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Abstract
Cloud computing (CC) delivers computing resources as utilities, akin to services 
like electricity or water. However, security concerns—particularly Distributed 
Denial of Service (DDoS) and its economically targeted variant, Economic Denial 
of Sustainability (EDoS)—pose significant threats to its adoption. EDoS attacks 
exploit the pay-per-use and auto-scaling features of CC platforms to incur financial 
damage by triggering unnecessary resource consumption. While existing studies 
have proposed various countermeasures, comprehensive, comparative analysis 
remains limited. This review systematically examines 69 key articles addressing EDoS-
specific or joint DDoS–EDoS threats. Beyond merely cataloguing these methods, this 
review provides a novel analytical synthesis by categorizing defense strategies into 
detection, prevention, mitigation, and hybrid models, and critically evaluating them 
against factors such as scalability, computational overhead, and false-positive rates. 
Importantly, this study introduces a service-model-aware framework, distinguishing 
which solutions are most effective for Infrastructure as a Service (IaaS) versus 
Software as a Service (SaaS) environments. By mapping techniques to operational 
contexts, the review reveals methodological gaps, highlights practical deployment 
challenges, and proposes priorities for future research and cloud-specific security 
design. Articles Highlights: • Provides a systematic review of EDoS attacks in cloud 
computing to understand current issues and limitations. • Classifies EDoS defences 
into four strategic categories to guide future research on key gaps. • Suggests 
future EDoS research focusing on AI, blockchain, and economic impacts to enhance 
defence effectiveness.
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1 Introduction
Over the past few years, the computational field has changed tremendously due to the 
rising demand for advanced computing technology. This technological advancement has 
facilitated various innovative computing models, such as cloud, grid, and cluster com-
puting. Hence, cloud computing has emerged as a prevalent infrastructure that enables 
customers to access shared resources with minimal assistance from cloud service pro-
viders (CSPs). Given that this infrastructure can increase effectiveness, dependability, 
and performance by combining scattered resources, cloud computing can permit service 
sharing [1].

Cloud computing models have emerged as the most viable approach, offering consum-
ers a suitable and economical means to access computing utilities. The models usually 
distribute infrastructure, platform, and software services across shared networks, which 
are accessible on a pay-per-use basis. This process is similar to essential utilities, such as 
electricity and telecommunications [2].

The pay-per-use model of cloud computing allows payment solely for utilised 
resources. This model is also scalable and elastic, enabling usage adjustments based on 
the necessity to reduce organisational capital expenses considerably. Small businesses 
can then substantially benefit from this outcome, granting them access to ICT infra-
structure that is traditionally unaffordable. Consequently, cloud computing remains an 
appealing choice for organisations aiming to minimise upfront costs [3].

Numerous services offered by cloud providers (vendors) to their clients can be exam-
ined using various frameworks, including Software as a Service (SaaS), Platform as a 
Service (PaaS), and Infrastructure as a Service (IaaS). The SaaS framework represents 
a software distribution model that allows clients to access applications over a network, 
with the hosting managed by a vendor. This process is recognised as the most sophisti-
cated manifestation of cloud computing.

The PaaS framework involves developing and executing applications based on plat-
forms equipped by cloud providers. This architectural framework demonstrates rapid 
and cost-effective application design with deployment. Notable examples of PaaS are 
Microsoft with its corresponding Windows Azure platform, Salesforce.com with its cor-
responding Force.com, and Google with its corresponding Google App Engine. Numer-
ous services are also observed in the PaaS framework, such as application serving, 
database (DB) management, security, and workflow management [4].

The IaaS framework delivers computational power and storage capacity on a demand-
driven basis and contains various resources. One leading example of IaaS is Amazon.
com, which allows users to execute cloud application programmes on its Elastic Com-
pute Cloud (EC2) web service. Other notable examples employing IaaS solutions are HP, 
IBM, and VMware [4].

Significant correlations are observed between cloud computing and several industries 
(e-commerce, e-learning, and healthcare). This feature substantially enhances economic 
value as cloud computing provides inexpensive internet services. The phenomenon 
catalyses the next major shift in the internet and commercial sectors. Therefore, 
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e-commerce businesses, institutions and enterprises are transitioning to the cloud to 
enhance utility [5].

Big businesses frequently express apprehensions over their extensive data security 
during internet transmission. This issue indicates that practical cloud computing in an 
enterprise environment necessitates careful planning and a thorough comprehension 
of changing risks, threats, vulnerabilities, and workable solutions. Hence, an essential 
aspect of safeguarding cloud computing environments is developing secure applications 
from inherently unreliable components. Despite significant security risks in cloud com-
puting, this technology can also reduce enterprise costs [6].

Several well-known threats can compromise network and cloud security, such as 
Denial of Service (DoS), Distributed Denial of Service (DDoS), port scanning, phishing, 
and Man-in-the-Middle attacks. Nonetheless, a newer threat [Economic Denial of Sus-
tainability (EDoS)] has recently been observed in exploiting the pay-per-use and elastic-
ity features of cloud computing to inflate users’ costs. This threat is derived from DDoS 
attacks, which can induce financial strain by covertly increasing resource utilisation 
expenses.

Generally, EDoS attacks in cloud computing constitute a novel category of finan-
cial and security threats. Compared to traditional DDoS attacks that overload server 
resources to interrupt services, EDoS attacks exploit the flexibility of cloud services. 
These attacks can impose resources to grow to meet demand, escalating consumer costs 
dynamically [7].

An EDoS attack presents a distinct variant from the traditional DDoS attack, primar-
ily in its operational influence and outcome. In contrast, a DDoS attack debilitates the 
capacity of a system to assist its client until recovery is achieved. Therefore, an EDoS 
attack perniciously exploits excessive resources without triggering the intrusion detec-
tion system (IDS) alarms. This consumption can continue undetected for a period rang-
ing from several hours to multiple weeks. Finally, this unauthorised use of resources 
results in unexpectedly high financial charges for the consumer, creating economic 
strain without the immediate visibility associated with traditional cyberattacks.

Al-Haidari et al. documented that cloud computing costs were 15 times higher when 
standard analytic modelling was simulated with EDoS attacks (6000 requests per sec-
ond) [8]. These attacks could also increase energy costs alongside financial costs. One 
notable example involved an EDoS attack on Amazon EC2. This threat incurred an addi-
tional energy charge of 1440 kWh daily or $5184 monthly, highlighting the more signifi-
cant expenses associated with the EDoS attacks [9].

Another practical example was the cloud-based GreatFire.org (Amazon-hosted web-
site), which experienced an EDoS attack on March 17, 2015. This attack revealed a sub-
stantial economic cost on bandwidth (up to $30,000 per day) and a sudden increase in 
requests (up to 2.6  billion per hour). The request was also approximately 2500 times 
the normal range. Considering the overwhelming surge of demands directed to the 
website administrator beyond the operational planning and capacity, external help was 
requested [10, 11]. This outcome implied that EDoS attacks unequivocally resulted in 
resource depletion and financial losses. Consequently, EDoS countermeasures should be 
examined to safeguard the future and safety of the cloud computing industry.

Previous articles focusing on comprehending and alleviating the impact of EDoS 
attacks in cloud environments yielded various defence proposals. Nonetheless, this 
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review identified four significant research gaps: (i) inadequate detection and prevention, 
(ii) insufficient performance evaluation, (iii) comprehensive focus involving general DoS 
or DDoS defence, and (iv) outdated research lacking updates since 2019 (neglected lat-
est developments in the field). Thus, this review addressed these gaps regarding EDoS 
countermeasures by comprehensively reviewing each publicly available defence strategy, 
performance metrics, and cloud environment limitation.

This review is structured into six sections for clarity. Section 1 offers an overview of 
the introduction. Section 2 discusses various related articles. Section 3 details the inclu-
sion and exclusion criteria for research articles. Section 4 presents the correlation analy-
sis between DDoS and EDoS attacks. This section also explores the existing solutions, 
categorisation process, findings from previous articles, and future research directions. 
Section  5 highlights the importance of addressing EDoS attacks. Finally, Sect.  6 con-
cludes this review by summarising key lessons.

2 Related article
Several pertinent survey articles examined the solutions for mitigating EDoS attacks 
within cloud computing environments. Therefore, this section delineates these arti-
cles, highlighting the methodologies utilised, focal points, and principal shortcomings. 
Table 1 presents a concise summary of these articles.

Singh and Rehman conducted a literature review on various aspects [12]. The article 
assessed the approaches, methodologies, scalability, and learnability of existing solutions 
by exploring EDoS attacks, their motivations, and defence techniques. Consequently, 
the article concluded that current mechanisms were inadequate for safeguarding cloud 
architecture from EDoS attacks, emphasising the necessity for more effective strate-
gies. Conversely, limitations were observed, in which mitigation was only discussed 
while neglecting detection with protection strategies and performance metric analysis 
(obstructing a comprehensive evaluation of the techniques).

Chowdhury et al. explained the methods for mitigating EDoS attacks based on evalu-
ation criteria and flexibility in cloud environments [13]. The article provided a classi-
fication of defensive strategies, critically assessing the drawbacks of each approach. 
Adequate cloud protection was then concluded to be significantly impacted by EDoS 
attacker behaviour understanding, strategy identification, and proactive defensive 
mechanism designs. The article also suggested that mathematical models, honeypots, or 
dynamic firewalls could improve response times, enhancing the existing solutions. Nev-
ertheless, the article only discussed mitigation methods without including detection and 
protection techniques, limiting its comprehensiveness.

Singh et al. compared numerous advanced EDoS mitigation techniques within cloud 
environments [14]. The article highlighted the transition to cloud computing and its 
related security challenges concerning the increasing threat of EDoS attacks. These 
attacks (a subset of DDoS) considerably influenced the financial dynamics of cloud-
based hosting services. The article also indicated that robust solutions were negatively 
affected by current mitigation methods, which were inaccurate, ineffective, or could 
exacerbate the situation. Like other articles, the article did not present prevention and 
detection strategies and only described mitigation approaches. Insufficient performance 
metric evaluation was also observed.
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Table 1 Summary of EDoS detection, prevention and mitigation techniques identified from 
previous articles
Ref. Year Defence 

technique
Point of focus Key result Key limitation

 [14] 2014 Mitigation The effectiveness of 
the mitigation tech-
niques, usability, and 
interoperability of the 
methods.

The current approaches 
were insufficient in effec-
tively mitigating EDoS attacks. 
Therefore, a more thorough 
and robust strategy should be 
adopted.

Only mitigation tech-
niques were covered, and 
prevention and detection 
techniques were excluded. 
Performance evaluation 
metrics were also not 
discussed.

 [15] 2017 Mitigation The evaluation metrics 
and adaptability of the 
models in the cloud 
environment.

Mathematical models could 
overcome the existing solu-
tion limitations. Thus, hon-
eypots or dynamic firewalls 
could improve the response 
time.

Only mitigation tech-
niques were covered, and 
prevention and detection 
techniques were excluded.

 [16] 2019 Mitigation The performance 
evaluation metrics mit-
igated numerous EDoS 
attacks within the 
cloud environment.

The existing methods to 
avoid EDoS attacks were 
inaccurate or ineffectual. Oc-
casionally, specific scenarios 
could exacerbate the attacks.

Only mitigation tech-
niques were covered, and 
prevention and detection 
techniques were excluded. 
Performance evaluation 
metrics were also not 
discussed.

 [17]
 [18]
 [19]
 [20]

2019 Mitigation The benefits of each 
solution and their cor-
responding limitations.

The existing solutions were 
insufficient and substandard. 
Therefore, an intelligent 
security mechanism could se-
cure the cloud environment 
against EDoS attacks.

Only mitigation and pre-
vention techniques were 
covered, and detection 
techniques were excluded. 
Performance evaluation 
metrics were also not 
discussed. Moreover, the 
solutions only demonstrat-
ed general DoS and DDoS 
solutions and omitted 
EDoS-specific solutions.

 [21] 2014 Prevention Detection and mitiga-
tion of DDoS and 
EDoS attacks in cloud 
environments

Proposed a secure framework 
integrating authentication, 
traffic analysis, and filtering 
mechanisms to reduce attack 
impact

Lacked real-time perfor-
mance evaluation and 
scalability analysis

 [22] 2015 Prevention Identifying and miti-
gating EDoS attacks 
through pattern recog-
nition and behavioral 
analysis

APART adaptively recog-
nized EDoS attack patterns 
and improved response 
effectiveness

Limited empirical valida-
tion and tested only in 
controlled environments

 [23] 2020 Detection Signature-based and 
anomaly-based meth-
ods using machine 
learning for early 
identification of EDoS 
activity.

Anomaly-based models 
showed high accuracy in de-
tecting low-rate EDoS attacks 
and reduced false positives.

High computational over-
head; limited scalability to 
real-time environments.

 [24] 2021 Prevention Resource provisioning 
and request filtering 
policies to prevent 
the impact of EDoS 
on billing and service 
disruption.

Elastic resource allocation 
combined with threshold-
based filtering helped 
prevent unnecessary resource 
consumption.

Threshold tuning is 
environment-dependent 
and may lead to false 
negatives.

 [3] 2022 Detec-
tion & 
Prevention

Hybrid AI-enabled 
framework for both 
identifying and halting 
EDoS traffic using 
behavioral analytics.

Provided better adaptability 
and response to evolving 
attack patterns.

Requires constant 
model updates; training 
data scarcity can affect 
performance.
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Nautiyal and Wadhwa published a review on mitigating EDoS attacks in cloud envi-
ronments, reviewing the approaches, benefits, and limitations of each defence strategy 
[15]. The article validated the inadequacy of current solutions in effectively protecting 
against EDoS attacks. Even though more competent security mechanisms were pro-
posed in the article, limitations were observed. The article only described prevention 
and mitigation strategies, neglecting detection techniques and performance evaluation 
metrics. Furthermore, the article only demonstrated general DoS and DDoS solutions 
and omitted EDoS-specific solutions.

This review tabulated a succinct overview of the methodologies adopted, principal 
findings, and significant limitations identified from previous articles (see Table 1). The 
outcome of the literature analysis suggested that no surveys or review articles on EDoS 
attacks were conducted in the past five years (2019–2024). This analysis indicated a clear 
gap in the current research on this topic.

3 Methodology
Specific existing literature on EDoS attack defence mechanisms was classified, identified, 
and examined in this review. Figure 1 below, shows the methodology employed to select 
relevant articles for this review study. The processes were accomplished by performing 
an in-depth analysis regarding the features and characteristics of the techniques, includ-
ing the main issues and challenges encountered in safeguarding the cloud environment 
against this attack.

