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A B S T R A C T

Objective: Encoder-only transformer-based language models have shown promise in automating critical appraisal
of clinical literature. However, a comprehensive evaluation of the models for classifying the methodological rigor
of randomized controlled trials is necessary to identify the more robust ones. This study benchmarks several
state-of-the-art transformer-based language models using a diverse set of performance metrics.
Methods: Seven transformer-based language models were fine-tuned on the title and abstract of 42,575 articles
from 2003 to 2023 in McMaster University’s Premium LiteratUre Service database under different configura-
tions. The studies reported in the articles addressed questions related to treatment, prevention, or quality
improvement for which randomized controlled trials are the gold standard with defined criteria for rigorous
methods. Models were evaluated on the validation set using 12 schemes and metrics, including optimization for
cross-entropy loss, Brier score, AUROC, average precision, sensitivity, specificity, and accuracy, among others.
Threshold tuning was performed to optimize threshold-dependent metrics. Models that achieved the best per-
formance in one or more schemes on the validation set were further tested in hold-out and external datasets.
Results: A total of 210 models were fine-tuned. Six models achieved top performance in one or more evaluation
schemes. Three BioLinkBERT models outperformed others on 8 of the 12 schemes. BioBERT, BiomedBERT, and
SciBERT were best on 1, 1 and 2 schemes, respectively. While model performance remained robust on the hold-
out test set, it declined in external datasets. Class weight adjustments improved performance in most instances.
Conclusion: BioLinkBERT generally outperformed the other models. Using comprehensive evaluation metrics and
threshold tuning optimizes model selection for real-world applications. Future work should assess generaliz-
ability to other datasets, explore alternate imbalance strategies, and examine training on full-text articles.

1. Introduction

Randomized controlled trials (RCTs) are the gold standard of pri-
mary research evidence for treatment [1]. Nevertheless, RCTs are sub-
ject to methodological and resource constraints which can re-introduce
bias and undermine the validity of their results [2]. Critical appraisal is a
process to evaluate the quality of clinical studies, ensuring that their
findings can be interpreted appropriately in clinical practice and
knowledge synthesis [3]. Tools for critical appraisal include Cochrane’s
revised Risk of Bias (ROB) tool [4], Joanna Briggs Institute’s RCT

checklist [5], and Health Information Research Unit’s (HIRU) rigor
criteria [6]. These tools are used for assessing limitations and sources of
biases in studies, such as the risk of over optimistic results due to a lack
of blinding and participant attrition over time.

Due to the increase in the number of published articles [7], manual
critical appraisal processes are burdensome for systematic reviewers and
knowledge translation professionals. Therefore, exploring automation
methods has been a priority [8–10]. Supervised machine learning (ML)
has demonstrated a strong potential in medical text classification
[11–13]. A relevant example in evaluating RCTs include RobotReviewer
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[14], an automated tool for rating the risk of bias of RCTs. Robot-
Reviewer leverages linear models and convolutional neural networks,
and extensive evaluation has identified notable time-savings [15–17].
Other methodologies applying shallow learning (SL) [18–21] and deep
learning (DL) models [22,23] for quality appraisal have also been
examined.

Unfortunately, the current body of relevant ML literature is con-
strained by significant limitations. Many articles report the performance
of only one model architecture and often do not explore the optimal
hyperparameters [14,18,21,22]. Threshold tuning, the process of
searching and choosing an optimal probability cutoff for classification,
can significantly affect the performance of a binary classification model,
especially when trained on an imbalanced dataset [24,25]. Studies
mostly rely on discrimination metrics and seldom present calibration
plots and metrics (where applicable), which could allow readers to
assess the confidence of model predictions in relation to the ground truth
[26].

Among the discrimination metrics, there is a noted reliance on a
selected few, notably the F1 score [19–23,27] and the area under the
receiver operating characteristic curve (AUROC) [18–20,27]. The limi-
tations of these metrics have been extensively documented [28–32]. In
short, precision, recall, and F1 scores do not provide insight into a
model’s ability to distinguish true negatives and are sensitive to class
imbalance [32–34]. AUROC, and other threshold-independent metrics
such as average precision (AP) and Brier score, represent an averaged
performance across a range of decision thresholds and may not neces-
sarily reflect real-world classification performance [29,31]. Depending
on the goal(s) of the application of the model, the importance of false
negatives and false positives can vary drastically. For example, a
researcher looking for confident negative classifications would not
benefit from reported AUROC or F1 scores. Thus, a set of different
evaluation metrics should be incorporated for understanding a model’s
performance from various perspectives.

