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Abstract

This paper presents WaveCORAL-DCCA, an unsupervised domain adaptation (UDA)
framework specifically developed to address data distribution shifts and operational vari-
abilities (OVs) in rotor fault diagnosis. The framework introduces the novel integration
of discrete wavelet transformation for robust time–frequency feature extraction and an
enhanced deep canonical correlation analysis (DCCA) network with correlation alignment
(CORAL) loss for superior domain-invariant representation learning. This combination en-
ables more effective alignment of source and target feature distributions without requiring
any labelled data from the target domain. Comprehensive validation on both experimental
and numerically simulated rotor datasets across three health conditions—i.e., normal, un-
balanced, and misaligned—demonstrates that WaveCORAL-DCCA achieves an average
diagnostic accuracy of 95%. Notably, it outperforms established UDA benchmarks by at
least 5–17% in cross-domain scenarios. These results confirm that WaveCORAL-DCCA
provides robust generalisation across machines, fault severities, and operational conditions,
even with scarce target domain samples, offering a scalable and practical solution for
industrial rotor fault diagnosis.

Keywords: rotor fault diagnosis; operational variabilities; unsupervised domain adaptation;
wavelet transformation; deep canonical correlation analysis; correlation alignment

1. Introduction
As a crucial component of health management and prognostics, fault diagnosis is

cohesively and strategically integrated into industrial systems, making it a fundamental
technology for their operations [1–4]. Intelligent fault diagnosis methods, driven by ad-
vancements in artificial intelligence, have gained prominence by enabling automatic fault
detection; however, these methods often depend on extensive fault history and labelled
data, typically scarce in industrial settings [5]. Researchers address this scarcity by gener-
ating synthetic data through numerical modelling, lab-scale experiments, and data from
similar systems. Although these approaches help mitigate data scarcity, they introduce
domain mismatches due to OVs such as variations in angular velocity and environmental
conditions, as extensively discussed in recent rotor modelling studies, which can degrade
diagnostic performance [6–12].
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Recent advancements in intelligent fault diagnosis have focused on overcoming chal-
lenges related to class imbalance and domain shifts, specifically changes in data distribution
caused by these OVs. Techniques such as the self-supervised approach by Miao et al. [13,14]
integrate noise filtering and class balancing to improve diagnostics under significant class
imbalance and OVs. However, extending this method to more complex scenarios, such
as varying rotational speeds and multiple fault types, remains challenging. Rajagopalan
et al. [15] address these issues using synthetic oversampling, genetic algorithms, and ad-
versarial adaptation to diagnose rotor mass imbalance faults. Despite its robustness, this
method suffers from minor class boundary overlaps and complexity, indicating a need for
further refinement.

Evolving diagnostic approaches include transfer learning (TL) and adversarial do-
main adaptation (DA) to bridge the gap between diverse data sources and operational
realities [16]. Wang et al. [17] introduced an adversarial transfer network for bearing
fault diagnosis, achieving superior accuracy through a hybrid loss function, albeit at a
high computational cost that may limit real-time applicability. Xu et al. [18] utilised a
domain-adversarial neural network combined with short-time Fourier transform for re-
liable classification of rotor faults with minimal labelled data, performing well even in
noisy environments. However, reliance on accurate simulations and high computational
demands could restrict its implementation. Liu et al. [19] developed a method using ad-
versarial discriminative DA to improve fault diagnosis in gas turbine rotors under OVs,
effectively reducing domain offsets. The complexity of this method and the requirement
for validation against new fault types remain as significant challenges. Autoencoder-based
alignment strategies have also been proposed for intelligent fault diagnosis of rotating
machines, such as the stacked autoencoder based partial adversarial domain adaptation
(SPADA) model of Liu et al. [20]. While such methods leverage deep autoencoders to extract
representative features from source and target domains and utilise adversarial training
for domain adaptation, they may still encounter challenges in explicitly maximising cross-
domain statistical dependence, especially under complex or partial domain adaptation
scenarios, and may require careful weighting or adaptation to avoid negative transfer.

UDA, an extension of TL, has become critical, particularly in scenarios where acquiring
labelled data is costly and time-consuming. UDA aims to transfer knowledge by learning
domain-invariant features or by translating source data to resemble the target domain,
enhancing fault diagnosis robustness in mechanical systems [21]. Recent techniques like
adversarial training and self-training have proved effective in extracting these invariant
features, improving model generalisation across different domains [7,22–24]. Challenges in
TL include limitations imposed by the quality of source data. Simulations, which extend
datasets when real data is limited, play a complementary role. However, their reliance on
simplified models, as explored by Han et al. [25] and Khan et al. [26], raises concerns about
their generalisability and precision in complex real-world settings.

Domain alignment techniques have also been developed to address distribution shifts.
Ma et al. [27] introduced a domain distribution alignment network using an enhanced joint
distribution adaptation mechanism with adaptive softmax, achieving high accuracy on
experimental datasets. However, the reliance on simplified models and extended target
datasets suggests a need for improvements in capturing real-world complexities. Xiang
et al. [28] presented a classifier-constrained domain adaptation network for rotor fault
diagnosis that combines simulated and experimental data under varied conditions. While
it achieves high accuracy, its dependence on accurate rotor parameters poses practical
challenges. Wang et al. [29] proposed a weight-based dual DA model focusing on noisy
environments and domain shifts. This model, using local maximum mean discrepancy
(MMD) and batch nuclear-norm maximisation for alignment, assumes sufficient target
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domain observations and is primarily effective in intra-machine scenarios, with challenges
in cross-machine generalisation and hyperparameter tuning. Similarly, Xiao et al. [30]
developed a multi-label deep TL structure integrating multi-stage MMD and manifold
regularisation for domain alignment, leveraging annotated data from varied conditions
to improve accuracy with limited labelled target data. Nevertheless, this approach faces
challenges with kernel parameter sensitivity and extreme domain shifts and sensor varia-
tions. Additionally, advanced graph-based frameworks for rotating machinery such as the
edge-enhanced self-supervised attention graph convolutional network and the multi-sensor
multi-head graph attention network, both recently validated on axial flow pumps, have
also been proposed [31,32].

While various approaches have advanced the field of TL in rotating system fault diag-
nosis, significant challenges remain in achieving reliable performance with limited target
domain observations, ensuring generalisation across disparate machines and fault types,
and managing the scarcity of labelled data. Methods based on short-time Fourier transform
or autoencoder-driven DA offer certain advantages; however, they often struggle to fully
capture transient, highly localised features or to ensure robust alignment between source
and target domains, particularly under complex or severe distribution shifts. Addressing
these persistent limitations is essential for the development of truly generalisable diagnostic
frameworks. In this work, the WaveCORAL-DCCA framework was specifically devised to
tackle these issues, leveraging the multi-scale capabilities of wavelet transformation (WT)
in combination with an enhanced DCCA technique. This integration provides a robust
solution that markedly improves the model’s ability to generalise across a wide range
of operational scenarios, even in the presence of severely limited unlabelled target data.
Importantly, industrial rotor fault diagnosis is frequently conducted using data acquired
under varying conditions, involving differences in sensor types (such as acceleration and
displacement), acquisition methods, and operational environments. The challenge posed
by such real-world variability remains significant. To address this, the WaveCORAL-DCCA
framework has been rigorously evaluated across highly heterogeneous datasets, thereby
demonstrating its capacity for effective generalisation and for the transfer of diagnostic
knowledge between fundamentally different data sources.

The main contribution of this paper includes the following:

• Introduced a novel framework that integrates wavelet-based feature extraction with a
DCCA network enhanced by the CORAL loss function. This framework effectively
mitigates domain shifts and OVs, offering a robust solution for rotor fault diagnosis;

• Applied label smoothing to the entropy loss function, improving classification per-
formance by mitigating overconfident predictions, enhancing generalisation, and
increasing robustness to noisy labels;

• Achieved high diagnostic accuracy even with limited unlabelled target domain data, ad-
dressing the significant challenge of data scarcity in real-world industrial applications;

• Demonstrated the framework’s broad applicability through experiments on both
experimental and simulated rotor system datasets, showing its effectiveness across
different machines and fault types.

