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Abstract 

Mental fatigue is a complex condition arising from various neurological processes 
and influenced by external factors such as stress and cognitive demands. This compre-
hensive review elucidates the primary neurological mechanisms underlying mental 
fatigue, particularly emphasizing how it was elevated or otherwise affected dur-
ing the COVID-19 pandemic. We explore the intricate relationship between prolonged 
cognitive tasks, chronic stress, and the development of mental fatigue, emphasizing 
the impacts that mental fatigue has on mental health across diverse populations. Utiliz-
ing advanced artificial intelligence techniques, including machine learning and deep 
learning, this study identifies and quantifies the patterns of mental fatigue. The 
innovative approach deployed in this study enhances our understanding of the com-
plex interplay between mental fatigue and psychological disorders, uncovering 
potential predisposing factors and underlying mechanisms. A thorough bibliometric 
analysis highlights global research trends, key contributors, and emerging interdisci-
plinary methods in mental fatigue research. This paper identifies gaps in knowledge 
and methodological challenges. It proposes promising avenues for future investiga-
tions that emphasize multidisciplinary approaches and the development of novel diag-
nostic and treatment tools tailored to address mental fatigue. By integrating insights 
from neurological studies with the psychological implications of mental fatigue, this 
study aims to inform better interventions to improve mental health outcomes. Our 
findings have significant implications for healthcare professionals, researchers, and poli-
cymakers working to mitigate the impact of mental fatigue in various contexts.

Keywords:  Psychological disorder, Mental fatigue, Artificial intelligence, COVID-19, 
Signal, Bibliometric analysis, Stress, Neurological disorder, Machine learning, Deep 
learning

Introduction
Mental fatigue is a state of cognitive exhaustion caused by prolonged mental effort, 
stress, or workload, leading to reduced focus and impaired decision-making. Mental 
fatigue has emerged as a critical concern across multiple domains, including healthcare, 
workplaces, education, and transportation [1–3]. It is characterized by as a decline in 
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cognitive performance and attention due to prolonged mental exertion, mental fatigue 
remains a pervasive yet often underestimated phenomenon [4]. Mental fatigue not only 
affects individual well-being but also poses significant risks to productivity, safety, and 
overall quality of life [5–7]. In recent years, the global rise in stress-related disorders, 
exacerbated by events such as the COVID-19 pandemic [8, 9], has intensified the need 
to better understand and address mental fatigue. This condition, if left unmanaged, can 
lead to severe consequences, ranging from impaired decision-making in high-stakes 
environments to long-term mental health challenges.

The study of mental fatigue spans multiple disciplines, integrating insights from neuro-
science, psychology, engineering, and computer science. The neurological mechanisms 
underlying state mental fatigue are more complex and not completely comprehended 
[10]. However, there has been empirical evidence of changes in the brain’s cognitive con-
trol and default mode networks [11]. Mental fatigue typically has a connection with the 
frontal and occipital cortical zones of the brain, modifying the glutamate network in the 
brain to cause major changes [5, 12]. The mechanisms resulting in mental fatigue are 
unclear. Considering its increasingly recognized adverse impact, the neurological mech-
anisms associated with this phenomenon seemingly remain understudied.

Analysis of mental fatigue as a concept in biomedical science reveals that it is a well-
known phenomenon that is defined as a decrease in cognitive and emotional perfor-
mance due to continuous cognitive demand in the absence of adequate rest. This is 
accompanied by signs such as dizziness, a sleepy state, poor concentration, disorder 
in thinking, and inability to make the right decisions. Still, mental fatigue is one of the 
least researched and defined phenomena that can be characterized by rather vague and 
ambiguous conceptualization. Such terms as brain fatigue, mental fatigue and, in the 
most basic sense, fatigue are often used to describe this state, a fact that draws attention 
to the existing variability in the literature [13]. The current review uses the term “mental 
fatigue” to capture all these different meanings. Mental fatigue is not just an academic 
curiosity, it has drastic consequences for both physical well-being and the overall human 
experience.

Chronic stress hinders problem-solving skills, self-regulation, and social interactions, 
hence complicating aspects of one’s daily life, not to mention work-related issues.1 It may 
manifest as an acute condition or may become a chronic one depending on the strenu-
ous conditions such as chronic stress, sleeplessness, and long tedious mental jobs. From 
the findings of Tanaka et al. [14], chronic stress has proven to disrupt the central nervous 
system by deconstructing the facilitation systems as well as the central sensitization of 
inhibition systems. Increased cortisol levels due to stress effects go on to disrupt normal 
mechanisms of function, resulting in mental fatigue. From a biomedical point of view, 
mental fatigue is defined as having several neurological processes that are still not fully 
explained although there exists scientific evidence of the changes in cognitive control 
and the default mode networks, especially with the frontal and occipital cortical areas. 
These changes affect the glutamate connection in the mind and, therefore, cause sig-
nificant alterations in the cognitive processes. Based on the presented negative effects 

1  https://​www.​healt​hline.​com/​health/​mental-​exhau​stion

https://www.healthline.com/health/mental-exhaustion
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of mental fatigue, it is essential to investigate the potential factors and appropriate inter-
ventions required to counteract it.

However, significant gaps remain in our understanding of mental fatigue. Current 
methodologies often rely on subjective self-reports or simplistic metrics, which may lack 
the precision required for accurate diagnosis and intervention. Furthermore, the diver-
sity of datasets and the variability of fatigue manifestations across individuals present 
ongoing challenges. To address these limitations, cutting-edge technologies such as 
deep learning (DL) [15–17] and functional near-infrared spectroscopy (fNIRS) are being 
explored to enhance detection accuracy and foster real-time monitoring solutions.

This review aims to synthesize existing knowledge on mental fatigue research, empha-
sizing its implications for healthcare, workplace productivity, and educational settings. By 
analyzing recent advancements in AI-driven approaches [18–20] and bibliometric trends 
[21–23], we seek to identify key areas for future exploration and innovation. Our findings 
underscore the urgent need for improved strategies to combat mental fatigue, offering 
actionable insights for policymakers, practitioners, and researchers. Ultimately, this work 
strives to contribute to a deeper understanding of mental fatigue and its multifaceted 
impact, paving the way for more effective interventions and sustainable outcomes.

Research questions of this study

•	 How is mental fatigue linked to psychological disorders?
•	 What impact did COVID-19 have on mental fatigue?
•	 How is AI helping in mental fatigue research?
•	 What bio-signals are used to indicate mental fatigue?
•	 What are the current trends in AI and mental fatigue studies?
•	 Which institutions are leading mental fatigue research?
•	 Who is funding and supporting mental fatigue research?
•	 What gaps remain, and where should future research focus?

Main contributions of the study

•	 To explores how mental fatigue contributes to the onset or worsening of psychologi-
cal conditions such as anxiety, depression, and cognitive decline.

•	 To highlight how pandemic related stressors have intensified symptoms of mental 
fatigue across various populations.

•	 To provide a comprehensive overview of how AI models and techniques are being 
utilized to assess, predict, and monitor mental fatigue.

•	 To summarizes the most widely used physiological signals in mental fatigue assess-
ment.

•	 To analyze the annual trends, showing how AI applications in this area have evolved 
over time.

•	 To identify key academic institutions contributing to the advancement of mental 
fatigue research.

•	 To identify critical knowledge gaps and proposes future research directions.
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Related works

The review has sought to aggregate the existing research and proposed methodologies, 
coupled with the technologies that can be used to understand mental fatigue. The paper 
identifies and discusses methodologies like support vector machines, neural networks, 
and advanced approaches like deep learning to analyze mental fatigue patterns. It also 
revisits the statistical methods, such as hierarchical extreme learning machines, wavelet 
transforms, and principal component analysis, meant for explaining big data. In addi-
tion, methods of intelligent signal processing, like Electroencephalogram (EEG) [24, 25] 
and Electrocardiogram (ECG) [26], give a basis for knowledge about the physiological 
roots of mental fatigue.

In an attempt to stimulate an evaluation of potential practical applications of findings 
in mental fatigue and to stress the interdisciplinary nature of mental fatigue studies, this 
review aims to outline the gaps in the field and possible directions for its development. 
The biomedical perspective of mental fatigue is critical for formulating effective solu-
tions for use in healthcare and occupational environments, education and other areas 
that may be affected by this condition. The following sections will provide a detailed 
examination of the diverse techniques utilized in mental fatigue investigations, provid-
ing a nuanced understanding of this complex phenomenon in Table 1 [27–41].

Methods
The purpose of this review is to establish mental fatigue [42, 43], psychological disor-
ders, and their relation with COVID-19. The literature review was provided to carry out 
a systematic review of the literature in these areas. In terms of the search strategy used, 
the use of Boolean queries was considered the best approach to identify pertinent stud-
ies concerning the neurocognitive mechanisms of mental fatigue and other forms of psy-
chological manifestations. This technique helped in compiling the current practices and 
outputs from the research information regarding the subject.

Eligibility criteria

In the current review, we limited ourselves only to those sources that met the inclu-
sion criteria, specifically for the quality and relevance of the research. When selecting 
papers, only those written in English, peer-reviewed and examined mental fatigue or 
other related psychological disorders in the context of COVID-19. Reporting on mental 
fatigue was preferred in studies that included biomedical, neurological or artificial intel-
ligence approaches. The following studies were excluded: those that were published in 
duplicate, written in languages other than English, editorials, books, and those that did 
not fit the core theme of this review.

Search strategies

We have conducted a comprehensive literature search using multiple databases, 
including Elsevier, IEEE, Springer, ACM, Hindawi, MDPI, Frontiers, Wiley, Taylor 
& Francis, Nature, Google Scholar, Scopus, PubMed, and Web of Science. These 
databases were selected based on their relevance to psychological, bio-medical, and 
technological research. A bibliometric technique was used because a standardized 
search strategy was adopted for the review. As a result, all studies were considered 
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relevant to the topic based on their titles, abstracts, and keywords. The detailed 
search strategies are provided in Table 2.

Data selection

We summarized several important pieces of information for each of the selected arti-
cles, based on a predefined data extraction form: sample size, research design, out-
come measures, and findings. From the start, we found 291 articles to be relevant, but 
excluding redundant articles and those that only described what was already known 
or did not go beyond conventional methods or at least usages, the number of articles 
to be considered was 182. The other papers were peer-reviewed for quality and risk 
of bias using set criteria for evaluation. Of these, the majority addressed the effect of 
mental fatigue on psychological disorders broadly about COVID-19 stressors [29–31].

Synthesis of the results

To systematically combine insights from the reviewed literature, a structured approach 
was used to synthesize both quantitative and qualitative findings related to mental 
fatigue. The studies were categorized based on their methodologies, outcomes, and 
practical application areas. Quantitative research offered measurable indicators—such 
as bio-signal patterns [44, 45] and performance metrics of AI models—while qualitative 
studies contributed deeper perspectives on user experiences, behavioral symptoms, and 
fatigue-related challenges. A consistent trend observed across studies was the disrup-
tion of cognitive functions, such as reduced attention and impaired executive control, 
often worsened during or after COVID-19. Research using artificial intelligence showed 
encouraging potential in detecting fatigue through physiological data, though many 
models lacked generalizability across diverse individuals and settings. There was also a 
noticeable increase in interdisciplinary work combining AI, psychology, and biomedical 
sciences to improve the accuracy and personal relevance of detection systems. However, 
several gaps remain, including limited use of explainable AI, a lack of real-world model 
validation, and inconsistencies in data collection protocols.

Table 2  Search strategies of the current study

No Keywords

1 Mental fatigue” AND “COVID-19″ AND “psychological 
disorder”

2 “Mental fatigue” AND “bio-signal”

3 “Mental fatigue” AND “neurocognitive” AND “COVID-19”

4 “Mental fatigue” AND “AI” OR “artificial intelligence” AND 
“COVID-19”

5 “COVID-19” AND “stress” AND “fatigue” AND “diagnosis”
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Understanding the mental fatigue with biomedical perspectives
In this section, the knowledge about mental fatigue from the biomedical point of view 
is explored by stressing the physiological and neurological roots of the phenomenon. 
Studying mental fatigue incorporated in the biomedical framework allows us to identify 
biological mechanisms and factors that play crucial roles in the occurrence and develop-
ment of the mental fatigue phenomenon. It also helps in coming up with a correct diag-
nosis, but at the same time, helps in formulating effective intervention strategies.

Association between mental fatigue and psychological disorders

Cognitive load, on the other hand, is likely to be defined as the exhaustion that is likely 
to occur to individuals or during their working period or even in intervals of working 
time. These feelings are often experienced in routine contemporary life and include list-
lessness or fatigue, a desire to stop the current activity and lessened engagement in the 
current task [46]. Mental fatigue is a chronic psychophysiological condition which influ-
ences health and productivity negatively and has a sharp negative impact on the quality 
of life [47]. Mental fatigue manifests through decreased attention, impaired decision-
making, and diminished motivation [34]. It is often the result of sustained cognitive 
effort, which depletes the brain’s resources, leading to a state of mental exhaustion [46]. 
The underlying mechanisms involve neurotransmitter depletion, particularly dopamine 
and acetylcholine, which play key roles in cognitive processes and motivation [48]. This 
review aims to explore the association between mental fatigue and psychological dis-
orders, specifically stress, anxiety, and depression. Understanding these relationships is 
central to developing effective interventions and therapeutic approaches.

Stress is a response to perceived threats or challenges, triggering physiological and 
psychological changes aimed at coping with the stressor [49]. Maintaining homeostasis 
in the presence of aversive stimuli (stressors) requires activation of a complex range of 
responses involving the endocrine, nervous, and immune systems, collectively known 
as the stress response. Chronic stress is linked to increased levels of mental fatigue. The 
hypothalamic–pituitary–adrenal (HPA) axis plays a critical role in this association, with 
prolonged stress leading to HPA axis dysregulation and subsequent mental fatigue [50]. 
Research indicates that individuals under chronic stress exhibit higher levels of mental 
fatigue, which impairs cognitive function and exacerbates stress-related symptoms [51]. 
For instance, a study by Jex and Gudanowski [52] demonstrated that job stress signifi-
cantly predicted mental fatigue among employees, highlighting the impact of workplace 
stress on cognitive health.

Anxiety disorders, characterized by excessive worry and fear, are closely linked to 
mental fatigue. Anxiety results in increased arousal and a continuous stream of cogni-
tions, which consume the attentional and associative capital of the individual and con-
sequently causes a feeling of exhaustion [53]. A meta-analysis has revealed that there are 
changes in the way people with anxiety disorders use various networks in the brain, such 
as the attention and executive networks, which may cause mental tiredness [54]. The 
available literature provides evidence supporting this relationship. Wells, in his research 
[42], also observed that patients with Generalized anxiety disorder (GAD) experience 
higher levels of mental fatigue than normal healthy individuals. Stress and hyperarousal 
associated with anxiety disorder tends to deplete cognitive resources, hence results in 
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tiredness. Depression is described by low mood, anhedonia and neurocognitive deficits 
as comprising of impaired attention, memory, and executive functioning [55]. The cog-
nitive model of depression avers that negative beliefs and cognitive biases cause mental 
exhaustion in depressed people [56].

Depression is actually related to the imbalance of such key brain chemicals as seroto-
nin or dopamine that influences cognition and energy [57, 58]. A similar study showed 
that the effects of MDD included mental fatigue that reduced the quality of life as well as 
cognitive productivity of patients. The presence of negative thoughts and the effort used 
to deal with negative thoughts are said to take a toll on mental energy in depression. It 
is also clear that mental fatigue and different kinds of psychological disorders influence 
each other. Thus, mental fatigue may worsen forms of stress, anxiety, and/or depres-
sion, participating in a continuous loop [59]. For example, when an individual becomes 
mentally exhausted, which is common when one is overloaded with work, he or she 
has minimal resources to cope with stress, hence becoming more prone to anxiety and 
depression-like symptoms. On the other hand, stress, anxiety or depression enhances 
cognitive loads, consequently resulting in increased mental exhaustion [60]. Hence, it 
is possible to state that psychological disorders like stress, anxiety, and depression are 
highly connected with mental fatigue. Mental fatigue results from prolonged cognitive 
activity and is exacerbated by chronic stress, anxiety, and depression. These disorders, 
in turn, increase cognitive demands, further depleting cognitive resources and perpetu-
ating mental fatigue. Understanding these associations is vital for developing targeted 
interventions to alleviate mental fatigue and improve mental health outcomes.

Recent neurobiological research has identified several causal pathways underlying 
mental fatigue, particularly in relation to glutamate network dynamics and cortical con-
nectivity changes [61]. Mental fatigue is associated with glutamate accumulation in the 
prefrontal cortex (PFC) and anterior cingulate cortex (ACC), impairing synaptic plas-
ticity and leading to cognitive inefficiency [62]. Prolonged cognitive exertion disrupts 
the balance between glutamate release and reuptake, resulting in excitotoxicity and 
neural exhaustion. Additionally, changes in cortical connectivity have been observed, 
particularly in the default mode network (DMN) and central executive network (CEN). 
Fatigue leads to decreased functional connectivity between these networks, reducing the 
brain’s ability to efficiently allocate cognitive resources [63]. Moreover, neurotransmit-
ter imbalances, including dopamine, serotonin, and acetylcholine depletion, contribute 
to impaired motivation, attention, and cognitive flexibility. These neurochemical altera-
tions explain why individuals experiencing mental fatigue often report reduced alert-
ness, prolonged decision-making times, and diminished problem-solving abilities. The 
emerging evidence suggests the need for future research to employ multi-modal neuro-
imaging techniques, such as EEG, fMRI, and PET scans, to investigate the causal path-
ways and develop targeted interventions for mental fatigue in clinical and occupational 
settings.

