
An intrusion detection model based 
on Convolutional Kolmogorov-
Arnold Networks
Zhen Wang1,2, Anazida Zainal2, Maheyzah Md Siraj2, Fuad A. Ghaleb3, Xue Hao2 & 
Shaoyong Han4

The application of artificial neural networks (ANNs) can be found in numerous fields, including image 
and speech recognition, natural language processing, and autonomous vehicles. As well, intrusion 
detection, the subject of this paper, relies heavily on it. Different intrusion detection models have 
been constructed using ANNs. While ANNs are relatively mature to construct intrusion detection 
models, some challenges remain. Among the most notorious of these are the bloated models caused 
by the large number of parameters, and the non-interpretability of the models. Our paper presents 
Convolutional Kolmogorov-Arnold Networks (CKANs), which are designed to overcome these 
difficulties and provide an interpretable and accurate intrusion detection model. Kolmogorov-Arnold 
Networks (KANs) are developed from the Kolmogorov-Arnold representation theorem. Meanwhile, 
CKAN incorporates a convolutional computational mechanism based on KAN. The model proposed in 
this paper is constructed by incorporating attention mechanisms into CKAN’s computational logic. The 
datasets CICIoT2023 and CICIoMT2024 were used for model training and validation. From the results of 
evaluating the performance indicators of the experiments, the intrusion detection model constructed 
based on CKANs has an attractive application prospect. As compared with other methods, the model 
can predict a much higher level of accuracy with significantly fewer parameters. However, it is not 
superior in terms of memory usage, execution speed and energy consumption.
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In modern society, internet technology has become an integral part of almost every aspect of daily life. With 
access to the Internet, you can video chat with loved ones and friends thousands of miles away, shop online, 
and access information at your fingertips. One of the high-profile application areas is the Internet of Things 
(IoT), where almost all electronic devices can be integrated through information technology1. IoT applications 
range from home and industrial automation2,3to smart cities4and connected cars5. IoT devices can be used to 
collect data, monitor and control physical assets, and make decisions6. IoT has the potential to revolutionize 
many industries and have a significant impact on the global economy7. However, while these technologies bring 
convenience and better experiences, they also have corresponding pitfalls. The sheer size of the population using 
these technologies has led some unscrupulous individuals to engage in profit-taking in defiance of legal and 
ethical constraints. Recently, Internet security incidents have become more frequent8, and the trend is expected 
to continue. Consequently, individuals, corporations and even nations will face unpredictable challenges. As a 
result, it is extremely important to build an effective protection system.

When building protection mechanisms, the current mainstream solution is to combine deep learning 
algorithms to design intrusion detection system (IDS). An innovative system for detecting intrusions in IoT 
networks using convolutional neural networks (CNNs) is proposed by the authors9. Compared to other models, 
this model exhibits good performance. Attention mechanisms for model optimization are very popular. Using 
attention mechanisms on top of the CNN, the authors optimized the model for faster processing of detection 
samples without sacrificing accuracy10. Some authors have also combined the excellent properties of spiking 
neural networks and CNNs for intrusion detection11. From the experimental results, it can be seen that the 
model is much less resource-intensive than the other models in terms of computational resource usage and 
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energy consumption. While doing this, it maintains the same level of detection accuracy. Recurrent neural 
networks have also been used by some researchers to develop detection models12. Experimental results show 
that the model exhibits better results compared to existing methods. There are many similar intrusion detection 
models built on ANNs13–15. Despite the popularity of ANNs for intrusion detection model building, it is still 
undeniable that they suffer from deficiencies in interpretability. And these models are usually constructed with 
a large number of processing layers to achieve sufficient accuracy.

Using the Kolmogorov-Arnold representation theorem as inspiration, the authors proposed KANs16. A KAN 
with a much smaller size can provide similar or better accuracy relative to a multi-layer perceptron (MLP) of 
a much larger size for the purpose of fitting data and solving partial differential equations (PDEs). The KANs 
were designed with easy interpretability in mind. The visualizations of KANs were intuitive, and the interaction 
with humans was easy16. The choice of KANs for this paper was based on these excellent qualities. Convolutional 
computing is also a much-needed capability for detection models due to its powerful feature processing. It is 
these advantages that motivate this paper to propose an intrusion detection model based on CKANs. Here are 
the main contributions to the framework designed in this paper:

•	 A novel data preprocessing procedure is proposed, where sample balancing and data normalization can be 
performed more rationally. A method for organizing features is proposed that augments significant features 
at the data level.

•	 Using the Kolmogorov-Arnold representation theorem, a new intrusion detection model is developed for the 
first time. The model’s interpretability and accuracy can be enhanced. An intrusion detection model based 
on CKANs is designed and implemented, and attention mechanisms are employed to enhance the model’s 
performance.

•	 The models were evaluated on the datasets CICIoT2023 and CICIoMT2024 for various accuracy metrics. The 
experimental results show that the model proposed in this paper can do a better job than other models. The 
computational resource requirements and energy consumption of the model are evaluated. The occurrence of 
these situations is also analyzed.

Throughout the rest of this paper, the following sections will be discussed. The work related to this topic is 
described in Sect. 2. A description of our proposed solution can be found in Sect. 3. A discussion of the results 
of the adopted models is provided in Sect. 4. An overview of the results of the experiments is presented in Sect. 5 
along with suggestions for future research directions.

Related work
In full swing, research and development of learning models based on the KAN framework are being carried 
out. Researchers expect this new learning framework to replace classical MLPs and improve performance. The 
learning framework has been demonstrated to be feasible and advanced in a number of studies.