3.1 Research objectives

This article identified five primary research objectives as follows:

i. To establish a systematic methodology for identifying and selecting articles that 
discuss techniques for addressing EDoS attacks in cloud computing.

ii. To conduct a comprehensive review of related articles (surveys and review articles) 
that explore existing solutions against EDoS attacks in cloud computing.

iii. To analyse the correlation between DDoS and EDoS attacks by understanding their 
similarities, differences, and impacts on cloud computing.

iv. To identify and evaluate the primary strategies and critical proposed solutions for 
mitigating EDoS attacks in cloud computing, including an assessment of their benefits 
and drawbacks.

Fig. 1 Article selection process for EDoS attacks review
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v. To summarise the main findings of this review and outline future research directions 
for addressing EDoS attacks in cloud computing.

3.2 Research questions

This review systematically addressed EDoS attacks within the cloud computing environ-
ment based on several research questions (RQs). The RQs are as follows:

i. RQ1: What systematic methodologies are applied for the identification, selection, and 
evaluation of.

ii. literature focused on EDoS attacks in cloud computing?
iii. RQ2: Which review and survey articles critically examine techniques for mitigating 

EDoS attacks, and how do they categorize or evaluate these solutions?
iv. RQ3: What are the technical and behavioral correlations between DDoS and EDoS 

attacks, including their points of convergence and divergence in terms of impact, 
intent, and mitigation?

v. RQ4: What are the most effective strategies and solutions proposed to mitigate EDoS 
attacks, and what are their comparative strengths and limitations?

vi. RQ5: What are the key gaps identified in current literature, and what future directions 
can guide research in EDoS attack prevention and resilience in cloud environments?

While previous literature has extensively focused on mitigation techniques for EDoS 
attacks, there has been a gradual emergence of research aimed at improving detection 
and prevention mechanisms. Detection strategies often leverage anomaly-based or 
machine learning techniques to identify deviations in traffic behavior, whereas preven-
tion approaches focus on adaptive resource management and filtering policies. Table 1 
has been extended to include a few such representative studies, highlighting recent 
efforts that contribute toward a more proactive stance against EDoS attacks. These stud-
ies show promising results, although challenges remain in terms of real-time perfor-
mance and generalizability across cloud environments.

3.3 Selection process of relevant articles

Table 2 lists the keywords used to extract the appropriate articles. Table 3 lists the search 
strings utilised to extract articles for this review.

After filtering, several inclusion criteria (IC) and exclusion criteria (EC) were applied 
to the retrieved articles. The ICs and EC are as follows:

i. IC-1: The article targeted EDoS attacks and mitigation techniques.

Table 2 Summary of the keywords used to extract the relevant articles
EDoS Economic attacks in cloud 

environments
Cloud service abuse Cloud security 

challenges
EDoS attack detection Cloud resource exhaustion EDoS impact on cloud 

services
Smart pricing in 
cloud computing

EDoS mitigation strategies DDoS vs. EDoS attacks Resource consumption 
attacks

Billing attacks in 
cloud services

Cloud computing security Cost-based attacks in cloud 
computing

EDoS protection 
frameworks

Cloud infrastruc-
ture resilience

EDoS defense mechanisms EDoS attack prevention Economic sustainability in 
cloud computing

Cybersecurity in 
cloud computing

EDoS Economic attacks in cloud 
environments

Cloud service abuse Cloud security 
challenges



Page 8 of 46Sahar Saeed  et al. Discover Internet of Things            (2025) 5:79 

ii. IC-2: The article was written in the English language.
iii. EC-1: The article was not written in the English language.
iv. EC-2: The article was published before 2015.

4 Correlation between DDoS and EDOS attacks
This section offers an in-depth analysis of various perspectives on the correlation 
between DDoS and EDoS attacks. The conditions and repercussions of EDoS attacks 
were also investigated comprehensively. This review then presented an informed per-
spective on their correlation based on the collected evidence, which is summarised as 
follows:

“EDoS attacks constitute a subset of DDoS attacks, specifically aimed at cloud infra-
structures. They exploit distinctive features of cloud computing, such as its scalability and 
pay-per-use payment models. By illicitly consuming cloud resources, EDoS attacks inflict 
considerable financial damage, as reflected in the increased billing costs incurred by cloud 
customers.”

A DDoS attack is a coordinated cyber assault that uses multiple compromised com-
puter systems (botnets or zombies) to target a single network system. This attack aims to 
inundate the victim with an overwhelming traffic volume while impeding access. On the 
contrary, EDoS attacks use botnets controlled by attackers against network infrastruc-
tures, exhibiting a more subtle and prolonged nature. These attacks inject spurious traf-
fic over prolonged durations to incrementally deplete system resources.

The EDoS attacks increase operational costs for users leveraging the system or cloud 
services. This process incurs higher charges owing to the auto-scaling functionalities of 
the cloud, necessitating payment for augmented computational resources to accommo-
date the increased load. Figure 2 delineates that the operating domain of EDoS attacks is 
situated beneath that of DDoS attacks, surpassing the scope of regular traffic. This posi-
tioning renders EDoS attacks extremely challenging to detect using traditional DDoS 
defence mechanisms due to their relatively lower attack rates and intensity threshold 
values [15–18].

Multiple articles have argued that EDoS attacks represent a subtype of DDoS attacks 
[13, 17, 20]. Another group of articles have articulated that DDoS attacks evolve into 
EDoS attacks if the process occurs within cloud computing environments. This trans-
formation is attributed to the inherent features of cloud computing, such as auto-scaling 
and pay-per-use billing models [14, 16, 20–24]. Certain articles have also contended that 
EDoS attacks are an evolved DDoS attack. Table  4 summarises the most pivotal per-
spectives on the correlation between EDoS and DDoS attacks, outlining the academic 

Table 3 Summary of the search strings utilised to extract the relevant articles
Repository Query Num-

ber of 
articles

Springer Link (“EDoS”) AND (“attach detection”) AND (“mitigation techniques”) AND (“defense 
mechanism”) AND (“resource consumption attacks”) AND (“Privacy Mitigation”)

8,564

IEEE Xplore (“Economic attacks in cloud environments”) OR (“Cloud Service Abuse”) OR (“billing 
attacks in cloud services”) OR (“Cloud infrastructural resilience”) OR (“Cybersecurity in 
cloud computing”)

1,725

Wiley (“Economic sustainability of cloud computing”) OR (“EDoS attack Prevention”) OR 
(“Cost based attacks in cloud computing”) OR (“Cloud Resource exhaustion”) OR 
(“EDoS impact on cloud services”) OR (“Smart pricing in cloud computing”)

9,860
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discussion on their relationship. Furthermore differences and similarities between EDoS 
and DDoS attacks were summarized as in Table 5 below.

5 Existing solution to address EDoS attacks
Formulating robust defence strategies is essential to preserve the integrity and long-term 
viability of cloud computing environments against EDoS attacks. Despite extensive study 
in the larger field, insufficient investigations dedicated to countering EDoS threats have 
been observed. Hence, this section emphasises the most significant articles within this 
specialised field.

The scholarly discussion on EDoS attacks has been relatively limited, with only a few 
articles addressing this challenge. These articles have employed diverse techniques to 
alleviate the detrimental impact of the adverse effects of EDoS on cloud platforms. Thus, 
this review detailed these articles, focusing on their methodological frameworks, evalua-
tion criteria, and inherent constraints.

The existing solutions to combat EDoS attacks were categorised into four main clas-
sifications: (i) Detection based strategies (ii) Prevention based strategies (iii) Mitigation 
based strategies (iv) Hybrid strategies.

5.1 Detection based strategies

Detection-based strategies focus on identifying the presence of EDoS attacks through 
anomaly detection, machine learning, deep learning, time-series analysis, or attribution 

Table 4 Summary of the correlation between DDoS and EDoS attacks
Ref. The correlation between DDoS and EDoS
 [13, 17, 20] EDoS as a type of DDoS
 [14, 16, 20–23] DDoS attacks are transformed into EDoS attacks in cloud environments
 [24–28] EDoS attacks are a new version of DDoS attacks
 [15] EDoS attacks are DDoS attacks with different impacts
 [29] EDoS attacks are similar to DDoS attacks
 [30] EDoS attacks are similar to low-rate DDoS attacks
 [31] EDoS attacks are a new version of general DoS attacks

Fig. 2 DDoS and EDoS Attacks Active Regions
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techniques. These approaches rely on recognizing deviations from typical usage pat-
terns, detecting suspicious behaviors, or profiling attackers using statistical models.

Subsections:

5.1.1 Graphic turing tests (GTT) and crypto-puzzles

The Graphical Turing Test is a variation of the original Turing Test, designed to evalu-
ate a computer system’s ability to generate or interpret images in a way indistinguish-
able from a human. In this test, a human evaluator interacts with both a machine and 
a human through visual content (e.g., drawings, animations, or rendered scenes). The 
goal is to determine whether the machine’s graphical responses can convincingly mimic 
human creativity or perception. It is often used in areas like computer graphics, game 
design, and AI-generated art.This section examines GTT and crypto-puzzle models for 
improving user defence in cloud settings against EDoS attacks. The objective of these 
models is to distinguish benign users from attackers. This section also systematically and 
extensively details several articles to address each individually (see Table 6).

5.1.1.1 EDoS-shield Sqalli et al. identified the EDoS-Shield as a model that prevented 
cloud environments from EDoS attacks by distinguishing real users from botnet users 
[1]. This model employed two crucial components: (i) virtual firewall (VF) and (ii) verifier 
nodes (VNs). A VF maintained whitelists and blacklists, while VNs executed the GTT 
to distinguish human users from botnets. These whitelists and blacklists of the firewall 
were then further modified based on the users’ responses to the GTT [1]. Figure 3 por-
trays the working process of this method. The GTT functionality of this model enabled 
the straightforward identification of legitimate users while obscuring their attackers. This 
model exhibited a concentrated power of the cloud resources, increasing the security 
level of the available cloud.

Table 5 Presents the comparison of EDoS and DDoS in terms of range of aspects
Aspect DDoS EDoS
Primary Objective Disrupt service availability by overwhelming 

resources
Drain financial and computational 
resources over time

Attack Mechanism Flood target with high-volume traffic from 
multiple sources

Trigger legitimate-looking requests to 
exploit pay-per-use and auto-scaling

Visibility Highly visible due to sudden traffic spikes 
and service disruption

Often stealthy, mimics normal usage 
patterns, harder to detect

Attack Duration Short to medium-term (minutes to hours) Long-term (hours to days or more)
Impact on Victim Service outage, reputation damage, potential 

SLA violations
Increased operational costs, potential 
financial exhaustion

Typical Target Web servers, APIs, and network services Cloud-hosted applications with auto-
scaling features

Use of Botnets Commonly used Can be used, but may also involve 
legitimate-looking clients

Resource Consumption 
Pattern

Abrupt and massive Gradual and sustained

Cloud Relevance General threat to all online services Cloud-specific threat due to billing 
and elasticity features

Detection Difficulty Easier due to abnormal traffic volume Harder due to normal-appearing 
requests

Mitigation Focus Rate-limiting, blacklisting, traffic scrubbing Cost-aware scaling, anomaly detec-
tion, economic modeling

Primary Concern Availability Sustainability
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Ref. Attack type Approach Description Limitations
 [32] sPoW Crypto-puzzle The fundamental concept for distin-

guishing between a legitimate user 
and an attacker involved employ-
ing a crypto-puzzle with a k-bit 
difficulty level. This model could be 
adjusted based on user responses. 
Subsequently, the server estab-
lished a secure channel with an 
encryption key for data exchange 
with the user.

• The model was not evaluated 
using any metrics.
• Asymmetric power consump-
tion resulted from the server 
generating puzzles and con-
sumers solving them.
• Attackers could easily over-
come the puzzle test through a 
puzzle accumulation attack.
• The model was susceptible to 
a high false positive rate due to 
the difficulty or complexity of 
puzzles, mainly affecting older 
and disabled users.
• No evaluation metrics were 
performed.

 [16] EDoS-Shield GTT User classification involved two 
primary components: (i) VF and (ii) 
VNs. The VF possessed whitelists 
and blacklists, while VNs dif-
ferentiated between illegitimate 
users and attackers based on GTT. 
Subsequently, the whitelists were 
updated accordingly based on user 
responses.

• The IP spoofing was not 
considered.
• The GTT was challenging for 
certain legitimate users.
• False positives could result 
from NAT-IP blocking numerous 
valid IP addresses. This outcome 
was attributed to a single-attack 
IP belonging to the same NAT.
• False negatives caused by 
whitelist IPs could alter their 
behaviour to compromise the 
system.

 [17] Enhanced 
EDoS-Shield

GTT and TTL The X was enhanced by incorporat-
ing the TTL value alongside the 
IP addresses in the whitelists and 
blacklists to mitigate the issue of 
spoofed IP affecting the EDoS-
Shield. A counter of unmatched TTL 
value was also added.

• Given that attackers could 
utilise several tools to change 
the TTL value, it was not reliable.
• This model demonstrated 
increased overhead on the VF 
due to the TTL value recording 
process.
• Similar limitations as EDoS-
Shield (except for spoofing IP 
addresses)

 [18] In-Cloud 
Scrubber

Crypto-puzzle The In-Cloud Scrubber was a sepa-
rate service responsible for generat-
ing and verifying a crypto-puzzle. 
This model presented two working 
modes: (i) normal and (ii) suspected. 
The modes were determined based 
on a predefined bandwidth and 
resource threshold as follows:
• Normal: Both server resources 
and bandwidth were below the 
thresholds.
• Suspected: Both server resources 
and bandwidth were above the 
thresholds (complex puzzle). 
Resources were excessive, while 
bandwidth was insufficient (moder-
ate puzzle).

• This model demonstrated 
end-to-end latency due to the 
crypto-puzzle.
• No evaluation was conducted 
on response time, CPU use, 
or false rate. This observation 
indicated that the reliability and 
effectiveness of the model was 
still questionable.

Table 6 Summary of GTT and crypto-puzzle-based models for EDoS attacks
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Fig. 3 EDoS sheild working process.source:[1]

 

Ref. Attack type Approach Description Limitations
 [19] In-Cloud 

Service
Crypto-puzzle The article elucidated through 

experimentation how a DDoS at-
tack could be transformed into an 
EDoS attack in a cloud environment. 
Subsequently, a two-component 
model was proposed to detect and 
mitigate EDoS attacks: (i) firewall 
with whitelists and blacklists, and (ii) 
puzzle server.

• The IP spoofing was not 
considered.
• Higher false rate due to the 
difficulty of the puzzle server, 
even for legitimate users.
• Attackers could still overcome 
the puzzle by using puzzle ac-
cumulation tools.