The remainder of this paper is structured as follows: Section 2 outlines the proposed
framework and covers the necessary preliminaries. Section 3 details the case studies
conducted. Section 4 presents and discusses the results, while Section 5 concludes by
addressing limitations and offering suggestions for future research directions.
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2. Materials and Methods
The WaveCORAL-DCCA framework comprises a combination of feature extraction,

alignment, and classification phases for effective fault diagnosis in rotating systems, which
are detailed in the subsequent sections. The framework operates by: (i) using WT to extract
essential time–frequency features from vibration signals, (ii) employing an enhanced DCCA
network with CORAL loss to align feature distributions across domains by matching
their second-order statistics, and (iii) classifying faults based on the aligned features,
diagnosing normal, unbalanced, and misaligned rotor conditions, even with limited target
domain data.

2.1. Wavelet Transformation

WT is a powerful signal processing technique that breaks down signals into their
frequency components, each tailored to its respective scale. By applying both high-pass
(hi[n]) and low-pass filters (gi[n]), this method allows for precise analysis of both stationary
and non-stationary signals [33]. To perform a discrete WT on a vibration signal X[n], two
essential functions are introduced: the scaling function ϕ(t) and the wavelet function ψ(t),
as well as the desired level of decomposition. The approximation coefficients at scale j,
which capture the low-frequency components, are derived by passing the signal through the
low-pass filter. The new approximation coefficients at scale (j + 1) are computed as follows:

cAj+1[m] = ∑n cAj[n] · g[n− 2m] (1)

In this process, m represents the index at the next scale (j + 1), where new approxi-
mation coefficients are computed. m indicates the position of the coefficients at the next
level, while n is the summation index over the current scale’s approximation coefficients,
which capture low-frequency components. Similarly, the detail coefficients (cD), derived
from the high-pass filters, are computed in the same way. Approximation coefficients move
to the next level, while detail coefficients are useful for tasks like pattern recognition and
anomaly detection. Figure 1 shows the decomposition of signal X[n] up to level 3. The
detail coefficients at scale (j + 1) are calculated as:

cDj+1[m] = ∑n cAj[n] · h[n− 2m] (2)

 
Figure 1. Illustration of signal decomposition utilising WT.

2.2. CORAL Loss

Correlation alignment (CORAL) loss serves as a metric to gauge alignment between
two domains by measuring the difference in their feature covariance matrices. It is used in
DA to align data distributions of source and target domains, reducing statistical variations
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for better generalisation. By minimising this loss, the learned features become more
consistent across domains, improving prediction accuracy for the target domain. The
core concept behind CORAL loss is addressing domain shift by aligning the second-order
statistics, specifically minimising the Frobenius norm of the difference between the source
and target covariance matrices; the CORAL loss function can be represented as:

LCORAL =
1

4d2 ∥CS − CT∥2
F (3)

in which CS and CT are the covariance matrices of the source and target features, d is the
feature dimensionality, and ∥·∥F denotes the Frobenius norm. The CORAL loss allows for
quantitative comparison between DA methods by assessing which method minimises the
discrepancy between domains. While a lower CORAL loss suggests better distribution
alignment, it should be evaluated alongside other metrics, such as classification accuracy
on the target domain, to ensure that alignment improves or maintains task-specific per-
formance; CORAL loss can be calculated on a class-wise basis or as an aggregate. The
aggregate CORAL loss is typically more significant as it reflects the overall alignment across
all classes, ensuring that the adaptation generalises well across the domain rather than
overfitting to specific classes.

2.3. Deep Canonical Correlation Analysis

Designed to project two sets of variables, or “views,” into a shared subspace, deep
canonical correlation analysis (DCCA) captures the key relationships between them. In
vibration signal analysis, it is beneficial for reducing the dimensionality of data while
preserving crucial information from both the source domain (view 1) and the target domain
(view 2). The objective of DCCA is to maximise the correlation between these two sets
of data by projecting them into a common space, improving the transfer of knowledge
between the domains. Unlike traditional canonical correlation analysis (CCA), which
operates on a single layer, DCCA uses multiple deep layers to capture more complex
relationships between the views. In this context, the extracted features from the source
and target domains are represented as vectors S (from the source) and T (from the target).
DCCA projects these feature vectors through deep layers, aligning them in a way that
preserves the most informative correlations, enhancing the model’s ability to generalise
across different conditions.

The deep structure of DCCA allows for a richer representation of the data, which
is essential in applications like vibration analysis, where subtle signal variations carry
significant meaning. Features from the source and target domains are transformed into
canonical variates U and Y, which are linear combinations of their respective domains,
using linear transformations WS for the source and WT for the target. This ensures that
DCCA provides a robust and nuanced framework for analysing vibration signals.

S =


FS1

FS2
...

FSp

, T =


FT1

FT2
...

FTq

, WS =


a11 . . . a1p
...

. . .
...

ap1 . . . app

, WT =


b11 . . . b1q

...
. . .

...
bq1 . . . bqq


U = WSS, Y = WTT

(4)

For the purpose of computational efficiency, the values of p and q should be selected
to satisfy p ≤ q. As an illustration, (U1, Y1) is the initial canonical variate pair that can be
shown as the following relationships:
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U1 = a11FS1 + a12FS2 + . . . + a1pFSp

Y1 = b11FT1 + b12FT2 + . . . + b1qFTq
(5)

The aim of this process is to find linear combinations that maximise the correlations
between the components of each canonical variate pair. This is achieved through an
optimisation procedure, where the objective function can be expressed as Max∥corr(U, Y)∥.
The correlation, corr(U, Y), is introduced as:

LCORAL = corr(U, Y) =
cov(U, Y)√

var(U)var(Y)
1

4d2 ∥CS − CT∥2
F (6)

In this context, var refers to the variance of each canonical variate and cov(U, Y)
represents the covariance of U and Y. In DCCA, the loss function typically minimised (as
maximising correlation can be reformulated as a minimisation task) is often the negative of
the canonical correlation or a modified version that incorporates regularisation terms.

LDCCA = −corr
(

WT
S S, WT

T T
)
+ regularization terms (7)

The features processed from both views are combined to generate the final feature
representation. This representation gains from redundancy analysis, which assesses the
extent to which the variance in one set of variables is accounted for by the canonical variates
from the other set, increasing the model’s efficiency in handling new or related tasks. The
architecture of DCCA is shown in schematic form in Figure 2. In the upcoming sections, this
standard version of DCCA will be referred to as the original DCCA, and its performance
will be compared with that of an improved DCCA-based framework.

 
Figure 2. Process diagram of DCCA.

2.4. WaveCORAL-DCCA

WaveCORAL-DCCA leverages an enhanced DCCA model that integrates a modified
loss function, incorporates overfitting prevention techniques, and includes a feature extrac-
tion phase prior to the DA stage. These enhancements significantly improve the model’s
performance and are detailed as follows: WaveCORAL-DCCA begins with a WT stage as
the feature extraction stage. Since one of the released datasets (‘S_E_D’) was published
in the form of WT coefficients, this stage was implemented separately for the remaining
datasets using MATLAB® R2024a before feeding them into the DA and classification struc-
ture. The DA framework employs multiple standard techniques such as normalisation,
batch normalisation, and dropout layers to enhance model stability and prevent overfitting.
However, the primary focus of WaveCORAL-DCCA lies in the two distinct loss functions
used during training, which govern the model’s DA and classification tasks.

