating of the reference model 

happens based on the need for updating. The depicted AIDS 

employs a regulated retraining approach, as illustrated in Fig. 

4. 

Capture Network 
Traffic

Pre-processing of 
the captured 

traffic

End

Pre-processing 
of the dataset

Training/Testing to 
validate the model

Reference 
Model

Classified Network 
Traffic: 

Normal, Probe, 
DoS, U2R and R2L

Production phase Initial phase

Decision weight 
mapping

Summation of data 
with weak decision

Clustering data with 
weak decision

Updating

  

Fig. 4. The proposed AIDS Model   

Steps of the procedure of the proposed method: 

Input - Input data which is traffic network connection.  

Output - Weight and Accumulated weight. 

1. Preprocessing the incoming traffic. 

2. Do the classification on the traffic data. 

3. If the classification of the traffic produced traffic data is 

classified with weak decision (more FP, FN), a weight 

will be given to the traffic instance. 

4. Add the given weight to the accumulated weight. 

5. If the accumulated weight exceeds the threshold, then 

start the Retraining process including the new data caused 

by the weak classification. 

6. Before retraining, the clustering process is conducted to 

classify these instances to the right class (Normal, Probe, 

DoS, U2R or R2L) 

7. Reset all values for the next data. 

The regulated retraining approach's design incorporates 

certain concepts from the Active Learning approach. 

Engelbrecht and Brits [1] emphasized two advantages of 

active learning. Firstly, it can decrease training time, and 

secondly, it has the potential to enhance generalization, 

assuming the selected patterns offer sufficient information for 

task learning. In this study, an incremental approach is 

employed with some adjustments to its original concept. The 

candidate training set is formed from instances where the 

classifier makes ambiguous decisions. Consequently, the size 

of the candidate set is dynamic, contingent on the decisions 

and current threshold values. 

0
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IV. DESCRIPTION OF THE PROPOSED AIDS 

A. Detection 

Detection involves classifying data instances and 

assigning each to a predicted class. Classification decisions 

carry varying degrees of confidence, with values of 0 or 1 

indicating strong decisions (where 0 signifies absolute 

negativity and 1 represents absolute positivity) and a value of 

0.5 signaling indecision. Instances with weak decisions 

(values between 0 and 1) are placed in a decision pool for 

further processing. The K-Nearest Neighbors (KNN) 

algorithm was selected for baseline classification, classifying 

data into respective classes (Normal, Probe, DoS, U2R, and 

R2L) after training. However, the choice of KNN over other 

classifiers lacks justification in the original paper. KNN is 

simple and effective for handling multiple classes and smaller 

datasets, but it may not be the most efficient in large-scale or 

dynamic scenarios where computational overhead becomes a 

concern. An expanded discussion could compare KNN’s 

performance against other classifiers and discuss its 

computational implications in an IDS setting. 

B. Assigning the Weight 

Weak decisions indicate uncertainty in the classification 

process, suggesting potential boundary overlap between 

classes. To address this, a weight mapping was developed for 

decisions within this range. Table II below outlines the 

mapping criteria for these weak decisions, assigning weights 

based on classification outcomes. Weights are accumulated 

for each instance, and if the total surpasses a predefined 

threshold, the instance is flagged for further analysis. 

However, the process of determining these threshold values 

remains a challenge. Incorporating methods for adaptive or 

dynamic thresholding could provide a more flexible 

approach, addressing variations in data distribution and 

complexity. Additionally, the paper could benefit from 

discussing ensemble methods that, when combined with 

weighting, could enhance accuracy in cases of weak decision 

boundaries and imbalanced datasets. 