Impact of COVID‑19 on mental fatigue

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has deeply impacted 
global health, economies, and societies. Beyond the physical health implications, the 
pandemic significantly affected mental health, leading to a notable increase in mental 
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fatigue [64]. Mental fatigue, on the other hand, describes a feeling of exhaustion and 
decreased productivity, blunting of affect and cognitive impairment that may arise from 
sustained engagement in cognitive tasks or stress [65]. In this section, a literature review 
is conducted on the current research on the consequences of mental fatigue during the 
COVID-19 pandemic regarding its incidence, risk factors, and implications on the indi-
vidual and society.

A recent cross-sectional survey revealed enhanced mental fatigue during the COVID-
19 pandemic. During the peak of the COVID-19 outbreak, the American Psychological 
Association conducted a study in which 32% of Americans reported feeling so stressed 
by the coronavirus pandemic that they could not make any basic choices. In the study, 
the majority of the grown-ups were under stress due to the pandemic, and most of them 
complained of issues associated with mental exhaustion, including the inability to focus 
(American Psychological Association, 2021). However, a Kaiser Family Foundation 
(2021) study conducted among the population of the United States showed that 47% 
of the adults reported their mental health had worsened because of stress and worry 
caused by the coronavirus.

Artificial intelligence in the mental fatigue research
This section discusses various applications of machine learning [66–68] and deep learn-
ing [69–71] techniques within mental fatigue research. These techniques are remark-
able tools for data analysis and discovering subtle patterns that the simplest approaches 
can overlook in Fig. 1. These technologies play a leading role in the progress of mental 
fatigue research, the improvement of diagnostic accuracy, and individualized therapy.

Recent advances in the detection of mental fatigue have employed a diverse variety 
of approaches, ranging from neurophysiological information to machine learning and 
deep learning techniques. For example, Yin et al. [72] demonstrated a task-independent 
model that utilized deep extreme learning machines and neurophysiological features. 
Along similar lines, Wang et al. [73] leveraged EEG signals and applying deep learning 
algorithms to identify fatigue in construction workers. Kalanadhabhatta et al. [74] intro-
duced a wide-ranging multimodal dataset, FatigueSet, to aid in modeling fatigue. Etta-
hiri et  al. [75] compared ML and DL approaches, eventually opting for deep learning 

Fig. 1  An automatic mental fatigue classification system based on a multimodal dataset using AI
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methods. Zhang et al. [76] made use of a deep temporal model with fatigue detection 
particularly suited to detection in time-series data, while Yan et  al. [77] established a 
contactless method involving several features for fatigue detection in space medicine 
scenarios. Xing et al. [78] focused on fatigue classification involving different tasks, and 
Zorzos et al. [79] utilized EEG time–frequency analysis with neural networks. In a sepa-
rate investigation, Zhong et al. [80] employed ensemble deep belief networks for fatigue 
classification in different subjects. Monteiro et al. [81] combined deep learning and sen-
sor technologies to track fatigue in ship pilots. Huang et al. [82] and Butkevičiūtė et al. 
[83] investigated ECG-based detection techniques with a special focus on wearables. 
Ansari et al. [84, 85] examined the analysis of head posture via advanced neural networks 
and unsupervised learning to identify fatigue in drivers. Qi et al. [86] utilized EEG con-
nectivity as a predictor of behavioral degradation. Liu et al. [87, 88] examined machine 
learning models driven by EEG and utilized them for identifying fatigue. Wang et al. [89] 
recorded fatigue by detecting EEG entropy and rhythm. Qin et al. [90] integrated heart 
rate variability with eye tracking for application in aviation. Zhang et al. [91] improved 
EEG feature fusion techniques to better identify driver fatigue. Yao et al. [92, 93] investi-
gated ECoG signals and biomarkers in the brain to determine how fatigue impacts task 
performance. Laurent et al. [94] demonstrated the benefit of combining multimodal data 
for improved detection. Zhang et al. [95] made use of numerous algorithms to process 
EEG data for fatigue detection, with Zhao et al. [96] utilizing autoregressive models for 
EEG-based classification. Goumopoulos et al. [47] made use of wearables to innovate a 
non-intrusive detection method, and Zhong et al. [97] investigated how brain networks 
shift with changes in tasks. Finally, Zeng et al. [98] produced a nonintrusive system for 
monitoring fatigue by applying epidermal electronics and machine learning in real-time. 
In total, these studies reflect increasing complexity and sophistication in mental fatigue 
detection by moving towards integration with physiological, behavioral, and computa-
tional advancements [99].

Automatic detection of mental fatigue

Automatic detection of mental fatigue is different from manual detection as it utilizes 
state-of-the-art sensor technologies and analytical algorithms to flag fatigue signs. 
This approach mainly involves physiological and behavioural parameters, including 
EEG [100, 101], electrooculogram (EOG), and ECG, to determine the level of fatigue. 
These data streams allow the utilization of neural networks and decision trees to predict 
fatigue in real time. This technology is useful where extended focus is important, such 
as when driving a car or handling a large piece of equipment. Through automating the 
detection process, appropriate measures can be instituted, thereby improving safety and 
increasing the productivity level. Table 3 represents an AI-based algorithm used in men-
tal fatigue research. Furthermore, automatic detection systems may be embedded into 
the health monitoring devices which inform people how their mental health and how to 
prevent fatigue.

Dataset used in mental fatigue research

Decisions about the data in mental fatigue research are very important because they 
affect the generality or specificity of the findings. In Table 4, show the existing dataset 
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used in the previous studies. These datasets usually include the subject’s physiological, 
behavioral and self-report data, which is gathered under different conditions to obtain a 
broad picture of the antecedents and outcomes of mental fatigue.

AI algorithms used in mental fatigue research

This section describes the various machine learning algorithms that have been 
applied in mental fatigue studies, with emphasis on the studies and their contribu-
tion to the knowledge domain. These algorithms help researchers efficiently com-
pute big data sets, explore patterns, and derive prediction equations for mental 
fatigue levels, essential for designing a better interventional plan and improving 
individual well-being.

In recent years, deep learning approaches have been adopted in mental fatigue 
studies because of the high capacity of modern DL to uncover non-linear relation-
ships and temporal dynamics of the data, including EEG, ECG, and other behav-
ioural data. The problem with identifying mental fatigue is that there are slight shifts 
in the pattern of EEG signals, which are non-stationary, which explains why deep 
learning approaches work with this kind of data. In this field, some current common 

Table 3  AI-based algorithm used in the mental fatigue research

DD-ELM: Dynamical Deep Extreme Learning Machine; RT: RUS Boosted Trees; DCNN: Deep Convolutional Neural Network; 
CDT: Coarse Decision Tree; KNN: K-Nearest Neighbor; RF: Random Forest; LR: Linear Regression; LDA: Linear Discriminant 
Analysis; NN: Neural Network

Ref AI model Performance Measure Accuracy 
(%)

Accuracy Specificity Recall Precision F1

[72] DD-ELM ✓ ✗ ✓ ✗ ✗ 68.90

[2] CNN ✓ ✗ ✗ ✗ ✗ 88.85

[75] CNN ✓ ✗ ✗ ✗ ✗ 97.30

[76] Deep Convolutional 
Autoencoding Memory 
network

✓ ✗ ✓ ✓ ✓ 82.90

[77] DCNN ✓ ✗ ✗ ✗ ✗ 82.22

[78] SVM ✓ ✗ ✗ ✗ ✗ 84.50

[79] TF + CNN ✓ ✗ ✓ ✓ ✓ 97.00

[80] KNN, NB, LR, SVM ✓ ✗ ✗ ✗ ✗ 71.00

[81] CNN, DBN, FFN ✓ ✗ ✗ ✗ ✗ –

[82] KNN, NB, SVM, LR ✓ ✗ ✗ ✗ ✗ 75.50

[84] RT, CDT, SVM, KNN) ✓ ✗ ✓ ✓ ✓ 99.20

[87] LR ✓ ✗ ✗ ✗ ✗ 72.70

[88] LR, LDA, NN, SVM, NB ✓ ✗ ✗ ✗ ✗ 93.45

[90] SVM, DT, KNN ✓ ✗ ✓ ✓ ✓ 91.80

[92] LDA, SVM, XGB ✓ ✗ ✗ ✗ ✓ –

[95] NN ✓ ✗ ✗ ✗ ✗ 93.00

[96] KPCA–SVM, PCA–SVM, 
SVM, KPCA–RF, KPCA–
SVM

✓ ✗ ✗ ✗ ✗ 81.64

[93] LDA, SVM ✓ ✓ ✓ ✗ ✗ 87.60

[47] SVM, KNN, LR, PCA ✓ ✗ ✓ ✓ ✓ 98.00

[97] SVM, RF, KNN ✓ ✗ ✗ ✗ ✗ 98.00

[98] DT, SVM, KNN ✓ ✗ ✗ ✗ ✗ 89.00
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Table 4  The existing dataset used in the previous studies

Author Dataset Country Sub-domain Smart Device Access

Yin et al. [72] University of 
Shanghai for 
Science and 
Technology

China Postgraduate 
students

– Closed

Wang et al. [73] Tsinghua Uni-
versity

China Construction 
workers

BCI equipment Closed

Kalanadhabhatta et al. [74] University of 
Massachusetts 
Amherst

USA Asthma – Open

Ettahiri et al. [75] INRIA, SICOMO Spain Volunteers, 
Drivers

– Closed

Zhang et al. [76] Convolutional 
Autoencoding 
Memory net-
work (CAEM)

China Healthy young 
people

Microsoft Band2 Closed

Yan et al. [77] China Astronaut 
Research and 
Training Center

China Young men – Closed

Xing et al. [78] Natural Science 
Foundation of 
Tianjin

China Healthy, Intel-
lectual

– Closed

Zorzos et al. [79] National Techni-
cal University of 
Athens

Greece Hospital’s doc-
tors and staff

– Closed

Zhong et al. [80] University of 
Shanghai for 
Science and 
Technology

China Postgraduate 
students

AutoCAMs Closed

Monteiro et al. [81] University of Sao 
Paulo

Brazil Pilots EEG headset 
Emotiv Epoc + 

Closed

Huang et al. [82] Shanghai Jiao-
tong University

China Healthy students LaPatch Closed

Ansari et al. [84] University of 
Wollongong

Australia Drivers MT sensors Closed

Qi et al. [86] Tongji University China Healthy univer-
sity students

Brain Products 
GmbH, Germany

Closed

Liu et al. [87] Nanyang 
Technological 
University

Singapore Drivers Quik-Cap Closed

Liu et al. [88] National 
Research Foun-
dation, Prime 
Minister’s Office, 
Singapore

Singapore Male Emotiv device Closed

Wang et al. [89] Northeastern 
University Shen-
yang

China Drivers wireless helmet 
Emotiv Inc

Closed

Qin et al. [90] Southeast Uni-
versity

China Flight simulation HUD Closed

Butkeviciute et al. [83] Kaunas Univer-
sity of Technol-
ogy

Lithuania Healthy adults CardioScout 
multi-device

Closed

Zhang et al. [91] Xihua University China Drivers – Closed

Yao et al. [92] Cornell Univer-
sity

USA Monkeys BioPac Systems 
Inc

Closed

Laurent et al. [94] boulevard de 
l’Hôpital

France Right-handed 
male

ActiCapTM, 
BrainAmpTM

Closed

Zhang et al. [95] Beijing Union 
University

China Students – Closed
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deep learning architectures that include Convolutional Neural Networks CNNs, 
Recurrent Neural Networks RNNs and their modified types have been illustrated 
to have potential. They can capture temporal and spatial patterns of physiological 
signals, which enables the model to capture the temporal evolution of the mental 
fatigue indicators. Furthermore, mental fatigue can be detected with better accu-
racy when deep learning methods are coupled with feature extraction methods. The 
detail descriptions of the other methods are mentioned in Fig. 2 and Table 5.

Other methods used in mental fatigue research

These methodologies are indispensable for investigating mental fatigue and its impacts on 
people’s performance and well-being since each provides a different perspective on the phe-
nomenon. Figure 3 and Table 6 describe the other methods in detail.

Performance metrics used in mental fatigue

Performance measures are essential when studying mental fatigue because they help evalu-
ate the implemented detection algorithms and interventions. These metrics enable one to 
determine the validity and reliability of some tools and methods that can be used to assess 
and combat mental fatigue. In other words, by developing such standardized measures, it 
will be possible to determine the effects of mental fatigue accumulated in various investi-
gations and examine the influences of this phenomenon on cognition and physiology. The 
mathematical expression of the performance metrics is mentioned in Fig. 4 and Eqs. (1) to 
(6):

(1)Accuracy =
Number of correctly classified instances

Total number of instances

(2)Sensitivity =
True Positive

True Positive+ False Negative

Table 4  (continued)

Author Dataset Country Sub-domain Smart Device Access

Zhao et al. [96] Xi’an Jiaotong 
University

China Male graduate 
students

Neruoscan 
system

Closed

Yao et al. [93] Cornell Univer-
sity

USA Monkeys BioPac Systems 
Inc

Closed

Goumopoulos et al. [47] Polytechnic 
School of the 
University of the 
Aegean

Greece Healthy People Zephyr HxM-BT 
sensor

Closed

Zhong et al. [97] Zhejiang Normal 
University

China Healthy young 
volunteers

– Closed

Ansari et al. [85] University of 
Wollongong

Australia Drivers MT sensors Closed

Zeng et al. [98] Huazhong 
University of 
Science and 
Technology

China – Arduino Uno 
system

 ECG chip  Closed

MT: Motion Tracker; HUD: Head‐up Display
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TPR means true positive rate, which is sensitivity at threshold value f, and FPR 
means false positive rate, which is 1-specificity at value f.

Bio‑signals used in mental fatigue research
This section comprehensively explores the bio-signals often employed in mental fatigue 
studies since they are central to identifying the physiological process and neuro-physi-
ological activities related to mental fatigue (Fig. 5). Bio-signals are the functional activ-
ity associated with reading values from a human being’s body through functional means 
that are usually not invasive. They are essential in discovering and analyzing conditions, 
including mental fatigue; they give information about the body’s functional state.

(3)F1 =
2× Precision× Recall

Precision+ Recall

(4)AUC =

∫ 1

0
TPR

(

f
)

d FPR
(

f
)

(5)Specificity =
True Negative

True Negative + False Positive

(6)Precision =
True Positive

True Positive + False Positive

Fig. 2  Machine learning techniques are used in the mental fatigue research
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Electroencephalography (EEG)

EEG is a type of neuroimaging technology that serves the healthcare profession in moni-
toring the electrical activity in the human brain without surgical intervention [102, 103]. 