The first training process is the DA phase, where the model aligns the feature repre-
sentations of the source and target domains using CORAL loss. This loss function ensures
that the covariance matrices of the source and target domain features are aligned, which
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minimises the domain shift and facilitates better generalisation to the target domain, so the
DA loss can be introduced as:

LDomain adaptation = LCORAL (8)

The second training process focuses on the classification phase, where the model
classifies the DCCA-transformed features from the source domain. For this, a multi-layer
perceptron (MLP) model was designed, consisting of three fully connected layers. The MLP
model includes two hidden layers with ReLU activation functions, followed by batch nor-
malisation and dropout layers to prevent overfitting. The final layer produces predictions
for the target classes. The specific hyperparameters for this classifier include the sizes of the
hidden layers and the dropout rates. In this phase, the total loss function is a combination
of two components: the classification loss (implemented via label smoothing) and the
entropy loss. Label smoothing modifies the cross-entropy loss by distributing a portion of
probability mass to all classes, reducing the model’s overconfidence in its predictions. The
entropy loss penalises low-entropy (overconfident) predictions, encouraging the model to
maintain a level of uncertainty and improving its generalisation capabilities.

LClassi f ication = LLabel smoothing + ϵ× LEntropy (9)

where ϵ is a coefficient that controls the assigned weight to the entropy loss. This approach
not only ensures that the classifier attains both precision and generalisation, but also in
the DA phase, CORAL loss governs the alignment of feature distributions across the two
domains. By leveraging these two distinct training processes, each guided by its own loss
function, the model is able to address both feature alignment and classification challenges
effectively, resulting in improved performance on the target domain. It is important to
highlight that the target domain data were included in the training phase of WaveCORAL-
DCCA without labels, and these data played no role in training the classifier. As a result,
the framework operates as a UDA structure. Figure 3 illustrates the overall structure of
WaveCORAL-DCCA and the fault diagnosis framework.

In the grid search process for finding the most optimum hyperparameters based
on the accuracy of the classification of the test set, as illustrated in Figure 3, various
hyperparameters are involved, such as learning rates, dropout rate, batch size, hidden
dimension, output dimension, number of epochs, label smoothing coefficients, and the
entropy coefficient. A more detailed of the designed fault diagnosis procedure is displayed
in Algorithm 1, where the WT process was not involved in this code.

Algorithm 1. Pseudocode of WaveCORAL-DCCA and the classification phase.

Input: Datasets from source dataset S (Strain, Sval) and target dataset T (Ttrain, Ttest),
wavelet level (k), learning rates (η), dropout rate (δ), batch size, hidden

dimension (dhid),
output dimension (dout), number of epochs (E), label smoothing (λ), entropy

coefficient (ϵ);
Output: Trained domain adaptation and classifier parameters (θDCCA and θclassi f ier),

evaluation metrics (accuracy Acc, confusion matrix CM);
Feature Extraction using WT
1 Load source S (Strain, Sval) and target T (Ttrain, Ttest) datasets,
2 Apply WT on S and T to extract detail coefficients at level k (cDk);
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Algorithm 1. Cont.

Domain adaptation using DCCA with CORAL loss
3 Initialise DCCA model with input dimension (din), hidden dimension (dhid),

output dimension (dout), dropout rate (δ), separate weights for source and
target features,

4 For each mini-batch Bj in Strain and Ttrain:
• Perform a forward pass through the DCCA model for both source (cDSk) and target
(cDTk) domains;

5 Initialise CORAL loss function;
6 For each epoch i = 1, 2, . . . , E:
7 For each mini-batch Bj in Strain and Ttrain:
8 Pass source and target features through DCCA and extract feature
representations,
9 Compute CORAL loss (LCORAL) between source and target domains,
10 Update model parameters (θDCCA) using gradient descent:
• θDCCA ← θDCCA − η ×∇θDCCA LCORAL ;

Train Classifier on Extracted Features
11 Initialise classifier (θclassifier) with:
• Hidden layers,
• Output layer,
• Dropout rate (δ);

12 For each epoch i = 1, 2, . . . , E:
• For each mini-batch Bj in Strain:

13 Extract DCCA features from the source domain,
14 Perform a forward pass through the classifier to obtain predictions,
15 Compute classification loss using label smoothing (λ):

• Lclassi f ication = LabelSmoothingLoss
(

p
(

y
∣∣∣θclassi f ier

)
, ytrue

)
;

16 Compute entropy loss ( Lentropy
)

:

• Lentropy = −∑ p
(

y
∣∣∣θclassi f ier

)
log p

(
y
∣∣∣θclassi f ier

)
,

17 Compute total loss (Ltotal) :
• Ltotal = Lclassi f ication + ϵ× Lentropy,

18 Update model parameters (θ classi f ier

)
using gradient descent:

• θclassi f ier ← θclassi f ier − η ×∇θclassi f ier (Ltotal) ,
Evaluation on Target Domain
19 Evaluate the classifier on Ttest,
• Extract DCCA features from Ttest and compute test accuracy:

Acc = ∑
(

1
(

yi = argmax
(

p
(

y
∣∣∣ θclassi f ier

)))
/
∣∣∣Ttest

∣∣∣);

20 Generate confusion matrix CM =
[
cmij

]
;

Result: Return trained model parameters θDCCA and θclassi f ier,
test accuracy Acc, confusion matrix CM.

A sequential training approach, in which feature alignment and classification are
performed in two distinct phases, was adopted in this work. This structure has been shown
to offer greater robustness and interpretability in practical settings, particularly when target
domain data are scarce, and has been widely employed in prior DA studies [34].
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Figure 3. Workflow of WaveCORAL-DCCA and the classification phase.

3. Case Studies
In this work, to assess the effectiveness of WaveCORAL-DCCA in fault diagnosis,

three datasets were employed, where two of them are the experimental sets released by
two various research teams and the one remaining was generated by the authors through
numerical simulation of a rotor-bearing-disc in MATLAB® R2024a utilising the finite
element (FE) method; these datasets are elaborated in the following.

3.1. Large Experimental Dataset ‘L_E_D’

A recent study [35] evaluated the performance of rotary machinery under various
operational conditions, including imbalance, misalignment, mechanical looseness, and
normal functioning. The generated dataset, referred to as the source domain data, is foun-
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dational for ongoing research. The experimental setup included a motor with a frequency
inverter, bearings, pulleys, a belt, and a rotor. Data was captured using accelerometers
placed at strategic points around the machine, recording 420 signals per experiment, each
containing 25,000 data points, sampled at 25 kHz. A total of 8400 signals were collected,
2100 per condition, with each observation producing four distinct vibration signals; the
dataset, named ‘L_E_D’, reflects fives trials for each scenario. The data was collected in a
controlled lab environment, with the test rig disassembled and reassembled before each
trial to allow for fault introduction, simulating real-world conditions. Data acquisition
was managed by a Python script, and accelerometers were calibrated accordingly. The
rotational speed was maintained at 1772 rpm; Figure 4 reveals this test rig.

 

Figure 4. Setup of the source domain testing apparatus.

3.2. Small Experimental Dataset ‘S_E_D’

The second experimental rotor dataset, referred to as ‘S_E_D’ in this study, was pro-
vided by Wuhan University [36]. It features vibration signals from a lab-based rotating
machinery system consisting of a rotor test platform, speed controller, front-end processor,
and computer (Figure 5). Vibration data were collected using two eddy current sensors
positioned above the rotor to detect four rotor states: normal, contact-rubbing, unbalance,
and misalignment. Each state includes 45 observations, totalling 180 instances, with each
sample containing 2048 data points, captured at 1200 rpm and 2048 Hz. Pre-processing
involved denoising with wavelet thresholding, and the data were converted into a 2D
matrix format. The system used a DC motor with a 1.95A current, 148 W output, and
rotor measuring 10 mm in diameter and 850 mm in length. Data acquisition was over-
seen by the GTS3-TG simulator, which forwarded signals to the front-end processor for
amplification before computer analysis. This dataset has been widely used in condition
monitoring research [37–41].