The KAN framework has been optimized by combining it with other techniques in several studies. 
Introduced B-splines and radial basis functions KAN (BSRBF-KAN), a KAN that combines B-splines and 
radial basis functions (RBFs) to fit input vectors in data training17. The authors found that BSRBF-KAN showed 
stability in 5 training sessions with competitive average accuracy. Deep operator KAN (DeepOKAN) is a new 
variant of neural operators that uses KAN architectures instead of CNNs18. When compared to MLP-based deep 
operator networks (DeepOnets), DeepOKANs achieve comparable accuracy with fewer parameters. A novel 
architecture, the fractional KAN (fKAN), is presented in the paper, which combines the distinctive features of 
KANs with a trainable adaptation of a fractional-orthogonal Jacobi function19. Investigating rational functions 
as a new basis function. The authors proposed two different approaches based on Pad ́e approximation and 
rational Jacobi functions as trainable basis functions, establishing the rational KAN (rKAN) [20]. According to 
that paper, smooth, structurally informed KANs can reach equivalence to MLPs in specific classes of functions 
by incorporating smoothness [21]. Authors introduced wavelet kolmogorov-arnold network (Wav-KAN), 
a novel neural network architecture that utilizes the wavelet KAN framework to improve performance and 
interpretability [22]. In addition to enhancing accuracy, Wav-KAN provides faster training speeds and increased 
robustness due to its ability to adapt to the data structure in the paper.

Several studies have made improvements based on graph computing. The Fourier KAN graph collaborative 
filtering (Fourier KAN-GCF) recommendation model is a simple and efficient graph-based recommendation 
model23. This model is based on a novel Fourier KAN that replaces the MLP in graph convolution networks 
(GCN) during feature transformations. As a result, graph collaborative filtering (GCF) represents better data 
and is more straightforward to train by using a Fourier KAN as part of feature transformation during message 
passing. The authors presented the Graph Kolmogorov-Arnold Networks (GKAN), a novel neural network 
architecture extending the theory of the recently proposed KAN to graph-structured data24. As opposed to 
classic GCNs which are based on static convolutional architectures, GKANs employ learnable spline-based 
functions between layers, transforming the way data is processed across graph layers. By using a real-world 
dataset (Cora), GKAN is experimentally evaluated using a semi-supervised graph learning problem. In general, 
architecture provides better performance. A comparison was made between KANs and MLPs when it came to 
graph learning tasks25. The authors conducted comprehensive experiments on node labeling, graph analysis, 
and graph regression studies. Based on the experimental results, KANs are comparable to MLPs in classification 
tasks, but they are clearly superior in graph regression tasks.

Another research topic is time-series data analysis. The Kolmogorov-Arnold representation theorem inspired 
KANs, which use spline-parametrized univariate functions instead of linear weights, enable them to learn 
activation patterns dynamically. Their study demonstrates that KANs provide more accurate results with fewer 
learning parameters than conventional MLPs in satellite traffic forecasting26. In addition, the authors present 
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a study of the impact of KAN-specific parameters on performance. As part of their exploration of KAN for 
time series prediction, they proposed two methods: temporal KAN (T-KAN) and multivariate temporal KAN 
(MT-KAN)27. Through symbolic regression, T-KAN can explain the nonlinear relationship between predictions 
and previous time steps, allowing it to be highly interpretable in dynamically changing environments due to 
its ability to detect concept drift within time series. On the other hand, MT-KAN is effective in improving 
prediction performance through the discovery and utilization of complex relationships among variables in 
multivariate time series. These approaches are validated by experiments that demonstrate their effectiveness in 
time series forecasting tasks by significantly outperforming traditional methods. As a result of their research, 
they developed a temporal KANs (TKANs), a neural network architecture inspired by KANs and long short-
term memory (LSTM)28. In TKANs, recurring KAN layers (RKANs) are embedded in memory management, 
combining the strengths of both networks. This innovation allows us to forecast multiple time series with 
improved accuracy and efficiency.

In addition to these applications, several other directions are also being investigated. KAN was integrated 
with several pre-trained CNN schemes for remote sensing (RS) image classification tasks using the EuroSAT 
dataset for the first time, demonstrating a high level of accuracy29. KAN has been used to predict the pressure and 
flow rate of flexible electrohydrodynamic pumps30. The authors evaluated the KAN model against random forest 
(RF), and MLP models using a dataset of flexible electrohydrodynamic pump parameters. In the experimental 
results, KAN has been demonstrated to be exceptionally accurate and interpretable, making it an appropriate 
alternative to electrohydrodynamic pumping predictive modeling. In their study, the authors propose a different 
PDE form using KAN rather than MLP, known as Kolmogorov-Arnold-Informed Neural Networks (KINNs)31. 
They compare MLP with KAN in several numerical PDE examples. For a number of PDEs in computational 
solid mechanics, KINN exceeds MLP in terms of accuracy and convergence speed. According to the enthusiasm 
of the researchers and KAN’s excellent performance in different applications, more research results will be made 
available for learning and application in the near future.

In the field of intrusion detection, there are also many excellent traditional deep learning models available. 
An approach based on hybrid learning is proposed to identify malicious traffic utilizing a lightweight, two-
stage scheme32. The domain name system (DNS) is well protected in this way. A high-performance machine 
learning-based monitoring system for detecting malicious uniform resource locators (URLs) is presented in the 
paper33. A two-layer detection system is proposed in the proposal. In both binary and multi-class classification, 
it is superior. In this article, they propose a novel method for designing a smart IDS using software-defined 
networking (SDN) and deep learning34. This approach considers the SDN framework as a promising option that 
enables reconfiguration of static network infrastructure and separates the control plane from the data plane in 
smart consumer electronics networks. They propose a method for detecting and classifying network activity in an 
IoT system using predictive machine learning35. An evaluation of five supervised learning models was conducted 
to analyze their impact on the detection and classification of network activities in IoT systems. The results of 
their experiments indicate that their model is highly accurate in detecting anomalies. The article proposes a new 
method for detecting intrusions in IoT by stacking ensembles of deep learning models36. The model is evaluated 
on three open-source datasets, including binary and multi-class classification, and its results are compared with 
those of other standard machine learning methods. In experimental studies, it has demonstrated a high level of 
accuracy and a low false positive rate (FPR). These deep learning models based on traditional architectures have 
played a profound role in advancing the field. Table 1 summarizes these relevant research efforts.