Table 5  Detail descriptions of the AI algorithm used in mental fatigue research

AI Algorithm Descriptions Limitation

AB AB is an ensemble method that builds a 
strong classifier by iteratively combining 
weak learners, focusing on misclassified 
instances

Sensitive to noisy data and outliers

RT RF builds each tree using a random sub-
set of features, sampling from a uniformly 
distributed random vector to ensure 
diversity

Large datasets may require more computa-
tional resources

SVM SVM typically uses binary classifiers, but 
multiclass SVMs are widely adopted to 
handle problems involving multiple 
classes

Its performance can be sensitive to the 
choice of kernel and parameter tuning

KNN KNN stores all training examples and clas-
sifies new data based on similarity, which 
is mainly used in pattern recognition

Slow with large datasets due to high com-
putational cost

NB NB is a probabilistic classifier based 
on Bayes’ Theorem, assuming feature 
independence for fast and efficient clas-
sification

It can perform poorly with correlated or 
insufficient data

LR LR is used to classify mental fatigue levels 
by modelling the relationship between 
physiological or behavioural indicators 
and fatigue states

Sensitive to outliers and may underperform 
with high-dimensional or non-linear data

LDA LDA distinguishes mental fatigue levels 
by finding a linear combination of fea-
tures that best separates fatigue classes

Less effective when classes are not linearly 
separable or features are highly correlated

DT DT classify mental fatigue by learning 
interpretable rules from physiological and 
behavioral data

Prove to overfitting, especially with noisy or 
small datasets

CNN CNN are used to analyze and classify 
mental fatigue by extracting patterns 
from time-series or image data

Requires large amount of labeled data for 
effective training

DCNN DCNN are employed to automatically 
learn hierarchical features from complex 
data to detect and classify mental fatigue

Requires large amount of high-quality 
labeled data for training

DBN DBN are used to detect mental fatigue 
by learning deep, abstract features from 
physiological signals through unsuper-
vised pertraining

Training is complex and time consuming 
due to layer-wise pretraining

DCAMN DCAMN detects mental fatigue by 
integrating spatial–temporal features and 
attention mechanisms from dual-channel 
neural signals

High model complexity requires substantial 
computational resources

MLP MLP is used to classify mental fatigue by 
learning complex, non-linear relation-
ships from physiological or behavioral 
input data

Requires large datasets for effective gener-
alization

NN NN are applied to detect mental fatigue 
by modeling intricate patterns in physi-
ological signals

Requires substantial data and computa-
tional power for training

DD-ELM DD-ELM detects mental fatigue by rapidly 
learning complex temporal features from 
physiological data

May suffer from reduced accuracy with 
noisy or imbalanced data
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Hence, in connection with the studies of mental fatigue, EEG offers important possibili-
ties for the investigation of cerebral processes and fatigue conditions. EEG signals and 
other physiological signals can be analyzed using different mathematical tools, and these 
tools can be classified into time-domain analysis, frequency-domain analysis, and time–
frequency domain analysis. In time-domain analysis, the raw EEG signals are analyzed 

Fig. 3  Other methods used in the mental fatigue research

Table 6  Detail descriptions of the other methods used in mental fatigue research

Approaches Descriptions Limitation

FFT FFT is used to analyse the frequency 
components of brain signals to identify 
patterns associated with mental fatigue

Assumes signal stationarity, which 
may not hold for dynamic mental 
states

HELM HELM detects mental fatigue by hierar-
chically extracting deep features from 
physiological signals

Performance may degrade with noisy 
or limited data

Savitzky-Golay filter Savitzky-Golay filter smooths physi-
ological signals to reduce noise while 
preserving features critical for detecting 
mental fatigue

It may not effectively remove high-
frequency noise in highly dynamic 
signals

CRT​ CRT assesses mental fatigue by measur-
ing the speed and accuracy of responses 
to multiple stimuli

External factors like distractions or 
motivation can influence it

Mathworks DIL Mathworks DIL is used to design and 
train deep learning models for detecting 
mental fatigue from physiological data

It requires expertise in model design 
and parameter tuning

Vehicle dynamic model Vehicle dynamic model can help to 
detect mental fatigue by analyzing devia-
tions in driving behavior and control 
patters under fatigue conditions

External factors like road conditions 
and vehicle type can influence it

PLI PLI measures the consistency of phase 
differences in EEG signals to assess func-
tional brain connectivity changes linked 
to mental fatigue

It may overlook amplitude-related 
information in brain signals

PDC PDC analyses directional information 
flow between brain regions in EEG data 
to identify connectivity changes due to 
mental fatigue

It requires high-quality, noise-free 
data and accurate model order 
selection
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directly in the time domain to qualify the signals’ features like the amplitude, latency and 
duration of the components of signals like the event-related potentials (ERPs).

Alternatively, one can measure the electrical potential activity in the brain, referred to 
as EEG signals, which can be described as time-series data X(t), where t is time. Every 
X(t) represents the electrical potential of an electrode taken at some time t. Mathemati-
cally, EEG signals can be expressed in Eq. (7):

Fig. 4  Performance metrics used in the mental fatigue research

Fig. 5  Detailed description of the bio-signals used in mental fatigue research
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where, N  is the number of the frequency component, Ai(t) holds the amplitude of the 
ith frequency at time t, fi is the frequency of the ith component, φi is the phase of the ith 
component, ϵ(t) denotes the noise or artifacts in Eq. (07).

Frequency domain analysis can be done on the obtained EEG signals by transforming 
them into their frequency components, for example, using the FFT or wavelet transform. 
It allows the researcher to explore the power spectral density of EEG signals, the actual 
distribution of power in the frequency bands. Mathematically, the PSD, denoted as P(f ), 
quantifies the power of EEG signals as a function of frequency f. It provides valuable 
insights into how power is distributed across various frequency bands, which can vary in 
response to cognitive tasks and mental fatigue states and can be defined in Eq. (8):

where, T is the time duration for the conversion of EEG signal. This is evident from the 
PSD where information pertaining to distribution of power at various frequencies is pre-
sented including delta (0. 5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) 
while gamma bands are above 30 Hz and which part of the brain is involved in each of 
them.

The time–frequency analysis is a useful tool for analyzing EEG data. The Signal Transfor-
mation techniques, such as STFT or wavelet transformation offer a time–frequency distri-
bution of EEG signals. Mathematically, the STFT can be expressed in Eq. (9):

where, x(τ ) is the EEG signal, w(t − τ) is a window function, X(t, f ) represents the time–
frequency representation of the signal.

The mathematical expressions described above are a good starting ground for analyz-
ing EEG signals and allow for the analysis in time and frequency domain. This capabil-
ity enables the researchers to discover enhanced features and explore the neural basis 
related to mental fatigue. In mental fatigue studies, EEG is considered the prerequisite 
tool widely used to analyze changes in brain waves associated with prolonged cognitive 
work, sleep loss, and other factors that affect fatigue. From the perspective of EEG signal 
processing, researchers can identify specific neural signatures of fatigue, estimate cogni-
tive load, and develop strategies that would help minimize the negative effects of mental 
fatigue on productivity and health in general.

Electrocardiography (ECG)

ECG is a non-invasive technique used to record the electrical activity of the heart over 
time [42, 104]. In the context of mental fatigue research, ECG provides valuable insights 
into cardiac function and autonomic nervous system activity, which can be influenced 
by cognitive load and fatigue states. Mathematically, ECG signals can be represented 
as time-series data, denoted as Y(t), where t represents time. Each data point Y(t) 
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corresponds to the electrical potential measured by electrodes placed on the skin sur-
face, reflecting the depolarization and repolarization of cardiac muscle cells during each 
heartbeat. ECG signals exhibit characteristic waveforms, including the P wave, QRS 
complex, and T wave, which correspond to specific electrical events in the cardiac cycle. 
These waveforms can be analyzed to extract features such as heart rate, heart rate vari-
ability (HRV), and measures of cardiac autonomic function. Mathematically, heart rate 
(HR) can be calculated in Eq. (10):

where, the RR interval represents the time between consecutive R peaks in the QRS 
complex of the ECG waveform. Heart rate variability (HRV), a measure of the variation 
in the time interval between heartbeats, can be quantified using mathematical tech-
niques such as the standard deviation of RR intervals (SDNN) or the root mean square 
of successive differences (RMSSD).

One common measure of HRV is the standard deviation of RR intervals (SDNN), 
which represents the overall variability of heart rate over a given time period. Mathe-
matically, SDNN can be expressed in Eq. (11):

where, RRi represents the duration of the ith RR interval, RR is the average RR interval 
duration, and N is the total number of RR intervals. Another commonly used measure is 
the root mean square of successive differences (RMSSD), which reflects the short-term 
variability in heart rate. RMSSD can be calculated in Eq. (12):

where, RRi and RRi+1 represent successive RR intervals, and N is the total number of 
RR intervals. Concerning the assessment of mental fatigue, analysis of ECG can show 
changes in Cardiac response to cognitive tasks, stress and fatigue. Moreover, by analyz-
ing ECG signal characteristics, researchers may discover that some of them are associ-
ated with changes in autonomic regulation. Therefore, it is possible to get some insights 
into the physiological basis of the mental fatigue phenomenon.

Heart rate variability (HRV)

HRV is closely related to physiological research, which assesses the variation of the 
time between two consecutive beats, the so-called RR intervals, or beat-to-beat inter-
vals [105, 106]. In the case of mental fatigue assessment, HRV acts as an index of the 
activity of the ANS, being a measure of the relative interaction between the sympa-
thetic and parasympathetic divisions in the regulation of the heart rate. In the assess-
ment of the HRV, three main domains are most commonly used: the time domain, the 
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frequency domain, and the nonlinear analysis, which gives insight into the modula-
tion of the autonomic nervous system. In the time domain, the HRV parameters could 
be obtained by taking measurements on RR interval time series.

The frequency domain entails quantifying the PSD of RR interval time series. Power 
spectrum is often calculated with the help of specific mathematical tools like Fast Fou-
rier Transform or autoregressive decomposition. Power spectrum density P(f ) refers to 
power at the function of frequency f, which can be partitioned into frequency bands to 
purify specific components of the autonomic activity. For instance, power at the high 
frequency band, HF (0.15—0.4 Hz), is linked to the parasympathetic modulation, while 
the power at LF (0.04—0.15 Hz) is a measure of both sympathetic and parasympathetic 
tone. Nonlinear analysis of HRV includes calculating the features that measure the com-
plexity or the randomness of the RR interval time series. For instance, approximate 
entropy (ApEn) is the logarithmic likelihood that similar patterns of a certain length 
remain identical on the subsequent data points in a tolerance level, r and embedding 
dimension, m. The mathematical expression is mention in Eq. (13).

The φ(m,r) is the logarithm of the conditional probability that two sequences of m 
consecutive data points will continue to remain similar to each other within a tolerance 
of r on the Vth data point overall. These mathematical expressions give a quantitative 
description of the HRV and facilitate feature selection that describes the autonomic 
nervous system activity and its change in response to cognitive load and mental fatigue.

Galvanic skin response (GSR)

GSR is defined as a physiological measure that assesses changes in the electrical con-
ductance of skin owing to the activity of sweat glands [42, 107]. It usually employs 
the psychological or emotional activation index in different settings, including men-
tal fatigue studies. In mathematical terms, GSR can be a time–series signal S(t) where 
t refers to time. Every data point S(t) refers to skin conductance level at a given time-
stamped value t and is expressed as micro-Siemens (µS) or conductance per unit skin 
surface area. That is why GSR signals demonstrate specific oscillations when reacting to 
stimuli or changing the states of emotional responses. Such variations can be measured 
in terms of several particular features, such as the amplitude and the frequency of skin 
conductance responses or the tonic skin conductance level. There are several ways one 
can go about analyzing GSR signals, and one of the trends is SCR signaling, a technique 
that deals with the identification and measurement of response to stimuli that cause a 
temporary change in skin conductance. By definition, the amplitude of an SCR can be 
determined through the difference between the maximum and the minimum value of 
the GSR signal within a post-stimulus interval (Eq. (14)):

The following formula determines the GSR signal’s standard deviation within the time 
window where Smax—Smin denotes the maximum and minimum values. Moreover, the 
density of SCRs, which means the number of SCRs within a period, can also be calcu-
lated to provide an understanding of a dynamic aspect of electrodermal activity. In the 

(13)ApEn(m, r,N ) = φ(m, r)− φ(m+ 1, r)

(14)SCRamplitude = Smax − Smin
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case of mental fatigue studies, GSR analysis can be used to understand the fluctuations 
in the physiological activation levels correlated to cognitive demands, stress, and fatigue. 
Thus, looking at the features extracted from GSR signals, researchers are able to recog-
nize those patterns that indicate the changed regulation of the autonomic nervous sys-
tem and, so, shed light upon the psychological and physical aspects of mental fatigue.

Skin temperature (ST)

ST is an index of the skin’s thermal status and depends on blood flow, skin metabolic 
activity, and environment temperature [78, 79]. Within the framework of investigations 
of mental fatigue, skin temperature measurements can provide important data on altera-
tions in the functioning of the ANS and the amount of affective and stress stimuli expe-
rienced by the organism.

The skin temperature can be preferably expressed mathematically as T(t) where t 
stands for time. Skin temperature is normally sensed by the use of sensors, such as ther-
mistors or infrared sensors, which are fixed in areas like the forehead, finger, or wrist. 
The position of the sensor depends on the type of research being carried out and the 
ease of accessing the measurement point. The relationship between the resistance of the 
sensor R and the skin temperature T can be described by the Steinhart-Hart equation, 
particularly for thermistor-based sensors, is mentioned in Eq. (15):

where A, B and C are constants that are dependent upon the specific thermistor used to 
undergo the calibration process. Temperature detection on the skin surface is useful to 
researchers since it gives them insights into the regulation of heat of the body. Variations 
in skin temperature can denote shifts in sympathetic and parasympathetic tone regard-
ing mental demand, stress and fatigue. For instance, an increase in the skin temperature 
might be indicative of augmented sympathetic activity arising from excitement or stress, 
while a decrease might point to relaxation or reduced sympathetic modulation. Studying 
the changes in skin temperature at the same or different time points makes it possible to 
reveal the physiological effects of mental fatigue. When skin temperature information 
is combined with other autonomic variables like HRV or EDA, a researcher is then in a 
position to explore the relationship between physiological activation, cognitive demand 
and mental fatigue.

Functional near‑infrared spectroscopy (fNIRS)

fNIRS is a portable and non-invasive optical brain imaging methodology which is 
used to quantify the variations in the concentration of oxygenated blood in the brain 
laminar level with reference to neural activity [108]. The study of mental fatigue 
benefits from fNIRS as a technique for analyzing neural effects on performance or 
fatigue-related states. Federally, fNIRS is biochemical in nature, and it uses spec-
troscopy to identify variations in the absorbance of near-infrared light by the hemo-
globin in circulating blood. The modified Beer-Lambert law is commonly used to 

(15)T =
1

A+ Bln(R)+ C(ln(R))3
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relate the changes in light attenuation to changes in hemoglobin concentration. The 
mathematical expressions are mentioned in Eq. (16):

The �C represents the change in hemoglobin concentration, I is the intensity of the 
transmitted light, I0 is the initial intensity of the incident light, ϵ is the molar extinc-
tion coefficient of hemoglobin, and d is the distance between the light source and 
detector.

This ability results from deploying near-infrared light at various wavelengths, which 
enables the differentiation of oxygenated hemoglobin (HbO) and deoxygenated hemo-
globin (HbR) in fNIRS systems. These changes in these species of hemoglobin can, 
therefore, be used to decipher flow in the cerebral blood as well as oxygen metabolism 
of the neural activity. fNIRS sensors are made of optodes, which are used to launch 
and receive near-infrared light using the scalp over the desired cortex regions. The 
detected signals are then used to generate hemodynamic response curves that depict 
the time course of the neural response to cognitive tasks or stimulus. As mentioned 
earlier, fNIRS has several benefits, especially when it comes to the assessment of men-
tal fatigue: 1) It is mobile, 2) It fits natural settings, and 3) It is suitable for long-term 
tracking. Thus, fNIRS studies would allow the identification of the neural biomarkers 
of mental fatigue, the estimation of an individual’s cognitive workload and the crea-
tion of countermeasures against the deteriorations in efficiency and subjective states 
due to fatigue.

Electrocorticography (ECoG)

ECoG is another type of neuroimaging which is more invasive in nature because it 
requires the placement of electrodes directly on the exposed surface of the brain [93]. 
As a research method, ECoG allows studying the brain activity linked with cognitive 
processes and fatigue states with high spatial and temporal resolution. ECoG depicted 
as voltage signals captured in time at defined electrode contacts placed on the cortical 
surface. The voltage signal recorded by an electrode at time t is represented by V(t) 
electrical activity observed in ECoG signals due to the massive synchronous discharge 
of cortical neurons of the underlying regions.

ECoG electrodes are most often placed subdural or epidurals on the brain’s cortex; 
therefore, the activity can be recorded directly from the cortex of interest. With the 
help of the positioning of the electrodes, investigators are able to pinpoint the reaction 
to cognitive tasks or stimuli with great accuracy, thereby contributing to the under-
standing of the functional architecture of the brain. There are a number of methods in 
ECoG analysis – time-domain analysis, frequency-domain analysis, and event-related 
potential (ERP) analysis. Hence, time-domain analysis deals with the characterization 
of temporal features of the neuronal activity, whereas frequency-domain analysis, 
including the Fourier transform, deals with a power density of oscillations.

Many derived measures are extracted from ECoG signals, but the most popular 
one is event-related desynchronization/synchronization (ERD/ERS), which reflects 
changes in oscillatory activity in response to a certain event or cognitive task. 

(16)�C = −ln
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Quantitative descriptions of ERD/ERS can be formulated as the percentage of altera-
tions in the power of the frequencies within certain frequency bands compared to a 
baseline timed are mentioned in Eq. (17):

where Ptask is the power spectral density during the task and Pbaseline is the power during 
the baseline period. Using ECoG, it is possible to study cortical network states by apply-
ing connectivity analysis methods such as coherence, phase locking value, or Granger 
causality. These measures help to understand the relations between the brain areas dur-
ing different cognitive tasks and how these relationships might be altered at the state of 
mental exhaustion.

Electrooculography (EOG)

EOG is an electrical recording technique that is surface recorded and used to record 
the eye movement potentials [109]. As for the usefulness of EOG in the context of 
mental fatigue, it is necessary to comprehend that EOG provides information about 
oculomotor activity, which may be affected by load and fatigue states. Regarding 
measurement technique, EOG is normally elicited by placing electrodes around the 
eyes to pick up electrical differences relating to eye movement. Let V(t) denote the 
voltage signal given by the EOG electrode at time t; levels of amplitude and direction 
of eye movement can be identified from the waveform of this EOG signal.