Figure 5. Setup of ‘S_E_D’ testing rig.
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3.3. Numerical Dataset ‘N_D’

To produce a numerical dataset, the FE method was implemented in MATLAB® R2024a
to model a rotor-bearing-disc. The FEM model of the rotor includes the disc, coupling,
bearing supports, two shafts, and electrical motor. Figure 6a shows a graphical depiction of
the modelled system. In the FE formulation, each component is represented by a two-node
element, as depicted in Figure 6b, with each nodal point having four degrees of freedom:
rotations about the Y and Z axes and translations along these axes. In this model, the length
of the smaller shaft as well as the length of the coupling were selected as the length of
each element, and the motor was simulated as an alternative tortional torque at node 7. To
simulate the unbalancing in the system, the centre of gravity of the disc was changed.

 
 

(a) (b) 

Figure 6. (a) Diagram of the rotor-bearing-disc system with coupling; (b) FE model and coordinate
framework of the shaft–beam component.

To model the desired damages in the system, i.e., unbalanced, and in the misaligned
rotor, the right-hand side of the following equation of motion ought to be changed.

M
{ ..

q
}
+ C

{ .
q
}
+ K{q} = f (t) (10)

The mass (M), damping (C), and stiffness (K) matrices, each 4 × 4 per node, are
calculated based on [42]. The force vector ( f (t)) primarily reflects the motor’s external force
but adjusts for system faults. For the shaft (six elements), disc, bearings, and coupling, a
global 28 × 28 matrix is assembled using a connectivity table for the seven nodes. Journal
bearings require additional damping and stiffness as per [42], and the coupling element
has a distinct stiffness matrix compared with adjacent elements. An unbalanced rotor can
be modelled through the introduction of the excess force, resulting from the centrifugal
force as:

Fu = mdeω2 (11)

To represent the harmonic essence of the implemented unbalancing force, it can be
re-written in the Y and Z directions as:

fu(t) = [FY FZ FθY FθZ]
T

FY = mdeω2cos(ωt− φu)

FZ = mdeω2sin(ωt− φu)

(12)

in which md, e, ω, and φu show the mass of the disc, distance of the centre of gravity from
the centre of geometry (eccentricity), angular velocity of the disc, and phase angle of the
unbalancing force, respectively. In the system shown in Figure 6a, the unbalance force
is applied at the disc node (e.g., node 4), while the misalignment force is applied at the
coupling nodes (nodes 5 and 6). To model the misalignment force accurately, the forces on
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these two nodes must be considered separately, as they differ; Figure 7 presents the nodal
forces and moments, for which parallel misalignment can be expressed as follows:

MY1 = Tqsinθ1 + Kb∅1, MY2 = Tqsinθ2 − Kb∅2

MZ1 = Tqsin∅1 − Kbθ1, MZ2 = Tqsin∅2 + Kbθ2

FY1 = (−MZ1−MZ2)
X3

, FY2 = −FY1

FZ1 = (MY1+MY2)
X3

, FZ2 = FZ1

(13)

Figure 7. Coordinate system for coupling in the case of parallel misalignment.

Here, Kb represents the flexure coupling’s bending spring rate per diaphragm or disc
pack, and Tq denotes the external torsional torque; the values for θ1, ∅1, θ2, and ∅2 can be
determined as:

θ1 = sin−1
(

∆Y1
X3

)
, ∅1 = sin−1

(
∆Z1
X3

)
θ2 = sin−1

(
∆Y2
X3

)
, ∅2 = sin−1

(
∆Z2
X3

) (14)

In these equations, ∆Y1 and ∆Z1 represent the misalignment severities in the Y and Z
directions at node 6, while ∆Y2 and ∆Z2 correspond to the misalignment severities at node
5. X3 is the centre of articulation. The nodal forces due to misalignment on the left (node 5)
and right (node 6) sides of the element containing the coupling, denoted as Q1

m and Q2
m,

are expressed as:

Q1
m =


FY1sinωt + FY1sin2ωt + FY1sin3ωt + FY1sin4ωt
FZ1cosωt+FZ1cos2ωt+FZ1cos3ωt+FZ1cos4ωt

0
0



Q2
m =


FY2sinωt + FY2sin2ωt + FY2sin3ωt + FY2sin4ωt
FZ2cosωt+FZ2cos2ωt+FZ2cos3ωt+FZ2cos4ωt

0
0



(15)

The dataset was constructed at one specific rotational speed, i.e., 100 rad/s. The
experimental protocol involved executing 45 iterations; each iteration yielded a single
observation relevant to the specific health condition being monitored, resulting in a total of
135 observations (45 for each of the three health scenarios); this dataset is referred as ‘N_D’.
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It is worth noting that only the stationary portions of the signals were saved, specifically
data points ranging between 10,003 and 12,050. As such, each observation encompasses
2048 data points; this selection was informed by the data point consistency observed in the
‘S_E_D’ dataset. To solve the equation of motions, the Houbolt time marching technique
was employed with a time increment of 0.9766 milliseconds; Table 1 outlines the system
parameters employed to simulate the rotor system.

Table 1. Characteristics of the system being modelled.

Parameter Magnitude Parameter Magnitude

Disc mass 2 kg Bearing stiffness 5 × 107 N/m
Disc eccentricity 0.5 cm Bearing damping 350 N·S/m

Diametral moment of
inertia of the disc 6.5 × 10−4 kg·m2 Motor phase angle 3.14 rad

Unbalancing phase
angle 0 rad Motor-side pulley’s

radius 1.9 cm

Shaft diameter 5 cm Torsional torque 2.55 N·m

Larger shaft length 50 cm Centre of
articulation 2 cm

Smaller shaft length 10 cm Flexure coupling
bending 1600 N·m/rad

Shaft density 7800 kg/m3
Misalignment in
the Y direction at

node 6
0.2 cm

Shaft Young’s modulus 2.08 × 1011 N/m2 Phase angle of
misalignment 0.79 rad

The code was designed to ensure each loop produced unique observations despite
constant system parameters. A random seed, initialised with the current time, generated
different results in every iteration. Small random variations were added to the rotor
system’s initial conditions using normally distributed noise, creating slight differences at
the start of each simulation. Random noise was also applied to the force resulting from the
motor, mimicking real-world unpredictability and leading to distinct dynamic responses in
each run.

3.4. Summary of the Case Studies

This study examined three health conditions across all datasets: normal operation,
unbalanced disc, and misaligned rotor systems, which were assigned the labels 0, 1, and
2, respectively. These datasets, referred to as ‘L_E_D’, ‘S_E_D’, and ‘N_D’, are outlined in
Table 2, which provides details on the number of observations and the labels used in the
classification section.

Table 2. Overview of datasets with health conditions and labels.

Health Scenario
Number of Observations

Label‘L_E_D’ ‘S_E_D’ ‘N_D’

Normal 2100 45 45 0
Unbalanced 2100 45 45 1
Misaligned 2100 45 45 2

For each target domain dataset, 15% of the samples were reserved for testing and 11%
for validation in a class-wise balanced manner.

It is noteworthy that the three datasets vary in both sensor type and physical quantity:
the ‘L_E_D’ dataset comprises acceleration measurements from accelerometers, ‘S_E_D’
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provides displacement data from eddy current sensors, and the ‘N_D’ dataset is numerically
simulated displacement. This deliberate selection ensures a challenging evaluation scenario,
reflecting the diverse conditions encountered in practical industrial monitoring.

4. Results
The effectiveness of WaveCORAL-DCCA in detecting malfunctions in rotating ma-

chines was evaluated in two scenarios: (i) using ‘L_E_D’ as the source domain and ‘S_E_D’
as the target domain; and (ii) using ‘L_E_D’ as the source domain and ‘N_D’ as the target
domain. Additionally, two other classification frameworks, one without a DA stage and
another using the original DCCA, were assessed using the same source and target domain
sets to compare their performance with WaveCORAL-DCCA.