 [33] Enhanced 
DDoS-MS

GTT and 
crypto-puzzle

The proposed model examined two 
packets of the source request using 
two test types. The GTT evaluated 
the first packet. In contrast, the 
second randomly selected packet 
was assessed by crypto-puzzle. This 
model also included a firewall with 
two main lists (white and black). 
Each main list possessed two sub-
lists (temporary and permanent).

• This model was time-con-
suming and required more 
resources due to GTT and 
crypto-puzzle.
• Even though the model was 
proposed for detecting DDoS 
and EDoS attacks, the detection 
mechanism for EDoS attacks 
was not explicitly articulated.

 [34] eDDoS-MS GTT and TTL This model involved the traditional 
GTT and TTL methods to control 
the user access and indefinite tra-
versal of packets, respectively.

• This model demonstrated end-
to-end latency due to GTT.
• This model demonstrated false 
rates due to GTT and TTL.
• The TTL value could not be 
trusted.

 [26] EDoS-7 GTT This behaviour analysis model dem-
onstrates two main components as 
follows:
• SED: The edge device functioned 
as a firewall, forwarding the incom-
ing request based on the flow table.
• GSC: A virtual machine functioning 
as a VN, which was responsible for 
classifying the incoming requests 
into legitimate and attacker by 
generating and verifying GTT. The 
SED device was then updated.

• The model employed an 
identical methodology as EDoS-
Shield reported by Sqalli et al., 
with distinctions solely in the 
nomenclature of the compo-
nents utilised [16]. Compared 
to EDoS-Shield, this model was 
designed to operate within an 
SDN-based cloud environment.
• This model demonstrated 
higher response time due to 
GTT.

Notes: sPoW = Self-Proof of Work; TTL = Time-to-live; VF = Virtual firewall; VNs = Verifier nodes

Table 6 (continued) 
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Another advantage of this model was that user blocking and unblocking with a VF 
were conducted in real-time. This procedure ensured the cloud environment remained 
intact and genuine users were granted prompt access. Conversely, detected attack-
ers were expelled. The structured organisation of this model (VF and VNs) could also 
accommodate the constrained space requirements of cloud computing, rendering it 
beneficial for low and high-volume applications. Nonetheless, this step could impede 
legitimate users’ access to cloud services due to the necessity of extra layers, adversely 
affecting user experience.

Higher processing power was observed when VF and VNs were integrated while 
serving the GTT processing-based computing demands. This process could negatively 
interfere with the effectiveness of the cloud ecosystem. Nevertheless, a more significant 
threat existed from advanced attackers who acquired GTT evasion techniques. This 
threat required improving the test sophistication and periodic upgrades to maintain 
relevance. The volatile usage of the whitelists and blacklists through the VF also neces-
sitated revisions to the documentation to represent the user and adversary behaviour 
accurately. This procedure could jeopardise the reliance on obsolete or incorrect listings. 
Additionally, legitimate users could be partly or wholly discouraged from employing the 
cloud service if a certain minimal period was established for using the system after pass-
ing the legal GTT. Each time these users were required to undergo GTT, the step could 
negatively impact the user experience.

5.1.2 sPoW

Khor and Nakao reported the Self-Proof of Work (sPoW) model as a model to safeguard 
cloud systems against the increasing threat of EDoS attacks [32]. Considering these 
attacks were frequently executed using botnets, the differences between legitimate user 
requests and those from botnet attackers could be differentiated through this model. The 
fundamental concept of this model involved utilising a crypto-puzzle with a variable k-
bit difficulty level based on the user’s response. This process established a secure channel 
with an encryption key, distinguishing between a legitimate user and an attacker [33]. 
Therefore, the defence of cloud infrastructures from EDoS attacks was improved using 
an efficient and highly versatile sPoW model. This model could distinguish between gen-
uine and fraudulent traffic, provide an adjustable difficulty level, and establish a secure 
channel, rendering it highly effective in reducing the effect of these attacks.

The model revealed several limitations affecting the effectiveness of this solution. Ini-
tially, no metrics were developed to evaluate the performance of the model. Secondly, 
the techniques for generating and resolving puzzles could induce a vertical load imbal-
ance. This review also acknowledged the potential for attackers to overcome the puzzle 
test using a puzzle accumulation assault. Lastly, high false positive rates were observed 
in this model due to certain legitimate users’ inability to solve straightforward puzzles. 
Despite this model representing essential progress for cloud security, self-evaluation 
should still be considered when addressing shortcomings.

5.1.3 Time-To-Live (TTL) and header inspection

In this section two studies are investigated.
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5.1.3.1 Enhanced EDoS-shield Al-Haidari et al. proposed the enhanced EDoS-Shield as 
an improvement model over the conventional EDoS-Shield system. This model addressed 
the challenges associated with the threats posed by spoof IP that compromised the effec-
tiveness of the previous design [17]. The improved version incorporated time-to-live 
(TTL) value in whitelists or blacklists while incorporating additional criteria for distin-
guishing between legitimate users and potential threats using the IP address. Notably, the 
TTL value facilitated traffic filtration and security against EDoS attacks [18].

Another structural modification involved installing a counter to monitor deviations 
in TTL values, which could assist in mitigating system abuse (spoofing) [18]. Nonethe-
less, numerous issues were observed with this model. The recognition and application of 
this unique aspect (TTL values) constituted an additional issue to the system regarding 
the duration required to process and authenticate each request. This constraint could 
increase access latencies to the cloud services for legitimate users due to prolonged aver-
age wait periods, aggravating user experience. A more complicated management and 
system maintenance was also exhibited when the system complexity increased. This out-
come indicated that exploring possibilities from the first question was a formidable chal-
lenge and could strain resources.

The TTL-based approach necessitated the unrealistic assumption of certain scenar-
ios. One scenario example involved an attacker generating packets with fabricated TTL 
fields containing values known to the attacker and anticipated during validation [35]. 
Conversely, this assumption failed against more skilled and sophisticated adversaries. 
Even though the model aimed to outperform the conventional EDoS-Shield, improve-
ment measures could still be conducted to improve the usability of the solution. Specifi-
cally, the whitelist and blacklist verification should not hinder legitimate users by being 
overly complex or necessitating constant oversight and modification to remain relevant.

5.1.3.2 EDoS source inspection Zekri et al. verified the legitimacy of the requests by 
introducing an EDoS attack countermeasure based on source inspection, counting, and 
Turing tests [51]. This model was aided with a test node and VF for request classifica-
tion and filtration. The article also assured the performance quality (power consump-
tion and response time metrics), ensuring that legitimate requests remained safe from 
attack traffic. Moreover, verification tests and a high-end firewall were employed to filter 
out malicious requests, preserving the integrity and performance of the cloud service 
(without substantial impacts on computing resources) [35–37]. Nonetheless, this service 
quality-based model required frequent updates in its threshold and list-based approaches 
to recognise and block new and evolving attack vectors.

5.1.4 Machine learning and deep learning models

This section reviews 11 articles containing models for defending cloud environments 
from EDoS attacks using machine learning.

Table  7 tabulates the information obtained from these articles for securing cloud 
services.

5.1.4.1 EDoS detection using Support Vector Machine (SVM) and Neural Network 
(NN) Abbasi et al. highlighted support vector machine (SVM) and neural network (NN) 
in a detection model for EDoS threats [20]. The proposed model analysed VM behaviour 
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Author Approach Description Limitation
[20] Machine 

learning
A model for detecting various EDoS attacks using 
SVM and NN. This model only allowed normal-situa-
tion VMs to be scaled up.

• This model required an 
adequate number of pack-
ets for learning.
• The detection accuracy 
decreased when HTTP 
and DB attacks occurred 
concurrently.
• This model ignored critical 
evaluation metrics (cost 
and complexity).

[15] Machine 
learning

This model employed ANN and GA algorithms to 
identify the affected EDoS server by detecting the 
affected path and determining the affected node 
(server).

• The article neglected 
to clarify their proposed 
strategy effectively.

[35] Deep 
learning

The model involved dynamic EDoS detection in SDN 
and multivariate time series anomaly identification. 
This model could predict the user resource usage 
(CPU load and memory use) value based on an unsu-
pervised deep learning algorithm (LSTM).

• This model possessed a 
false rate.
• A higher processing dura-
tion WAS needed to detect 
attacks due to the long 
sequence length (250).
• This model required more 
resource allocation to the 
defence system due to the 
long sequence length.
• The performance evalua-
tion revealed low accuracy.

[36] Deep 
learning

The MAD-GAN model was used as a multivariate time 
series anomaly detector. This model could predict the 
future value of the resource usage by learning from 
previous and live data based on GAN and deep learn-
ing algorithms (LSTM and RNN).

• This model needed more 
processing time.
• This model necessitated 
more resources for the 
defence system.
• The false alarm rate was 
relatively high.
• This model demonstrated 
a low detection rate.

[37] Deep 
learning

The R-EDoS model consisted of four primary compo-
nents: (i) GRU (a variant of RNN), (ii) VAE algorithm, (iii) 
linear Gaussian state-space (connection technique), 
and (iv) planar-flow (normalising flow technique).

• This model revealed slight 
difficulties in detecting 
Yo-Yo and Slowloris attacks.

[38] Deep learn-
ing and DWT

The P-estimation model initially evaluated the attack 
intensity and selected an appropriate LSTM model 
based on that evaluation. A suitable (LSTM) model 
was then selected based on that estimate. The DWT 
was also applied as a filter to effectively preprocess 
the data before feeding it to the classification model.

• This model required 
higher resources due to the 
long sequence length of 
the classification algorithm.

[39] Artificial 
intelligence 
(Multihead 
attention 
and Machine 
learning)

This MAN-EDoS model was a multihead attention 
model containing a multivariate time series to detect 
EDoS attacks in the network traffic environment. The 
multihead attention score matrices employed with 
NN were trained using EDoS data by computing the 
query, key, and value matrices.

[27] Deep 
learning

Given that LSTM models were ineffective due to the 
long sequence length, this model only utilised (5) as 
a sequence length. This model was activated after 
the ANN model identified the precise moment of an 
assault, which LSTM was not utilised across all flow 
periods.

• Model complexity
• The period detector (ANN) 
possessed limited accuracy.
• The accuracy could be 
improved using more 
advanced algorithms.

[40] Machine 
learning

A rapid auto-scale-based detection model, EDoS-
BARRICADE was developed using linear SVM and 
non-linear Kernel-based SVM as classifiers. This model 
could separate the attacked VM from others.

Table 7 Summary of machine learning/deep learning-based models for EDoS attacks
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based on traffic patterns and resource usage to identify HTTP requests, DB, and TCP 
SYN flood attacks. The proposed model categorises incoming requests by comparing 
them to the.

behaviour profile of a VM. This process permitted only those from VMs in normal 
mode to be processed [20]. The model also proficiently utilised machine learning tech-
niques (SVM and NN) for EDoS threat detection across multiple attack types. Even 
though this process offered a nuanced approach to VM behaviour analysis, lower accu-
racy was observed under concurrent HTTP and DB attacks. These outcomes highlighted 
a limitation in addressing complex, multi-vector threats. Figure  4 below, shows the 
architecture of the SVM-NN proposed mode.

5.1.4.2 EDoS detection using Artificial Neural Network (ANN) and Genetic Algorithm 
(GA) Nautiyal and Wadhwa computed an artificial neural network (ANN)-based reac-
tive model for EDoS attack detection in cloud environments [15]. The ANN initially ana-
lysed network pathways for indicators of economic exploitation. Subsequently, a genetic 
algorithm (GA) was applied to reduce false positives. Another ANN was then used to 

Fig. 4  The architecture of the proposed model by Abbasi et. al. Source: [21]

 

Author Approach Description Limitation
[41] Flow-based 

attention 
and machine 
learning

A flow-based model was used to create an EDoS 
detection and prevention system. Furthermore, X 
by using the attention technique to compute the 
focused scores in the flow features in the SDN envi-
ronment. This model was based on a NN.

[42] Machine 
learning

This model detected four EDoS attack types based on 
DBN and SVM: (i) HTTP flooding, (ii) DB, (iii) TCP SYN, 
and (iv) UDP flooding. The model consisted of three 
stages: (i) gathering data packets, (ii) extracting attack 
features, and (iii) establishing correlations between 
them. This self-adaptive model could adjusted for bet-
ter feature extraction and improved performance.

• The three stages involved 
significant manual work, 
causing more errors and 
needing more expertise.

Notes: DWT = Discrete wavelet transformation; NN = Neural network; ANN = Artificial neural network; GA = Genetic 
algorithm; MAN = Multihead attention network detection; GAN = Generative Adversarial Networks; R-EDoS = Robust 
EDoS; GRU = Gated recurrent unit; RNN = Recurrent Neural Network; VAE = Variational autoencoder; SVM = Support vector 
machine; DBN = Deep belief network; TCP SYN = Transmission Control Protocol Synchronize; UDP = User Datagram Protocol

Table 7 (continued) 
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identify a compromised server precisely along the detected attack vector to achieve 
enhanced detection accuracy [15]. Consequently, this solution demonstrated high-pre-
cision detection and mitigation based on advanced deep learning (ANN) and optimisa-
tion approaches (GA), emphasising economic implications and minimising false alarms. 
Nevertheless, the sequential execution required for ANN and GA processing could ren-
der this model a latency-prone approach, affecting real-time detection [47]. A significant 
correlation was also denoted between the effectiveness of the model and network route 
complexity or attack patterns.

5.1.4.3 Dynamic EDoS detection for SDN-based cloud Dinh and Park addressed multi-
variate time series anomaly detection for EDoS attack mitigation through a dynamic error 
thresholding model instead of static thresholding [40]. The proposed model employed an 
LSTM for unsupervised deep learning to predict user resource consumption (CPU load, 
memory usage, and TCP connections) based on historical data and live monitoring (SDN 
controller). This model also presented resource consumption forecasting using anom-
aly detection with dynamic threshold setting and deep learning [48]. Consequently, the 
model offered a customised strategy informed by previous data and realtime input. Sub-
stantial computational resources and processing time were also necessary in this model, 
such as an LSTM with an extremely long sequence of 250 packets. Conversely, this model 
yielded weak results during performance evaluation, raising doubt about its reliability.

5.1.4.4 Robust EDoS (R-EDoS) Dinh and Park proposed a multivariate time series 
anomaly detection model for the SDN-based cloud networks using RNN called robust 
EDoS (R-EDoS) [40]. This model was combined with variational autoencoder (VAE), 
linear Gaussian state-space models, and planar-flow techniques. The model detected 
anomalies by learning the standard data patterns. Simultaneously, input data was recon-
structed while the self-adjusted threshold further reduced the error. This model also 
solved the vanishing gradient problem, facilitated the identification of intricate patterns 
of temporal dependence through a gated recurrent unit (GRU), possessed an extensive 
model structure for detailed anomaly detection, enabled error rate reduction, and main-
tained interpretability through reconstruction probabilities. Nonetheless, the model 
could not accurately detect certain attack types (Yo-Yo and Slowloris), indicating a need 
for enhancement to accommodate a broader range of attack vectors [49].