EOG signals also show specific waveforms depending on the type of eye move-
ments, which include Saccadic movements, pursuits, and blinks. It is possible to 
extract waveforms containing information about such measures as saccade veloc-
ity, blink frequency, and fixation time, which can help investigate oculomotor activ-
ity during different cognitive tasks. Among the derived measures of EOG signals, the 
most frequently used one is the peak velocity of saccades, which reflects the rate of a 
fast eye movement. Mathematically, the peak velocity Vpeak can be calculated using 
the Eq. (18):

where �θ is the angular displacement of the eye during a saccade, and Δt is the saccade 
duration. EOG signals can help identify artifacts such as eye blinks and muscular activ-
ity that may contaminate the recordings of cognitive task execution. Artifact removal 
algorithms and baseline correction methodology are used to pre-process the EOG sig-
nal to enhance its quality. Additionally, EOG signals can also be combined with other 
physiological indices, including EEG and heart rate variability (HRV), to form a more 
holistic index of cognitive load and mental fatigue. In Table 7, signals used in the mental 
fatigue research are presented. By using more than one modality, we can comprehen-
sively understand changes going through the body and mind when it is fatigued and how 
we can manage this state in different settings.

(17)ERD/ERS(% ) =
Ptask − Pbaseline

Pbaseline
× 100

(18)Vpeak =
�θ

�t
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Bibliometric analysis on mental fatigue research
In this section, we proceed with the bibliometric analysis of the systematically screened 
studies on mental fatigue. Bibliometric analysis provides a measurable view of a given 
subject field, showing its evolution, areas of concentration, and significant researchers 
and works. This method applies statistical methods to examine the quantitative elements 
of academic literature to understand the trends of research dynamics and identify key 
research articles.

Data on mental fatigue used in bibliometric analysis

The information about studies conducted between 2020 and 2024 on mental fatigue 
is mentioned in Table  8. The analysis includes 2,725 documents and is based on 829 
sources, including books and periodicals. With an annual negative growth rate of 40.12% 
over period under review, research on this topic has declined, showing a reduction in 

Table 7  Bio-signals used in the mental fatigue research

ST: Skin Temperature; HR: Heart Rate; GSR: Galvanic Skin Response; FFT: Fast Fourier Transform; CRT: Choice Reaction Time; 
DIL: Driver-in-Loop; PDC: Partial Directed Coherence; ECoG: Electrocorticography; TICC: Toeplitz Inverse Covariance‐Based 
Clustering; MVAR: Multivariate Autoregressive; PLI: Phase Lag Index; EM: Expectation–Maximization

Ref Objective Part Methods Signal Channels

[72] Recognition 14 Hierarchical ELM EEG 11

[2] Identify 16 – EEG –

[75] Detection 20 – EEG –

[76] Detection 06 Savitzky–Golay filter GSR, HR, ST –

[74] Impact 12 CRT​ EEG, ECG, ST –

[77] Detection 36 – – –

[78] – 08 Fuzzy Entropy EEG –

[79] Detection 22 – EEG 64

[80] – 08 – EEG –

[81] Detection 09 – EEG 14

[82] Detection 35 – ECG, HRV –

[84] Detection 15 DIL EEG –

[86] Predict 40 Coherence PLI, PDC, 
ANOVA

EEG –

[87] Recognition 27 FFT; FIR filter EEG 30

[88] Evaluation 07 – EEG 14

[89] Assessment 03 Entropy, Wavelet Transform EEG 14

[90] Detection 11 ANOVA, TICC ECG, EEG, fNIRS –

[83] Recognition 60 – ECG –

[91] Recognition – ANOVA, Entropy EEG 60

[92] Prediction 2 ANOVA ECoG 10

[94] Detection 13 ANOVA EEG, ECG, EOG 32

[95] Recognition 10 Power spectrum, Wavelet 
entropy

EEG 04

[96] Classification 13 MVAR model EEG 32

[93] Prediction 2 Wavelet entropy, ANOVA ECoG 10

[47] Detection 32 PCA, HRV ECG –

[97] Reorganization 20 PLI EEG –

[85] Monitor 10 EM – –
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the number of new publications. Despite this, the surviving texts are well-cited, with an 
average of 17.91 citations per document, and they are relatively recent, averaging 2.34 
years. The content contains 3,324 Keywords Plus (ID) and 4,161 Author’s Keywords 
(DE), emphasizing the themes covered. The research is widely referenced, with a total 
of 76,534 references. Only 55 of the 8,071 authors in the research contributed to single-
authored publications, showing a clear tendency towards collaboration and joint author-
ship. Significant worldwide collaboration in this field of study is demonstrated by the 
average of 6.26 co-authors per document and the international co-authorship rate of 
26.94%. Regarding document types, articles (1,986) make up the majority of contribu-
tions, with reviews coming in second (739). Even though the number of new papers is 
decreasing, the data shows how active and cooperative medical intelligence research is 
regarding mental tiredness.

Annual production

Figure 6 shows the total number of publications (TP) on the subject of"Medical Intel-
ligence (Medical + AI) in Mental Fatigue Research"throughout a range of years (Pub-
lish Year (PY)). The statistics shown began in 2020, when 560 papers were published. 
In 2021, the number of publications rose steadily to 637, indicating the growing interest 
and progress in this field.

The upward trend persisted until 2022, when there was a notable increase to 780 arti-
cles, suggesting increased research activity and potential discoveries or new directions 
in medical intelligence and mental weariness. However, the number of publications 

Table 8  Description of the mental fatigue data used in bibliometric analysis

Description Results

Main Information about Data

  Timespan 2020:2024

  Sources (Journals, Books, etc.) 829

  Documents 2725

  Annual Growth Rate % −40.12

  Document Average Age 2.34

  Average citations per doc 17.91

  References 76,534

Document Contents

  Keywords Plus (ID) 3324

  Author’s Keywords (DE) 4161

Authors

  Authors 8071

  Authors of single-authored docs 55

Authors Collaboration

  Single-authored docs 93

  Co-Authors per Doc 6.26

  International co-authorships % 26.94

Document Types

  Article 1986

  Review 739
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dropped to 676 in 2023, indicating either a possible stabilization of research production 
or a change in the field’s focus. This decline can also indicate difficulties or a reallocation 
of funds and research efforts. Notably, the data for 2024 reveals a sharp fall to just 72 
articles.

Brust citations

For the years 2020 through 2024, Fig. 7 represents publication and citation, emphasizing 
studies on"Medical Intelligence in Mental Fatigue."The table shows each year’s total cita-
tions (TC) and publications (TP). 17,991 citations were obtained from 560 publications 
on this topic in 2020, demonstrating the high impact and importance of the research 
conducted in that year. In 2021, there was a rise in publications to 637, but there was a 
decrease in total citations to 14,983. In contrast to the rise in publications, the observed 

Fig. 6  Annual research output based on publication and their respective years

Fig. 7  Annual research output on AI applications in mental fatigue, illustrating total publications (TP) and 
total citations (TC) from 2020 to 2024
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decrease in citations indicates that although the research output was substantial, the 
total impact or adoption of these studies was lower compared to 2020.

Publications reached 780 in 2022 as the number kept rising. However, the overall 
number of citations fell to 12,844, a more noticeable decrease. This pattern could indi-
cate a dilution effect, in which more research was conducted, but fewer citations were 
obtained. This could be because the studies’ various degrees of quality or their narrower 
scope had less impact. In 2023, the situation was different; while there were 676 fewer 
articles overall, there were 2,910 fewer citations overall. There are several possible rea-
sons for this dramatic drop in citations, including changes in the academic community’s 
interest in mental exhaustion, the rise of other, more pertinent issues, or changes in the 
focus of the studies. Ultimately, the data reveals a sharp decline in publications and cita-
tions in 2024—just 72 and 86 were registered. This sharp fall implies that either the topic 
has matured and fewer new studies or attention from the academic community is com-
ing from it, making research on"Medical Intelligence in Mental Fatigue"less critical.

Author pattern

Regarding medical Intelligence connected to Mental Fatigue Research, Fig. 8 thoroughly 
summarizes the author’s contributions and the impact of matching citations. For dif-
ferent authors, the information comprises the total number of publications (TP) and 
total citations (TC). It shows a wide range of influence and research activity in this field. 
Authors who have published more frequently, like those with six or seven publications, 
for example, have received a significant number of citations—4,553 and 4,122, to be 
exact. This implies a direct relationship between the amount of research produced and 
the impact determined by citations.

On the other hand, writers who have fewer publications—for example, just one or 
two—have much lower citation counts, which may indicate that their influence is more 
limited or that their contributions are more recent and have not yet received widespread 
recognition and an increase in publications only sometimes translates into an increase 
in citations. For instance, the author with four publications has a remarkable number of 
citations (7,933), suggesting that their work has been especially significant or innovative 

Fig. 8  Impact of authors based on a number of contributions and their total publications
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in the field. However, there are instances in which writers with comparable numbers 
of publications have different numbers of citations, indicating variations in the caliber, 
applicability, or originality of their work.

Most relevant affiliations, authors and journals

The organizations in Table  9 have significantly contributed to medical intelligence 
and mental fatigue research. With a 5% contribution, the University of Macau stands 
out and demonstrates leadership in this field. This is probably because of its strong 
emphasis on multidisciplinary research that combines AI with healthcare. Important 
British universities with a reputation for breaking new ground in medical research 
and cognitive neuroscience—two fields closely related to studies on mental fatigue—
are the University of Oxford (4%) and King’s College London (2%). China’s Huazhong 
University of Science and Technology (3%) and Sichuan University (2%) have also 
made significant contributions, highlighting the country’s expanding prominence in 
AI-driven health research. The understanding of mental weariness has been further 
enhanced by other universities, such as the University of Toronto and the University 
of Washington, renowned for their developments in AI applications in healthcare.

In Table 10, authors are ranked by total publications (TP), total citations (TC), cita-
tion impact (CI), and active years (AY) about their contributions to medical intel-
ligence in the field of mental fatigue research. In terms of publications (31) and 
citations (397),"Xiang YT"is first. Notwithstanding the recent past four active years, 
her citation impact has been significantly lower (13). Conversely,"Fares K"and"Haddad 
C"have had the most significant citation impact (28) while having fewer publications 
(12) and shorter active duration (2 years)."Cheung T"sticks out even more, with 26 
articles and 381 citations during four active years. The data shows that while spe-
cific authors, like"Xiang YT"and"Cheung T,"publish a lot, other authors, like"Fares 
K"and"Haddad C,"have made a name for themselves with fewer but highly cited 
works. The authors’ main active periods are 2020–2024, highlighting the recent and 
rapidly growing interest in this area of research.

Table 11 displays the standing of journals supporting medical intelligence on mental 
fatigue based on several metrics, including impact factor (IF), country of publication 

Table 9  Most relevant institutions working in mental fatigue

Institutions TP Percentage Country

University of Macau 134 5 China

University of Oxford 97 4 U. K

University of Toronto 84 3 Canada

Huazhong University of Science 
and Technology

74 3 China

King’s College London 71 2 U. K

Sichuan University 70 2 China

Capital Medical University 68 2 China

Melbourne University 67 2 Australia

Hong Kong Polytechnic 
University

58 2 Hong Kong

University of Washington 54 5 U.S. A
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(CU), citation impact (CI), total publications (TP), and total citations (TC). Despite 
having a moderate impact factor (IF = 4.5), the Swiss based MDPI publishing jour-
nal “International Journal of Environmental Research and Public Health"ranks 

Table 10  Most relevant authors

Rank Authors TP TC CI Starting Year Ending Year AY

1 Akel M 14 362 26 2020 2021 2

2 Hallit S 17 374 22 2020 2022 3

3 Sacre H 14 362 26 2020 2021 2

4 Salameh P 14 362 26 2020 2021 2

5 Cheung T 26 381 15 2021 2024 4

6 Fares K 12 332 28 2020 2021 2

7 Haddad C 12 332 28 2020 2021 2

8 Obeid S 15 344 223 2020 2022 3

9 Xiang Yt 31 397 13 2021 2024 4

10 Cai H 17 299 18 2021 2023 3

Table 11  Most relevant journals related to mental fatigue research

Rank Source TP TC CI CU Q IF Publisher

1 Interna-
tional 
Journal of 
Environ-
mental 
Research 
and Public 
Health

59 2413 40 Switzerland Q2 4.5 MDPI

2 Journal of 
Affective 
Disorders

44 2252 56 Netherlands Q1 6.7 Elsevier

3 Frontiers 
in Psychol-
ogy

42 732 17 Switzerland Q2 3.9 Frontiers

4 Brain 
Behav-
ior and 
Immunity

18 2414 134 U. S. A Q1 12.0 Elsevier

5 Journal of 
Medical 
Internet 
Research

21 450 21 Canada Q1 8.0 JMIR

6 Journal of 
Psycho-
somatic 
Research

26 802 30 U. S. A Q1 4.0 Elsevier

7 Healthcare 20 569 28 Switzerland Q1 2.7 MDPI

8 Journal of 
Psychiatric 
Research

19 470 24 U. K Q1 4.9 Elsevier

9 Nutrients 19 331 17 Switzerland Q1 5.0 MDPI

10 Multiple 
Sclero-
sis and 
Related 
Disorders

45 255 5 U. S. A Q1 3.2 Elsevier
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highest with the most publications (59) and a strong citation impact (CI = 40)."Jour-
nal of Affective Disorders"is ranked second with 44 publications, but it has the highest 
impact factor (IF = 6.7) and citation impact (CI = 56), indicating its substantial impor-
tance in the field. Despite having the fourth-highest number of publications,"Brain 
Behaviour and Immunity"has the highest impact factor (IF = 12) and citation impact 
(CI = 134), demonstrating its importance in high-impact research. The top-ranked 
journals published in Switzerland and the US, with Elsevier being a well-known pub-
lisher, strongly represent high-quality research outputs in this field.

Three field plot

In the area of medical intelligence, with an emphasis on research on mental tiredness, 
the relationships between author countries (AU_CO), individual authors (AU), and 
study issues (ID) are visualized in Fig. 9, a three-field plot. The countries are represented 
on the left side (AU_CO), with China occupying the most prominent position, followed 
by Australia, the United States, and Canada. The authors are listed in the middle part 
(AU), with"Xiang YT"and"Cheung T"being the most notable. They have contributed to a 
variety of themes."Mental health,""anxiety,"and"fatigue"are the main research areas high-
lighted on the right side (ID) of the diagram. The plot highlights the productive relation-
ships that Chinese writers have with these research subjects, with notable contributions 
from Australian and American scholars as well. The overall flow suggests a focused 
research effort in mental health and related diseases, led mainly by Australian and Chi-
nese academics.

Tree map related to medical intelligence in mental fatigue

Figure 10 displays a tree map of the essential study subjects related to medical intelli-
gence in mental fatigue research. The size of each rectangle, which represents a specific 
issue, is correlated with the number of publications on the topic.

The largest rectangle,"COVID-19,"appears in 15% of the papers (552), suggesting that 
the pandemic has been the discipline’s primary focus. Other common themes that show 
how significant these subjects are to the field of mental fatigue research are"mental 
health"(501 publications, 13%),"depression"(451 publications, 12%), and"fatigue"(392 

Fig. 9  Sankey diagram showing the relationship between author countries (AU_CO), authors (AU), and 
research topics (ID). China has the highest contribution, followed by Australia, the USA, and Canada. The 
diagram highlights key authors and their focus areas, including mental health, anxiety, depression, and 
quality of life
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publications, 11%). Distinguished topics comprising 5% to 9% of the overall research 
output are"anxiety,"and"burnout."The data indicates a strong association between gen-
eral mental health issues and mental tiredness, particularly in the context of the COVID-
19 pandemic.

Word cloud related to medical intelligence in mental fatigue

Figure  11 displays a word cloud of essential terms linked to medical intelligence 
in studies on mental fatigue. The focus of the study is mainly on the effects of the 
COVID-19 pandemic on mental health. Critical phrases like"mental health,""COVID-
19,"and"depression"are used, demonstrating how important it was to take people’s men-
tal health seriously both during and after the pandemic. Other notable terms are"fatigue
,""anxiety,"and"stress,"which are often associated with mental depletion. It draws atten-
tion to how terms like"burnout,""compassion fatigue,"and"quality of life"have wider soci-
etal and psychological ramifications. Phrases like"long COVID,""sleep,"and"rehabilitatio
n"also imply that a study is ongoing to determine the long-term effects of the virus and 

Fig. 10  Research distribution on mental fatigue and related topics, highlighting key areas such as COVID-19, 
mental health, depression, fatigue, anxiety, and quality of life, along with their relative contribution to the 
field

Fig. 11  Word cloud visualization of key research topics in our study. Larger words represent more frequently 
occurring terms, with"COVID-19,""mental health,""depression,""fatigue,"and"anxiety"being the most prominent
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how it impacts mental and physical health. The word cloud provides a comprehensive 
analysis of the pandemic’s effects, both immediate and long-term, on mental health.

Author keywords related to related to medical intelligence in mental fatigue

The author’s keywords and their occurrences from an extensive survey on medical intel-
ligence in mental fatigue research are shown in Fig.  12."COVID-19,"which appears 
552 times, is the most often referenced term, suggesting a heavy emphasis on the pan-
demic’s effects on mental health. With 501 mentions,"mental health"comes in second, 
emphasizing its crucial relevance in the study. Related mental health conditions such 
as"anxiety"(with 339 and 451 occurrences, respectively) are also common, indicating the 
importance of mental exhaustion. With 392 occurrences, the term"fatigue"is significant 
and suggests that the survey strongly prioritized comprehending this condition.