TABLE II. WEIGHT MAPPING TO WEAK DECISION 

Type of decision Weight value 

Abnormal classified as abnormal 0.5 

Abnormal classified as normal 8 

Normal classified as abnormal 0.5 

 

C. Clustering 

When the accumulated weight for an instance exceeds the 

threshold, clustering is triggered to manage ambiguities in 

classification. This approach not only adds to the training data 

but also initiates a retraining mechanism. The Fuzzy c-Means 

(FcM) clustering method was used to handle instances in the 

decision pool, with specific parameter settings detailed in 

Table III. Although FcM was selected for its granularity in 

supervised classification, a discussion of computational costs 

associated with retraining intervals would strengthen the 

analysis. FcM clustering involves intensive computation, 

especially as dataset size and cluster complexity increase, 

impacting real-world applicability. A comparative analysis of 

FcM against other clustering methods and a consideration of 

the computational cost associated with each retraining cycle 

would make the methodology more robust. 

TABLE III. KEY PARAMETERS VALUES OF FUZZY C-MEANS 

Item Value Description 

 0.00001 Minimum improvement 

K variable Number of sub-clusters 

max_iter 300 Maximum iteration 

D 
Euclidean 
Distance 

The distance from a specific 
instance to the centroid 

 

The centroid is computed using Equation (1), and the 

updating of the membership function follows Equation (2), as 

outlined by De Oliveira and Pedrycz [2]. 

𝑐𝑗 =
∑ (𝑢𝑖𝑗

𝑚)𝑛
𝑖=1 𝑥𝑖

∑ (𝑢𝑖𝑗
𝑚)𝑛

𝑖=1

 (1) 

𝑢𝑖𝑗 =
1

∑ (𝑑(𝑐𝑗 , 𝑥𝑖) (𝑐𝑗 , 𝑥𝑗)⁄ )
1

𝑚−1𝑐𝑙
𝑗=1

 
(2) 

Typically, the value of 𝑘 (representing the number of 

clusters) is predetermined based on the number of classes. 

However, in this study, Fuzzy c-Means (FcM) was utilized 

for supervised classification, as initial experiments indicated 

superior results and a finer granularity. Consequently, during 

training, the optimal 𝑘, which best described each class, was 

determined dynamically. 

If 𝜀(𝑡 + 1) – 𝜀(𝑡) < 1), halt the process. Otherwise, 

increment 𝑘 by 1 and proceed to the next iteration, where 𝜀 

represents an error term. 

The FcM process was applied to 7,776 training data points 

and validated on an equivalent testing set. Optimal cluster 

numbers (𝑘) were dynamically determined, ensuring finer 

granularity for each class. A summary of the dataset used is 

provided in Table IV below.  

TABLE IV. DETAILED DATASET FOR FUZZY C-MEANS 

Data 
Classes 

Normal Probe DoS U2R R2L Total 

Training 4,000 3000 700 11 65 7,776 

Testing 
1.  Set 1 

4,000 3000 700 11 65 7,776 

 

The best-performing model identified through ten runs of 

Fuzzy c-means, in these experiments was chosen and 

subsequently utilized in the implementation of the proposed 

Adaptive Intrusion Detection System. 

D. Retraining 

Retraining combines the original training data with newly 

labeled data from the clustering process. This regulated 

retraining enhances the model's adaptability, addressing 

changes in data distribution and enhancing performance on 

rare attack types. The paper lacks a detailed discussion on the 

computational overhead associated with this approach, an 

aspect that is critical in live deployments. A quantitative 

assessment of the resource demands across different 

retraining intervals would be beneficial for understanding the 

feasibility of this approach. Additionally, issues arising from 

data imbalance during retraining are acknowledged but not 
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fully explored. Techniques like SMOTE or ensemble 

methods could mitigate imbalance, potentially reducing false 

alarm rates, which remain a challenge. Addressing false 

alarms and detailing their impact on IDS performance would 

contribute to a more comprehensive understanding of the 

model's limitations and areas for improvement. 