5.1.4.5 P-Estimation Agarwal et al. pioneered the P-estimation detection model that 
integrated deep learning with discrete wavelet transformation (DWT) to recognise fraud-
ulent resource consumption (FRC) attacks on cloud services [42]. The model began by 
assessing the attack intensity to select a suitable LSTM model, employing DWT for data 
preprocessing and further classification based on web server logs. This model could also 
be continuously retrained to update the popularity of the web pages. Consequently, the 
combined novelty of DWT preprocessing and LSTM modelling enabled this strategy to 
assess attack strength subtly and adaptively respond to the fluctuating characteristics of 
online traffic, improving detection accuracy. Nonetheless, this model was complex due 
to several LSTMs for different attack intensities. This feature suggested longer sequence 
lengths, resulting in slower responses.
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5.1.4.6 Multihead attention network detection (MAN)-EDoS Ta and Park enhanced 
flow-based EDoS attack detection in SDNs utilising the flow-attention model [29]. A 
multihead attention network detection (MAN) model and multivariate time series 
analysis were observed in this model to facilitate the processing of flow features from 
the SDN controller to identify EDoS early. This model also collected the query, key, and 
value matrices to calculate the attention score for facilitating the identification of EDoS 
attacks by an NN trained on EDoS-specific data. Meanwhile, attention mechanisms in 
flow-based contexts transcended the limitations of RNNs, providing runtime adaptability 
to network flow fluctuations and enhancing detection accuracy. This model also incor-
porated computational demands to construct and utilise the query, key, and value matrix 
for calculating the attention score, affecting the efficiency and scalability of the model.

5.1.4.7 Two-phase DL-based EDoS detection Nhu and Park utilised ANN and LSTM 
as a two-phase deep learning detector for EDoS attacks [27]. This model overcame the 
disadvantages of traditional LSTM anomaly detection algorithms containing a long 
sequence and high computational costs. Initially, an ANN was used to identify the attack 
periods. After this identification, the LSTM could concentrate exclusively on these peri-
ods to drastically reduce the sequence length to five packets. Considering that the process 
narrowed efficiently to specific periods from ANN, computational resources and detec-
tion time could be reduced. This outcome rendered the model more efficient than the 
typical LSTM model. Conversely, the low accuracy of the initial detection phase period of 
ANN significantly impacted the model. This process undermined the overall effectiveness 
of the detection strategy [50]. Significantly enhanced procedures could also yield superior 
performance.

5.1.4.8 EDoS-bARRICADE Jones and Kumar extensively employed auto-scaling 
techniques with SVM classifiers [45]. The proposed EDoS detection and mitigation 
approaches emphasised distinguishing between attacked and normal VMs by tracking 
VM counts over time. An alert was then generated if VM numbers consistently rose over 
three consecutive periods, prompting the application of the BARRICADE algorithm for 
flow segregation and subsequent SVM classification into normal or attacked categories. 
Therefore, the auto-scaling-based detection approach was combined with an additional 
classification mechanism and SVM in a step-wise manner. This process aided in classify-
ing the EDoS attacks and enhanced cloud protection [51]. Nonetheless, the proposed 
model could result in abrupt increases in reaction time due to its dependence on the 
primary trigger associated with the escalation of consecutive VM counts.

5.1.4.9 Flow-based EDoS detection Ta and Park critiqued various current EDoS detec-
tion methods [45]. Previous articles demonstrated limited attack traffic features owing 
to the removal of network infrastructure effects. Thus, the article created an SDN and 
cloud-optimised EDoS detection model based on attention techniques [52]. This model 
computed the flow network attention scores from the SDN controller, improving the 
overall adaptability and accuracy in identifying EDoS flows. The model also integrated the 
attention mechanism with SDN to monitor alterations in flow characteristics, facilitating 
real-world application dynamically. Consequently, the proposed model was more accu-
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rate and presented higher response times. Nevertheless, the time processing of attention 
scores necessitated increased computational complexity and demands.

5.1.4.10 Deep belief network (DBN)-SVM for EDoS and DDoS detection Dennis and 
Priya applied the most optimal deep learning algorithms in a security system to detect 
EDoS and DDoS threats in cloud computing [42]. The proposed model contained four 
primary components: (i) feature selection, (ii) deep belief networks (DBNs) for pattern 
recognition, (iii) SVMs to differentiate between normal and attack traffic, and (iv) hyper-
parameter optimisation for higher DBN-SVM model performance. Consequently, the 
article demonstrated high efficiency with a true positive rate (TPR) and true negative rate 
(TNR) of 99.8% and 99.9%, respectively. These exceptional TPR and TNR rates indicated 
the successful integration of advanced techniques to produce highly accurate detection of 
threats. Nonetheless, challenges could occur due to the complexity of implementing and 
maintaining the sophisticated model [52–54].

5.1.4.11 WEB-TRAP Wang et al. resolved EDoS attacks targeting web systems based on 
a dynamic defence model (WEB-TRAP) [11]. This model consisted of two major strate-
gies: (i) changing the online resource address for moving target defence and (ii) real-time 
trap injection for intruder detection. Legitimate clients and costs were also protected 
by using an online controlling system management. Consequently, this model was an 
effective cost-reduction strategy for defenders in various attack scenarios by providing 
dynamically changing resource addresses while injecting traps. Nevertheless, this model 
could not distinguish between legitimate and malicious clients, affecting genuine users.

5.1.4.12 Data science techniques for EDoS detection Courtney et al. applied various 
data science techniques (statistical analysis, time series, ANN, and k-NN) as a model to 
detect FRC threats in the cloud [55]. This model acknowledged the constraints of each 
method when utilised in isolation and proposed an ensemble strategy containing Zipf ’s 
Law, Spearman, and overlap for better accuracy. NASA dataset under various attack sce-
narios was also employed to test the mode for lowering the false positives while enhanc-
ing low-intensity attack detection. Consequently, the model offered a more robust solu-
tion with lower false positives due to the improved FRC attack detection capabilities. 
Nonetheless, current cloud traffic was not accurately represented owing to the reliance 
on an outdated NASA dataset and limited data attributes, impacting the effectiveness of 
the model.

5.1.5 Attribution techniques

This section reviews two articles involving attribution-based models for protecting cloud 
environments. Table 8 presents the findings and summaries of these articles.

5.1.5.1 Attribution of FRC Idziorek et al. identified malicious web activity using an attri-
bution methodology [43]. The model analysed weblogs for deviations in client behav-
iour, such as request volume, session metrics, and chi-square statistics. The client behav-
iour was also classified using a comparative analysis between the overall attribution and 
threshold scores [58]. This approach also detected anomalies by systematically examining 
the main factors of web browsing behaviour, offering a structured method for distinguish-
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ing between benign and malicious clients. Nonetheless, the efficiency of the model could 
be undermined if attackers replicated typical request patterns, potentially evading detec-
tion.

5.1.5.2 Attribution of EDoS attacks Karami et al. profiled authorised user resource con-
sumption and detected FRC based on a model using two Markov-based models [44]. This 
technique modelled user behaviour and costs over time by segmenting resources by size 
and user request data, identifying malicious activity when the total request values sur-
passed a predefined threshold [59]. The model also effectively captured resource requests 
and consumption patterns, providing a sophisticated approach to distinguishing between 
legitimate and fraudulent activity based on the financial implications of requests. Con-
versely, the dependence on sustaining minimal frequencies of fraudulent requests to 
simulate authentic user behaviour could fail to identify sophisticated attackers skilfully 
integrated with normal activities.

5.2 Prevention-based strategies

These strategies are designed to proactively prevent EDoS attacks by limiting the sys-
tem’s exposure to suspicious traffic or by controlling resource access. The common tech-
niques include static thresholds, access control policies, and resource filtering based on 
heuristics.

5.2.1 Static threshold models

This section critically reviews eight articles containing models for defending cloud envi-
ronments from EDoS attacks [69]. These articles demonstrated static threshold-based 
models in which legitimate users could access the system while attackers and suspicious 
were blocked. Table 9 tabulates the information obtained from these articles.

5.2.2 Time Spent Profile (TSP)

Koduru et al. established that the time spent profile (TSP) model for detecting EDoS 
attacks relied on a user’s duration on a web page [38]. This model leveraged the dif-
ference in the TSP behaviour for sophisticated bots and normal traffic, rendering the 
behaviour mimicking the process of normal users challenging for an attacker. The mean 
absolute deviation (MAD) was also employed to categorise normal and malicious traffic 

Table 8 Summary of attribution-based models for EDoS attacks
Author Approach Description Limitation
[43] Attribution 

methodology
Various information from weblogs could be extracted 
from the attribution methodology (statistical method), 
including request volume, web session, session length, 
and average session length. The fundamental concept 
was that the attacker could not predict regular client 
behaviour on a specific website. Thus, any divergence or 
deviation was classified as hostile traffic.

• Given that the at-
tacker could mimic 
the legitimate user 
behaviour (request 
rate per session 
and session length, 
low accuracy was 
observed.

[44] Attribution of 
EDoS (Markov 
and Semi-Markov 
models)

The proposed model was an anomaly-based detector 
containing two Markov models in parallel to detect EDoS 
attacks: (i) the Markov Chain Model and (ii) the Hidden 
Semi-Markov Model. This model relied on the resource 
usage footprint of users and the user profile patterns 
derived from weblogs.

• This model lacked 
evaluation metrics.
• A high false rate 
was denoted.
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Author Concept Approach Description Limitation
[31] Control virtual 

resource access 
to the cloud

Static 
thresholds 
for CPU 
usage, CRPS, 
UTF, and 
GTT

The architecture of this model contained 
VF, LB, DB, and VMInvestigator. Both VF 
and a blacklist table was used to filter the 
incoming requests. The user requested 
that the blacklist be submitted directly to 
the VMInvestigator for further processing. 
Meanwhile, the LB managed the equitable 
distribution of requests to designated 
virtual machines while monitoring and 
automatically scaling cloud resources. The 
VMInvestigator was also responsible for 
generating GTTs and checking user replies. 
Furthermore, this X included a UTF that 
evaluated the user’s trustworthiness based 
on the correct answers to the GTTs within a 
specified period.

• This model revealed 
end-to-end latency 
(more response 
time).
• The entire NAT-IP 
was blocked due to a 
single attacker IP.
• False error rate 
owing to static 
thresholds.

[45] CloudWatch Static 
thresholds

The CloudWatch model monitored the 
AWS resource and the corresponding 
real-time applications. Each AWS consumer 
could establish limits for any service they 
rent from Amazon based on various factors 
(price, size, service type. This monitoring 
model [CloudWatch (alarms)] could send 
notifications or automatically modify the 
client’s monitored resources based on the 
predefined rules.

• The cloud elasticity 
feature was limited.
• Clients must recog-
nise their require-
ments and services 
to establish limits 
and rules.

[22] APART Pattern 
recognition 
and static 
frequency 
threshold

The APART model applied pattern 
recognition through an anomaly-based 
technique. Moreover, the packet deliveries 
from various nodes from 400 Hz to 800 Hz 
presented the attack properties. This model 
detected severe attacks in the specified 
range.

• The complex-
ity increased when 
more components 
(VF, VMInvestigator, 
VMscheduler) were 
added,
• The authors failed to 
describe and explain 
their model clearly.

[46] HRF Static HTTP 
request 
threshold

This queuing-based model contained 
WAF and three lists for classifying users 
(white, block, and unknown). The model 
was based on a three-phase mechanism 
(RF, NA, and RA), in which the fundamental 
concept was a firewall (WAF), a validating 
node (S3 bucket) to assess whitelist and 
blacklist, and Lamada to check thresholds 
with period while updating the WAF lists. 
This model also utilised CloudWatch to 
check all activities and send notifications.

• A specified thresh-
old presented dif-
ficulties in identifying 
the optimal value.
• The model was pre-
sumed to function 
correctly if the traffic 
adhered to a Poisson 
distribution.

[47] (EDoS-ADS) Static 
thresholds 
for CPU use 
and dura-
tion timers

The EDoS-ADS model contained three 
main components based on CPU utilisation 
and duration: (i) LB, (ii) DB, and (iii) DS. The 
article proposed four threshold values and 
two duration timers: scale-up upper and 
lower values, scale-down upper and lower 
values, 80%, 75%, 35% and 30%, respective-
ly. This scale up and down were 5 min and 
1 min, respectively. Moreover, the model 
possessed four operation modes (Normal, 
Attack, Suspicion and Overcrowd) while 
using URL redirection and GTT.

• This model revealed 
higher overhead due 
to the blacklist table.
• This model revealed 
a false positive rate 
owing to the static 
threshold.
• False negative when 
an attacker could 
predict the system 
scalability limits.

Table 9 Summary of static threshold-based models for EDoS attacks
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based on the extent of TSP deviation from the standard conditions. This model pos-
sessed significant promise, given that TSP innovatively provided user interaction pat-
terns. Several pattern examples included time spent on a page for EDoS attack detection 
and unique model creation that an attacker might find challenging to anticipate and 
counteract.

Author Concept Approach Description Limitation
[23] EDoS-ADS Static 

thresholds 
for CPU use, 
duration 
timers, CRPS, 
VM number, 
and GTT for 
suspicious 
users.

A Yo-Yo attack demonstrated a limitation 
in the EDoS-ADS model proposed by 
Shawahna et al., wherein the attacker could 
mislead the EDoS-ADS mechanism without 
triggering attack mode [38]. The enhanced 
EDoS-ADS model was then introduced 
to overcome this constraint. Initially, a 
challenging process for an attacker to 
anticipate when to scale up or down was 
created by producing at least two scaling 
policies. The process could then be classi-
fied as suspicious, prompting the issuance 
of a GTT to the user if the user behaviour 
produced periodic high CRPS and periodic 
zeros. Finally, restricting the number of 
virtual machines accessible for scaling up 
was limited to mitigate financial losses.

• This model could 
only function against 
Yo-Yo attacks (EDoS 
variant).
• Despite the sug-
gested mechanism 
that could lower 
expenses, this model 
could eliminate the 
cloud scalability fea-
ture while affecting 
the cloud availability 
feature.

[24] EDoS-IDM Static 
thresholds 
for packet 
size and 
static time 
threshold

The ICMP detection and mitigation model 
was proposed in this statistical method 
to mitigate the impact of volumetric and 
typical behavioural ICMP traffic attacks 
on cloud environments utilising SDN. This 
EDOS-IDM model employed an n-time 
method, whereas the detected ICMP traffic 
was only allowed for n times if the ICMP 
packet size was less than or equal to 64 
bytes. A cloud gateway for d-time also 
stopped the ICMP traffic after n-time.