The 102 appearances of the virus"SARS-CoV-2,"directly related to COVID-19, high-
light the pandemic. Notable terms include"multiple sclerosis,""mindfulness,"and"m
ental fatigue."Occurrences of these terms range from 91 to 68, indicating that certain 
conditions and interventions related to mental fatigue may be investigated. Terms 
like"insomnia,""machine learning,"and"psychological distress,"which are less commonly 
used but significant, reflect a combination of clinical conditions and technology meth-
ods in the research. Additional terms like"chronic fatigue syndrome,""PTSD,"and"electro
encephalography"demonstrate the wide variety of subjects addressed in the poll. Overall, 
the chart highlights how sophisticated technical tools, medical issues, and mental health 
all connect with the research on mental health.

All keywords related to medical intelligence in mental fatigue

Figure  13 details the keywords essential to the investigation of medical intelligence in 
mental fatigue research and shows how frequently these terms appear in the literature. 
With 639 occurrences, the most common term is"depression,"indicating its substantial 
relevance to the subject. Terms like"fatigue,""stress,"and"anxiety,"which are all linked to 
both bodily and mental weariness, are closely followed, indicating their crucial func-
tion in the context of mental fatigue. With 351 and 108 instances, respectively,"mental 

Fig. 12  Keyword distribution based on occurrence, highlighting the most frequently used terms in mental 
fatigue research, including COVID-19, mental health, depression, fatigue, and anxiety
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health"and"mental fatigue"are also heavily featured, highlighting the study’s emphasis 
on psychological well-being and the particular condition of mental exhaustion. Ninety 
times, the term"posttraumatic stress disorder"(PTSD) is used, indicating a possible con-
nection between PTSD and mental exhaustion because of the chronic tension and worry 
it might induce.

The impact of"COVID-19,"which appears 63 times in the figure, is another indica-
tor of the pandemic’s effects on weariness and mental health. Fifty-one occurrences 
of the terms"chronic fatigue syndrome"and"cognitive behavioral therapy"indicate 
the importance of both the syndrome and its therapeutic modalities in this area. 
Related phrases like"mental disorders,""mindfulness,""insomnia,"and"physicians"hi
ghlight the variety of variables and treatments under investigation. Further broad-
ening the scope of the research are specific illnesses like"chronic pain,""traumatic 
brain injury,"and"major depression"that are recognized. The existence of keywords 
like"chemotherapy,""generalized anxiety disorder,"and"psychological stress,"in addition 
to less common terms like"Parkinson’s disease,""Alzheimer’s disease,"and"irritable bowel 
syndrome,"highlights the variety of medical conditions that can cause or worsen mental 
fatigue, demonstrating the intricate and multidisciplinary nature of this field of study.

Network Co‑citations of authors, countries and sources

The linkages and connections between different writers who have been referenced 
together in the field are depicted in Fig. 14. The lines (edges) that join each node to rep-
resent an author show the frequency of co-citation, or how frequently certain authors 
are quoted together in other works. Stronger ties are shown by the thickness and density 
of the connections; closely connected nodes indicate writers who are frequently men-
tioned together, which may indicate a collaborative effort or a common area of study. 
Scholars such as Chen Shubao, Yang Winson Fuzun, and Tang Jinsong seem to be central 
figures, indicating that they are important players in this field of study and have probably 

Fig. 13  Bar chart showing the frequency of keyword occurrences in our study."Depression"is the most 
frequently occurring term, followed by"fatigue,""stress,""anxiety,"and"mental health
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produced seminal or well-known works. A highly collaborative and linked field of study 
is shown by the overall network structure’s tight interconnection.

An affiliation network co-citation analysis of clusters associated with medical intelli-
gence in mental fatigue research is shown in Fig. 15. The network indicates a collabo-
rative research landscape because of the significant connections between universities. 
The University of Oxford, University of Southampton, University of Toronto, University 
of Melbourne, and University of Alabama Birmingham are meaningful clusters that are 
central hubs in this discipline. Numerous connections among these establishments sug-
gest regular cooperation and exchange of knowledge. The network also emphasizes the 
participation of organizations from various geographic locations, such as the University 
of Sydney, the Norwegian Institute of Public Health, Oslo University Hospital, and the 

Fig. 14  Co-authorship network visualization, illustrating collaborative relationships among researchers based 
on co-citation analysis

Fig. 15  Institutional collaboration network, illustrating co-citation relationships among universities and 
research institutions
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University of Tehran, indicating a worldwide scope in this field of study. The affiliation 
network co-citation analysis offers insightful information on the institutional environ-
ment and collaborative dynamics surrounding medical intelligence in mental fatigue 
research.

Each node represents a country, and the edges between them show how frequently 
research from these countries is mentioned together in Fig.  16. The colour-coding of 
the nations into clusters suggests that some groups of nations have stronger ties to one 
another when it comes to their scientific endeavours. China, the USA, and England are 
prominent contributors to this field of study, as evidenced by their appearance as central 
nodes with numerous connections. The close ties forged between these nations suggest 
strong cooperation or considerable impact in the field. Other clusters exhibit regional 
or theme partnerships, such as those comprising nations like Australia, Canada, and 
Germany. Poland and Greece, for example, are peripheral nations; this suggests that 
their cooperation may be more specialized or infrequent. The entire network shows the 
worldwide terrain of medical intelligence and mental fatigue research, with significant 
centers in North America, Europe, and Asia, as well as wide-ranging international part-
nerships that propel the field’s advancement.

Discussion
This section presents a comprehensive discussion of the study, systematically integrating 
current knowledge on mental fatigue, with particular emphasis on its onset and exacer-
bation during the COVID-19 pandemic. The findings reinforce the multifaceted nature 
of mental fatigue and its established links to psychological disorders such as stress, anxi-
ety, and depression. Persistent cognitive strain and neurochemical dysfunctions—par-
ticularly involving glutamate signaling and cortical connectivity—are identified as key 
neurological underpinnings of the condition.

AI has emerged as a powerful tool for the detection and analysis of mental fatigue via 
bio-signals. Machine learning and deep learning models have demonstrated high accu-
racy and real-time monitoring capabilities. Despite these advancements, significant 
challenges remain, including limited model generalizability, lack of standardized data-
sets, and minimal application of explainable AI in practical settings. Addressing these 

Fig. 16  Global research collaboration network, depicting co-citation relationships among countries in 
mental fatigue studies
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gaps requires robust interdisciplinary collaboration among neuroscience, psychology, 
and data science domains to develop personalized and adaptive approaches to fatigue 
management. To support this, Fig.  17 presents a structured framework of AI-driven 
fatigue research, encompassing four critical dimensions—research gaps, proposed direc-
tions, testable hypotheses, and potential application areas—all anchored around the cen-
tral concept of AI-enabled fatigue detection.

The COVID-19 pandemic served as a global stressor that markedly intensified mental 
fatigue across populations, with widespread reports of heightened stress and decision 
fatigue. These observations underscore the urgent need for effective, scalable detection 
and intervention strategies, particularly within healthcare, education, and workplace 
environments.

Bibliometric analysis indicates increasing international collaboration [110, 111] and a 
rising focus on mental fatigue research in the post-2020 era. However, a recent slowdown 
in publication volume suggests that the field is evolving toward more mature, in-depth 
investigations. Notable research gaps persist, including insufficient dataset diversity, a 
lack of longitudinal assessments, and limited real-world validation of AI-based tools. 
Moving forward, it is essential to enhance the transparency and interpretability of AI 

Fig. 17  Role of AI in fatigue research, including research gap and its solutions
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models, broaden the diversity and quality of datasets, and strengthen transdisciplinary 
collaborations to ensure the successful translation of research into real-world impact.

Funding agencies related to mental fatigue research

This section discusses the details of funding agencies that support mental fatigue 
research (Table  12). These agencies are very useful for supporting such research 
activities, which are aimed at exploring, assessing, and preventing mental fatigue by 
providing funds for Research and development programs that foster public partici-
pation. They are great at ensuring further enhancement of understanding in science 
and providing usable solutions, as embraced by mental fatigue across these different 
platforms.

Research gap in mental fatigue

In this subsection, we assess the existing knowledge gaps within the mental fatigue 
area of study. These overlaps outline areas that have had minor development or lack 
data, serving as a proposal for future research that can offer more penetration and 
enhanced understanding. By filling these gaps, researchers can improve the knowl-
edge of mental fatigue, enhance diagnostic instruments, and enhance treatment 
methods used in our society.

Limited dataset size and diversity

A major concern of the current literature on mental fatigue detection through 
IoMT [20, 110, 112] and AI is the scarcity and the relatively small variety of datasets 
employed in the studies. Most of the research has used small sample size because it 
is expensive to conduct research and recruit participants. For example, certain stud-
ies included as few as several subjects, which is clinically insufficient to train deep 
learning models that need plenty of data to provide generalisation capabilities across 
populations and various conditions. Furthermore, these datasets are not fully diverse 
in terms of demographic variables and types of factors of mental fatigue; thus, the 
resulting models could be more solid and versatile.

Laboratory vs. real‑world conditions

The second major problem is between the laboratory and the standard conditions of 
the environment in which the product is released into the market. Most experiments 
are performed in artificial settings far from the real working conditions. This type of 
environment disparity can create superb models when trained in a controlled condi-
tion but utterly unworkable when the constraints of real-world application are con-
sidered, whether in a construction site or a medical facility, where mental fatigue is a 
significant factor to consider. The failure to build and test these models on actual data 
restrains their significance and feasibility in daily life conditions.

Equipment and sensor limitations

These include calibrating the data collected from homemade or low-cost EEG equip-
ment and noise reduction in the signals. Some of these limitations include: In the case 
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Table 12  Funding agencies used in mental fatigue research

Ref Funding Publisher Journal Used Ref

[72] National Natural Sci-
ence Foundation of 
China, Shanghai Sailing 
Program

Elsevier Neurocomputing 44

[2] Natural Science Foun-
dation of Beijing Munic-
ipality, National Natural 
Science Foundation 
of China, Institute for 
Guo Qiang, Tsinghua 
University

Elsevier Automation in Con-
struction

71

[76] European Union, 
European Union Next 
Generation EU/PRTR​

IEEE IEEE International 
Conference on Systems, 
Man, and Cybernetics

14

[74] National Key Research 
& Development Pro-
gram of China, Beijing 
Municipal Science & 
Technology Commis-
sion

IEEE IEEE International 
Conference on Systems, 
Man, and Cybernetics

23

[77] China
Manned Space 
Advanced Research 
Project ES-2-NO.0030

IEEE IEEE International Con-
ferences on Internet of 
Things

38

[78] Natural Science 
Foundation of Tianjin, 
National Key Research 
and Development 
Program of China, 
National Natural Sci-
ence Foundation of 
China, Tianjin Natural 
Science Foundation for 
Distinguished Young 
Scholars

IEEE IEEE International Con-
ference on Mechatron-
ics and Automation

22

[80] Shanghai Sailing Pro-
gram, National Natural 
Science Foundation of 
China

– 36 th Chinese Control 
Conference

22

[81] SFI Offshore 
Mechatronics, Norway 
Research Council, 
INTPART Subsea—Sub-
project USP/NTNU, SFI 
Marine Operations, 
Norway Research 
Council

 IEEE  IEEE 15 th Interna-
tional Conference 
on Control and 
Automation

 20

[82] National Natural Sci-
ence Foundation of 
China

Elsevier International Journal of 
Medical Informatics

62
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Table 12  (continued)

Ref Funding Publisher Journal Used Ref

[86] National Natural Sci-
ence Foundation of 
China, Hundred Talents 
Program of Zhejiang 
University, Central 
Universities, Zhejiang 
Lab, National University 
of Singapore, Ministry 
of Education of Singa-
pore, Natural Science 
Foundation of Shang-
hai, National Natural 
Science Foundation of 
China

IEEE IEEE Transactions on 
Neural Systems and 
Rehabilitation Engi-
neering

60

[87] National Research 
Foundation, Prime Min-
ister’s Office, Singapore

– International Confer-
ence on Cyberworlds

31

[88] National Research 
Foundation, Prime Min-
ister’s Office, Singapore, 
International Research 
Centre

– International Confer-
ence on Cyberworlds

33

[89] Liaoning Provincial 
Natural Science Foun-
dation of China

IEEE The 5 th Annual IEEE 
International Confer-
ence

21

[90] National Natural Sci-
ence Foundation of 
China

WILEY Human Factors and 
Ergonomics in Manu-
facturing & Service 
Industries

97

[91] Chinese National Natu-
ral Science Foundation

Elsevier Biomedical Signal Pro-
cessing and Control

52

[92] National Institute of 
Neurological Disorders 
and Stroke

– ICASSP 2020 22

[94] French Direction Géné-
rale de l’Armement

Elsevier Biomedical Signal Pro-
cessing and Control

39

[95] Beijing Municipal 
Education Commission, 
Beijing University

IEEE IEEE fifth Interna-
tional Conference on 
Advanced Computa-
tional Intelligence

05

[96] National Science Foun-
dation of China

Elsevier Expert Systems with 
Applications

22

[93] National Institute of 
Neurological Disorders 
and Stroke, Cornell Uni-
versity, EPFL, National 
Key R&D Program of 
China, Zhejiang Lab

IOP Journal of Neural Engi-
neering

71

[97] National Natural 
Science Foundation 
of China, Zhejiang Pro-
vincial Natural Science 
Foundation of China, 
Key Project of Natural 
Science Foundation 
of Zhejiang Province, 
Key Research and 
Development Program 
of Zhejiang Province

MDPI Sensors 66

[85] University of Wollon-
gong, Higher Education 
Commission Pakistan

IEEE IEEE Symposium Series 
on Computational 
Intelligence

24
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of using these platforms for data mining, it can lead to the gathering of compromised 
quality or unreliable data, which in turn affects the outcome of the artificial intel-
ligence models. Also, there are challenges in managing and synchronizing multiple 
kinds of physiological and behavioral data, which is necessary to build an overall pic-
ture of mental fatigue. These problems have to be addressed, and new strain sensors 
and higher-level signal acquisition techniques are required.

Cross‑task and cross‑subject variability

Modern research mostly focuses on within-task and within-subject volatility as one 
of the key issues. In general, the functional models trained on some particular jobs or 
topics cannot yield good results when undertaken in other jobs or while working on 
other topics, suggesting a huge void in building generalized models. This variability 
is important in real-world applications where models have to be effective in a variety 
of contexts and also when dealing with individual users. It is necessary to perform 
another study to determine how it is possible to develop models that can adequately 
work under these conditions.

Understanding mechanisms of mental fatigue

Very little is known about how the relationship between mental fatigue and behav-
ioural performance is mediated. These mechanisms are essential for designing new 
interventions or enhancing models. However, many researchers have not conducted 
detailed investigations of these factors and their relationships. It is almost impossible 
to develop detection and prevention methods for mental fatigue if one does not ana-
lyze how it builds up and shows itself. Future studies should, therefore, endeavor to 
examine the mechanisms above more exhaustively.

Feature selection and model optimization

Feature selection remains a significant challenge due to the high dimensionality of 
EEG data and other physiological signals. This complexity can make model training 
and interpretation difficult. Current studies indicate that there is considerable room 
for improvement in selecting and optimizing features to enhance model performance. 
Advanced feature selection techniques and optimization of hyperparameters are needed 
to improve classification accuracy and robustness.

Implications in mental fatigue research

This section elaborates on the policy implications of the research findings for areas such 
as health care, workplaces, or schools and explains how the research can be applied. 
Studying and comprehending the concept of mental exhaustion has broad applications 

Table 12  (continued)

Ref Funding Publisher Journal Used Ref

[98] National Key Research 
and Development Pro-
gram of China, National 
Natural Science Foun-
dation of China

ACS Sensors 39
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ranging from healthcare to productivity within workplaces, learning facilities, and driv-
ing. The implications of mental fatigue research include the development of practical 
recommendations on the best way to fight mental health disorders, the best way to 
improve safety measures, and the best way to record people’s performance in different 
settings. For instance, in the healthcare system, understanding early symptoms of mental 
fatigue can assist in avoiding half-burnt carcasses of workers and enhance patient out-
comes. Table 13 presents the implications of mental fatigue research.

Mental fatigue research in clinical and occupational applications

In modern healthcare, AI-driven mental fatigue detection offers transformative potential 
for neurodegenerative, psychiatric, and post-viral conditions such as long-term COVID-
19. Innovative approaches like wearable biosensors, bio-signals-based AI models, and 
HRV monitoring systems allow us to move to real-time, objective fatigue measures 
beyond self-reported assessments. AI-powered tools enhance diagnosis and treatment 
personalization by integrating physiological signals with predictive analytics, improving 
management strategies for depression, anxiety, neurodegenerative diseases, and chronic 
fatigue syndrome. Moreover, AI-driven CBT, neurofeedback, and similar digital health 
platforms enable tailored interventions that adapt treatment based on real-time fatigue 
fluctuations.