Proposed scheme
This section describes the main elements of this study, including the data pre-processing process, the model 
construction process, and the internal mechanisms specific to the proposed model. A diagram depicting the 
overall framework of this study is shown in Fig. 1.

Data pre-processing
The datasets used in this study are CICIoT202337and CICIoMT202438. Even the current state-of-the-art software 
and hardware can’t guarantee that the data collected is completely correct, so the datasets need to be cleaned first 
to remove invalid data. Remove data records with null values, infinite values, and negative values (when they 
should be positive). Following the completion of this step, all data records left behind are valid. The balancing 
of the data samples was then carried out. There are often large differences in the number of samples of different 
types of data in the collected dataset. In order to avoid unfairness for data types with small samples, the sample 
set will be quantitatively balanced. In this paper, each type of data is clustered using the K-Means algorithm. The 
sample point at the center of the cluster is used as representative sample in the set of samples for that cluster. A 
total of 10,000 representative samples were collected in this manner for each type of data.

Data normalization operations are then performed on these selected samples. Due to their uneven distribution 
when analyzing the features, these values must be further processed prior to normalization. Figure 2shows the 
result after one field was analyzed using Isolation Forest (iForest)39. As can be seen from the blue area on the 
far left, this represents the normal data points obtained from the analysis, which constitutes only a small part of 
the range of values. However, the entire range of values expands dramatically due to a small number of values. 
In the area of the anomaly, the background color indicates the density of outliers within that region. In the 
iForest analysis, the proportion of outliers was set to 0.1. As can be seen from the figure, the vast majority of 
the sample points are concentrated in a very small area; whereas a small percentage of the samples are spread 
over a large area. Normalizing these samples directly on a proportional basis would result in a decrease in the 
distinguishability of most sample points. Because their values will be squeezed together. Without these widely 
varying values, most sample points could be normalized to give more discriminatory results. Because this is 
when the original small scope becomes global, so that the differences between features can be brought out as 
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much as possible under the existing conditions. Based on this analysis, the outlier value is set to the nearest inlier 
value and then normalized. The following equation illustrates the normalization operation:

	
X ′ = X − Xmin

Xmax − Xmin
� (1)

where X  denotes the original value. Xmin is the minimum value of the feature column and Xmax is the 
maximum value of the feature column.

Next, feature selection is performed by a particle swarm algorithm. Features were selected using a regression 
XGBoost model fitted to the classification to which the samples belonged and evolved in the direction that 
minimized the root mean square error. The population size is 30 and the number of iterations is 100. Eventually 
the feature set with the highest score in the evaluation will be selected. In order to facilitate currently available 
deep learning models using the processed dataset, these features will be binary encoded and organized in the 
form of a 2D matrix. The selected features will be evaluated for information gain. Information gain can be 
calculated using the following formula:

	
IG (S, A) = H (S) −

∑
t∈ T

|St|
|S| H (St)� (2)

where, IG(S, A) denotes the information gain of dataset S with respect to feature A. t is the subset 
partitioned according to feature A. |St| is the number of samples in the subset St. And |S| is the total number 
of samples in the original dataset S. H (St) is the information entropy of the subset St. Which is defined in 
Eq. 3.

	
H (X) =

∑
iP (xi) I (xi) = −

∑
iP (xi) logbP (xi)� (3)

where b is a constant and xi is a sample point in a finite sample set. The few features with the highest information 
gain will have two chances to appear in the final feature representation. Make key information in the feature 
set more prominent by replicating it in a way that increases its visibility. So, it ends up being 36 features, each 
assembled into a 4*4 matrix, the features are a 6*6 matrix, and the resulting sample is a 24*24 matrix.

Kolmogorov–Arnold Networks
In the work of Vladimir Arnold and Andrey Kolmogorov, they showed that a multivariate continuous function 
on a bounded domain can be described as a finite synthesis of continuous functions of a one variable plus the 
binary operation of addition. Specifically, this can be expressed in the following equation:

Paper Year Models Datasets Advantage

Hoang [17] 2024 BSRBF-KAN MNIST, Fashion-MNIST Stability, convergence, and accuracy

Diab [18] 2024 DeepOKAN Simulated Few parameters required, high accuracy

Alireza [19] 2024 fKAN MNIST Higher accuracy

Alireza [20] 2024 rKAN MNIST Efficacy and practicality of function approximation

Moein [21] 2024 KAN None Developing and improving computational biomedicine 
models

Zavareh [22] 2024 Wav-KAN MNIST Faster training, higher accuracy, and greater robustness

Jinfeng [23] 2024 FourierKAN-GCF MOOC, Games Lower training difficulty, higher performance

Mehrdad [24] 2024 GKAN Cora Higher accuracy

Roman [25] 2024 KAGNN Cora, Citeseer, Ogbn-arxiv, Cornell, Texas, 
Wisconsin, Actor A clear advantage in graph regression tasks

Cristian [26] 2024 KAN Simulated With fewer learning parameters, it produces more 
accurate results

Kunpeng [27] 2024 T-KAN, MT-KAN A financial dataset Improved predictability and interpretability

Rémi [28] 2024 TKANs Self-collected Accurate and efficient multi-step forecasting of time series

Minjong [29] 2024 KAN EuroSAT Satisfactory accuracy

Yanhong [30] 2024 KAN A dataset of flexible EHD pump parameters Excellent accuracy and interpretability