In configuring the feature extraction stage, the Daubechies-4 (db4) mother wavelet
function was selected for the discrete WT because of its effectiveness in capturing transient
and non-stationary features that are crucial for rotor fault diagnosis [43]. The decomposition
level was set to 3 since one of the experimental datasets (‘S_E_D’) was originally published
in the form of level 3 WT coefficients; thus, for methodological consistency, the same
decomposition level was applied to all datasets. This approach achieves a balance between
capturing essential fault-related information and maintaining computational efficiency, in
line with established practices in vibration-based machinery diagnostics.

Furthermore, the hidden layer sizes and output dimension in the DCCA network were
determined by considering the complexity and dimensionality of the extracted wavelet
features, as well as the expected diversity of fault signatures present in the datasets. These
parameters were set to ensure the network possessed sufficient capacity to model the
underlying data structures without excessive risk of overfitting, keeping in line with
established engineering knowledge and prior studies on fault diagnosis network design.

4.1. Fault Diagnosis Without DA

Initially, the damage detection task was carried out without the designed DA structure.
To achieve this, the two mentioned scenarios were implemented, and the extracted WT
coefficients from the training phase of ‘L_E_D’ were used to train the classifier. Given that
the designed classifier within the DA framework is a simple three-layer MLP, which may
not be sufficient for complex tasks, a one-dimensional CNNs model was constructed with a
more robust architecture. For the MLP, the classifier utilised two hidden layers with 512 and
128 neurons, respectively, each followed by batch normalisation and dropout with a rate of
0.3 to mitigate overfitting. The MLP was trained using the Adam optimiser with a learning
rate of 0.001 and cross-entropy loss for 100 epochs. The architecture and hyperparameters
of the MLP were tailored for multi-class classification using three output classes.

The applied CNN begins with a Conv1D layer utilising 64 filters and a kernel size
of 5, followed by two additional Conv1D layers with 128 and 256 filters, respectively, to
increase feature extraction capabilities. The output of the final convolutional layer was
flattened and passed through a dense layer with 512 units. A softmax output layer was
used for multi-class classification, and dropout with a rate of 0.5 was applied to prevent
overfitting. The model was trained using a learning rate of 0.001 for a total of 100 epochs.
The outcomes of the fault diagnosis for the two scenarios (CNNs and MLP) are displayed
in the confusion matrices of Figure 8 and the bar chart in Figure 9. These results provide
insights into the classification performance of both models across different conditions.
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(a) (b) 

  
(c) (d) 

Figure 8. Confusion matrices for fault diagnosis in Scenario i: (a) MLP and (b) CNNs; and in Scenario
ii: (c) MLP and (d) CNNs.

 

Figure 9. Performance comparison of CNNs and MLP models for fault diagnosis.

The confusion matrices in Figure 8 and the statistics in Figure 9 indicate that under
Scenario i, the trained models, particularly the MLP using source domain data, performed
well in diagnosing sample tests with labels 1 and 2; however, these models demonstrated
lower accuracy when identifying observations with label 0. In contrast, under Scenario ii,
both classifiers showed significantly deficient performance in diagnosing samples from all
three classes, achieving only 33% accuracy. This considerable drop in accuracy highlights
the need for a more generalised fault diagnosis framework.
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4.2. Fault Diagnosis with the Original DCCA Framework

To further demonstrate the advantages of WaveCORAL-DCCA framework, the same
training, validation, and testing subsets of Scenario i and Scenario ii were applied in the
DCCA model referenced in Section 3.4. This implementation used MLP with hidden layers
of size [1024, 512, output_dim], where the output dimension size was set to 10 for both data
views. Key hyperparameters included a learning rate of 1× 10−3 and a batch size of 64, and
the model was trained for 1000 epochs. The DCCA model was optimised using the Adam
optimiser, with a regularisation parameter of 1× 10−4 being incorporated in the DCCA
loss function to prevent overfitting. During training, model checkpoints were saved based
on validation loss to ensure that the best-performing model was retained. Post-training,
linear CCA was optionally applied to refine the learned features. The model’s performance
was evaluated using support vector machine classification, providing a comprehensive
assessment of the model’s effectiveness. The outcomes of this assessment are detailed in
Figure 10 and Table 3.

  
(a) (b) 

Figure 10. Confusion matrices of fault diagnosis using the original DCCA: (a) Scenario i; (b) Scenario ii.

Table 3. Effectiveness of the original DCCA framework under Scenario i and Scenario ii.

DA Model Scenario Precision Recall F1-Score Accuracy

Original
DCCA

i 0.56 0.43 0.44 0.43
ii 0 0 0 0

The fault diagnosis results using the original DCCA baseline revealed its inability
to handle distributional differences effectively, leading to inferior performance that was
even worse than when no DA technique was applied. This poor generalisation, especially
the complete failure in Scenario ii, stems from DCCA’s limited feature expressiveness and
the lack of explicit domain alignment. Without additional regularisation or alignment
constraints, DCCA fails to reconcile substantial cross-domain discrepancies.

4.3. Fault Diagnosis with WaveCORAL-DCCA

The previous sections showed the requirement for applying a robust DA more specif-
ically on the assumption of Scenario ii, where the fault detection framework without
applying a DA as well as employing the original DCCA structure presented very inferior
accuracies. To this end, the designed framework (WaveCORAL-DCCA) was performed
in combination with a grid search for discovering the most optimum hyperparameters
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based on the test phase of the target domain; Table 4 presents the discrete values of the
hyperparameters used in the grid search.

Table 4. Grid search hyperparameter values for the DA framework.

No. Hyperparameter Value(s) No. Hyperparameter Value(s)

1 Output dimension
of DCCA 16, 32 6 Number of epochs

in DCCA 3, 10

2 Hidden dimension
of neural networks 16, 32 7 Coefficient of label

smoothing 0.01, 0.1, 1

3 Learning rate for
DCCA 1× 10−4, 1× 10−3 8 Coefficient of

entropy loss 0.01, 0.1, 1

4 Batch size 16, 32 9 Random seed 42

5 Dropout rate in
DCCA 0.3, 0.4 10 Optimiser for

DCCA Adam

A total of 576 hyperparameter combinations, listed in Table 4, were assessed to analyse
their impact on WaveCORAL-DCCA framework’s performance; the malfunction detection
results showed that the framework is overly sensitive to changes in these hyperparameters.
As a result, it is necessary to use either a grid search or an advanced optimisation algorithm
to find the best hyperparameter set. Figure 11 and Table 5 present the malfunction diagnosis
results for Scenario i and Scenario ii, using the optimal hyperparameters identified for
each scenario.

  
(a) (b) 

Figure 11. Confusion matrices of fault diagnosis using WaveCORAL-DCCA: (a) Scenario i;
(b) Scenario ii.

Table 5. Effectiveness of WaveCORAL-DCCA framework under Scenario i and Scenario ii.

DA Model Scenario Precision Recall F1-Score Accuracy

WaveCORAL-
DCCA

i 0.96 0.95 0.95 0.95
ii 0.96 0.95 0.95 0.95

The results shown in Figure 11 and Table 5 demonstrate that WaveCORAL-DCCA
structure significantly improved fault diagnosis performance, particularly in Scenario
ii, where classification models without DA and using the original DCCA yielded lower
accuracy; in both Scenario i and Scenario ii, the accuracy exceeded 95%.
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As an illustration of how the WaveCORAL-DCCA framework positively influences the
alignment of data distribution between the source and target domains, Figure 12 presents
scatter plots for Scenario i, both before and after applying the designed DCCA structure.

  
(a) (b) 

  
(c) (d) 

Figure 12. Scatter plots for Scenario i: (a) source domain before WaveCORAL-DCCA; (b) target
domain before WaveCORAL-DCCA; (c) source domain after WaveCORAL-DCCA; (d) target domain
after WaveCORAL-DCCA.