In high-stakes areas like healthcare, aviation, and transportation, AI-based fatigue 
monitoring solutions improve safety and productivity by detecting cognitive decline and 
minimizing errors. Machine learning models and smart wearable sensors help optimize 
workload distribution, monitor burnout, and improve employees’ health. Conversational 
AI tools like fatigue risk assessment can use real-time data to adjust the schedule and 
task allocations to minimize mental fatigue, which is particularly beneficial in high-
stakes environments such as hospitals, manufacturing plants, and emergency rescue 
units. Nonetheless, data privacy, AI validation, and regulatory compliance are funda-
mental for real-world adoption challenges. Additional innovations will require the inte-
gration of AI, neurotechnology and human-centered design for more effective fatigue 
management across clinical and occupational settings.

Table 13  Implications in mental fatigue research

Field Implications

Healthcare Early detection and management of mental fatigue to prevent burnout and improve 
patient care

Workplace Enhancing employee well-being and productivity through fatigue management strategies, 
reducing errors and improving efficiency

Education Developing interventions to improve student concentration and learning outcomes by 
managing mental fatigue

Transportation Improving safety by monitoring driver fatigue and implementing rest protocols to prevent 
accidents

Military Enhancing performance and decision-making by managing mental fatigue in high-stress 
environments

Sports Optimizing athlete performance by understanding and managing mental fatigue during 
training and competitions

Research Trends Bibliometric analysis can identify evolving trends, pivotal research gaps, and emerging 
themes in mental fatigue studies across all fields, guiding future inquiries
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Interdisciplinary approaches in mental fatigue research

Depending on the findings of previous or current literature, this section provides a 
brief overview of how this analytical approach could be advanced through the use 
of neuroscience and psychology along with technology integration. Mental fatigue 
research is multi-disciplinary research in which knowledge from neuroscience, psy-
chology, engineering, and computer science is embraced. Such a collaboration can 
result in the creation of more complex models regarding mental fatigue which in turn 
will necessitate a search for a variety of new and effective solutions. For example, 
applying neuroscience and artificial intelligence can complement each other in the 
improvement of diagnostic assessments concerning mental fatigue, as well as apply-
ing psychological knowledge in designing possible prevention strategies at a behav-
ioral level. Table 14 presents the contribution in mental fatigue research. Further, the 
publishing of engineering as well as computer science speed up the potential methods 
for signal processors and wearable devices meant for monitoring mental fatigue in a 
real-time fashion.

Future prospects

In this section, we explore the prospects of mental fatigue research, highlight-
ing potential advancements and directions that could significantly impact the field 
(Fig. 18). This forward-looking analysis aims to inspire new research initiatives, guide 
funding priorities, and foster the development of innovative technologies and meth-
odologies. By identifying promising areas of future exploration, we can better posi-
tion the scientific community to address the challenges posed by mental fatigue and 
enhance both preventive and therapeutic strategies.

Expanding data collection efforts

Future research should focus on collecting larger and more diverse datasets to address 
the limited dataset size and diversity issue. This includes recruiting participants from 

Table 14  Contribution to Mental Fatigue Research

Discipline Contributions

Neuroscience Understanding the neural mechanisms underlying mental fatigue and identifying biomark-
ers for early detection

Psychology Providing insights into cognitive and emotional aspects of mental fatigue and informing 
intervention strategies

Engineering Developing wearable technologies and sensors for real-time monitoring and assessment of 
mental fatigue

Computer Science Applying AI and machine learning techniques to predict and analyze mental fatigue pat-
terns and outcomes

Biomedical Science Investigating the physiological changes associated with mental fatigue and exploring 
potential pharmacological interventions

Human Factors Examining the impact of mental fatigue on human performance and designing environ-
ments and tasks to minimize fatigue-related errors and accidents

Public Health Analyzing the broader impacts of mental fatigue on community health, workplace safety, 
and quality of life, while developing public health initiatives to address these issues
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various demographic backgrounds and incorporating multiple types of fatigue-induc-
ing tasks. By enriching the participant pool and task diversity, researchers can develop 
models that generalize better across different scenarios and populations. Additionally, 
increasing the dataset size will allow deep learning techniques to fully leverage their 
capabilities, which thrive on large amounts of data​​.

Real‑world validation and deployment

There is a pressing need to validate and refine mental fatigue detection models in 
real-world environments. Future studies should prioritize deploying these models in 
actual work settings, such as construction sites, healthcare facilities, and other high-
stress environments, to assess their performance and practicality. Since the data for 
the models will be gathered in real-world conditions, various restrictions and the sets 
of options that can be improved will be defined while using the models. This is impor-
tant as the documented information will enable the development to move from labo-
ratory work to practical development.

Incorporating advanced sensor technologies

There is a problem with homemade EEG equipment, and to overcome that, the inte-
gration of advanced and more reliable sensor technology is important. Further stud-
ies should focus on, for instance, the application of accurate, high-fidelity wearable 
sensors that would not give noisy data when used in different settings. Furthermore, 
integrating a combination of EEG, ECG, and behavioral sensors, for instance, can 
provide a better perspective on mental fatigue. This wearables approach can improve 
the validity and reliability of detection systems for fatigued performers.

Fig. 18  Future prospects of the mental fatigue research
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Enhancing cross‑task and cross‑subject generalization

The practicality of the models also comes into play since the models should be gen-
eralized to other tasks and subjects. The next studies should be aimed at developing 
models with higher variability of tasks and inter-individual differences. This goal may 
be addressed through transfer learning, domain adaptation, or data collection from a 
more diverse population. The ability to make models generalize will ensure that such 
models are useful in as many scenarios as possible since real-life environments are 
diverse.

In‑depth mechanistic studies

There are directions for future research, such as better feature selection methodolo-
gies and better feature optimization techniques. They include applying new descrip-
tive techniques for feature extraction and selection and tuning of model parameters 
to improve the function. Researchers should also study the combination methods 
or meta-models that enhance various algorithms’ performance characteristics and 
increase the generalization. This means that when sophisticated feature selection 
methods are used, one is able to settle for the features that make sense in the smallest 
number of models possible, hence resulting in smaller model complexities but better 
interpretability and improved accuracy.

Advanced feature selection and model optimization

The areas that need to be focused on in the future include enhancing feature selection 
and model optimization components. This involves the search for better algorithms 
for feature extraction and selection and determining the best parameters to apply to 
come up with the best prediction model. This requires learning whether researchers 
have attempted to use ensembles and hybrid models where two or more algorithms 
are combined to arrive at good levels of accuracy and generalization. The enhanced 
methods for selecting important features can help to choose the best ones, thus sim-
plifying the models and increasing the possibility of their interpretation and effective-
ness​.

Integration with real‑time systems

Further works should be directed towards linking the detection of mental fatigue to 
other systems that both monitor and intervene in real-time. This depends on creat-
ing algorithms that can help analyze the data and feedback systems that can feed back 
current results in real-time so that some action can be taken to counter this problem. 
Real-time systems may have benefits, especially in aviation, health care, and industrial 
applications, which require continuous high attention due to fatigue. The use of such 
systems comes in handy when it comes to early detection and mitigation of mental 
fatigue, hence improving safety and performance.
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Conclusion
This review highlights the multifaceted nature of mental fatigue, emphasizing its neuro-
logical, psychological, and AI-driven detection mechanisms. The finding indicates that 
while AI model and bio-signal analysis offer promising advancements, challenges remain 
in dataset generalization, real-world validation, and interdisciplinary integration. The 
lack of standardized definitions and evaluation criteria further complicates the develop-
ment of reliable diagnostic tools. Additionally, current machine learning models often 
suffer from limited scalability and variability in bio-signal responses across individuals. 
Further research should focus on improving model robustness, integrating real-time 
monitoring systems, and exploring novel interventions tailored to individual cognitive 
needs. Incorporating multimodal data fusion techniques and hybrid AI models could 
significantly enhance detection accuracy and personalization. Furthermore, ethical con-
siderations, such as data privacy and bias in AI-driven diagnostics, must be addressed 
to ensure fairness and reliability in practical applications. By addressing these gaps, the 
scientific community can advance both diagnostic accuracy and intervention strate-
gies, ultimately enhancing cognitive well-being and performance across various sectors. 
Future work should also explore AI-assisted cognitive training programs and adaptive 
workload management systems to mitigate mental fatigue in high-risk professions.

Author contributions
SP: conceptualization, data curation, validation, visualization, formal analysis, investigation, and writing-original draft; 
MBBH: conceptualization, data curation, validation, visualization, formal analysis, investigation, project administration, 
and writing-original draft; UT and FA: data curation, formal analysis, validation, software, and writing-original draft; HMZ 
and SCYA: conceptualization, funding acquisition, supervision, investigation, and writing-original draft; SMZ and HL: 
data curation, resources, supervision, investigation, and writing – review & editing. All authors read and agreed for the 
publication.

Funding
This work was supported by the National Natural Science Foundation of China (62306337), the Young Innovative Talents 
Project of Guangdong Provincial Department of Education (2023 KQNCX063), the National Science Fund for Distin-
guished Young Scholars (61925108), the Key Project of International Cooperation and Exchanges of the National Natural 
Science Foundation of China (62220106009), the Project of Shenzhen Peacock Plan Teams (KQTD20210811090051046), 
and the Research Team Cultivation Program of Shenzhen University (2023DFT003).

Data availability
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Received: 1 December 2024   Accepted: 20 May 2025

References
	 1.	 Bin Heyat MB, et al. Wearable flexible electronics based cardiac electrode for researcher mental stress detec-

tion system using machine learning models on single lead electrocardiogram signal. Biosensors. 2022;12(6):427. 
https://​doi.​org/​10.​3390/​bios1​20604​27.

	 2.	 Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. 
Neurology. 2013;80(4):409–16. https://​doi.​org/​10.​1212/​WNL.​0b013​e3182​7f07be.

	 3.	 Wylie GR, Flashman LA. Understanding the interplay between mild traumatic brain injury and cognitive fatigue: 
models and treatments. Concussion. 2017;2(4):50. https://​doi.​org/​10.​2217/​cnc-​2017-​0003.

	 4.	 Cheng S-Y, Hsu H-T. Mental fatigue measurement using EEG. Risk Manag Trends. 2011. https://​doi.​org/​10.​5772/​
16376.

https://doi.org/10.3390/bios12060427
https://doi.org/10.1212/WNL.0b013e31827f07be
https://doi.org/10.2217/cnc-2017-0003
https://doi.org/10.5772/16376
https://doi.org/10.5772/16376


Page 47 of 50Parveen et al. Journal of Big Data          (2025) 12:198 	

	 5.	 León-Carrión J, León-Dominguez U, del Rosario Dominguez-Morales M. The neuromodulative effects of tiredness 
and mental fatigue on cognition and the use of medication, In: Advances in Intelligent Systems and Computing, 
2020, pp. 167–172. https://​doi.​org/​10.​1007/​978-3-​030-​20473-0_​17.

	 6.	 Schiphof-Godart L, Roelands B, Hettinga FJ. Drive in sports: how mental fatigue affects endurance performance”. 
Front Psychol. 2018. https://​doi.​org/​10.​3389/​fpsyg.​2018.​01383.

	 7.	 Linnhoff S, Fiene M, Heinze HJ, Zaehle T. Cognitive fatigue in multiple sclerosis: an objective approach to diagnosis 
and treatment by transcranial electrical stimulation. Brain Sci. 2019. https://​doi.​org/​10.​3390/​brain​sci90​50100.

	 8.	 Kousar F, et al. A cross-sectional study of parental perspectives on children about COVID-19 and classification 
using machine learning models. Front Public Heal. 2024. https://​doi.​org/​10.​3389/​fpubh.​2024.​13738​83.

	 9.	 Muhammad Zeeshan H, et al. A machine learning-based analysis for the effectiveness of online teaching and 
learning in Pakistan during COVID-19 lockdown. Work A J Prev Assess Rehabil. 2024. https://​doi.​org/​10.​1177/​10519​
81524​13081​61.

	 10.	 Ishii A, Tanaka M, Watanabe Y. Neural mechanisms of mental fatigue. Rev Neurosci. 2014;25(4):469–79. https://​doi.​
org/​10.​1515/​revne​uro-​2014-​0028.

	 11.	 Salihu AT, Hill KD, Jaberzadeh S. Neural mechanisms underlying state mental fatigue: a systematic review and 
activation likelihood estimation meta-analysis. Rev Neurosci. 2022;33(8):889–917. https://​doi.​org/​10.​1515/​revne​
uro-​2022-​0023.

	 12.	 Kunasegaran K, Ismail AMH, Ramasamy S, Gnanou JV, Caszo BA, Chen PL. Understanding mental fatigue and its 
detection: a comparative analysis of assessments and tools. PeerJ. 2023. https://​doi.​org/​10.​7717/​peerj.​15744.

	 13.	 Ou J, Li N, He H, He J, Zhang L, Jiang N. Detecting muscle fatigue among community-dwelling senior adults with 
shape features of the probability density function of sEMG. J Neuroeng Rehabil. 2024;21(1):196. https://​doi.​org/​10.​
1186/​s12984-​024-​01497-5.

	 14.	 Tanaka M, Shigihara Y, Ishii A, Funakura M, Kanai E, Watanabe Y. Effect of mental fatigue on the central nervous 
system: an electroencephalography study. Behav Brain Funct. 2012. https://​doi.​org/​10.​1186/​1744-​9081-8-​48.

	 15.	 Iqbal MS, et al. Progress and trends in neurological disorders research based on deep learning. Comput Med Imag 
Graph. 2024;116: 102400. https://​doi.​org/​10.​1016/j.​compm​edimag.​2024.​102400.

	 16.	 Chola C, et al. BCNet: a deep learning computer-aided diagnosis framework for human peripheral blood cell 
identification. Diagnostics. 2022;12(11):2815. https://​doi.​org/​10.​3390/​diagn​ostic​s1211​2815.

	 17.	 Mehrotra R, et al. Deep convolutional network-based probabilistic selection approach for multiclassification of 
brain tumors using magnetic resonance imaging. Int J Intell Syst. 2025. https://​doi.​org/​10.​1155/​int/​69147​57.

	 18.	 Iqbal MS, et al. Recognition of mRNA N4 Acetylcytidine (ac4C) by using non-deep vs. deep learning. Appl Sci. 
2022;12(3):1–16. https://​doi.​org/​10.​3390/​app12​031344.

	 19.	 Rehman AU, et al. Internet of things in healthcare research: trends, innovations, security considerations, challenges 
and future strategy. Int J Intell Syst. 2025. https://​doi.​org/​10.​1155/​int/​85462​45.

	 20.	 Pal R, Adhikari D, Bin Heyat MB, Ullah I, You Z. Yoga meets intelligent internet of things: recent challenges and 
future directions. Bioengineering. 2023;10(4):459. https://​doi.​org/​10.​3390/​bioen​ginee​ring1​00404​59.

	 21.	 Said RR, Bin Heyat MB, Song K, Tian C, Wu Z. A systematic review of virtual reality and robot therapy as recent 
rehabilitation technologies using EEG-brain–computer interface based on movement-related cortical potentials. 
Biosensors. 2022;12(12):1134. https://​doi.​org/​10.​3390/​bios1​21211​34.

	 22.	 Heyat MBB, et al. Detection, treatment planning, and genetic predisposition of bruxism: a systematic mapping 
process and network visualization technique. CNS Neurol Disord - Drug Targets. 2020;20(8):755–75. https://​doi.​
org/​10.​2174/​18715​27319​66620​11101​24954.

	 23.	 Sultana A et al. Unveiling the Efficacy of Unani Medicine in Female Disorders Through Machine Learning: Current 
Challenges and Opportunities, In: 2023 20th International Computer Conference on Wavelet Active Media Tech-
nology and Information Processing, ICCWAMTIP 2023, IEEE, 2023;pp. 1–6. https://​doi.​org/​10.​1109/​ICCWA​MTIP6​
0502.​2023.​10385​245.

	 24.	 Wen H, Zhong Y, Yao L, Wang Y. Neural correlates of motor/tactile imagery and tactile sensation in a BCI paradigm 
a high-density EEG source imaging study. Cyborg Bionic Syst. 2024. https://​doi.​org/​10.​34133/​cbsys​tems.​0118.

	 25.	 Yin J, Qiao Z, Han L, Zhang X. EEG-based emotion recognition with autoencoder feature fusion and MSC-TimesNet 
model. Methods Biomech Biomed Engin Comput. 2025. https://​doi.​org/​10.​1080/​10255​842.​2025.​24778​01.

	 26.	 Bing P, et al. A novel approach for denoising electrocardiogram signals to detect cardiovascular diseases using an 
efficient hybrid scheme. Cardiovasc Med Front. 2024. https://​doi.​org/​10.​3389/​fcvm.​2024.​12771​23.

	 27.	 Salihu AT, Hill KD, Jaberzadeh S. Age and type of task-based impact of mental fatigue on balance: systematic 
review and meta-analysis. J Mot Behav. 2024;56(3):373–91. https://​doi.​org/​10.​1080/​00222​895.​2023.​22997​06.

	 28.	 Yaacob H, Hossain F, Shari S, Khare SK, Ooi CP, Acharya UR. Application of artificial intelligence techniques 
for brain-computer interface in mental fatigue detection: a systematic review (2011–2022). IEEE Access. 
2023;11:74736–58. https://​doi.​org/​10.​1109/​ACCESS.​2023.​32963​82.