• Like other statistical 
solutions, this model 
necessitated pre-
defining several hard 
thresholds (packet 
size and duration). 
Thus, setting up the 
threshold value was 
challenging.
• This model revealed 
a false rate due to 
hard thresholds.
• The model could 
only detect and 
mitigate one specific 
EDoS attack (ICMP 
attack), neglecting 
other EDoS attack 
types.

[48] TSP as a 
criterion 
for EDoS 
detection

Even though the bot machines were well-
developed, the created TSPs differed from 
the average TSPs observed for real traffic. 
Therefore, attackers could not predict 
the average TSP of a page on the target 
website and devise a strategy accordingly. 
The TSP of the attacker’s queries also dif-
fered dramatically from the interpretation 
of regular requests. Consequently, the MAD 
of the TSP served as a critical criterion in 
discriminating between legitimate and 
illegal traffic. This model also generated TSP 
and MAD charts, which the administrator 
could monitor.

• A significant 
restriction involving 
human interaction 
for monitoring and 
analysing plots was 
required, which was 
unfeasible.
• The model was 
more pertinent to 
e-commerce than 
EDoS detection.

Notes: APART = Adaptive pattern attack recognition technique; HRF = HTTP request filtering; CRPS = Concurrent request 
per second; UTF = User trust factor: TSP = Time spent profile; AWS = Amazon web services; WAF = Web application firewall; 
RF = Request filter; NA = Network analyser; RA = Request analyser. DS = Defence shell; MAD = Mean absolute deviation

Table 9 (continued) 
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The model demonstrated several limitations, and its effectiveness could be diminished 
by legitimate user behaviour deviations in producing false positives. Other vital attack 
vectors also frequently get obscured due to the emphasis on time-based metrics. None-
theless, this model necessitated manual intervention for checking and analysing TSP and 
MAD charts, making it impractical for real-world applications.

5.3 Migration- based strategies

Mitigation techniques aim to minimize the impact of EDoS attacks once they are 
detected. These include using firewalls, blacklists, puzzle servers, and scrubbing services 
to block or deflect attack traffic, ensuring continuity of service.

5.3.1 In-cloud scrubbers and puzzle servers

The most interested studies which utilized In-Cloud Scrubbers and Puzzle Servers are 
investigated in this section.

5.3.1.1 In-cloud scrubber A model as an additional service called In-Cloud Scrubber 
was proposed by Kumar et al. [18]. The model prevented EDoS attacks by creating and 
validating cryptographic puzzles to verify users’ legitimacy. This process was performed 
in two modes (normal and suspected) based on the bandwidth levels and resources. The 
normal mode involved server resources and bandwidth within the established thresholds. 
On the contrary, these thresholds were exceeded in the suspected mode. The suspected 
mode increased or decreased the difficulty of the puzzles with high or low resources, 
bandwidth, and usage, respectively [19].

The model possessed a notable feature. This model supported normal and suspected 
modes, determining the current bandwidth and server resources. Thus, this flexibility 
enabled the maintenance of a normal operating mode, wherein users were presented 
with low-difficulty puzzles. Higher puzzle difficulty was also displayed when a threat to 
the system resource occurred or the bandwidth exceeded a specific limit. This escala-
tion functioned as an effective deterrence against attacks by complicating access to the 
service. Additional resources were also allocated to the service, discouraging prospec-
tive assaults. Moreover, different puzzle characteristics (influenced by appeal level to the 
user and resource with bandwidth availability) enhanced the capacity of the model to 
address threats while safeguarding the cloud resources.

The model presented several constraints. Lower legitimate user experience was 
observed when gradually introducing and varying cryptographic puzzles. One notable 
example was the model erroneously assumed that users seeking access to cloud com-
puting services had malicious intent during high-demand periods. This procedure could 
lead the users into the suspecting mode, serving real cloud consumers with unneces-
sary weak-end challenges. Consequently, cloud services became unappealing due to time 
constraints.

The effectiveness of this model was contingent upon the accurately established nor-
mal and perceived thresholds. Given that these thresholds were influenced by the chang-
ing level of valid service consumption, establishing excessively high or low thresholds 
could result in dissatisfied users who have previously resisted superficial scrutiny. Oth-
erwise, the model could neglect actual EDoS attacks. Puzzle solutions also did not pre-
clude the scenario in which complicated forensic teams establish regulatory mechanisms 
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to automate undistorted puzzle comprehension (nullifying the benefit). Likewise, the 
model necessitated unanticipated expenditures due to the requirement for additional 
treasuries and more complex cloud infrastructure.

5.3.1.2 In-cloud service VivinSandar and Shenai created a two-pronged model to detect 
and mitigate EDoS attacks by introducing a combination of a firewall containing whitelists 
with blacklists and a puzzle server [19]. The puzzle server was employed to replace the 
VNs. Overall, this process represented an optimal implementation in which the system 
was most effective against EDoS attacks. The two-pronged model was constructed based 
on two stages. Initially, a firewall containing whitelists and blacklists filtered the incom-
ing traffic, preventing the registration of inactive users or facilitating this process through 
early filtering. This additional security measure further enhanced the effectiveness of the 
puzzle server. Considering that this stage managed unverified traffic by overwhelming it 
with diverse computational obstacles, an active defence against possible intruders was 
presented.

This set of measures enhanced the security framework while adjusting puzzle com-
plexity based on the assessed threat level, providing a robust solution against various 
intensities of DDoS attacks [20]. Nonetheless, the proposed model was still not opti-
mal. An additional puzzle server created a potential vulnerability in the system, which 
attackers could penetrate or flood with complex queries. This puzzle server was also 
dependent on the puzzles. If the puzzle difficulty was not correctly calibrated, the puzzle 
server failed to function for the defined period. Thus, a sufficiently simplistic possibility 
could occur, allowing hackers to breach them and obstruct traffic, hindering legitimate 
users’ access.

An updated whitelist and blacklist were challenging, necessitating an accurate depic-
tion of threats and actual traffic patterns. This precise depiction could stabilise the 
implementation of administrative measures and advance highly sophisticated monitor-
ing systems. Consequently, this two-pronged model required additional computational 
resources and capital, potentially leading to increased costs for maintaining cloud ser-
vices. Despite this two-pronged model offering a promising strategy for mitigating EDoS 
attacks, careful implementation and ongoing management were still needed to balance 
security needs against usability and cost factors.

5.3.1.3 DDoS-MS The DDoS-MS model prevents DDoS and EDoS attacks through a 
defence system by inspecting the incoming packets in a two-phase process. A GTT ini-
tially assesses the first packet, after which a random packet is selected to obtain a crypto-
puzzle for the subsequent evaluation. Firewall partitioning has also recently been imple-
mented with temporary and permanent whitelists and blacklists. These firewalls generally 
filter and block unauthorised traffic [34]. Additionally, the primary function of the model 
lies in its multi-layered structure and specific selections during packet analysis. This anal-
ysis involves deconstructing a user’s first packet using GTT. Concurrently, another packet 
is randomly chosen for evaluation using the crypto-puzzle. These observations suggest a 
lower user’s capacity for anonymity, facilitating the comparison of genuine users and the 
passive attack potentials based on GTT and crypto-puzzle [60].

A firewall containing whitelists with blacklists and their corresponding categorisation 
(temporary and permanent classifications) can facilitate more advanced and dynamic 
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access control. This comprehensive model enables the system to adapt to various attack 
methods and intensities, ensuring robust protection against DDoS and EDoS attacks by 
minimising false positives and negatives through user validation. Conversely, several 
limitations are observed within the model. The benefits of authenticity derived from this 
procedure are enduring and more expansive than the gateways traversed by the user. 
Even though the model is secure, extra latency can be introduced into the system due 
to the complexity of the two-packet assessment process. Therefore, user experience can 
weaken when the model filters out innocent users.

The difficulty of GTT and crypto-puzzle must be balanced to avoid any impact on the 
influx of authentic traffic, which can be challenging to achieve precisely. Meanwhile, the 
blacklist and whitelist management (temporary and permanent subdivisions) should 
be constantly updated and maintained to reflect the current threat landscape and user 
behaviours appropriately. This duty can prove challenging for IT administrators, who 
must possess the appropriate tools for accurate network tracking. A comprehensive 
protection model can then necessitate significant resource allocation and infrastructure 
deployment, affecting the overall cost-effectiveness of the solution.

5.3.1.4 Enhanced DDoS-MS Alosaimi et al. produced the enhanced DDoS-MS model 
containing several components, including a firewall, VN, puzzle server, intrusion pre-
vention system (IPS), and reverse proxy (RP) [34]. A firewall was utilised to oversee the 
protection system while the VN performed the GTT and updated the firewall. The IPS 
monitored packets for malicious activity, masked the victim cloud server using RP, con-
trolled the load balancer (LB), and monitored the incoming traffic volume. Likewise, the 
client puzzle server limited the activities of suspicious users identified by RP [35]. Con-
sequently, this model improved the previous DDoS-MS by including additional security 
levels (RP) while factoring the TTL value to check user authenticity.

A principal advantage of this model was its multilevel defence strategy, enhancing the 
overall robustness of the protective system. The firewall acted as the first layer of defence 
in executing access control and traffic filtering. Subsequently, the VN further helped dis-
criminate between legitimate users and possible attackers during GTT by updating the 
rules of the firewall regarding its assessments. The IPS component finally checked pack-
ets against established signature patterns, denoting malicious activity as an extra secu-
rity layer [61]. Overall, the primary conditions for utilising an RP include concealing the 
target cloud server from the outset of a direct attack while facilitating load balancing and 
traffic volume monitoring to enhance efficiency and security. The client puzzle server 
then throttled RP by restricting suspected users, effectively curtailing the opportunities 
available to the attacker (reducing the impact of user activity).

The model demonstrated several limitations. Numerous processes and compo-
nents could be challenging in this method, such as system configuration, manage-
ment, maintenance, firewall integration, VN, puzzle server, IPS, and RP. Hence, each 
component needed to be laboriously calibrated and synchronised with other elements 
to attain optimal performance and security, which was resource-intensive. Meanwhile, 
GTT and client-puzzle were theoretically sound. Nevertheless, both techniques could 
adversely affect clients in practice due to potential false positives or excessive challenges 
imposed on valid service users. Another issue was the effectiveness of the IPS for finding 
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malicious activities. This component was contingent upon the strategies employed in an 
attack, frequently requiring constant updating and tuning to adapt to evolving threats.

Even though RP was useful for abstracting the cloud server and managing traffic, 
latency and a bottleneck during high traffic conditions could be denoted. The necessity 
for all components of this strategy to function cohesively continuously also demanded 
significant administrative effort and was likely to incur substantial operational costs.

5.3.1.5 EDoS-7 Rao and Nene generated the EDoS-7 model containing a behaviour 
analysis framework based on two main building blocks [26]. Firstly, the SED functioned 
as a firewall and filtered the incoming requests through flow tables. Secondly, the GSC 
served as a VN in a virtual machine to determine legitimate or malicious requests by 
initiating and verifying GTT. Upon verification, the SED updated the legitimate requests 
accordingly [26]. A primary advantage of this model was the integration of flow-based 
request management mechanisms with behavioural analysis to enhance cloud security. 
The first line of defence to traffic involved the SED component regulating the flow of 
incoming requests using flow tables. This process effectively managed valid user requests 
and filtered potential attack routes.

The next stage included the GSC component, in which GTT conducted additional dis-
crimination between authentic and malicious requests. This procedure guaranteed that 
the SED operation was influenced solely by verified requests, significantly diminishing 
the likelihood of a successful EDoS attack. The reliance on GTT also introduced another 
measurement layer (additional metric for security), as human user interactions facili-
tated the identification of malicious behaviours within cloud resources.

Numerous limitations still exist for the model. Latency within the system was exhib-
ited when over-relying on GTT, impacting the user experience for legitimate users. This 
process could cause delays or additional issues for users using cloud services. The effec-
tiveness and correctness of SED and GSC were also significantly correlated with the flow 
table configuration and parameter setup of GTT. Therefore, careful calibration and con-
tinuous maintenance were necessary due to the evolving attack patterns and valid user 
behaviour.

Another issue involved the scaling challenge, which presented an increasing incoming 
request volume. This process could render the flow-based management (SED) and the 
verification process (GSC) increasingly challenging and resource-intensive to maintain 
efficiency and accuracy. Likewise, the virtual machine component in this model could 
increase overhead within the cloud infrastructure. The scaling factor was also a potential 
issue, and the overall efficacy of the model hinged on its ability to consistently update 
and enhance its behavioural analysis to combat the intricate and continuously evolving 
EDoS attack strategies. Consequently, enormous investments in monitoring, analysis, 
and response capabilities were necessary.

5.3.1.6 Control virtual access to the cloud Baig and Binbeshr proposed an EDoS model 
containing four components (VF, LB, DB, and VMInvestigator) [31]. The VF filtered the 
incoming requests, rejecting those originating blacklisted entities. The VMInvestiga-
tor inspected these entities. The LB also managed the request of requests of the virtual 
machines, whereas the VMInvestigator created GTTs to examine user trustworthiness 
concerning the accuracy and timeliness of the users’ responses. This approach integrated 
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quasi-static thresholds for CPU utilisation and request rates with user authentication 
verification through a user trust factor (UTF) metric. Potential threats included EDoS 
attacks [31].

The suggested multi-layered cloud EDoS defence model possessed numerous 
strengths, with architecture taking precedence. This technique was robust and observed 
in high and low-level architectures comprising VF, LB, DB, and VMInvestigator. Conse-
quently, a stratified defence strategy was facilitated, improving the security posture of 
the cloud environment [62]. The VF also operated using a pre-established table of black-
listed entities, enabling fast filtering of identified threats and reducing the likelihood of 
malicious traffic affecting cloud resources.

The LB component monitored and dynamically readjusted the utilised cloud resources 
to prevent the overloading of virtual machines. This process was accomplished by dis-
tributing requests evenly for all VMs, ensuring efficient use of resources. Alternatively, 
the generated GTTs (VMInvestigator) and UTF evaluation introduced a new mecha-
nism for verifying user legitimacy. This procedure strengthened the security mechanism 
by distinguishing genuine users from prospective attackers through system interaction.

Several constraints were observed with this model. The VF relied on a static black-
list, which could inadequately identify novel attack methodologies (reactive in nature). 
Advanced attackers could also decrease the effectiveness of the established GTT (VMIn-
vestigator) or the reliability of UTF. Additionally, false positives influencing legitimate 
users could occur due to the nature of CPU use with request rate thresholds (static) and 
cloud (dynamic). The complexity of this multi-component model could also pose opera-
tional challenges, demanding substantial resources and expertise for balanced security 
and performance.