From Figure 12, a comparison of the feature distributions before (plots a and b) and
after DCCA (plots c and d) clearly shows that the designed framework successfully aligns
the source and target domains into a shared feature space, where observations from different
classes are clustered in similar regions. Notably, 21 randomly selected samples from each
class in the source domain were used as the test set for these scatter plots, and feature
alignment was performed on these samples after DCCA training and validation. The same
observations were also used for the pre-DCCA stage in the scatter plots.

5. Comparison Study
To further evaluate the effectiveness of the proposed framework, a comparative anal-

ysis was conducted against six well-known UDA approaches: maximum mean discrep-
ancy (MMD) [44], joint distribution adaptation (JDA) [45], transfer component analysis
(TCA) [34], balanced distribution adaptation (BDA) [46], adaptation regularisation-based
transfer learning (ARTL) [47], and conditional domain adversarial network (CDAN) [48].
The performances of these methods were analysed in comparison with the WaveCORAL-
DCCA framework. Figure 13 illustrates the comparative results, highlighting the diagnostic
accuracies achieved by each method on the assumption of Scenario i and Scenario ii.
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Figure 13. Comparative diagnostic performance of WaveCORAL-DCCA and the UDA benchmarks.

As shown in Figure 13, WaveCORAL-DCCA consistently outperforms the other UDA
approaches across both scenarios. In particular, it achieves the highest diagnostic accuracies
in both Scenario i and Scenario ii (95%), surpassing the performance of MMD, JDA, TCA,
BDA, ARTL, and CDAN by a substantial margin. Notably, while ARTL and CDAN also
demonstrate competitive performance, their accuracies remain below those of the proposed
framework. These findings underscore the robustness of WaveCORAL-DCCA for DA tasks
and highlight its efficacy in handling variations between different diagnostic scenarios.

6. Computational Efficiency and System Setup
The computational efficiency and practical implementation of the WaveCORAL-DCCA

framework were prioritised in this study. All training, evaluation, and the 576-combination
grid search were performed using Python and PyTorch on a standard workstation (CPU
only), with MATLAB® R2024a being used for wavelet pre-processing as needed. Despite
the large grid search, each scenario was completed in under five hours, and model inference
required less than 0.3 s per batch. Scenario ii took slightly longer due to the increased
complexity of the simulated dataset, but overall, the approach remains feasible for real-time
industrial use. The system characteristics are listed in Table 6.

Table 6. System hardware and software specifications for WaveCORAL-DCCA experiments.

Component Specification Component Specification

Operating System
Microsoft Windows
10 Enterprise (Build

19045)
Main libraries

PyTorch 2.0.1,
Scikit-learn,

NumPy, Matplotlib

Processor
Intel Core i7-14700

(20 cores, 28
threads, 2.10 GHz)

Wavelet
pre-processing

MATLAB® R2024a
(external, for

selected datasets)

RAM 32 GB (31.6 GB
usable) Execution mode CPU only (no GPU

utilised)
Execution

environment
Jupyter Notebook

(Python 3.10) Virtual memory 36.4 GB total, 19.9
GB available

The computation time for the two scenarios, i.e., Scenario i and Scenario ii, have been
calculated and are listed in Table 7.
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Table 7. Scenario-wise computational summary for model training and grid search.

Scenario Source Domain Target Domain Total
Samples

Grid Search
Time

Maximum
RAM Usage

i 6300 180 6480 3.2 h 12.3 GB
ii 6300 135 6435 4.1 h 13.1 GB

In summary, the WaveCORAL-DCCA framework was shown to be both computation-
ally efficient and practically viable for real-time industrial applications. The full grid search
and model training procedures are tractable with standard workstation resources, and the
final diagnostic model is capable of rapid inference, meeting the operational demands of
modern condition monitoring systems.

7. Discussion
The results demonstrate that WaveCORAL-DCCA achieves consistently high diag-

nostic accuracy for rotor fault diagnosis under significant domain shift. The integration
of wavelet-based features, deep canonical correlation analysis, and CORAL loss enabled
robust adaptation across all datasets, as shown in Table 5. Figure 11 further highlights
the superiority of this approach in the comparison study, where it outperformed tradi-
tional models and other DA methods, particularly in challenging transfer scenarios. The
confusion matrices in Figures 8–10 show that models without effective domain alignment
struggled with class separation under severe distribution differences. The fault diagnosis
results using the original DCCA baseline revealed its inability to handle distributional
differences effectively, leading to inferior performance that was even worse than when
no DA technique was applied. This poor generalisation, especially the complete failure
in Scenario ii, stems from DCCA’s limited feature expressiveness and the lack of explicit
domain alignment. Without additional regularisation or alignment constraints, DCCA fails
to reconcile substantial cross-domain discrepancies.

A key strength of the proposed framework is the efficiency of CORAL loss in aligning
second-order statistics, which supported adaptation with limited target data. Nonethe-
less, reliance on covariance alignment may not fully address domain discrepancies in
systems with strong non-Gaussian or nonlinear dynamics, as reflected in occasional mis-
classifications in some cases. While model performance exhibited some sensitivity to
hyperparameter selection, the overall evidence supports the practical utility and reliability
of WaveCORAL-DCCA for industrial rotor fault diagnosis.

A unique strength of WaveCORAL-DCCA lies in its ability to deliver robust diagnostic
performance across datasets that differ not only in domain (experimental and simulated),
but also in sensor modality and signal type. The consistent accuracy observed indicates that
the combination of wavelet-based feature extraction and deep DA can bridge differences
between acceleration and displacement data. This highlights the practical value of the
framework for real-world deployments where data heterogeneity is unavoidable.

8. Conclusions
This paper introduces WaveCORAL-DCCA, an advanced UDA framework designed

for rotor fault diagnosis under varying operational conditions and domain shifts. The frame-
work leverages wavelet-based feature extraction combined with an enhanced DCCA net-
work, where the CORAL loss function is employed to improve feature alignment between
source and target domains without the need for labelled target data. Additionally, a nu-
merical dataset of rotor systems was generated using the FE method in MATLAB® R2024a,
supplementing experimental data and providing a comprehensive evaluation platform.
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The proposed WaveCORAL-DCCA approach demonstrated a high diagnostic accuracy
of 95% across three health scenarios—normal, unbalanced, and misaligned rotor systems—
showcasing its ability to generalise effectively, even when limited unlabelled data from
the target domain are available. The combination of wavelet-based features and enhanced
DCCA ensures robust performance across different machines and fault types, making the
framework a powerful tool for rotor fault diagnosis in industrial applications. The method’s
ability to maintain high accuracy while addressing domain shifts highlights its potential
for broader applications in real-time fault diagnosis tasks. Furthermore, the comparative
study unequivocally distinguished the effectiveness of the proposed method in handling
scarce target domain data for adaptation.

Although noteworthy results were achieved with WaveCORAL-DCCA, sensitivity to
hyperparameter values remains a limitation, with grid search optimisation being required
to ensure peak performance. This may introduce complexity in practical implementation.
In future work, this limitation will be addressed through the development of more auto-
mated or adaptive hyperparameter selection strategies, and the integration of higher-order
or distributionally robust alignment techniques will also be investigated. Furthermore, the
framework will be extended to encompass more complex fault scenarios, including com-
posite and multi-faulted systems, and applied to a wider range of mechanical equipment
to further assess its generalisability and industrial applicability.
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MLP Multi-layer perceptron
MMD Maximum mean discrepancy
OVs Operational variabilities
TCA Transfer component analysis
TL Transfer learning
UDA Unsupervised domain adaptation
WT Wavelet transformation



Electronics 2025, 14, 3146 22 of 23

References
1. Wang, D.; Zhang, M.; Xu, Y.; Lu, W.; Yang, J.; Zhang, T. Metric-Based Meta-Learning Model for Few-Shot Fault Diagnosis Under

Multiple Limited Data Conditions. Mech. Syst. Signal Process. 2021, 155, 107510. [CrossRef]
2. Yin, Z.; Yang, Y.; Shen, G.; Li, Y.; Huang, L.; Hu, N. Dynamic Modeling, Analysis, and Experimental Study of Ball Screw Pairs

with Nut Spalling Faults in Electromechanical Actuators. Mech. Syst. Signal Process. 2023, 184, 109751. [CrossRef]
3. Li, Y.; Men, Z.; Bai, X.; Xia, Q.; Zhang, D. A Bearing Fault Diagnosis Method Based on M-SSCNN and M-LR Attention Mechanism.