	 29.	 Ponce-Bordón JC, García-Calvo T, López-Gajardo MA, Díaz-García J, González-Ponce I. How does the manipulation 
of time pressure during soccer tasks influence physical load and mental fatigue?”. Psychol Sport Exercise. 2022. 
https://​doi.​org/​10.​1016/j.​psych​sport.​2022.​102253.

	 30.	 Johansson B. Mental fatigue after mild traumatic brain injury in relation to cognitive tests and brain imaging 
methods. Int J Environ Res Public Health. 2021;18(11):5955. https://​doi.​org/​10.​3390/​ijerp​h1811​5955.

	 31.	 Oliver LS, et al. Effects of nutritional interventions on accuracy and reaction time with relevance to mental fatigue 
in sporting, military and aerospace populations: a systematic review and meta-analysis. Int J Environ Res Public 
Health. 2022. https://​doi.​org/​10.​3390/​ijerp​h1901​0307.

	 32.	 Cao S, et al. Mindfulness-based interventions for the recovery of mental fatigue: a systematic review. Int J Environ 
Res Public Health. 2022. https://​doi.​org/​10.​3390/​ijerp​h1913​7825.

	 33.	 Sun H, Soh KG, Roslan S, Wazir MRWN, Soh KL. Does mental fatigue affect skilled performance in athletes? A 
systematic review. PLoS ONE. 2021. https://​doi.​org/​10.​1371/​journ​al.​pone.​02583​07.

	 34.	 Boksem MAS, Tops M. Mental fatigue: costs and benefits. Brain Res Rev. 2008;59(1):125–39. https://​doi.​org/​10.​
1016/j.​brain​resrev.​2008.​07.​001.

https://doi.org/10.1007/978-3-030-20473-0_17
https://doi.org/10.3389/fpsyg.2018.01383
https://doi.org/10.3390/brainsci9050100
https://doi.org/10.3389/fpubh.2024.1373883
https://doi.org/10.1177/10519815241308161
https://doi.org/10.1177/10519815241308161
https://doi.org/10.1515/revneuro-2014-0028
https://doi.org/10.1515/revneuro-2014-0028
https://doi.org/10.1515/revneuro-2022-0023
https://doi.org/10.1515/revneuro-2022-0023
https://doi.org/10.7717/peerj.15744
https://doi.org/10.1186/s12984-024-01497-5
https://doi.org/10.1186/s12984-024-01497-5
https://doi.org/10.1186/1744-9081-8-48
https://doi.org/10.1016/j.compmedimag.2024.102400
https://doi.org/10.3390/diagnostics12112815
https://doi.org/10.1155/int/6914757
https://doi.org/10.3390/app12031344
https://doi.org/10.1155/int/8546245
https://doi.org/10.3390/bioengineering10040459
https://doi.org/10.3390/bios12121134
https://doi.org/10.2174/1871527319666201110124954
https://doi.org/10.2174/1871527319666201110124954
https://doi.org/10.1109/ICCWAMTIP60502.2023.10385245
https://doi.org/10.1109/ICCWAMTIP60502.2023.10385245
https://doi.org/10.34133/cbsystems.0118
https://doi.org/10.1080/10255842.2025.2477801
https://doi.org/10.3389/fcvm.2024.1277123
https://doi.org/10.1080/00222895.2023.2299706
https://doi.org/10.1109/ACCESS.2023.3296382
https://doi.org/10.1016/j.psychsport.2022.102253
https://doi.org/10.3390/ijerph18115955
https://doi.org/10.3390/ijerph19010307
https://doi.org/10.3390/ijerph19137825
https://doi.org/10.1371/journal.pone.0258307
https://doi.org/10.1016/j.brainresrev.2008.07.001
https://doi.org/10.1016/j.brainresrev.2008.07.001


Page 48 of 50Parveen et al. Journal of Big Data          (2025) 12:198 

	 35.	 Mozuraityte K, Stanyte A, Fineberg NA, Serretti A, Gecaite-Stonciene J, Burkauskas J. Mental fatigue in individuals 
with psychiatric disorders: a scoping review. Int J Psychiatry Clin Pract. 2023;27(2):186–95. https://​doi.​org/​10.​1080/​
13651​501.​2022.​21290​69.

	 36.	 Kunrath CA, da Cardoso FSL, Calvo TG, da Costa IT. Mental fatigue in soccer: a systematic review. Revista Brasileira 
de Medicina do Esporte. 2020;26(2):172–8. https://​doi.​org/​10.​1590/​1517-​86922​02026​02208​206.

	 37.	 Qi P, et al. Neural mechanisms of mental fatigue revisited: new insights from the brain connectome. Engineering. 
2019;5(2):276–86. https://​doi.​org/​10.​1016/j.​eng.​2018.​11.​025.

	 38.	 Chen J, Zhou Y, Rao H, Liu J. Mental fatigue in parkinson’s disease: systematic review and evaluation of self-
reported fatigue scales. Parkinsons Dis. 2024. https://​doi.​org/​10.​1155/​2024/​96141​63.

	 39.	 Van Cutsem J, Marcora S, De Pauw K, Bailey S, Meeusen R, Roelands B. The effects of mental fatigue on physical 
performance: a systematic review. Sport Med. 2017;47(8):1569–88. https://​doi.​org/​10.​1007/​s40279-​016-​0672-0.

	 40.	 Martin K, Meeusen R, Thompson KG, Keegan R, Rattray B. Mental fatigue impairs endurance performance: a physi-
ological explanation. Sport Med. 2018;48(9):2041–51. https://​doi.​org/​10.​1007/​s40279-​018-​0946-9.

	 41.	 Habay J, et al. Mental fatigue and sport-specific psychomotor performance: a systematic review. Sport Med. 
2021;51(7):1527–48. https://​doi.​org/​10.​1007/​s40279-​021-​01429-6.

	 42.	 Parveen S, et al. Interweaving artificial intelligence and bio-signals in mental fatigue: unveiling dynamics and 
future pathways, In: 2023 20th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process. ICCWAMTIP 2023; 1–9, 
https://​doi.​org/​10.​1109/​ICCWA​MTIP6​0502.​2023.​10387​132

	 43.	 Ali AM, Ahmed AH, Smail L. Psychological climacteric symptoms and attitudes toward menopause among Emirati 
women. Int J Environ Res Public Health. 2020;17(14):1–19. https://​doi.​org/​10.​3390/​ijerp​h1714​5028.

	 44.	 Pei Y, et al. Identifying stable EEG patterns in manipulation task for negative emotion recognition. IEEE Trans Affect 
Comput. 2025. https://​doi.​org/​10.​1109/​TAFFC.​2025.​35513​30.

	 45.	 Pei Y, et al. Toward the enhancement of affective brain–computer interfaces using dependence within EEG series. 
J Neural Eng. 2025;22(2): 026038. https://​doi.​org/​10.​1088/​1741-​2552/​adbfc0.

	 46.	 R. Hockey, The psychology of fatigue: Work, effort and control. 2011. https://​doi.​org/​10.​1017/​CBO97​81139​015394.
	 47.	 Goumopoulos C, Potha N. Mental fatigue detection using a wearable commodity device and machine learning. J 

Ambient Intell Humaniz Comput. 2023;14(8):10103–21. https://​doi.​org/​10.​1007/​s12652-​021-​03674-z.
	 48.	 Linden van der D. The urge to stop: The cognitive and biological nature of acute mental fatigue.,In:Cognitive 

fatigue: Multidisciplinary perspectives on current research and future applications., 2010; 149–164. https://​doi.​org/​
10.​1037/​12343-​007.

	 49.	 Lavendel GA, Sapolsky RM. Why zebras don’t get ulcers: a guide to shess-related diseases and coping. Compet 
Intell Rev. 1995;6(1):84–84. https://​doi.​org/​10.​1002/​cir.​38800​60119.

	 50.	 McEwen BS, Stellar E. Stress and the Individual: mechanisms leading to disease. Arch Intern Med. 
1993;153(18):2093–101. https://​doi.​org/​10.​1001/​archi​nte.​1993.​00410​18003​9004.

	 51.	 Michie S, Williams S. Reducing work related psychological ill health and sickness absence: a systematic literature 
review. Occup Environ Med. 2003;60(1):3–9. https://​doi.​org/​10.​1136/​oem.​60.1.3.

	 52.	 Jex SM, Gudanowski DM. Efficacy beliefs and work stress: an exploratory study. J Organ Behav. 1992;13(5):509–17. 
https://​doi.​org/​10.​1002/​job.​40301​30506.

	 53.	 Eysenck MW, Derakshan N. New perspectives in attentional control theory. Pers Individ Dif. 2011;50(7):955–60. 
https://​doi.​org/​10.​1016/j.​paid.​2010.​08.​019.

	 54.	 Bishop SJ. Trait anxiety and impoverished prefrontal control of attention. Nat Neurosci. 2009;12(1):92–8. https://​
doi.​org/​10.​1038/​nn.​2242.

	 55.	 Mascella V. Depression: causes and treatment. Estud Psicol. 2013;30(2):303–4. https://​doi.​org/​10.​1590/​s0103-​166x2​
01300​02000​16.

	 56.	 Nolen-Hoeksema S. The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. J 
Abnorm Psychol. 2000;109(3):504–11. https://​doi.​org/​10.​1037/​0021-​843X.​109.3.​504.

	 57.	 Hecimovic H. Neurobiological Aspects of Depression: How Do They Affect Neurologic Disorders?, In: Depres-
sion in Neurologic Disorders: Diagnosis and Management, 2012; 10–27. https://​doi.​org/​10.​1002/​97811​18348​
093.​ch2.

	 58.	 Chaudhuri A, Behan PO. Fatigue and basal ganglia. J Neurol Sci. 2000;179(1–2):34–42. https://​doi.​org/​10.​1016/​
S0022-​510X(00)​00411-1.

	 59.	 Angermann CE, Ertl G. Depression, anxiety, and cognitive impairment: comorbid mental health disorders in 
heart failure. Curr Heart Fail Rep. 2018;15(6):398–410. https://​doi.​org/​10.​1007/​s11897-​018-​0414-8.

	 60.	 Diamond DM, Campbell AM, Park CR, Halonen J, Zoladz PR. The temporal dynamics model of emotional 
memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and trau-
matic memories, and the Yerkes-Dodson law. Neural Plast. 2007. https://​doi.​org/​10.​1155/​2007/​60803.

	 61.	 Arm J, Oeltzschner G, Al-iedani O, Lea R, Lechner-Scott J, Ramadan S. Altered in vivo brain GABA and gluta-
mate levels are associated with multiple sclerosis central fatigue. Eur J Radiol. 2021. https://​doi.​org/​10.​1016/j.​
ejrad.​2021.​109610.

	 62.	 Jobson DD, Hase Y, Clarkson AN, Kalaria RN. The role of the medial prefrontal cortex in cognition, ageing and 
dementia. Brain Commun. 2021. https://​doi.​org/​10.​1093/​brain​comms/​fcab1​25.

	 63.	 Zhang S, Sun J, Gao X. The effect of fatigue on brain connectivity networks. Brain Sci Adv. 2020. https://​doi.​
org/​10.​26599/​bsa.​2020.​90500​08.

	 64.	 Meeusen R, Van Cutsem J, Roelands B. Endurance exercise-induced and mental fatigue and the brain. Exp 
Physiol. 2021;106(12):2294–8. https://​doi.​org/​10.​1113/​EP088​186.

	 65.	 van der Linden D, Frese M, Meijman TF. Mental fatigue and the control of cognitive processes: effects on 
perseveration and planning. Acta Psychol (Amst). 2003;113(1):45–65. https://​doi.​org/​10.​1016/​S0001-​6918(02)​
00150-6.

	 66.	 Fazmiya MJA, et al. Efficacy of a vaginal suppository formulation prepared with Acacia arabica (Lam.) Willd. 
gum and Cinnamomum camphora (L.) J. Presl. in heavy menstrual bleeding analyzed using a machine learn-
ing technique. Front Pharmacol. 2024;15:1–23. https://​doi.​org/​10.​3389/​fphar.​2024.​13316​22.

https://doi.org/10.1080/13651501.2022.2129069
https://doi.org/10.1080/13651501.2022.2129069
https://doi.org/10.1590/1517-869220202602208206
https://doi.org/10.1016/j.eng.2018.11.025
https://doi.org/10.1155/2024/9614163
https://doi.org/10.1007/s40279-016-0672-0
https://doi.org/10.1007/s40279-018-0946-9
https://doi.org/10.1007/s40279-021-01429-6
https://doi.org/10.1109/ICCWAMTIP60502.2023.10387132
https://doi.org/10.3390/ijerph17145028
https://doi.org/10.1109/TAFFC.2025.3551330
https://doi.org/10.1088/1741-2552/adbfc0
https://doi.org/10.1017/CBO9781139015394
https://doi.org/10.1007/s12652-021-03674-z
https://doi.org/10.1037/12343-007
https://doi.org/10.1037/12343-007
https://doi.org/10.1002/cir.3880060119
https://doi.org/10.1001/archinte.1993.00410180039004
https://doi.org/10.1136/oem.60.1.3
https://doi.org/10.1002/job.4030130506
https://doi.org/10.1016/j.paid.2010.08.019
https://doi.org/10.1038/nn.2242
https://doi.org/10.1038/nn.2242
https://doi.org/10.1590/s0103-166x2013000200016
https://doi.org/10.1590/s0103-166x2013000200016
https://doi.org/10.1037/0021-843X.109.3.504
https://doi.org/10.1002/9781118348093.ch2
https://doi.org/10.1002/9781118348093.ch2
https://doi.org/10.1016/S0022-510X(00)00411-1
https://doi.org/10.1016/S0022-510X(00)00411-1
https://doi.org/10.1007/s11897-018-0414-8
https://doi.org/10.1155/2007/60803
https://doi.org/10.1016/j.ejrad.2021.109610
https://doi.org/10.1016/j.ejrad.2021.109610
https://doi.org/10.1093/braincomms/fcab125
https://doi.org/10.26599/bsa.2020.9050008
https://doi.org/10.26599/bsa.2020.9050008
https://doi.org/10.1113/EP088186
https://doi.org/10.1016/S0001-6918(02)00150-6
https://doi.org/10.1016/S0001-6918(02)00150-6
https://doi.org/10.3389/fphar.2024.1331622


Page 49 of 50Parveen et al. Journal of Big Data          (2025) 12:198 	

	 67.	 Akhtar F. Medical intelligence for anxiety research: Insights from genetics, hormones, implant science, and 
smart devices with future strategies. Wiley Interdiscip. Rev. Data Min. Knowl. Discov., p. WIREs Data Mining and 
Knowledge Discovery, 2024;e1552., https://​doi.​org/​10.​1002/​widm.​1552

	 68.	 Sultana A, et al. Experimental and computational approaches for the classification and correlation of tempera-
ment (Mizaj) and uterine dystemperament (Su’-I-Mizaj Al-Rahim) in abnormal vaginal discharge (Sayalan 
Al-Rahim) based on clinical analysis using support vector mach. Complexity. 2022;2022:1–16. https://​doi.​org/​
10.​1155/​2022/​57185​01.

	 69.	 Waheed Z, et al. A novel lightweight deep learning based approaches for the automatic diagnosis of gastro-
intestinal disease using image processing and knowledge distillation techniques. Comput Methods Programs 
Biomed. 2025;260: 108579. https://​doi.​org/​10.​1016/j.​cmpb.​2024.​108579.

	 70.	 Ullah H, et al. An end-to-end cardiac arrhythmia recognition method with an effective densenet model on 
imbalanced datasets using ECG signal. Comput Intell Neurosci. 2022;2022:1–23. https://​doi.​org/​10.​1155/​2022/​
94751​62.

	 71.	 Ansari MM, et al. SVMVGGNet-16: a novel machine and deep learning based approaches for lung cancer 
detection using combined SVM and VGGNet-16. Curr Med Imaging Former Curr Med Imaging Rev. 2025. 
https://​doi.​org/​10.​2174/​01157​34056​34882​42412​24100​809.

	 72.	 Yin Z, Zhang J. Task-generic mental fatigue recognition based on neurophysiological signals and dynamical 
deep extreme learning machine. Neurocomputing. 2018;283:266–81. https://​doi.​org/​10.​1016/j.​neucom.​2017.​
12.​062.

	 73.	 Wang Y, Huang Y, Gu B, Cao S, Fang D. Identifying mental fatigue of construction workers using EEG and deep 
learning. Autom Constr. 2023. https://​doi.​org/​10.​1016/j.​autcon.​2023.​104887.

	 74.	 Kalanadhabhatta M, Min C, Montanari A, Kawsar F. FatigueSet: a multi-modal dataset for modeling mental 
fatigue and fatigability. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Tel-
ecommunications Engineering, LNICST, 2022;431: 204–217. https://​doi.​org/​10.​1007/​978-3-​030-​99194-4_​14.

	 75.	 Ettahiri H, Vicente JMF, Fechtali T. EEG signals in mental fatigue detection: a comparing study of machine 
learning technics vs deep learning. In: Lecture Notes in Computer Science (including subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022;13258 LNCS, pp. 625–633. https://​doi.​org/​
10.​1007/​978-3-​031-​06242-1_​62.