5.3.1.7 Adaptive Pattern Attack Recognition Technique (APART) Amazon introduced 
the adaptive pattern attack recognition technique (APART) as an anomaly detection 
model based on traffic pattern analysis to identify traffic attacks [36]. This model per-
formed network traffic flow monitoring and static request rate threshold analysis to 
identify potential threats. One notable threat example involved high-frequency request 
attacks from multiple sources from 400  Hz to 800  Hz [23]. Nevertheless, this model 
entailed a significant dependence on static thresholds for evaluating request rates, result-
ing in numerous false positives that undermined the effectiveness of the model. Most 
of the algorithms and operational details were also not specified, indicating that further 
clarification was required.

5.3.1.8 HTTP Request Filtering (HRF) Rao et al. described an HTTP request filtering 
(HRF) model used in classifying users based on a web application firewall (WAF) contain-
ing three different lists (white, black, and unknown categories) [36]. The decision process 
of HRF was accomplished through three steps: (i) request filter (RF), (ii) network analyser 
(NA), and request analyser (RA). A verifying node for list management and verification 
(S3 bucket and Lambda functions) was employed, while activity monitoring and notifica-
tions are based on CloudWatch.

The proposed model presented various advantages. One benefit was its organised 
framework, which enhanced security and connected with Amazon web services (AWS) 
for real-time monitoring and response. This model effectively prevented EDoS attacks 
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using the HRF mechanism by considering latency, resource usage, and cost performance 
metrics. Conversely, the limitation of this model involved the reliance on static lists and 
thresholds, resulting in its inability to adapt to new attack vectors. The complexity and 
maintainability of the model also introduced operational challenges and higher costs. 
Moreover, this evaluation could overlook other critical considerations (user privacy or 
accuracy in the user classification).

5.3.1.9 EDoS-ADS Shawahna et al. introduced the EDoS-ADS model based on a defen-
sive shell designed to reduce EDoS attacks using static thresholds of CPU usage and scal-
ing periods [38]. This process enabled scaling CPU resources within a predetermined 
limit and duration, triggering EDoS-shell when thresholds were reached. Various perfor-
mance and effectiveness metrics of this model included response time, throughput, and 
cost performance [37]. The model exhibited advantages in its straightforward scalability 
of resources. Consequently, the defence mechanism was straightforward and cost-effec-
tive in managing EDoS threats. The evaluation criteria also addressed vital performance 
aspects of a system, ensuring operational efficiency.

One limitation observed in the model was the static thresholds, which increased the 
likelihood of false positives due to rigid threshold parameters. This constraint was also 
a foundation for attackers regarding the predictability of the scaling limitations of the 
system, increasing false negative risks and compromising the effectiveness of the model 
security.

5.3.1.10 Enhanced EDoS-ADS Ko et al. [23]. criticised the EDoS-ADS model proposed 
by Shawahna et al. [38]., which was vulnerable to Yo-Yo attacks. These attacks were 
an EDoS attack type that could circumvent this system undetected by not engaging it 
directly. Thus, the enhanced EDoS-ADS was developed by implementing a more robust 
defence mechanism. This enhanced system contained three logical phases: (i) dual scal-
ing policies masking the scaling triggers from the attackers, (ii) continuous monitoring 
for user behaviour to detect anomalies (high request rates or unusual activity patterns, 
and (iii) virtual machine limits for cost control [24]. The enhanced EDoS-ADS model 
leveraged a multi-layered strategy, making it difficult for an attacker to anticipate system 
reactions by strengthening its defence against EDoS attacks [63].

Analysing user behaviour and establishing scaling restrictions could diminish false 
positives and the financial impacts of allocating unnecessary resources. Nonetheless, 
this process created complexity and increased operating needs involving monitoring 
user behaviour and scaling policies. A strict limit on scaling resources could also hinder 
the management of legitimate traffic at peak periods, leading to possible shortages in 
service availability and a lower user experience quality.

5.3.1.11 EDoS-IDM The work criticises the Defence System EDoS-ADS of [38], show-
ing its vulnerability to Yo-Yo attacks, a variety of EDoS attacks that could avoid this sys-
tem without being detected because of not attacking it directly. To solve this research, 
once more an enhanced version of EDoS-ADS was developed, this time implementing a 
stronger defence mechanism. This enhanced system is based on three logical phases: it 
employs dual scaling policies, which would mask the scaling triggers from the attackers; 
continuous monitoring for user behavior to notice the anomalies in terms of high request 
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rates or unusual patterns of activities; and capping virtual machines to be scaled for cost 
control [64]. The enhanced EDoS-ADS derives its power from its multi-layered approach, 
wherein it is complex for an attack to predict system responses, hence its defense position 
in an EDoS attack. User behavior analysis and setting scaling limits would clearly reduce 
false positives and the financial impacts of allocating unnecessary resources.

But this in return will introduce complexity and perhaps higher demands from an 
operational perspective. This would involve continuously monitoring the behavior of 
users, several policies for scaling, in which hard scale points may require administra-
tive effort and resources to set. Moreover, setting a hard cap on scaling resources may 
obstruct the handling of legitimate traffic during peak demands, leading to possible 
shortages in service availability and a corresponding decrease in the quality of user 
experience.

5.4 Hybrid/integrated strategies

Hybrid models combine elements of detection, prevention, and mitigation into unified 
frameworks. These may incorporate entropy-based detection, machine learning, behav-
ioral analysis, honeypots, and game theory for robust defenses.

This section reviews 18 articles on defence mechanisms against EDoS attacks in cloud 
environments, employing multiple models within each solution. Table  10 summarises 
these articles.

5.4.1 Zipf’s law-entropy

Idziorek and Tannian described a dual-method model for detecting FRC attacks [49]. 
The strategy combined Zipf ’s law and entropy to analyse consumption patterns and 
determine unusual behaviour. Likewise, the anomalies were created by the deviations 
from the expected traffic patterns or session time. Considering that the consumption 
patterns and session behaviours were assessed for potential FRC attacks, this model 
was deemed a holistic approach. Zipf ’s law was based on quantity indicator, while the 
entropy-based technique relied on session time for detection accuracy. Nevertheless, 
high false positive levels were denoted within these methods.

5.4.2 EDoS and DDoS shield

Mary et al. mitigated EDoS attacks using a model combining cloud traceback (CTB), 
cloud protector (CP), and EDoS-Shield [21]. The EDoS-Shield checked the legitimacy 
of users. On the contrary, the CTB identified request sources using the DPM algorithm. 
The CP also used backpropagation and NNs to detect and lower DDoS-EDoS traffic. 
Thus, this multi-component model was robust as it involved three primary features: (i) 
legitimacy checking of users, (ii) attack origin identification, and (iii) malicious traffic 
filtration. Although the model employed by CTB effectively traced the origin of requests, 
the active detection of malicious traffic was neglected (undermining the overall defence 
strategy).

5.4.3 ARMOR

Masood et al. employed congestion and admission control to produce the EDoS Armor 
as a two-tier e-commerce security model [25]. Several phases occurred in this model, 
including a challenge mechanism for user authentication and categorising legitimate and 
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Author Approach Description Limitation
[49] Zipf’s law 

and entropy
Two methodologies are employed to detect FRC 
as follows:
• Zipf’s law to analyse the user consumption 
pattern.
• The entropy-based method to detect anomalous 
behaviour.

• The first methodology as-
sumed that the normal traffic 
pattern followed Zipf’s law. 
Any deviation from this law 
was considered anomalous.
• False rates were observed 
due to Zipf’s Law only focus-
ing on quantity metrics (num-
ber of requests per session 
and login).
• The entropy-based method 
emphasised session length, 
which was inadequate for 
precise identification. This 
process produced significant 
false positive rates.

[21] GTT and 
machine 
learning 
algorithms 
(BP-NN)

Several primary components are observed in the 
model as follows:
• Combined EDoS shield, CTB, and CP
• The EDoS-Shield was responsible for deciding the 
user legitimacy.
• The CTB was based on the DPM algorithm to 
detect the source of the request origin.
• The CP utilised BP-NN machine learning 
algorithms.

• Considering that this model 
employed a similar approach 
to EDoS-Shield, it possessed 
identical limitations and failed 
to enhance EDoS detection.
• The CTB and CP were EDoS-
Shield extensions that did not 
contribute to the detection 
process. These extensions only 
identified the source of the at-
tack, adding to the complexity 
of the methodology.
• This model presented 
increased response time.

[25] Crypto-
puzzle, user 
number limit, 
and user 
priorities

This model used a two-tiered approach for e-
commerce websites: (i) admission and (ii) conges-
tion controls. The number of concurrent clients 
using cloud services was limited, and admission 
control was used to restrict them. In contrast, the 
congestion control prioritised permitted custom-
ers based on a browsing behaviour learning 
mechanism. Furthermore, the learning method 
evaluated clients as favourable or unfavourable 
based on their system activity. A challenge server 
was also included to decide whether the user was 
a bot or a human before delivering the request to 
the control.

• This model presented limited 
cloud elasticity and avail-
ability due to user capacity 
constraints.
• This model presented 
increased response time for 
genuine users owing to the 
learning system and priority 
upgrading.
• The IP spoofing was not 
considered.
• New users could become dis-
interested due to the difficulty 
of the login process.
• This model appeared to 
be for optimising the e-
commerce page usage rather 
than detecting or protecting a 
system against EDoS attacks.

[30] Flow-based 
monitoring 
statistical 
anomaly 
detection

This statistical anomaly-detection model consisted 
of three modules: (i) data preparation, (ii) detec-
tion, and (iii) mitigation. The first phase involved 
flow-based monitoring and collection using a 
sFlow agent, which was forwarded to the second 
phase. The second phase collected and examined 
anomaly detection, extracting the necessary 
information. Finally, the alarm was generated in 
the third, blocking the attacking IP.

• The spoofed IP was not 
addressed.

Table 10 Summary of hybrid-based models for EDoS attacks



Page 31 of 46Sahar Saeed  et al. Discover Internet of Things            (2025) 5:79 

Author Approach Description Limitation
[13] Static game 

theo-
retical and 
honeypots

This model was a game-theoretical approach to 
EDoS mitigation in a static game scenario func-
tioning as an analytical model to detect the appro-
priate threshold value based on Nash equilibrium. 
The attacker and defender (network administrator) 
were observed as a two-player model. Thus, the 
honeypots reduced the number of false posi-
tives. Meanwhile, the overarching design of the 
EDoS-Eye project indicated that the edge router 
served as the entry point for malicious and benign 
inbound traffic flows. Although the model pro-
cessed the traffic, it could not distinguish between 
attack and genuine traffic. The aggregate flow was 
then equally distributed using an LB.

• The technique for solving 
games with mixed strategies 
was particularly complex 
when dealing with a large pay-
ment matrix.
• The attack traffic was as-
sumed to follow Poisson 
distribution. Nevertheless, the 
system stability limit of the 
Poisson distribution value was 
below 1.
• Attackers could detect the 
static honeypots and avoid 
them.

[50] Entropy and 
adaptive 
thresholds

This model effectively detected unexpected 
behaviours concerning erroneous signals for 
resource allocation based on entropy and setting 
adaptive thresholds. The three main stages of the 
EDoS detection approach were monitoring with 
aggregation, detection, and decision-making.

[11] Dynamic 
address 
changing 
of resources 
and real-time 
injection 
traps

A WEBTRAP security model could stop EDoS 
attacks on web-based systems. This model 
contained two essential components: (i) dynamic 
modification of online resource addresses for a 
moving target defence and (ii) real-time trap inser-
tion to detect intruders. An online control-based 
system governed the trap injection to limit harm 
to legitimate consumers while cutting costs.

• The security model could not 
recognise legitimate users and 
attackers.

[51] GTT and 
predefined 
Thresholds

The model comprised two primary components: 
(i) VNs and (ii) firewall. The VN and FW utilised 
GTT and predefined thresholds, respectively. 
These components collaboratively obstructed 
unauthorised IPs while allowing the authenticated 
IPs. The model also measured the time response 
and computing power consumption to evaluate 
strategy performance.

• The metrics for the solu-
tion performance were not 
sufficient.

[52] MLAR protec-
tion against 
EDoS

The suggested model protected the cloud against 
EDoS assaults by combining periodic authentica-
tion, pattern analysis, and data flow management 
mechanisms. This model could mitigate financial 
losses caused by EDoS attacks.

• This model required more 
computing complexity.
• This model needed more 
response time.
• This model was not appropri-
ately evaluated, raising con-
cerns regarding its efficiency 
in a real-time environment.

[53] Machine 
learning and 
fuzzy entropy

This model contained three phases based on 
machine learning algorithms and fuzzy entropy 
to mitigate EDoS attacks. The first phase extracted 
the log file from the data and built the DB for 
multiple features. The second phase used fuzzy 
entropy to extract the most proper features. The 
last phase employed an LNL algorithm to classify 
the traffic as attacker and authenticated.

• High error rates were 
observed due to predefined 
rules.
• The model was complex in 
producing the result.

Table 10 (continued) 
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Author Approach Description Limitation
[54] Deep learn-

ing, static 
threshold for 
requests per 
hour, and 
DWT

The scenario of the model was initiated by divid-
ing the webpage into several quantiles based on 
the popularity index. Subsequently, the number 
of requests per hour was computed. The DWT was 
applied as a filtration mechanism before inputting 
the data into the ANN model for classification.

• The model could not func-
tion at an extremely low traffic 
rate (FRC) below 5%.
• Even though a static ANN 
model (trained once without 
a feedback loop) was used to 
detect static FRC efficiently, it 
was not sufficient for detect-
ing dynamic FRC.
• Only a one-hour interval as 
a unit for traffic analysis was 
insufficient to derive adequate 
historical information for 
detecting FRC attacks.

[14] Entropy 
and static 
thresholds

The model combined various statistical tech-
niques, including Hellinger distance, entropy, and 
OpenFlow technology. This model contained three 
modules (data preparation, detection, and mitiga-
tion). Network traffic samples were gathered using 
sFlow agents, whereas network statistics were 
produced by analysis at a sFlow collector during 
the data preparation step. The network statistics 
were also compared to the predetermined criteria 
during the detection phase. Moreover, the entropy 
analysis was employed to identify the suspected 
behaviour. Switching rules were updated in the 
last step in the mitigation process, and network 
traffic from suspicious source IP addresses was 
blocked using OpenFlow controllers.

• Higher error rates were 
observed due to static 
thresholds.