Yizheng [31] 2024 KINN None Significantly improved accuracy and convergence rate

Qasem [32] 2023 Ensemble ML models CIRA-CIC- DoHBrw-2020 Lightweight and high performance

Qasem [33] 2023 Ensemble ML models ISCX-URL2016 Better classification performance

Danish [34] 2023 Bidirectional Long Short-Term Memory CICIDS-2018 Testing time and classification accuracy

Abdulaziz [35] 2022 Shallow neural networks, DT, NB, SVM, 
KNN IoTID20 Higher accuracy

Riccardo [36] 2023 Stacked ML model ToN_IoT, CICIDS2017 and SWaT Accurate with very few false positives

Table 1.  Related work.
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f (X) = f (x1, x2, . . . , xn) =

∑ 2n+1

q=1
∅ q

(∑
n
p=1ϕ q,p (xp)

)
� (4)

where ϕ q,p : [0, 1] → R and ∅ q : R → R. Each layer of the KAN is composed of these learnable one-
dimensional functions:

	 ∅ =
{

ϕ q,p

}
, p = 1, 2, . . . , nin, q = 1, 2, . . . , nout� (5)

Each function ϕ q,p is rendered as a B-spline. B-spline functions are segmented continuous polynomial 
functions that are continuous and finitely derivable over the whole curve. Through the use of node vectors and 
basis functions, the B-spline curve is a derivation of the Bézier Curve that allows finer control over the shape of 

Fig. 1.  Overall Framework.
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the curve. B-spline is a type of spline function created by a linear combination of base splines. That can effectively 
improve the network’s ability to represent complex data. nin refers to a layer’s input features. A layer’s nout, on 
the other hand, indicates its output features, which reflect dimensional transformations.

Using an integer array, a KAN’s shape can be represented as follows:

	 [n0, n1, . . . , nL]� (6)

Computation graph nodes at layer i are represented by ni. An ith neuron in the lth layer is represented by 
(l, i). And its activation value is indicated by xl,i. The activation functions between layers l and l + 1 are 
nlnl+1. The activation function for (l, i) and (l + 1, j) is as follows:

	 ϕ l,j,i, l = 0, . . . , L − 1, i = 1, . . . , nl, j = 1, . . . , nl+1� (7)

KANs have an overall structure like MLPs, which stack layers. However, rather than relying on simple linear 
transformations and nonlinear activations, it makes use of complex functional mappings.

	 KAN (x) = (∅ L−1 ◦ ∅ L−2 ◦ . . . ◦ ∅ 0) (x)� (8)

The computational logic of the KAN network with L layers is shown in Eq. 6. Transform each layer’s input, xl, 
to get the next layer’s input, xl+1, as follows:

	

xl+1 = ∅ l (xl) =




ϕ l,1,1(• ) · · · ϕ l,1,nl
(• )

...
. . .

...
ϕ l,nl+1,1 (• ) · · · ϕ l,nl+1,nl

(• )


 xl� (9)

It can be stated that the activation function ϕ (x) is the sum of the basis function b (x) and the spline function:

Fig. 2.  Isolation Forest Analysis.
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	 ϕ (x) = ω 1b (x) + ω 2spline (x)� (10)

ω 1 and ω 2 are the weight parameters of the corresponding parts. Here set:

	 b (x) = silu (x) = x/(1 + e−x)� (11)

The spline (x) is a linear combination of B-splines. The learnable spline functions are:

	
spline (x) =

∑
iciBi (x) , cis are trainable coefficients� (12)

Attention based Conversational Kolmogorov–Arnold Networks
The Convolutional Kolmogorov-Arnold Network is similar to the CNN. It successfully integrates the advantages 
of KAN and the computational mechanisms of CNN. In comparison with other architectures, the CKAN has the 
advantage of requiring a relatively small number of parameters40. In KAN Convolutions, there is a significant 
difference between the kernel and that of CNN Convolutions. CNNs utilize weights, whereas Convolutional 
KANs use nonlinear functions that utilize B-splines to construct the kernels. A convolution kernel consists of 
the same elements as Eq. 10. Set K as the KAN convolutional kernel ∈ RN× M . The KAN Convolution can be 
defined as follows:

	
(Matrix∗K)i,j =

∑
N
k=1

∑
M
l=1ϕ kl (ei+k, j+l)� (13)

Suppose there is the following input matrix for which KAN convolution calculation needs to be performed.

	

Matrix =




e11 e12 · · · e1j

e21 e22 · · · e2j

...
...

. . .
...

ei1 ei2 · · · eij


� (14)

If the kernel of the KAN convolution is 3*3:

	
KAN Convolution Kernel =

[
ϕ 11 ϕ 12 ϕ 13
ϕ 21 ϕ 22 ϕ 23
ϕ 31 ϕ 32 ϕ 33

]
� (15)

The result is shown below:

	 Matrix ∗ KAN Convolution Kernel =

	




ϕ 11 (e11) + ϕ 12 (e12) + . . . + ϕ 33 (e33) · · · ϕ 11
(
e1(j−2)

)
+ ϕ 12

(
e1(j−1)

)
+ . . . + ϕ 33 (e3j)

ϕ 11 (e21) + ϕ 12 (e22) + . . . + ϕ 33 (e43) · · · ϕ 11
(
e2(j−2)

)
+ ϕ 12

(
e2(j−1)

)
+ . . . + ϕ 33 (e4j)

...
. . .