V. RESULTS AND ANALYSIS 

The Adaptive Intrusion Detection System model employs 

a threshold to trigger retraining, with the activation 

contingent upon a specified threshold value. A threshold set 

too low can result in an excessively dynamic system, where 

even minor changes may prompt unnecessary retraining, 

impacting system performance. Conversely, a very high 

threshold can lead to an almost static system that struggles to 

adapt to changes. Hence, experiments were conducted to 

establish a meaningful relationship between the severity of 

changes and retraining, emphasizing that extremely small or 

large thresholds may not be beneficial. The table provides a 

summary of cumulative weights and retraining for the 

Adaptive IDS model with three distinct threshold values. The 

outcomes of the experiments are presented in Table V. If the 

cumulative weight (Aw) is equal to or exceeds the threshold 

value (Th), retraining is triggered. The entry "Yes" denotes 

that retraining is activated, while "No" indicates that 

retraining is not activated. The total count of "Yes" entries for 

various threshold values indicates the number of required 

retrains. 

Three representative threshold values (Th) were 

evaluated: 50, 500, and 1000, representing small, medium, 

and large thresholds [3], respectively. From the experiments, 

eight retrains were activated with a threshold value (Th) set 

to 50, three retrains with a threshold (Th) set to 500, and no 

retraining was initiated with a threshold (Th) set to 1000. The 

most suitable among the tested threshold values was 

determined to be 500. The model’s retraining process, 

primarily triggered with a threshold of 500, was validated on 

the same dataset used for training and testing. However, 

there’s a risk of overfitting, as there is no evidence that the 

threshold generalizes well to new or unseen data. Future 

experiments should incorporate cross-validation or testing on 

independent datasets to ensure the threshold does not result 

in model overfitting. Without this, the model may perform 

well on the current data but fail to generalize, limiting its 

effectiveness in real-world applications. 

Fig. 5 visually represents the count of activated retrains 

for various threshold values. This supplementary data for 

retraining is sourced from the pool of traffic connections 

exhibiting weak decisions. 

 

Fig. 5.  The count of activated retrains for various threshold values 

TABLE V. OUTCOMES OF AMBIGUOUS TRAFFIC CONNECTIONS AND THE 

CORRESPONDING CUMULATIVE 

Dataset 
Uncertain 

Traffic/(count) 

Accumulated 

weight AW 

Threshold 

(TH) 

Re-

Training 

1 
Normal (57) 
Probe (40) 

DDoS (52) 

502 
50 

500 

1000 

Yes 
Yes 

No 

2 

Normal (37) 

Probe (33) 
DDoS (37) 

326 

50 

500 
1000 

Yes 

No 
No 

3 

Normal (59) 

Probe (43) 
DDoS (48) 

573 

50 

500 
1000 

Yes 

Yes 
No 

4 

Normal (38) 

Probe (120) 

DDoS (11) 

297 

50 

500 

1000 

Yes 

No 

No 

5 

Normal (57) 

Probe (39) 

DDoS (46) 

499 

50 

500 

1000 

Yes 

No 

No 

6 
Normal (47) 
Probe (36) 

DDoS (48) 

470 
50 

500 

1000 

Yes 
No 

No 

7 
Normal (59) 
Probe (39) 

DDoS (58) 

510 
50 

500 

1000 

Yes 
Yes 

No 

8 
Normal (51) 
Probe (35) 

DDoS (41) 

494 
50 

500 

1000 

Yes 
No 

No 

 

Cumulative weights are calculated by summing the 

assigned weights from uncertain traffic connections across 

each dataset. However, explaining how these weights are 

accumulated and how they reflect the model’s sensitivity to 

ambiguous data would improve reader comprehension. 

Additionally, linking the retraining decisions and cumulative 

weights with specific accuracy metrics in Fig. 5 would 

provide a clearer picture of the model’s performance as 

thresholds vary. 

To summarize, the regulated retraining approach, with a 

threshold set to 500, triggered retraining three times. The 

initial retraining occurred at the conclusion of the first 

dataset, involving the addition of 170 newly labeled data with 

ambiguous decisions and an associated accumulated weight 

of 502 points. The second retraining was executed at the end 

of the third dataset, encompassing 171 newly added data with 

an accumulated weight of 573 points. The third retraining was 

executed at the end of the seventh dataset, encompassing 177 

newly added data with an accumulated weight of 510 points.  