	 76.	 Zhang Y, Chen Y, Pan Z. A deep temporal model for mental fatigue detection. In: Proceedings - 2018 IEEE 
International Conference on Systems, Man, and Cybernetics, SMC 2018, IEEE, 2018; 1879–1884. https://​doi.​org/​
10.​1109/​SMC.​2018.​00325.

	 77.	 Yan Y, Ding S, Yue Z, Yang H, Qu L, Li Y. A non-contact mental fatigue detection method for space medical 
experiment using multi-feature fusion model. In: Proceedings - IEEE Congress on Cybermatics: 2021 IEEE 
International Conferences on Internet of Things, iThings 2021, IEEE Green Computing and Communications, 
GreenCom 2021, IEEE Cyber, Physical and Social Computing, CPSCom 2021 and IEEE Smart Data, SmartD, 
IEEE, 2021;197–203. https://​doi.​org/​10.​1109/​iThin​gs-​Green​Com-​CPSCom-​Smart​Data-​Cyber​matic​s53846.​2021.​
00042.

	 78.	 Xing Z, Dong E, Tong J, Sun Z, Duan F. Application of mental fatigue classification in cross task paradigm. In: 
2022 IEEE International Conference on Mechatronics and Automation, ICMA 2022, IEEE, 2022;1750–1754. 
https://​doi.​org/​10.​1109/​ICMA5​4519.​2022.​98559​78.

	 79.	 Zorzos I, Kakkos I, Miloulis ST, Anastasiou A, Ventouras EM, Matsopoulos GK. Applying neural networks with 
time-frequency features for the detection of mental fatigue. Appl Sci. 2023;13(3):1512. https://​doi.​org/​10.​
3390/​app13​031512.

	 80.	 Zhong Y, Jianhua Z. Cross-subject classification of mental fatigue by neurophysiological signals and ensemble 
deep belief networks. In: Chinese Control Conference, CCC, IEEE, 2017;10966–10971. https://​doi.​org/​10.​23919/​
ChiCC.​2017.​80291​07.

	 81.	 Monteiro TG, Zhang H, Skourup C, Tannuri EA. Detecting mental fatigue in vessel pilots using deep learn-
ing and physiological sensors. In: IEEE International Conference on Control and Automation, ICCA, IEEE, 
2019;1511–1516. https://​doi.​org/​10.​1109/​ICCA.​2019.​88996​26.

	 82.	 Huang S, Li J, Zhang P, Zhang W. Detection of mental fatigue state with wearable ECG devices. Int J Med 
Inform. 2018;119:39–46. https://​doi.​org/​10.​1016/j.​ijmed​inf.​2018.​08.​010.

	 83.	 Butkevičiūtė E, Michalkovič A, Bikulčienė L. ECG signal features classification for the mental fatigue recogni-
tion. Mathematics. 2022;10(18):3395. https://​doi.​org/​10.​3390/​math1​01833​95.

	 84.	 Ansari S, Naghdy F, Du H, Pahnwar YN. Driver mental fatigue detection based on head posture using new 
modified reLU-BiLSTM deep neural network. IEEE Trans Intell Transp Syst. 2022;23(8):10957–69. https://​doi.​org/​
10.​1109/​TITS.​2021.​30983​09.

	 85.	 Ansari S, Du H, Naghdy F, Stirling D. Unsupervised patterns of driver mental fatigue state based on head pos-
ture using gaussian mixture model. In: 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020, 
IEEE, 2020;2699–2704. https://​doi.​org/​10.​1109/​SSCI4​7803.​2020.​93085​34.

	 86.	 Qi P, et al. EEG Functional connectivity predicts individual behavioural impairment during mental fatigue. IEEE 
Trans Neural Syst Rehabil Eng. 2020;28(9):2080–9. https://​doi.​org/​10.​1109/​TNSRE.​2020.​30073​24.

	 87.	 Liu Y, Lan Z, Cui J, Sourina O, Muller-Wittig W. EEG-Based cross-subject mental fatigue recognition. In: Proceed-
ings - 2019 International Conference on Cyberworlds, CW 2019, IEEE,2019;247–252. https://​doi.​org/​10.​1109/​
CW.​2019.​00048.

	 88.	 Liu Y et al. EEG-based evaluation of mental fatigue using machine learning algorithms. In: Proceedings - 2018 
International Conference on Cyberworlds, CW 2018, IEEE, 2018; 276–279. https://​doi.​org/​10.​1109/​CW.​2018.​
00056.

	 89.	 Wang F, Lin J, Wang W, Wang H. EEG-based mental fatigue assessment during driving by using sample entropy 
and rhythm energy. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control and 
Intelligent Systems, IEEE-CYBER 2015, IEEE, 2015;1906–1911. https://​doi.​org/​10.​1109/​CYBER.​2015.​72882​38.

https://doi.org/10.1002/widm.1552
https://doi.org/10.1155/2022/5718501
https://doi.org/10.1155/2022/5718501
https://doi.org/10.1016/j.cmpb.2024.108579
https://doi.org/10.1155/2022/9475162
https://doi.org/10.1155/2022/9475162
https://doi.org/10.2174/0115734056348824241224100809
https://doi.org/10.1016/j.neucom.2017.12.062
https://doi.org/10.1016/j.neucom.2017.12.062
https://doi.org/10.1016/j.autcon.2023.104887
https://doi.org/10.1007/978-3-030-99194-4_14
https://doi.org/10.1007/978-3-031-06242-1_62
https://doi.org/10.1007/978-3-031-06242-1_62
https://doi.org/10.1109/SMC.2018.00325
https://doi.org/10.1109/SMC.2018.00325
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00042
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00042
https://doi.org/10.1109/ICMA54519.2022.9855978
https://doi.org/10.3390/app13031512
https://doi.org/10.3390/app13031512
https://doi.org/10.23919/ChiCC.2017.8029107
https://doi.org/10.23919/ChiCC.2017.8029107
https://doi.org/10.1109/ICCA.2019.8899626
https://doi.org/10.1016/j.ijmedinf.2018.08.010
https://doi.org/10.3390/math10183395
https://doi.org/10.1109/TITS.2021.3098309
https://doi.org/10.1109/TITS.2021.3098309
https://doi.org/10.1109/SSCI47803.2020.9308534
https://doi.org/10.1109/TNSRE.2020.3007324
https://doi.org/10.1109/CW.2019.00048
https://doi.org/10.1109/CW.2019.00048
https://doi.org/10.1109/CW.2018.00056
https://doi.org/10.1109/CW.2018.00056
https://doi.org/10.1109/CYBER.2015.7288238


Page 50 of 50Parveen et al. Journal of Big Data          (2025) 12:198 

	 90.	 Qin H, Zhou X, Ou X, Liu Y, Xue C. Detection of mental fatigue state using heart rate variability and eye metrics 
during simulated flight. Hum Factors Ergon Manuf. 2021;31(6):637–51. https://​doi.​org/​10.​1002/​hfm.​20927.

	 91.	 Zhang Y, Guo H, Zhou Y, Xu C, Liao Y. Recognising drivers’ mental fatigue based on EEG multi-dimensional 
feature selection and fusion. Biomed Signal Process Control. 2023;79: 104237. https://​doi.​org/​10.​1016/j.​bspc.​
2022.​104237.

	 92.	 Yao L, Baker JL, Ryou JW, Schiff ND, Purpura KP, Shoaran M. Mental fatigue prediction from multi-channel ECOG 
signal. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 
IEEE, 2020;1259–1263. https://​doi.​org/​10.​1109/​ICASS​P40776.​2020.​90533​58.

	 93.	 Yao L, Baker JL, Schiff ND, Purpura KP, Shoaran M. Predicting task performance from biomarkers of mental 
fatigue in global brain activity. J Neural Eng. 2021;18(3): 036001. https://​doi.​org/​10.​1088/​1741-​2552/​abc529.

	 94.	 Laurent F, et al. Multimodal information improves the rapid detection of mental fatigue. Biomed Signal Process 
Control. 2013;8(4):400–8. https://​doi.​org/​10.​1016/j.​bspc.​2013.​01.​007.

	 95.	 Zhang Y, Lu B, Su L. Multi-recognition algorithms of human’s mental fatigue state based on EEG. In: 2012 IEEE 
5th International Conference on Advanced Computational Intelligence, ICACI 2012, IEEE,2012;1180–1184. 
https://​doi.​org/​10.​1109/​ICACI.​2012.​64633​62.

	 96.	 Zhao C, Zheng C, Zhao M, Tu Y, Liu J. Multivariate autoregressive models and kernel learning algorithms for 
classifying driving mental fatigue based on electroencephalographic. Expert Syst Appl. 2011;38(3):1859–65. 
https://​doi.​org/​10.​1016/j.​eswa.​2010.​07.​115.

	 97.	 Zhong H, et al. Reorganization of brain functional network during task switching before and after mental 
fatigue. Sensors (Basel). 2022;22(20):8036. https://​doi.​org/​10.​3390/​s2220​8036.

	 98.	 Zeng Z, et al. Nonintrusive monitoring of mental fatigue status using epidermal electronic systems and 
machine-learning algorithms. ACS Sensors. 2020;5(5):1305–13. https://​doi.​org/​10.​1021/​acsse​nsors.​9b024​51.

	 99.	 Zhu C. Computational intelligence-based classification system for the diagnosis of memory impairment in 
psychoactive substance users. J Cloud Comput. 2024;13(1):119. https://​doi.​org/​10.​1186/​s13677-​024-​00675-z.

	100.	 Pan H, Tong S, Song H, Chu X. A miner mental state evaluation scheme with decision level fusion based on 
multidomain EEG information. IEEE Trans Human-Machine Syst. 2025;55(2):289–99. https://​doi.​org/​10.​1109/​
THMS.​2025.​35381​62.

	101.	 Pan H, Li Z, Fu Y, Qin X, Hu J. Reconstructing visual stimulus images from eeg signals based on deep visual 
representation model. IEEE Trans Human-Machine Syst. 2024;54(6):711–22. https://​doi.​org/​10.​1109/​THMS.​
2024.​34078​75.

	102.	 Heyat MBB. Insomnia: Medical Sleep Disorder & Diagnosis, 1st ed. Hamburg, Germany: Anchor Academic 
Publishing, 2016. [Online]. Available: https://​www.​anchor-​publi​shing.​com/​docum​ent/​337729

	103.	  Bin Heyat MB, Lai D, Khan FI, Zhang Y. Sleep bruxism detection using decision tree method by the combina-
tion of C4–P4 and C4–A1 channels of Scalp EEG. IEEE Access. 2019;7:102542–53. https://​doi.​org/​10.​1109/​
ACCESS.​2019.​29280​20.

	104.	 Heyat MBB, et al. Role of oxidative stress and inflammation in insomnia sleep disorder and cardiovascular 
diseases: herbal antioxidants and anti-inflammatory coupled with insomnia detection using machine learning. 
Curr Pharm Des. 2022;28(45):3618–36. https://​doi.​org/​10.​2174/​13816​12829​66622​12011​61636.

	105.	 Ullah H, et al. An automatic premature ventricular contraction recognition system based on imbalanced data-
set and pre-trained residual network using transfer learning on ECG signal. Diagnostics. 2023;13(1):87.https://​
doi.​org/​10.​3390/​diagn​ostic​s1301​0087.

	106.	 Tripathi P, et al. Ensemble computational intelligent for insomnia sleep stage detection via the sleep ECG 
signal. IEEE Access. 2022;10:108710–21. https://​doi.​org/​10.​1109/​ACCESS.​2022.​32121​20.

	107.	 Ciabattoni L, Ferracuti F, Longhi S, Pepa L, Romeo L, Verdini F. Real-time mental stress detection based on 
smartwatch. In: 2017 IEEE International Conference on Consumer Electronics, ICCE 2017, 2017;110–111. 
https://​doi.​org/​10.​1109/​ICCE.​2017.​78892​47.

	108.	 Zhang Z, Xu F, Yang H, Jiang J, Cao Y, Jiao X. Mental fatigue detection based on the functional near infrared 
spectroscopy. In: International Conference on Optical and Photonics Engineering (icOPEN 2016), A. K. Asundi, 
X. Huang, and Y. Xie, Eds., 2017;102501D.https://​doi.​org/​10.​1117/​12.​22673​07.

	109.	 Hasan YM, Bin Heyat B, Siddiqui MM, Azad S, Akhtar F. An overview of sleep and stages of sleep. Int J Adv Res 
Comput Commun Eng. 2015;4(12):505–7. https://​doi.​org/​10.​17148/​IJARC​CE.​2015.​412144.

	110.	 Zeeshan HM et al. Worldwide research trends and hotspot on IOMT based on bibliometric analysis. In: 2023 
20th International Computer Conference on Wavelet Active Media Technology and Information Processing, 
ICCWAMTIP 2023, IEEE,2023;1–14. https://​doi.​org/​10.​1109/​ICCWA​MTIP6​0502.​2023.​10387​075.

	111.	 Zeeshan HM, et al. A bibliometric analysis on urticaria: roles of oxidative stress, inflammation, immunity, and treat-
ment modalities. Recent Adv Inflamm Allergy Drug Discov. 2025. https://​doi.​org/​10.​2174/​01277​22708​35224​72501​
21110​712.

	112.	 Bin Heyat MB, et al. Intelligent internet of medical things for depression: current advancements, challenges, and 
trends. Int J Intell Syst. 2025. https://​doi.​org/​10.​1155/​int/​68015​30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/hfm.20927
https://doi.org/10.1016/j.bspc.2022.104237
https://doi.org/10.1016/j.bspc.2022.104237
https://doi.org/10.1109/ICASSP40776.2020.9053358
https://doi.org/10.1088/1741-2552/abc529
https://doi.org/10.1016/j.bspc.2013.01.007
https://doi.org/10.1109/ICACI.2012.6463362
https://doi.org/10.1016/j.eswa.2010.07.115
https://doi.org/10.3390/s22208036
https://doi.org/10.1021/acssensors.9b02451
https://doi.org/10.1186/s13677-024-00675-z
https://doi.org/10.1109/THMS.2025.3538162
https://doi.org/10.1109/THMS.2025.3538162
https://doi.org/10.1109/THMS.2024.3407875
https://doi.org/10.1109/THMS.2024.3407875
https://www.anchor-publishing.com/document/337729
https://doi.org/10.1109/ACCESS.2019.2928020
https://doi.org/10.1109/ACCESS.2019.2928020
https://doi.org/10.2174/1381612829666221201161636
https://doi.org/10.3390/diagnostics13010087
https://doi.org/10.3390/diagnostics13010087
https://doi.org/10.1109/ACCESS.2022.3212120
https://doi.org/10.1109/ICCE.2017.7889247
https://doi.org/10.1117/12.2267307
https://doi.org/10.17148/IJARCCE.2015.412144
https://doi.org/10.1109/ICCWAMTIP60502.2023.10387075
https://doi.org/10.2174/0127722708352247250121110712
https://doi.org/10.2174/0127722708352247250121110712
https://doi.org/10.1155/int/6801530

	AI-driven biomedical perspectives on mental fatigue in the post-COVID-19 Era: trends, research gaps, and future directions
	Abstract 
	Introduction
	Research questions of this study
	Main contributions of the study
	Related works

	Methods
	Eligibility criteria
	Search strategies
	Data selection
	Synthesis of the results

	Understanding the mental fatigue with biomedical perspectives
	Association between mental fatigue and psychological disorders
	Impact of COVID-19 on mental fatigue

	Artificial intelligence in the mental fatigue research
	Automatic detection of mental fatigue
	Dataset used in mental fatigue research
	AI algorithms used in mental fatigue research
	Other methods used in mental fatigue research
	Performance metrics used in mental fatigue

	Bio-signals used in mental fatigue research
	Electroencephalography (EEG)
	Electrocardiography (ECG)
	Heart rate variability (HRV)
	Galvanic skin response (GSR)
	Skin temperature (ST)
	Functional near-infrared spectroscopy (fNIRS)
	Electrocorticography (ECoG)
	Electrooculography (EOG)

	Bibliometric analysis on mental fatigue research
	Data on mental fatigue used in bibliometric analysis
	Annual production
	Brust citations
	Author pattern
	Most relevant affiliations, authors and journals
	Three field plot
	Tree map related to medical intelligence in mental fatigue
	Word cloud related to medical intelligence in mental fatigue
	Author keywords related to related to medical intelligence in mental fatigue
	All keywords related to medical intelligence in mental fatigue
	Network Co-citations of authors, countries and sources

	Discussion
	Funding agencies related to mental fatigue research
	Research gap in mental fatigue
	Limited dataset size and diversity
	Laboratory vs. real-world conditions
	Equipment and sensor limitations
	Cross-task and cross-subject variability
	Understanding mechanisms of mental fatigue
	Feature selection and model optimization

	Implications in mental fatigue research
	Mental fatigue research in clinical and occupational applications
	Interdisciplinary approaches in mental fatigue research
	Future prospects
	Expanding data collection efforts
	Real-world validation and deployment
	Incorporating advanced sensor technologies
	Enhancing cross-task and cross-subject generalization
	In-depth mechanistic studies
	Advanced feature selection and model optimization
	Integration with real-time systems


	Conclusion
	References