...
ϕ 11

(
e(i−2)1

)
+ ϕ 12

(
e(i−2)2

)
+ . . . + ϕ 33 (ei3) · · · ϕ 11

(
e(i−2)(j−2)

)
+ ϕ 12

(
e(i−2)(j−1)

)
+ . . . + ϕ 33 (eij)


� (16)

The overall structure of the proposed model is shown in Fig. 3. The core innovation of the KAN framework is 
to place learnable activation functions on the edges. In contrast, traditional frameworks place them in nodes 
and fix them. It is with this approach that the model will be able to learn more complex functional relationships 
between data. The weight parameters have been replaced by parametric spline functions, which enhances the 
model’s expressive potential. Having done this, it will be able to gain a deeper understanding of more detailed 
and complex information through deep learning. Compared to traditional deep learning techniques, the KAN 
framework is also more interpretable. KAN is a structured, easy-to-understand system that facilitates human-
computer interaction. Consequently, scientists can gain a solid understanding of the inner workings of the 
model, and even participate directly in its optimization and discovery. Models can be guided by scientists so 
that the laws of mathematics and physics can be discovered or verified, thus facilitating the collaboration with 
scientists and artificial intelligence.

The execution logic of the attention mechanism is shown in algorithm 1.

Algorithm 1: Attention mechanism

Input: Tensor

Output: Tensor with added attention mechanism
1 max_pool ←  use maximum pooling to obtain global features for each channel

2 avg_pool ←  obtaining global features for each channel using average pooling
3 # Define MLP, where channel_in and channel_out of Conv2d are equal.

4 mlp ←  Sequential (Conv2d (channel_in, channel_out, 1, bias = False),

5 ReLU (),

6 Conv2d (channel_in, channel_out, 1, bias = False))
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Fig. 3.  The Architecture of Attention-Based Convolutional KAN.
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Algorithm 1: Attention mechanism

7 conv ←  Conv2d (2, 1, kernel_size = 3, padding = 1, bias = False)

8 max_out ←  mlp(max_pool(input))

9 avg_out ←  mlp (avg_pool (input))
10 channel_out ←  Sigmoid (max_out + avg_out)
11 out1 = channel_out * input
12 max_out ←  get the maximum value for each channel, along the channel dimension
13 avg_out ←  get the average value for each channel along the channel dimension
14 spatial_out ← Sigmoid (conv (cat ([max_out, avg_out], dim = 1)))
15 out = spatial_out * out1

 

As follows is the definition of the ReLU function:

	 ReLU (x) = max(0, x)� (17)

And the sigmoid function:

	
Sigmoid (x) = 1

1 + e−x
� (18)

Algorithm 2  below demonstrates the computational logic of the loss function used in the proposal model train-
ing.

 Algorithm 2: Loss function for the proposed model

 Input: Number of classifications →  n_class Sample prediction results → predict Sample label → target

 Output: Loss value between prediction and real label 1 correct ←  get the prediction result’s probability of correct classification

 2 predict ←  probability value of the current prediction classification 3 ids ←  rank the probability of the correct classification

 4 α ← predict − correct

 5 β ← 1 − correct

 6 loss ← mean(n_class ∗ α + (ids + 1 ) ∗ β )
 

Training a model uses the following strategy to adjust the learning rate:

	

{
ζ 1 = 0.001

ζ i = 0.5 ∗ ζ 1
(
1 + cos

(
i

Imax
π

))
, 2 ≤ i ≤ Imax

� (19)

ζ 1 is the starting learning rate used for the first epoch of model training. In this situation, Imax represents 
the total number of epochs the model must undergo training and i represents the number of training rounds 
currently in progress.

Performance evaluation and discussion
This section focuses on experimenting with the proposal model. The experimental environment and evaluation 
metrics are presented, and the experimental results are compared and discussed with classical deep learning 
models widely used today.

Experimental environment
For model validation, the experimental environment is as follows:

•	 Operating system: Linux-5.15.120 + -x86_64-with-glibc2.31.
•	 CPU: Intel(R) Xeon(R) @ 2.20 GHz, 4 Core(s), 42.5 W.
•	 RAM: 32 GB, 11.76 W.

The GPU(s) used for model training:

•	 NVIDIA Tesla P100 (16 GB).

Evaluation metrics
A number of criteria were used for evaluating each model during the experiments, and the major evaluation 
criteria were as follows:

(1) The accuracy of detection, which is an indication of a model’s basic capability. Evaluation indicators used 
in this study include:

	
Recall = T P

T P + F N
� (20)
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P recision = T P

T P + F P
� (21)

	
F alse P ositive Rate = F P

F P + T N
� (22)

	
F 1 − score = 2 × P recision × T rue P ositive Rate

P recision + T rue P ositive Rate
� (23)

TP stands for true positive. TN stands for true negative. FP and FN stand for false positives and false negatives, 
respectively.

(2) The complexity of a model is measured by three factors: the number of parameters included in it, the 
amount of computation required for each sample to be analyzed, and the amount of memory occupied by the 
model when training is complete.

(3) Execution speed, measured in terms of sample processing per second.
(4) Memory allocation of the model during sample processing.
(5) Energy consumption is determined by averaging the power consumption for 10,000 samples.

Experimental results and discussion
Different data types were encoded in the experimental session to facilitate the presentation of experimental 
results. The correspondence between specific data types and their encodings is shown in Table 2.

Table 3 shows the overall classification accuracy performance of all the models used in this study. Tables 4, 5, 
6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 present detailed experimental results for each model, based on the classification 
of the data. Figures 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 illustrate the confusion matrices corresponding to 
these models.

The comparative models in the experiments include nine commonly used classical models and two state-
of-the-art models. These two models are Spikformer41and SpikingGCN42, respectively. From the experimental 
results, it can be seen that the model proposed in this paper outperforms other models in terms of overall 
classification accuracy. This shows that the model has strong analysis capability of the data features. More 
detailed metrics also include recall, precision, f1-score and false positive rate. Recall means the proportion of 
samples predicted to be true out of all samples actually true. It is an effective way to assess the model’s ability to 
find out the positive class of samples. Precision denotes the proportion of samples that are actually true out of 
all samples predicted to be true. It is a technique used to assess the quality of samples predicted to be positive 
by a model. The F1-score, on the other hand, is a reconciled average of the two, which is used for coordinated 
analysis. A false positive rate is calculated by dividing the number of false positive samples detected by the 
number of true negative samples. It can be used to assess the model’s reliability and validity. The performance 
of these metrics, while slightly worse than other models in some classifications, remains dominant overall. The 
results indicate that the model proposed in the paper is superior across all accuracy metrics.