Meanwhile, Fig. 6 presents a comparison of the false 

alarm rates and AIDS accuracy. Specifically, dataset4 

demonstrated a significant reduction in FAR before updated 

the dataset with the new data from the weak decision pool. In 

summary, adjusting the incorporation of new knowledge 

based on the degree of changes proves beneficial for 

improving prediction accuracy and mitigating the 

challenging problem of false alarms in an anomaly-based 

IDS. 

The Adaptive IDS Model underwent testing on the dataset 

and validation on the newly updated dataset. The 

performance of the newly updated dataset is outlined in Table 

VI. 
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TABLE VI. CONFUSION MATRIX FOR THE REGULATED MODEL OVERALL 

ACCURACY 95.5% 

 

 Normal Probe DDoS U2R R2L 

Pred 

Normal 

657 

(93.85) 

3 

(0.04) 

5 

(0.07) 

1 

(9.09) 

3 

(5.7) 

Pred 

Probe 

5 

(0.07) 

663 

(94.71) 

14 

(0.02) 

0 

(0.0) 

0 

(0.0) 

Pred 

DDoS 

29 

(4.0) 

34 

(4.8) 

680 

(92.57) 

2 

(18.18) 

1 

(2.0) 

Pred 

U2R 

4 

(0.07) 

0 

(0.0) 

0 

(0.0) 

8 

(72.72) 

0 

(0.0) 

Pred 
R2L 

5 
(0.07) 

0 
(0.0) 

1 
(0.001) 

0 
(0.0) 

48 
(92.3) 

 
 

 

Fig. 6. Accuracy and false alarm rate (FAR) for the regulated model over the 

8 datasets 

A paired t-test analysis is conducted. The metrics are 

compared across the different threshold values (50, 500, and 

1000) in terms of retraining frequency and accuracy 

improvements. The paired t-test results for accuracy and FAR 

across the different threshold values are shown in Table VII 

and Table VIII, respectively. 

TABLE VII. ACCURACY COMPARISONS: 

Threshold 50 vs. 500: t = -17.16, p ≈ 5.61e-07 

Threshold 500 vs. 1000: t = 53.96, p ≈ 1.97e-10 

Threshold 50 vs. 1000: t = 24.70, p ≈ 4.54e-08 

 

The extremely low p-values (all < 0.05) indicate that the 

accuracy differences between threshold values are 

statistically significant. This suggests that choosing an 

appropriate threshold value (e.g., 500) significantly impacts 

model accuracy. 

TABLE VIII. FALSE ALARM RATE (FAR) COMPARISONS: 

Threshold 50 vs. 500: t = 25.26, p ≈ 3.89e-08 

Threshold 500 vs. 1000: t = -48.50, p ≈ 4.14e-10 

Threshold 50 vs. 1000: t = -13.56, p ≈ 2.79e-06 

 

Similar to accuracy, the FAR comparisons reveal highly 

significant differences across thresholds. This shows that the 

threshold setting impacts FAR, with a threshold of 500 

achieving the best balance, significantly reducing FAR 

compared to lower and higher thresholds. 

These results strongly support the selection of a threshold 

value of 500, as it optimally balances accuracy and FAR, 

enhancing the IDS model's overall performance. 

A-IDS demonstrates superior overall accuracy in 

predicting all classes, showcasing an improvement in false 

alarm rates compared to the one-time training model, which 

adopts a rigid approach. These sessions (in regulated model) 

introduced additional retraining data, potentially widening 

the gap for imbalanced data classes, particularly U2R and 

R2L. The findings from this chapter indicate that the level of 

dynamism in the proposed model is directly influenced by the 

chosen threshold value for initiating the retraining process. 

When the threshold (Th) value is too small, the model tends 

to be highly dynamic, whereas if it is too high, it leans 

towards being more stationary or rigid. Among the examined 

values, the optimal threshold was determined to be 500. 

A. Improve Adaptive Intrusion Detection Model Employing 

Ensemble Classifiers 

Numerous researchers have emphasized that 

appropriately combining classifiers can result in enhanced 

classification accuracy [4]-[6]. Ribeiro and Reynoso-Meza 

[4] highlighted that ensemble design proves to be an effective 

strategy for mitigating the negative impact of imbalanced 

training datasets. Zefrehi and Altınçay [6] emphasized that a 

successful ensemble is characterized by individual classifiers 

within the ensemble being accurate and making errors on 

different portions of the input space. 