[23] Static thresh-
olds for CPU 
use, duration 
timers, CRPS, 
and VM num-
ber alongside 
GTT for suspi-
cious users

The limitation in EDoS-ADS proposed by Sha-
wahna et al. was proven using a Yo-Yo EDoS-based 
attack, in which the attacker could confuse the 
EDoS-ADS mechanism without provoking the 
attack mode. The article then proposed a model to 
enhance EDoS-ADS to address this issue. Initially, 
at least two scaling policies were produced to 
render it challenging for an attacker to anticipate 
when to scale up or down. The user behaviour was 
then examined for periodic high CRPS and zeros 
to tag it as suspicious, which was delivered to GTT. 
Finally, the number of VMs available for scaling up 
was limited to avoid more financial losses.

• Only Yo-Yo EDoS-based 
attacks were effectively miti-
gated for this model.
• Despite that this model could 
reduce expenses by limiting 
the number of VMs, the cloud 
scalability and availability 
features could be impacted.

[55] Statistical, 
time series, 
and machine 
learning

A model was established to detect FRC attacks in a 
cloud environment containing three components: 
(i) statistical, (ii) time series, and (iii) automated 
learning (ANN and k-NN). Each approach exhibited 
differing efficiency levels and ineffectiveness 
regarding detection in certain instances.

• The article indicated that the 
model was insufficient for FRC 
detection. Even though com-
bining all these techniques 
could be enough, the process 
was more costly than an FRC 
attack.
• The NASA dataset was 
outdated, and its accuracy 
in representing actual cloud 
transportation patterns was 
questionable.
• The NASA dataset possessed 
a limited number of attributes 
that could be derived.
• The article was documented 
in 2021, while the underlying 
data was from 1995.

Table 10 (continued) 
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malicious clients through various assessments (image-based challenges or crypto-puzzle 
within the admission phase. This model also controlled the number of valid connections 
through a multi-layered protection approach to efficiently improve security against over-
load from malicious requests. Nonetheless, several limitations could occur from this 
process. The cloud elasticity with availability could be restricted while the response time 
for legitimate users could increase due to the learning system. New users could also be 
deterred owing to the sign-in challenges. Primarily, this model optimised the page usage 
rather than mitigating EDoS attacks.

5.4.4 EDoS-Enhanced mitigation mechanism (EMM)

Bawa et al. reported an advanced EDoS mitigation model containing a three-module 
architecture (data preparation, detection, and mitigation [30]. Initially, flow-based moni-
toring was conducted by the sFlow agent. Data analysis collected critical information, 
blocking the assaulting IP address upon alert generation. This model also increased sen-
sitivity by incorporating Hellinger distance and entropy into the output. Consequently, 
this model gathered, analysed, and responded to threats using sophisticated anomaly 

Author Approach Description Limitation
[56] Obfuscation 

approach, 
machine 
learning, and 
GTT

This model contained three stages: (i) registration, 
(ii) login, and (iii) training and testing. A CI-RDA LB 
obfuscation approach was used for IP spoofing, 
while an RCDH-ENN classifier distinguished be-
tween normal and attack traffic. The GTT was also 
used in the registration phase of this framework.

• The extra levels for user 
authentication and GTT neces-
sitated more processing time 
and could eventually frustrate 
the users.

[57] Dynamic 
game 
theoretical

This model employed game-theoretical signal 
modelling, in which a dynamic game scenario was 
observed between two players: (i) EDoS (attacker) 
and (ii) system (defender). The model also em-
ployed virtual honeypots to explore the suspicious 
traffic before its termination further.

• A game theoretical model 
involving mixed strategies pro-
duced a complicated model,
• Issues occurred when large 
payment matrices were 
denoted.

[58] Semi-
Markov, static 
thresholds 
(CRPS and 
CPU usage), 
TF, GTT, URL 
redirection, 
and two 
timers

The Semi-Markov model contained an edge 
router, DS, LB, DB, and virtual machine. The DB 
stored various information, such as the user’s 
behaviour table, TF, and the number of MRPS. 
Meanwhile, the DS employed URL redirection if 
the user’s CRPS was below the MRPS. Otherwise, 
GTT was sent to the user. The model also applied 
two CPU use criteria (80% for upper and 30% for 
lower) and two durations (5 min for scaling up and 
1 min for scaling down).

• The proposed model failed to 
identify the optimal defence 
strategy for the system against 
EDoS attacks.
• The chance of executing an 
EDoS assault with restricted 
resources under one’s control 
was not considered.

[59] Binomial 
probabil-
ity, TTL, and 
multi-SYN

This model presented a TCP SYN mitigation 
approach for cloud environments. The solution 
leveraged SDN to reduce the impact of system 
and spoofing-based TCP SYN flooding attacks. 
Furthermore, the EDOS-Trust Security model em-
ployed a binomial probability, TTL, and Multi-SYN 
to detect TCP SYN and spoofing attacks.

• Several thresholds (packet 
size and duration) must be 
defined like other statistical 
solutions. This process was 
challenging.
• This model demonstrated 
a false rate due to the 
thresholds.
• Only one specific EDoS attack 
could be detected (TCP-SYC 
attacks), neglecting other 
EDoS attack types.

Notes: EMM = Enhanced Mitigation Mechanism; FLNL = Fuzzy Entropy and Lion Neural Learner; MLAR = Multi-Layered 
Attack Recognition: TF = Trust Factor; CTB = Cloud Trace Back; CP = Cloud Protector; DPM = Deterministic Packet Marking; 
LNL = Levenberg Neural Network; RCDH-ENN = Regression Coefficients Deer Hunting-Deep Elman Neural Network; 
MRPS = Main Requests Per Second

Table 10 (continued) 
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detection techniques, rendering it a systematic approach to EDoS mitigation. Con-
versely, this model was only effective based on the anomaly detection precision. The 
potential for false positives or negatives in threat identification could also occur.

5.4.5 EDoS-eye

Chowdhury et al. addressed EDoS attacks using a game theory-based mitigation model 
[13]. This model was based on a two-player, non-cooperative zero-sum game to simulate 
various attacker or defender scenarios. A Nash equilibrium was also utilised to estab-
lish a threshold that diminished attackers’ incentives. Concurrently, honeypots were 
integrated to lower the false positives and obscure the cloud server. Traffic management 
was also controlled using an edge router and an LB. Despite server protection and lower 
detection errors observed with honeypots within the game theory-based model, vari-
ous limitations were presented [64]– [65]. The mechanism was complex while managing 
large payment matrices was challenging. Attackers could also identify and bypass static 
honeypots.

5.4.6 Entropy-based EDoS detection

Monge et al. avoided the false resource scaling caused by unexpected activities through 
an entropy-based EDoS detection model [50]. This model contained three stages: (i) 
monitoring or aggregation used for collecting and examining the request data, (ii) detec-
tion or decision-making (ARIMA prediction and adaptive threshold setting), and (iii) 
decisions based on identification analysis of potential threats. The dynamic thresholds 
were also effectively established using entropy and predictive modelling. Therefore, this 
model was highly fine-grained for EDoS threat detection and preventing unjustified 
resource scaling. Conversely, the ARIMA rendered the method complex, while accurate 
adaptive thresholds were challenging. These limitations could reduce the efficiency of 
the model and its capability to identify EDoS attack activities promptly.

5.4.7 Game theory and honeypots

In this section the most relevant studies that utilized game theory and honeypots are 
explored.

5.4.7.1 Dynamic game theoretical model Lalropuia and Khaitan explored EDoS attack 
dynamics between defenders and attackers using a model based on game-theoretical sig-
nal modelling and virtual honeypots [57]. This model employed Bayesian Nash equilib-
rium (BNE) in three strategies (mixed, pooling, separating) to adapt to attacker behav-
iours, with each strategy differing in the extent of information disclosed regarding the 
attacker’s type to the defender. Consequently, a nuanced defence against EDoS attacks 
based on game theory and honeypots was observed, potentially enhancing system secu-
rity. Nevertheless, model management was challenging owing to the increased complex-
ity of implementing mixed strategies in game theory for large payment matrices.

5.4.7.2 Semi-markov model Lalrupuia addressed availability and reliability issues in 
cloud computing using an analytical model based on the semi-Markov process (SMP) 
[57]. Request handling, user behaviour assessment, and resource adjustment were man-
aged using an integrated LB, DS, and DB model. The DS assessed user requests through 
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GTT and redirected them based on MRPS and the user’s trust factor (TF), facilitating 
optimal resource scaling. Consequently, organised request management and systematic 
resource scaling could improve the reliability and availability of cloud service. Nonethe-
less, the flexibility and adaptability in dynamic cloud environments could be compro-
mised due to the model complexity, reliance on certain thresholds, and scaling durations.

5.4.7.3 EDoS-TSM Ali Shah et al. proposed a quick statistical anomaly detection model 
using SDN to mitigate the TCP SYN flooding attacks (EDoS-TSM) [59]. This model 
combined binomial probability, TTL, and Multi-SYN techniques to identify attacks. The 
model then eliminated TCP SYN requests using payloads and used an SDN controller 
to obstruct recognised attack traffic. This process concentrated exclusively on TCP-SYN 
attack variants [67]. Although this model could quickly detect and mitigate TCP SYN 
flooding attacks, appropriate threshold values were challenging to determine. The singu-
lar emphasis of the model on TCP-SYN attacks also restricted its applicability to other 
EDoS attack types.

5.4.7.4 Multi-Layered Attack Recognition (MLAR) Arora safeguarded cloud networks 
from EDoS attacks using a multi-layered attack recognition (MLAR) model [52]. This 
model was based on periodic authentication, pattern analysis, and data flow control. The 
model also applied an integrated approach for evaluating the performance of network 
nodes, assessing data patterns, and authenticating nodes. These processes were critical 
for effective classification and avoiding financial loss or service level agreement (SLA) 
violation. Additionally, a multi-layer approach was observed in this model to enhance 
cloud security by meticulously scrutinising and validating data flow, focusing on detect-
ing and mitigating potential EDoS threats. This systematic approach could then safeguard 
resources while upholding service quality. Nonetheless, high computational resources 
and increased response time were required in this complex model, leading to lower sys-
tem efficiency.

5.4.7.5 Fuzzy entropy and Lion Neural Learner (FLNL) Bhingarkar and Shah classified 
traffic as legitimate or malicious using the fuzzy entropy and lion neural learner (FLNL) 
model for feature selection and classification [54]. The model employed fuzzy entropy to 
extract features from log files and the Levenberg neural network (LNL) for classification. 
This model also consisted of three stages: (i) relevant feature extraction, (ii) significant 
feature selection, and (iii) traffic classification. A fuzzy entropy in FLNL was utilised in 
feature extraction and selection to ensure that only the pertinent data were considered 
[66]. This process increased the subsequent classification precision within the LNL algo-
rithm, providing an optimised methodological shortcut to identify malicious activities. 
Even though FLNL effectively classified documents into specific categories, high error 
rates were observed. This outcome was attributed to the intrinsic complexity and pre-
existing constraints in the model structure, reducing its effectiveness.

5.4.7.6 Web traffic analysis Rustogi et al. combined DWT and ANN as a model to detect 
FRC attacks in cloud services [54]. The website data was segmented based on the popular-
ity index in quantiles. Subsequently, the requests per hour were analysed. The time series 
data was then refined using DWT by removing high-frequency noise, and an ANN model 
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was trained with the preprocessed data for classification. This model also denoised data 
and classified it to effectively detect FRC attacks (below 5% attack traffic) using DWT and 
ANN, respectively. Given that the model was narrowed down to definite characteristics 
and data patterns, the efficiency of cloud services in detecting FRC attacks was improved 
[68]. Nevertheless, one major flaw with this model was the one-hour window for traffic 
analysis. This process could not yield a sufficient historical record necessary for detecting 
FRC attacks, impairing the capability of the model.

5.4.7.7 EDoS-EMM Singh et al. employed OpenFlow and statistical analyses (Hellinger 
distance and entropy) to combat EDoS attacks as an EDoS-enhanced mitigation model 
(EDoS-EMM) model [14]. This model contained three interconnected modules: (i) data 
preparation involving collecting and examining network traffic, (ii) detection by matching 
statistics against thresholds for identifying suspicious activities through entropy analysis, 
and (iii) mitigation by modifying switching rules of the OpenFlow controllers to block the 
suspected traffic sources. The model also demonstrated high effectiveness in mitigating 
HTTP and UDP attacks [69].

A dynamic and efficient approach to defending against EDoS attacks was denoted 
when combining OpenFlow and statistical methods in EDoS-EMM. This model reduced 
the financial burdens on consumers while enhancing the security profiles of the cloud 
services to promote customer confidence. Conversely, the practical application used 
predetermined threshold values and intricate coordination among these three mod-
ules. This process could raise issues regarding the prospects of false positives. Contin-
ued adjustments in the detection and mitigation parameters could also pose concerns in 
adapting to ever-evolving attack patterns.

5.4.7.8 EDoS-DOME Ribin and Kumar created a model by merging regression coef-
ficients of the deer hunting-deep Elman neural network (RCDH-ENN) and.

obfuscated IP spoofing prevention for user classification into white or black lists [56]. 
This model contained a three-phase detection framework (registration, login, training-
testing) while employing CI-.

RDA (load balancing), RCDH-ENN (traffic differentiation), and GTT (enhancing reg-
istration security). The model also effectively distinguished between legitimate and mali-
cious traffic, improving security measures. Conversely, increased processing times due 
to the added authentication layers could cause inconvenience to users.

A review of the existing solutions reveals that most research focuses on mitigation, 
with limited emphasis on early detection and proactive prevention. Detection strategies 
have advanced with the use of deep learning and anomaly detection but are often ham-
pered by high false positives. Prevention strategies suffer from rigid threshold depen-
dencies and limited adaptability. Mitigation solutions provide reactive defense but do 
not address financial or operational sustainability. Hybrid models are emerging as prom-
ising solutions, although they tend to be complex and resource-intensive.

Figure 5 illustrates the taxonomy of approaches used to counter EDoS attacks, high-
lighting the strategic diversity and the need for further exploration in detection and pre-
vention research.

Table  11 presents the quantitative benchmarking of literature reviewed in this 
research.
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5.5 Analytical synthesis and critical prioritization of EDoS defense methods

Despite the wide range of detection, prevention, mitigation, and hybrid strategies pro-
posed to counter EDoS attacks, their applicability and efficacy vary significantly depend-
ing on the underlying cloud service model Infrastructure as a Service (IaaS) or Software 
as a Service (SaaS).

5.5.1 Suitability for large-scale LaaS environments

IaaS environments are typically more vulnerable to resource exhaustion due to auto-
scaling mechanisms and expose a broader surface for low-rate, long-duration EDoS 

Table 11 A snapshot of quantitative benchmarking of reviewed literature

Fig. 5 Taxonomy of approaches used to counter EDoS attacks
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attacks. Hence, detection accuracy, real-time decision-making, and infrastructure-level 
adaptability are critical.