Model

Accuracy

IoT-2023 IoMT-2024

Alexnet 0.9486 0.9586

Resnet18 0.9491 0.9604

Resnet50 0.9490 0.9580

Mobilenet(V2) 0.9369 0.9499

Efficientnet 0.9431 0.9552

Densenet121 0.9495 0.9589

Googlenet 0.9407 0.9558

Shufflenet(V2) 0.9301 0.9490

Squeezenet 0.9451 0.9587

Spikformer 0.9312 0.9446

SpikingGCN 0.8044 0.9547

Proposed Model 0.9529 0.9633

Table 3.  Classification accuracy.

 

Dataset

Data types and their corresponding encodings

0 1 2 3 4 5 6 7

IoT-2023 Benign Brute_Force DDoS DoS Injection Mirai Recon Spoofing

IoMT-2024 Benign DDoS DoS MQTT Recon Spoofing —— ——

Table 2.  Data types and encodings.
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The performance metrics exhibited by these models during execution are presented in Table 16. These include 
the number of parameters in the model, the number of floating-point operations to compute a single sample, 
and the size of the model when training is complete. In addition, the number and total amount of memory 
allocations required by the model during model validation were also counted. Data related to memory is derived 
from the tracemalloc Python library. These values are calculated from the system memory snapshot when the 
model processes a single sample. Energy consumption and sample processing speed were also quantified.

It can be seen from the experimental results that the proposed CKAN model can achieve classification 
accuracy superior to the other models. This is done while using only a much smaller number of parameters than 
the others. The size of the resulting model from the final training is also smaller than most models. However, in 
terms of memory allocation, both the number of allocations and the allocated memory space are greater than the 
other models. This also led to its poor performance in two subsequent metrics, power consumption and sample 
processing speed.

Category

Recall
IoT-2023 
IoMT-2024

Precision
IoT-2023 
IoMT-2024

F1-score
IoT-2023 
IoMT-2024

False 
Positive 
Rate
IoT-2023 
IoMT-2024

0 0.977 0.958 0.960 0.949 0.968 0.953 0.006 0.010

1 0.890 0.995 0.872 0.982 0.881 0.988 0.019 0.004

2 0.968 0.979 0.977 0.996 0.972 0.987 0.003 0.001

3 0.971 0.953 0.972 0.972 0.972 0.962 0.004 0.005

4 0.878 0.950 0.896 0.942 0.887 0.946 0.015 0.012

5 0.988 0.912 0.993 0.908 0.991 0.910 0.001 0.019

6 0.971 —— 0.946 —— 0.958 —— 0.008 ——

7 0.951 —— 0.980 —— 0.965 —— 0.003 ——

Table 6.  Resnet50 verification.

 

Category

Recall
IoT-2023 
IoMT-2024

Precision
IoT-2023 
IoMT-2024

F1-score
IoT-2023 
IoMT-2024

False 
Positive 
Rate
IoT-2023 
IoMT-2024

0 0.976 0.954 0.951 0.957 0.964 0.955 0.007 0.009

1 0.865 0.990 0.901 0.987 0.883 0.988 0.014 0.003

2 0.972 0.983 0.971 0.991 0.972 0.987 0.004 0.002

3 0.968 0.961 0.976 0.965 0.972 0.963 0.004 0.007

4 0.914 0.958 0.875 0.948 0.894 0.953 0.019 0.011

5 0.988 0.916 0.992 0.916 0.990 0.916 0.001 0.017

6 0.948 —— 0.966 —— 0.957 —— 0.004 ——

7 0.962 —— 0.965 —— 0.964 —— 0.005 ——

Table 5.  Resnet18 verification.

 

Category

Recall
IoT-2023 
IoMT-2024

Precision
IoT-2023 
IoMT-2024

F1-score
IoT-2023 
IoMT-2024

False 
Positive 
Rate
IoT-2023 
IoMT-2024

0 0.970 0.960 0.960 0.953 0.965 0.956 0.006 0.009

1 0.865 0.993 0.895 0.987 0.880 0.990 0.015 0.003

2 0.975 0.983 0.965 0.994 0.970 0.988 0.005 0.001

3 0.960 0.953 0.984 0.973 0.972 0.963 0.002 0.005

4 0.912 0.935 0.879 0.957 0.895 0.946 0.018 0.008

5 0.987 0.926 0.985 0.891 0.986 0.908 0.002 0.023

6 0.954 —— 0.964 —— 0.959 —— 0.005 ——

7 0.967 —— 0.961 —— 0.964 —— 0.005 ——

Table 4.  Alexnet verification.
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The proposed model is significantly smaller than the other models both in terms of network depth and number 
of parameters. The calculation of the samples, however, requires more memory than other models. It follows 
that the availability of memory in the runtime environment will play a very significant role in the execution 
of the model. An efficient memory allocation strategy will enhance the efficiency of model execution and vice 
versa, it will become an execution bottleneck for the model. It can also be observed from the experimental 
results that very little memory used by the model is reused during the inference process. Therefore, it needs to 
perform memory allocation and memory write operations more frequently. Consequently, the model detects 
samples at a slower rate than other models. While other models have a larger number of parameters, they can 
usually manage their own parameters in memory more conveniently. This is mainly due to the fact that KAN’s 
connection weights are computed from B-spline functions, rather than simple linear weights. There is no doubt 
that it will be more computationally complex. Currently, the proposed model is only suitable for use in scenarios 
with sufficient computational resources so that it can prove its own advantages in detection. If used in resource-