Struct. Health Monit. 2025, 24, 830–852. [CrossRef]
4. Rezazadeh, N.; De Luca, A.; Perfetto, D.; Salami, M.R.; Lamanna, G. Systematic Critical Review of Structural Health Monitoring

Under Environmental and Operational Variability: Approaches for Baseline Compensation, Adaptation, and Reference-Free
Techniques. Smart Mater. Struct. 2025, 34, 073001. [CrossRef]

5. Rezazadeh, N.; Annaz, F.; Jabbar, W.A.; Vieira Filho, J.; De Oliveira, M. A Transfer Learning Approach for Mitigating Temperature
Effects on Wind Turbine Blades Damage Diagnosis. Struct. Health Monit. 2025, 14759217241313350. [CrossRef]

6. Tang, S.; Ma, J.; Yan, Z.; Zhu, Y.; Khoo, B.C. Deep Transfer Learning Strategy in Intelligent Fault Diagnosis of Rotating Machinery.
Eng. Appl. Artif. Intell. 2024, 134, 108678. [CrossRef]

7. Gong, X.; Feng, K.; Du, W.; Li, B.; Fei, H. An Imbalance Multi-Faults Data Transfer Learning Diagnosis Method Based on Finite
Element Simulation Optimization Model of Rolling Bearing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2024, 238, 8924–8940.
[CrossRef]

8. Rezazadeh, N.; Perfetto, D.; Polverino, A.; De Luca, A.; Lamanna, G. Guided Wave-Driven Machine Learning for Damage
Classification with Limited Dataset in Aluminum Panel. Struct. Health Monit. 2024, 14759217241268394. [CrossRef]

9. Liang, P.; Yu, Z.; Wang, B.; Xu, X.; Tian, J. Fault Transfer Diagnosis of Rolling Bearings across Multiple Working Conditions via
Subdomain Adaptation and Improved Vision Transformer Network. Adv. Eng. Inform. 2023, 57, 102075. [CrossRef]

10. Zhu, M.; Liu, J.; Hu, Z.; Liu, J.; Jiang, X.; Shi, T. Cloud-Edge Test-Time Adaptation for Cross-Domain Online Machinery Fault
Diagnosis via Customized Contrastive Learning. Adv. Eng. Inform. 2024, 61, 102514. [CrossRef]

11. Rezazadeh, N.; Perfetto, D.; de Oliveira, M.; De Luca, A.; Lamanna, G. A Fine-Tuning Deep Learning Framework to Palliate Data
Distribution Shift Effects in Rotary Machine Fault Detection. Struct. Health Monit. 2024, 14759217241295951. [CrossRef]

12. Hou, Y.; Wang, H.; Wang, Y.; Wu, P.; Huang, W.; Wu, D. Structural Rotor Rub-Impact Diagnosis Under Intricate Noise Interferences
Based on Targeted Component Extraction and Stochastic Resonance Enhancement. Struct. Health Monit. 2025, 24, 255–294.
[CrossRef]

13. Miao, M.; Wang, Y.; Yu, J. Temporal Self-Supervised Domain Adaptation Network for Machinery Fault Diagnosis Under Multiple
Non-Ideal Conditions. Reliab. Eng. Syst. Saf. 2024, 251, 110347. [CrossRef]

14. Rezazadeh, N.; Perfetto, D.; Caputo, F.; De Luca, A. Enhancing Air Compressor Fault Diagnosis: A Comparative Study of GPT-2
and Traditional Machine Learning Models. Macromol. Symp. 2025, 414, 7057. [CrossRef]

15. Rajagopalan, S.; Purohit, A.; Singh, J. Genetically Optimised SMOTE-Based Adversarial Discriminative Domain Adaptation for
Rotor Fault Diagnosis at Variable Operating Conditions. Meas. Sci. Technol. 2024, 35, 106109. [CrossRef]

16. Espinoza-Sepulveda, N.; Sinha, J. Two-Step Vibration-Based Machine Learning Model for the Fault Detection and Diagnosis in
Rotating Machine and Its Blind Application. Struct. Health Monit. 2025, 24, 1029–1042. [CrossRef]

17. Wang, J.; Ahmed, H.; Chen, X.; Yan, R.; Nandi, A.K. Improved Adversarial Transfer Network for Bearing Fault Diagnosis Under
Variable Working Conditions. Appl. Sci. 2024, 14, 2253. [CrossRef]

18. Xu, Y.; Liu, J.; Wan, Z.; Zhang, D.; Jiang, D. Rotor Fault Diagnosis Using Domain-Adversarial Neural Network with Time-
Frequency Analysis. Machines 2022, 10, 610. [CrossRef]

19. Liu, S.; Wang, H.; Tang, J.; Zhang, X. Research on Fault Diagnosis of Gas Turbine Rotor Based on Adversarial Discriminative
Domain Adaption Transfer Learning. Measurement 2022, 196, 111174. [CrossRef]

20. Liu, Z.H.; Lu, B.L.; Wei, H.L.; Chen, L.; Li, X.H.; Wang, C.T. A Stacked Auto-Encoder Based Partial Adversarial Domain
Adaptation Model for Intelligent Fault Diagnosis of Rotating Machines. IEEE Trans. Ind. Inform. 2021, 17, 6798–6809. [CrossRef]

21. Zou, Y.; Yu, Z.; Vijaya Kumar, B.V.K.; Wang, J. Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced
Self-Training. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Springer: Berlin/Heidelberg, Germany, 2018; Volume 11207.

22. Long, M.; Cao, Y.; Cao, Z.; Wang, J.; Jordan, M.I. Transferable Representation Learning with Deep Adaptation Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 3071–3085. [CrossRef]

23. Cha, Y.-J.; Ali, R.; Lewis, J.; Büyüköztürk, O. Deep Learning-Based Structural Health Monitoring. Autom. Constr. 2024, 161, 105328.
[CrossRef]

24. Sun, K.; Yin, A.; Lu, S. Domain Distribution Variation Learning via Adversarial Adaption for Helicopter Transmission System
Fault Diagnosis. Mech. Syst. Signal Process. 2024, 215, 111419. [CrossRef]

https://doi.org/10.1016/j.ymssp.2020.107510
https://doi.org/10.1016/j.ymssp.2022.109751
https://doi.org/10.1177/14759217241244477
https://doi.org/10.1088/1361-665X/ade7db
https://doi.org/10.1177/14759217241313350
https://doi.org/10.1016/j.engappai.2024.108678
https://doi.org/10.1177/09544062241245826
https://doi.org/10.1177/14759217241268394
https://doi.org/10.1016/j.aei.2023.102075
https://doi.org/10.1016/j.aei.2024.102514
https://doi.org/10.1177/14759217241295951
https://doi.org/10.1177/14759217241231897
https://doi.org/10.1016/j.ress.2024.110347
https://doi.org/10.1002/masy.70057
https://doi.org/10.1088/1361-6501/ad5b7d
https://doi.org/10.1177/14759217241249055
https://doi.org/10.3390/app14062253
https://doi.org/10.3390/machines10080610
https://doi.org/10.1016/j.measurement.2022.111174
https://doi.org/10.1109/TII.2020.3045002
https://doi.org/10.1109/TPAMI.2018.2868685
https://doi.org/10.1016/j.autcon.2024.105328
https://doi.org/10.1016/j.ymssp.2024.111419