5.5.1.1 Recommended strategies Machine/Deep Learning Models: These excel in IaaS 
due to their ability to analyze large-scale, multivariate data. Models like R-EDoS, MAN-
EDoS, and P-Estimation offer time-series-based anomaly detection, essential for identify-
ing sophisticated patterns of resource abuse.

Adaptive Thresholding & Entropy-Based Detection: Suitable for dynamically scaling 
environments (e.g., EDoS-Enhanced Mitigation Mechanism, Monge et al.), these allow 
real-time resource allocation decisions that mitigate financial impacts.

GTT with Puzzle Servers (e.g., Enhanced DDoS-MS): Although computationally 
intensive, they are more applicable in IaaS where the user base is well-controlled and 
high resource overheads can be tolerated.

5.5.1.2 Limitations High false positive rates in ML models when training data is insuf-
ficient.

Entropy-based models can be sensitive to normal traffic bursts, triggering false alarms.
TTL and header inspection techniques are less reliable due to their assumptive nature 

and can increase latency.

5.5.2 Suitability for SaaS environments

SaaS platforms prioritize user experience and availability, making strategies that intro-
duce latency, complexity, or false positives detrimental. Therefore, lightweight and cli-
ent-transparent methods are preferable.

5.5.2.1 Recommended strategies Static/Dynamic Threshold Models (e.g., CloudWatch, 
EDoS-ADS): These are suitable for predictable service usage patterns and offer low over-
head, making them viable in SaaS where real-time user service is critical.

WEB-TRAP and TSP-based Models: Useful for web-centric SaaS platforms due to 
their session analysis and moving target defense, particularly where login-based traps 
are acceptable.

Hybrid Approaches (e.g., FLNL, MLAR): Limited deployment in SaaS is feasible when 
combined with lightweight authentication or anomaly scoring for selected user sessions.

5.5.2.2 Limitations Static thresholds cannot adapt well to traffic spikes caused by legiti-
mate marketing events or seasonality.

Game-theory-based models (e.g., EDoS-Eye) are theoretically robust but too complex 
and computationally heavy for dynamic SaaS applications.

5.5.2.3 Cross-model recommendations Hybrid Strategies (e.g., combining ML, puzzle 
servers, and adaptive thresholds) are promising for both IaaS and SaaS when tailored to 
operational constraints.

Attribution Techniques can augment all models by profiling long-term behavioral 
data, useful in both service models to improve whitelisting/blacklisting decisions. 
Table 12 presents the comprehensive summary of final prioritization of strategies.
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6 Findings and future research directions on EDOS in cloud environments
This review revealed critical gaps in the detection, prevention, and mitigation of EDoS 
attacks within cloud environments. Addressing these gaps through targeted research 
can enhance the sustainability, resilience, and security of cloud services against EDoS 
threats. Deeper insight into these challenges can lead to more effective strategies for 
understanding and mitigating EDoS attacks.

6.1 Outline discription of EDoS attacks and attackers

In this section attacker objectives, targeted layers and the EDoS attacks tree are 
illustrated.

6.1.1 Attacker objectives

  • Primary: Force victim’s cloud costs to exceed budget (“Sustainability Denial”).
  • Secondary: Degrade performance via resource starvation (CPU, memory, API 

quotas).

6.1.2 Attack surface

The targeted layers and the corresponding exploitation mechanism shown in Table 13.

6.1.3 Attack tree (Root → leaf Nodes)

Figure 6 The Root-leaf nodes for EDoS attacks.

6.2 State transition diagram for EDoS attacks

Figure 7 depicts the transtion diagram of EDoS attacks.
Key Transitions:

  • T1: Requests exceed scaling threshold (but stay below DDoS radar).
  • T2: Billing system accrues costs without real demand.
  • T3: Victim’s auto-scaling reacts too late (cost already incurred).

Table 12 Final prioritization summary
Strategy type Best for Key methods Notable limitations
Deep Learning & ML IaaS R-EDoS, MAD-GAN, MAN-EDoS High resource use, false positives
Entropy-Based/Adaptive IaaS EDoS-EMM, Zipf’s 

Law + Entropy
Parameter tuning complexity, low 
traffic misfires

Static Thresholds SaaS EDoS-ADS, CloudWatch Poor adaptability to traffic dynamics
GTT/Crypto-Puzzles IaaS (some 

SaaS)
EDoS-Shield, DDoS-MS Latency, accessibility issues for users

Hybrid (ML + Rules) Both FLNL, MLAR, Enhanced 
EDoS-ADS

High system complexity and inte-
gration cost

Game Theory + Honeypots IaaS 
(Limited)

EDoS-Eye, Dynamic Game 
Model

Computational overhead, complex-
ity, detectability

Table 13 Layers, targets and the corresponding explotation mechanisms
Layer Target Exploitable mechanism
Application Serverless functions, APIs Auto-scaling triggers (e.g., HTTP floods)
Platform Kubernetes pods, DB queries Pay-per-use pricing (e.g., DynamoDB RCUs)
Infrastructure VM instances, load balancers Scaling policies (e.g., AWS ASG)
Economic Billing alerts, reserved instances Silent cost accumulation over time
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6.3 Mapping of attack lifecycle and defense strategies

This section presents a comprehensive overview of the EDoS attack lifecycle and high-
lights defense strategies at each stage. The mapping is encapsulated in Fig. 8, which 
illustrates how various attack phases correspond to specific countermeasures, offering a 

Fig. 8 Mapping of Attack lifecycle and Defense strategies

 

Fig. 7 Transition diagram for EDoS attacks

 

Fig. 6 The root-leaf nodes for EDoS attacks
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clear visualization of where and how defense mechanisms can be implemented through-
out the attack lifecycle.

6.4 Research future directions

Future research directions are highlighted in this section by categorizing the research 
directions into: Prevention, Detection, Mitigation, Hybrid Strategies and Other Aspects.

6.4.1 Prevention

Existing prevention-based strategies primarily rely on static threshold models to con-
trol access and resource utilisation, aiming to block suspicious traffic before it reaches 
cloud services. However, these approaches face significant limitations. Most studies 
reviewed focus on rigid thresholds (e.g. CPU usage, HTTP request rates, or packet sizes) 
which often lead to high false positive rates, blocking legitimate users alongside attack-
ers. Furthermore, static thresholds struggle with dynamic attack behaviours, such as 
attackers who adapt their traffic to remain below detection limits. Implementation chal-
lenges include configuration complexity, the requirement for precise prior knowledge 
of normal usage patterns, and degradation of cloud elasticity due to hard-coded limits. 
Additionally, many models are attack-specific (e.g. only for ICMP or TCP SYN floods), 
limiting generalisability across EDoS variants.

To address these limitations, future prevention strategies should focus on adaptive and 
intelligent threshold mechanisms, integrating machine learning or statistical learning 
models that continuously adjust based on evolving traffic patterns to reduce false posi-
tives and negatives. Research should explore service-model-aware prevention frame-
works tailored to IaaS, PaaS, and SaaS, enabling targeted and efficient defence without 
compromising usability. Furthermore, studies should investigate hybrid prevention 
approaches combining static thresholds with behavioural and reputation-based filter-
ing for layered security. Developing cost-aware prevention models that factor in billing 
structures and economic impacts will help maintain cloud sustainability under attack. 
Finally, integrating prevention mechanisms seamlessly with detection and mitigation 
systems in a unified, automated defence architecture can ensure proactive, scalable, and 
practical protection against diverse and evolving EDoS threats.

6.4.2 Detection

Detection-based strategies aim to identify the presence of EDoS attacks by recognising 
anomalies in usage patterns, suspicious behaviours, or attacker profiles using statistical 
analysis, machine learning, and attribution-based techniques. GTT and crypto-puz-
zle-based solutions, such as EDoS-Shield, sPoW, and In-Cloud Scrubber, have been 
employed to differentiate legitimate users from attackers. However, these methods often 
suffer from usability limitations, including high false positive rates that disproportion-
ately affect elderly and disabled users, vulnerability to puzzle accumulation attacks, and 
latency overheads.

Time-to-live (TTL) and header inspection-based models mitigate IP spoofing by 
validating TTL values within packet headers. While effective against basic spoofing 
attempts, these approaches introduce management complexity and remain vulnerable 
to sophisticated attackers capable of forging or mimicking TTL parameters accurately.
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Machine learning and deep learning approaches, including SVMs, ANNs, LSTMs, 
GANs, and attention-based models, offer adaptive detection capabilities by analysing 
multivariate time series data, resource usage metrics, and traffic flow features. Despite 
their potential, such models often face significant challenges, including high computa-
tional requirements, impractically long sequence lengths for real-time deployment, lim-
ited accuracy against multi-vector or low-rate attacks, and elevated false alarm rates that 
reduce operational trustworthiness.

Future research of detection techniques may focus on integrating lightweight behav-
ioural analytics with user-aware verification schemes to minimise false positives without 
imposing additional burdens on legitimate users. For GTT and crypto-puzzle models, 
adaptive complexity scaling based on real-time user capability profiling can improve 
inclusivity and usability during attack scenarios. TTL and header inspection-based mod-
els can be improved by incorporating multi-layer route validation and cryptographic 
authentication to counter sophisticated spoofing techniques effectively.

In the context of machine learning and deep learning models, combining lightweight 
feature extraction with attention-based architectures, transfer learning, and continual 
model updates could significantly improve detection accuracy while reducing compu-
tational overhead. Moreover, integrating these models with real-time orchestration 
frameworks and continuous feedback mechanisms would enhance their adaptability and 
responsiveness to evolving EDoS attack patterns to ensure the practical deployment in 
dynamic cloud environments.

6.4.3 Mitigation

The reviewed mitigation-based strategies, including In-Cloud Scrubbers, puzzle servers, 
multi-layered models (e.g., Enhanced DDoS-MS), and adaptive techniques (e.g., APART, 
EDoS-ADS enhancements), show considerable promise but exhibit significant limita-
tions. Common issues include reliance on static thresholds, resulting in false positives 
or negatives, excessive latency impacting user experience, complex configuration and 
integration requirements across multiple components, and limited scalability under high 
demand conditions. Puzzle-based models often introduce user friction, while blacklist/
whitelist management remains operationally challenging. Behavioural analysis mod-
els, although innovative, require careful calibration and continuous adaptation to avoid 
undermining legitimate user access and to prevent cost inefficiencies in cloud resource 
usage.

Future research should focus on developing adaptive and dynamic thresholding mech-
anisms, integrating AI/ML-based behavioural analytics to replace static configurations 
while minimising false positives. Additionally, lightweight user verification methods 
should be designed to preserve user experience without sacrificing security efficacy. 
Exploring collaborative defence architectures across cloud providers, combined with 
predictive scaling policies, could also address Yo-Yo and slow-drip EDoS attack variants. 
Finally, comprehensive cost-benefit analysis models need to be integrated into mitiga-
tion frameworks to ensure resource efficiency and operational feasibility in real-world 
deployments.
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6.4.4 Hybrid strategies

Hybrid strategies combine multiple defense techniques to harness their complementary 
strengths, offering a more effective and resilient approach to mitigating EDoS attacks. 
Integrating detection, prevention, and mitigation mechanisms build layered defenses 
that adapt to evolving threats more robustly than individual methods alone.

Many hybrid frameworks dynamically adjust their components in response to 
observed traffic patterns and attack behaviours. They incorporate adaptive thresholding, 
traffic profiling, and real-time response capabilities to optimize defense performance. 
Machine learning often underpins traffic classification, while game theory models the 
strategic interactions between attackers and defenders. Honeypots are deployed to 
attract, isolate, and analyze malicious traffic without disrupting legitimate users, enrich-
ing threat intelligence.

The literature reflects a clear trend towards hybrid solutions due to their enhanced 
detection accuracy, reduced false positives, and improved robustness against diverse 
and sophisticated EDoS attack vectors. However, challenges remain, particularly in bal-
ancing computational overhead, minimizing response latency, and ensuring scalability 
within complex cloud environments.

Future research directions in hybrid strategies include the integration of deep learn-
ing models with real-time adaptive control systems, deployment of intelligent and self-
evolving honeypots, and leveraging blockchain technology for decentralized verification 
and mitigation. These innovations have the potential to significantly boost the effective-
ness, efficiency, and trustworthiness of hybrid defense frameworks against EDoS attacks 
in cloud computing.

6.4.5 Other aspects

i. Comprehensive attack coverage: Previous articles predominantly examined specific 
EDoS attack types (such as TCP SYN flooding [59]– [60]), neglecting various attack 
vectors. Hence, future studies should provide holistic defence mechanisms by 
investigating a more comprehensive range of EDoS threats.

ii. Integration of methodologies: Although previous articles displayed diverse approaches 
(game-theoretical models to anomaly detection), insufficient cohesive models or 
comparative analyses were observed. This process could lead to fragmented insights. 
Therefore, future studies should yield more robust solutions by implementing 
a comprehensive research initiative that compares and synthesises different 
methodologies.

iii. Practical implementation challenges: Theoretical models usually offer innovative 
solutions. In contrast, previous articles demonstrated significant challenges 
(configuration complexity and user inconvenience) in their practical applications. 
Hence, theoretical models should be effectively examined to ensure their transition 
into user-friendly, scalable solutions.

iv. Evaluation metrics: Previous articles indicated an inconsistency in the application 
and comparison of evaluation metrics. Therefore, future studies should assess the 
effectiveness, efficiency, and impact of proposed EDoS mitigation strategies by 
adopting a standardised set of comprehensive metrics.

v. Research scope broadening: This review identified several underexplored areas, 
including the economic impacts of EDoS attacks, legal considerations, and emerging 
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technologies (AI and blockchain) in combating or facilitating EDoS threats. Hence, 
future studies should develop more effective countermeasures by expanding research 
to these areas for valuable insights.

Overall, resolving the identified gaps through future research could substantially 
improve the security of cloud infrastructures against these threats. Concurrently, previ-
ous articles could provide proper tactics for reducing EDoS assaults.

7 Conclusion
This review indicated the significant threat of EDoS attacks within the cybersecurity 
landscape. The attacks could disrupt critical infrastructure, government services, and 
national security. These attacks could also disrupt essential services (healthcare, finance, 
and emergency response), leading to societal and economic disruptions. Thus, EDoS 
attacks must be addressed to protect individual organisations and safeguard national 
security and societal well-being. This review also demonstrated inadequate articles con-
cerning EDoS attacks in cloud environments employing diverse mitigation strategies. 
Meanwhile, several vital articles were presented, outlining various methodologies, evalu-
ation criteria, and the limitations of current solutions. Consequently, the data provided 
in this review could be a foundational resource for understanding the current state and 
identifying avenues for future research. This review also enhanced the literature by thor-
oughly examining knowledge on EDoS assaults, emphasising the necessity for continued 
research and innovation.
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