Category

Recall
IoT-2023 
IoMT-2024

Precision
IoT-2023 
IoMT-2024

F1-score
IoT-2023 
IoMT-2024

False 
Positive 
Rate
IoT-2023 
IoMT-2024

0 0.963 0.944 0.968 0.968 0.966 0.956 0.005 0.006

1 0.880 0.989 0.885 0.990 0.882 0.989 0.016 0.002

2 0.977 0.986 0.964 0.989 0.971 0.988 0.005 0.002

3 0.966 0.963 0.976 0.961 0.971 0.962 0.003 0.008

4 0.900 0.940 0.884 0.953 0.891 0.947 0.017 0.009

5 0.986 0.930 0.992 0.895 0.989 0.912 0.001 0.022

6 0.962 —— 0.964 —— 0.963 —— 0.005 ——

7 0.964 —— 0.966 —— 0.965 —— 0.005 ——

Table 9.  Densenet121 verification.

 

Category

Recall
IoT-2023 
IoMT-2024

Precision
IoT-2023 
IoMT-2024

F1-score
IoT-2023 
IoMT-2024

False 
Positive 
Rate
IoT-2023 
IoMT-2024

0 0.969 0.946 0.957 0.953 0.963 0.950 0.006 0.009

1 0.904 0.989 0.838 0.984 0.870 0.987 0.025 0.003

2 0.962 0.981 0.975 0.989 0.969 0.985 0.004 0.002

3 0.969 0.951 0.973 0.968 0.971 0.960 0.004 0.006

4 0.833 0.946 0.907 0.939 0.868 0.942 0.012 0.012

5 0.990 0.917 0.989 0.899 0.989 0.908 0.002 0.021

6 0.953 —— 0.952 —— 0.952 —— 0.007 ——

7 0.966 —— 0.961 —— 0.964 —— 0.005 ——

Table 8.  Efficientnet verification.

 

Category

Recall
IoT-2023 
IoMT-2024

Precision
IoT-2023 
IoMT-2024

F1-score
IoT-2023 
IoMT-2024

False 
Positive 
Rate
IoT-2023 
IoMT-2024

0 0.956 0.926 0.950 0.957 0.953 0.941 0.008 0.008

1 0.833 0.985 0.893 0.986 0.862 0.985 0.014 0.003

2 0.949 0.978 0.971 0.985 0.960 0.982 0.004 0.003

3 0.960 0.961 0.962 0.956 0.961 0.959 0.005 0.008

4 0.911 0.938 0.858 0.935 0.884 0.937 0.022 0.013

5 0.988 0.912 0.980 0.882 0.984 0.897 0.003 0.025

6 0.944 —— 0.941 —— 0.942 —— 0.008 ——

7 0.957 —— 0.943 —— 0.950 —— 0.008 ——

Table 7.  Mobilenet(V2) verification.
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constrained settings, its computational performance can seem slow and less efficient. Furthermore, in terms of 
energy consumption, this model is not suitable for use in situations with a lack of adequate energy resources.

Although the model statistical results show the KAN framework requires far fewer parameters and floating-
point computations. The performance, however, is poor when it comes to memory usage. It has more frequent 
memory operations and requires more memory space. Therefore, to improve the execution efficiency of 
deep learning models based on the KAN framework, it is necessary to start with memory and computational 
strategies. It is necessary to optimize the way calculations are performed, to maximize computational efficiency 
and reduce memory allocation requirements. Another idea is to design hardware architectures that are more 
suitable for composite computing. Current hardware designs are more favorable to traditional deep learning 
frameworks, highlighting the disadvantages of the KAN framework. As soon as the KAN framework is able to 
make significant progress in terms of execution efficiency, it will become one of the most desirable deep learning 
frameworks.

Category

Recall
IoT-2023 
IoMT-2024

Precision
IoT-2023 
IoMT-2024

F1-score
IoT-2023 
IoMT-2024

False 
Positive 
Rate
IoT-2023 
IoMT-2024

0 0.970 0.958 0.952 0.957 0.961 0.958 0.007 0.008

1 0.882 0.987 0.870 0.987 0.876 0.987 0.019 0.003

2 0.970 0.984 0.963 0.986 0.966 0.985 0.005 0.003

3 0.970 0.960 0.971 0.968 0.971 0.964 0.004 0.006

4 0.878 0.959 0.889 0.934 0.884 0.947 0.016 0.013

5 0.983 0.903 0.995 0.920 0.989 0.911 0.001 0.016

6 0.957 —— 0.961 —— 0.959 —— 0.005 ——

7 0.953 —— 0.963 —— 0.958 —— 0.005 ——

Table 12.  Squeezenet verification.

 

Category

Recall
IoT-2023 
IoMT-2024

Precision
IoT-2023 
IoMT-2024

F1-score
IoT-2023 
IoMT-2024

False 
Positive 
Rate
IoT-2023 
IoMT-2024

0 0.950 0.925 0.928 0.950 0.939 0.937 0.011 0.010

1 0.837 0.982 0.899 0.985 0.867 0.983 0.014 0.003

2 0.959 0.978 0.941 0.983 0.950 0.981 0.009 0.003

3 0.940 0.954 0.952 0.960 0.946 0.957 0.007 0.008

4 0.916 0.948 0.862 0.921 0.889 0.935 0.021 0.016

5 0.972 0.906 0.990 0.896 0.981 0.901 0.001 0.021

6 0.931 —— 0.932 —— 0.932 —— 0.009 ——

7 0.937 —— 0.942 —— 0.939 —— 0.008 ——

Table 11.  Shufflenet(V2) verification.