Electronics 2025, 14, 3146 23 of 23

25. Han, S.; Wang, Z.; Zhang, H.; Zhang, F.; Han, Q. Flexible Rotor Unbalance Fault Location Method Based on Transfer Learning
from Simulation to Experiment Data. Meas. Sci. Technol. 2023, 34, 125053. [CrossRef]

26. Khan, A.; Kim, J.-S.; Kim, H.S. Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and
Knowledge Transfer. Mathematics 2021, 10, 80. [CrossRef]

27. Ma, Z.; Fu, L.; Dun, G.; Tan, D.; Xu, F.; Zhang, L. A Robust Domain Distribution Alignment Discriminative Network Driven by
Physical Samples for Rotor-Bearing Fault Diagnosis. Knowl. Based Syst. 2024, 300, 112216. [CrossRef]

28. Xiang, L.; Zhang, X.; Zhang, Y.; Hu, A.; Bing, H. A Novel Method for Rotor Fault Diagnosis Based on Deep Transfer Learning
with Simulated Samples. Measurement 2023, 207, 112350. [CrossRef]

29. Wang, M.; Li, J.; Xue, Y. A New Weight-Based Dual Domain Adaptation Transfer Model for Bearing Fault Diagnosis Under Noisy
and Cross-Domain Conditions. IEEE Access 2023, 11, 123766–123783. [CrossRef]

30. Xiao, Y.; Zhou, X.; Zhou, H.; Wang, J. Multi-Label Deep Transfer Learning Method for Coupling Fault Diagnosis. Mech. Syst.
Signal Process. 2024, 212, 111327. [CrossRef]

31. Zhang, X.; Zhang, X.; Liu, J.; Wu, B.; Hu, Y. Graph Features Dynamic Fusion Learning Driven by Multi-Head Attention for Large
Rotating Machinery Fault Diagnosis with Multi-Sensor Data. Eng. Appl. Artif. Intell. 2023, 125, 106601. [CrossRef]

32. Zhang, X.; Liu, J.; Zhang, X.; Lu, Y. Self-Supervised Graph Feature Enhancement and Scale Attention for Mechanical Signal
Node-Level Representation and Diagnosis. Adv. Eng. Inform. 2025, 65, 103197. [CrossRef]

33. Rezazadeh, N.; de Oliveira, M.; Perfetto, D.; De Luca, A.; Caputo, F. Classification of Unbalanced and Bowed Rotors Under
Uncertainty Using Wavelet Time Scattering, LSTM, and SVM. Appl. Sci. 2023, 13, 6861. [CrossRef]

34. Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain Adaptation via Transfer Component Analysis. IEEE Trans. Neural Netw. 2011,
22, 199–210. [CrossRef]

35. Brito, L.C.; Susto, G.A.; Brito, J.N.; Duarte, M.A.V. Mechanical Faults in Rotating Machinery Dataset (Normal, Unbalance,
Misalignment, Looseness). Mendeley Data, V3. 2023. Available online: https://data.mendeley.com/datasets/zx8pfhdtnb/3
(accessed on 3 August 2025).

36. Liu, D.; Xiao, Z.; Hu, X.; Zhang, C.; Malik, O.P. Feature Extraction of Rotor Fault Based on EEMD and Curve Code. Measurement
2019, 135, 712–724. [CrossRef]

37. Peng, B.; Wan, S.; Bi, Y.; Xue, B.; Zhang, M. Automatic Feature Extraction and Construction Using Genetic Programming for
Rotating Machinery Fault Diagnosis. IEEE Trans. Cybern. 2021, 51, 4909–4923. [CrossRef] [PubMed]

38. Zhang, W.; Zhang, T.; Cui, G.; Pan, Y. Intelligent Machine Fault Diagnosis Using Convolutional Neural Networks and Transfer
Learning. IEEE Access 2022, 10, 50959–50973. [CrossRef]

39. Wu, Q.; Zhang, X.; Zhao, B. A Novel Adaptive Kernel-Guided Multi-Condition Abnormal Data Detection Method. Measurement
2023, 206, 112257. [CrossRef]

40. Li, X.; Hu, H.; Zhang, S.; Tang, G. A Fault Diagnosis Method for Rotating Machinery with Semi-Supervised Graph Convolutional
Network and Images Converted from Vibration Signals. IEEE Sens. J. 2023, 23, 11946–11955. [CrossRef]

41. Wang, J.; Ran, R.; Fang, B. GNPENet: A Novel Convolutional Neural Network with Local Structure for Fault Diagnosis.
IEEE Trans. Instrum. Meas. 2024, 73, 3504316. [CrossRef]

42. Darpe, A.K.; Gupta, K.; Chawla, A. Coupled Bending, Longitudinal and Torsional Vibrations of a Cracked Rotor. J. Sound Vib.
2004, 269, 33–60. [CrossRef]

43. Bhaumik, D.; Bhaumik, D. Misalignment-Related Defect Detection Using Discrete Wavelet Transform. Int. J. Recent. Technol. Eng.
2023, 12, 97–101. [CrossRef]

44. Yan, H.; Ding, Y.; Li, P.; Wang, Q.; Xu, Y.; Zuo, W. Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for
Unsupervised Domain Adaptation. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, 21–26 July 2017.

45. Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer Feature Learning with Joint Distribution Adaptation. In Proceedings of the
IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013.

46. Wang, J.; Chen, Y.; Hao, S.; Feng, W.; Shen, Z. Balanced Distribution Adaptation for Transfer Learning. In Proceedings of the IEEE
International Conference on Data Mining, ICDM, New Orleans, LA, USA, 18–21 November 2017.

47. Long, M.; Wang, J.; Ding, G.; Pan, S.J.; Yu, P.S. Adaptation Regularization: A General Framework for Transfer Learning.
IEEE Trans. Knowl. Data Eng. 2014, 26, 1076–1089. [CrossRef]

48. Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional Adversarial Domain Adaptation. In Proceedings of the Advances in Neural
Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1361-6501/acf67e
https://doi.org/10.3390/math10010080
https://doi.org/10.1016/j.knosys.2024.112216
https://doi.org/10.1016/j.measurement.2022.112350
https://doi.org/10.1109/ACCESS.2023.3330094
https://doi.org/10.1016/j.ymssp.2024.111327
https://doi.org/10.1016/j.engappai.2023.106601
https://doi.org/10.1016/j.aei.2025.103197
https://doi.org/10.3390/app13126861
https://doi.org/10.1109/TNN.2010.2091281
https://data.mendeley.com/datasets/zx8pfhdtnb/3
https://doi.org/10.1016/j.measurement.2018.12.009
https://doi.org/10.1109/TCYB.2020.3032945
https://www.ncbi.nlm.nih.gov/pubmed/33237874
https://doi.org/10.1109/ACCESS.2022.3173444
https://doi.org/10.1016/j.measurement.2022.112257
https://doi.org/10.1109/JSEN.2023.3267427
https://doi.org/10.1109/TIM.2023.3329156
https://doi.org/10.1016/S0022-460X(03)00003-8
https://doi.org/10.35940/ijrte.B7823.0712223
https://doi.org/10.1109/TKDE.2013.111

	Introduction 
	Materials and Methods 
	Wavelet Transformation 
	CORAL Loss 
	Deep Canonical Correlation Analysis 
	WaveCORAL-DCCA 

	Case Studies 
	Large Experimental Dataset ‘L_E_D’ 
	Small Experimental Dataset ‘S_E_D’ 
	Numerical Dataset ‘N_D’ 
	Summary of the Case Studies 

	Results 
	Fault Diagnosis Without DA 
	Fault Diagnosis with the Original DCCA Framework 
	Fault Diagnosis with WaveCORAL-DCCA 

	Comparison Study 
	Computational Efficiency and System Setup 
	Discussion 
	Conclusions 
	References