In the previous section, KNN was applied as a classifier 

within the adaptive intrusion detection approach with 

regulated training. In this section, ensembled two more 

classifiers Decision Tree DT and Random Forest RF will be 

used with KNN to tackle the problem of imbalanced dataset 

and aiming to enhance the accuracy of the detection process. 

Based on the suggested ensembled classifiers, the data will 

go through the preprocessing phase, then the filtered traffic 

data will be sent to the 3 classifiers. Each classifier will 

produce the output of the classification process based on the 

input dataset. After that a comparison based on the 

performance of all classifiers. One with the highest 

performance will be selected and approved for that piece of 

dataset. 

Fig. 7 displays the outcomes of the ensembled three 

classifiers, along with the results of the KNN. The 

comparison illustrates the performance of the ensemble 

classifiers -on the conducted 8 datasets- compared to that of 

a single classifier from the previous section.  
 

 

Fig. 7. Comparison of the accuracy results of the ensembled classifiers with 

the KNN 
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Another comparison is made to show the enhancement in 

the percentage of the FAR as depicted in Fig. 8. 

Fig. 8 illustrates that the ensembled classifiers (KNN, 

Decision Tree, and Random Forest) significantly outperform 

KNN alone in terms of FAR across eight datasets. The 

ensemble model consistently maintains a lower and more 

stable FAR, around 2%, while KNN alone fluctuates between 

3.5% and 6.5%, indicating higher variability and less 

reliability in distinguishing normal from anomalous 

instances. Notably, in datasets like the third and fourth, the 

ensemble approach achieves a markedly lower FAR, 

highlighting its robustness in handling challenging cases and 

reducing false positives where KNN alone struggles. This 

stability and reduction in FAR imply that the ensemble model 

is more effective and reliable for practical IDS applications, 

where minimizing false alarms is critical to prevent 

overwhelming security teams with unnecessary alerts and to 

ensure accurate threat detection. This proved that using more 

than one classifier helped in the case of the problem of an 

imbalanced dataset. Also, improved the accuracy of detection 

to reach an overall accuracy of approximately 97.7%. 
 

 

Fig. 8. A comparison of the FAR between the ensembled classifiers with 

KNN 

VI. CONCLUSIONS 

Lack of adaptability in Intrusion Detection Systems (IDS) 

often leads to outdated models, poor detection accuracy, and 

high false alarm rates, particularly for traffic types like U2R 

and R2L. For example, the baseline model misclassified 

63.63% of U2R traffic as normal, demonstrating the critical 

need for adaptable models. 

The proposed Adaptive IDS (AIDS) model addresses 

these issues by integrating supervised KNN, Fuzzy c-means 

clustering, and weight mapping. These components together 

improve the model's adaptability, allowing it to respond 

dynamically to changing network conditions. KNN provides 

efficient classification, while Fuzzy c-means clustering 

handles uncertain cases, and weight mapping prioritizes weak 

decisions for retraining. This results in a significant 

performance improvement, with overall accuracy reaching 

97.7% and a false alarm rate of 2.0%. 

However, further comparative analysis with existing 

models is needed to better understand the AIDS model's 

performance relative to state-of-the-art systems. The 

ensemble approach, combining KNN, Decision Tree (DT), 

and Random Forest (RF), effectively addresses imbalanced 

data and improves accuracy, especially for rare traffic classes 

like U2R and R2L. 

While the AIDS model performs well, future work should 

focus on reducing computational complexity, improving 

imbalanced data handling, and exploring additional 

techniques to enhance adaptability and accuracy in real-world 

deployments. The optimal retraining threshold found in this 

study was 500, balancing accuracy and computational 

efficiency. 

In conclusion, the AIDS model represents a significant 

step forward in IDS performance, particularly for dynamic 

and imbalanced network traffic, with room for further 

refinement and research. 
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