 

Category

Recall
IoT-2023 
IoMT-2024

Precision
IoT-2023 
IoMT-2024

F1-score
IoT-2023 
IoMT-2024

False 
Positive 
Rate
IoT-2023 
IoMT-2024

0 0.962 0.954 0.962 0.954 0.962 0.954 0.006 0.009

1 0.838 0.994 0.889 0.985 0.863 0.989 0.015 0.003

2 0.977 0.981 0.947 0.992 0.961 0.987 0.008 0.002

3 0.948 0.967 0.976 0.945 0.962 0.955 0.003 0.011

4 0.895 0.945 0.873 0.944 0.884 0.945 0.019 0.011

5 0.980 0.894 0.997 0.913 0.988 0.903 0.000 0.017

6 0.969 —— 0.919 —— 0.944 —— 0.012 ——

7 0.960 —— 0.963 —— 0.962 —— 0.005 ——

Table 10.  Googlenet verification.
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Conclusions and future work
During the experiments, the model proposed in this paper is compared with nine currently popular classical 
models and two state-of-the-art models. A comprehensive set of indicators is used in the comparison. In the 
overall picture, the CKAN model leads all the other models in classification accuracy. In terms of computational 
efficiency and energy consumption, however, it presents a limitation. The current model is more suitable for use 
in scenarios with sufficient computational resources and may not perform as well when computational resources 
are limited.

Deep learning models based on the KAN architecture replace the original connection weights with a form 
fitted by a finite number of spline functions compared to traditional deep learning models. There is a significant 
increase in computational effort associated with this substitution operation. Trainable parameters have changed 
from linear objects to non-linear objects. On the one hand, this results in a marked increase in the model’s 
training duration. On the other hand, the model’s sample processing speed during validation is lower than other 

Category

Recall
IoT-2023 
IoMT-2024

Precision
IoT-2023 
IoMT-2024

F1-score
IoT-2023 
IoMT-2024

False 
Positive 
Rate
IoT-2023 
IoMT-2024

0 0.970 0.961 0.967 0.969 0.969 0.965 0.005 0.006

1 0.877 0.994 0.891 0.985 0.884 0.989 0.015 0.003

2 0.972 0.982 0.981 0.994 0.976 0.988 0.003 0.001

3 0.978 0.969 0.973 0.972 0.976 0.970 0.004 0.005

4 0.902 0.952 0.888 0.949 0.895 0.951 0.017 0.010

5 0.991 0.922 0.995 0.912 0.993 0.917 0.001 0.018

6 0.969 —— 0.958 —— 0.964 —— 0.006 ——

7 0.967 —— 0.970 —— 0.968 —— 0.004 ——

Table 15.  Proposed model verification.

 

Category

Recall
IoT2023 
IoMT 2024

Precision
IoT2023 
IoMT 2024

F1-score
IoT2023 
IoMT 2024

False 
Positive 
Rate
IoT2023 
IoMT 2024

0 0.969 0.957 0.944 0.963 0.956 0.960 0.008 0.007

1 0.980 0.989 0.714 0.973 0.826 0.981 0.057 0.006

2 0.989 0.970 0.495 0.988 0.660 0.979 0.145 0.003

3 0.001 0.968 1.000 0.955 0.003 0.962 0.000 0.009

4 0.623 0.965 0.981 0.919 0.762 0.942 0.002 0.017

5 0.976 0.879 0.991 0.930 0.984 0.904 0.001 0.013

6 0.967 —— 0.953 —— 0.960 —— 0.007 ——

7 0.942 —— 0.970 —— 0.956 —— 0.004 ——

Table 14.  SpikingGCN verification.

 

Category

Recall
IoT2023 
IoMT 2024

Precision
IoT2023 
IoMT 2024

F1-score
IoT2023 
IoMT 2024

False 
Positive 
Rate
IoT2023 
IoMT 2024

0 0.886 0.927 0.985 0.953 0.933 0.940 0.002 0.009

1 0.848 0.990 0.887 0.983 0.867 0.987 0.016 0.003

2 0.978 0.986 0.935 0.969 0.956 0.977 0.010 0.006

3 0.968 0.958 0.966 0.929 0.967 0.943 0.005 0.014

4 0.906 0.927 0.865 0.928 0.885 0.928 0.021 0.014

5 0.977 0.878 0.988 0.903 0.982 0.890 0.002 0.019

6 0.950 —— 0.892 —— 0.920 —— 0.016 ——

7 0.938 —— 0.941 —— 0.939 —— 0.008 ——

Table 13.  Spikformer verification.
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models. It can be seen that the model requires frequent memory manipulation during inference calculations. The 
advantage is that the model fits the data more precisely, leading to improved accuracy.

The spline functions fitting calculations in the model will be examined in greater depth in future work. As 
things stand, this part is where the bottleneck in the model’s computational efficiency lies. If this part of the 
computational mechanism can be improved in an efficient way, it will lead to a significant enhancement in the 
execution efficiency of models based on the KAN architecture. If this is successfully achieved, it is expected that 
KAN-based deep learning models will grow significantly and shine in more and wider fields.

Fig. 5.  Resnet18 Verification.

 

Fig. 4.  Alexnet Verification.
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Fig. 7.  Mobilenet(V2) Verification.

 

Fig. 6.  Resnet50 Verification.
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Fig. 9.  Densenet121 Verification.

 

Fig. 8.  Efficientnet Verification.
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Fig. 11.  Shufflenet(V2) Verification.

 

Fig. 10.  Googlenet Verification.
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Fig. 13.  Spikformer Verification.

 

Fig. 12.  Squeezenet Verification.
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Fig. 15.  Proposed Model Verification.

 

Fig. 14.  SpikingGCN Verification.
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Data availability
The datasets used in this paper are publicly available at https://www.​unb.ca/cic/d​atasets/iotd​ataset-2023​.html 
and https:​​​//w​ww.​un​b.c​a/cic/da​tase​ts/iomt​-dat​​aset-2024.html.
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