HIRU at McMaster University has been a pioneer in delivering rele-
vant, rigorous evidence to clinicians around the world. In 2000, HIRU
curated the Clinical Hedges dataset comprising 49,028 unique records of
articles published in 161 journals indexed in MEDLINE. Subsequently,
HIRU initiated the Premium LiteratUre Service (PLUS), where daily
searches on PubMed retrieve newly published articles that are subse-
quently classified based on study design, clinical purpose, methodo-
logical rigor, and rated for clinical relevance and newsworthiness.
Rigorous, relevant articles are sent to clinical practitioners and other
partners [36]. Within PLUS, RCTs would be used to compare the effects
of treatments, primary prevention strategies, or quality improvement
interventions.

Current research at HIRU aims to automate the process of rigor
classification by leveraging the PLUS database and domain-specific
encoder-only transformer models. Bidirectional Encoder Representa-
tions from Transformers (BERT) variants [37–40], and BioELECTRA
(Efficiently Learning an Encoder that Classifies Token Replacements
Accurately) [41], have demonstrated state-of-the-art performance in
multiple clinical text classification tasks [42]. Previously, we fine-tuned
192 models using various hyperparameter combinations on the full
PLUS database utilizing a high-sensitivity approach for confident
negative classifications [43]. In this experiment, we focus on bench-
marking appropriate model rigor classification in RCTs using a wide
range of metrics and threshold tuning schemes. Our benchmarking
process is uniquely characterized by a systematic approach for selecting
models tailored to various preferences in model performance assess-
ment. By leveraging relevant evaluation metrics, we aim to guide
decision-making and establish robust standards for model application
across diverse scenarios.

Statement of Significance

(continued on next column)

(continued )

Problem: The exponential growth of clinical literature has made a
manual critical appraisal of RCTs for methodological rigor
time-consuming and labor-intensive.

What is already
known:

Encoder-only transformer models, such as BioBERT, SciBERT,
and BioLinkBERT, have shown promise in automating
biomedical text classification, but evaluations often focus on
limited metrics and datasets, with minimal exploration of
threshold tuning and hyperparameter optimization.

What this paper
adds:

This study comprehensively benchmarks 7 encoder-only
transformer models for RCT rigor classification, identifies
BioLinkBERT as the top performer across most evaluation
schemes, and highlights the value of using diverse metrics and
threshold tuning for real-world use cases.

2. Methods

2.1. Database description

The database for this project is compiled through PLUS. It includes
articles identified in PubMed that were published from 2003 onwards
across approximately 120 high-quality clinical journals [44] or related
to COVID-19 across all journals (2020–2023), and appraised following
the methodological and quality criteria used to create the Clinical
Hedges database [35]. Haynes et al. described this process of RCTs se-
lection and appraisal based on the rigor criteria [45]. The classification
process had an inter-rater agreement of Cohen’s κ >0.80 for all steps,
including article type, purpose, overall methodological rigor, and
newsworthiness [46].

Briefly, the process of creating the PLUS database includes auto-
mated daily searches of PubMed using a highly sensitive methods filter
adapted from Clinical Queries and COVID-19 topic-specific search
terms. The filters are designed to retrieve articles related to human
health that are potentially ready for clinical practice. The articles are
manually classified by expert research associates into one of four
mutually exclusive article types: 1) original study, 2) review, 3)
evidence-based guideline, or 4) other. Articles are then tagged with one
or more of the following purpose categories: 1) treatment, 2) prevention,
3) quality improvement, 4) diagnosis, 5) prognosis, 6) etiology, 7)
economics, 8) clinical prediction guide (subclassified for diagnosis or
prognosis), or 9) other.

Methodological rigor is appraised using the full text of the articles.
All articles must meet the following criteria: 1) in English, 2) about
humans, 3) about topics that are important to the clinical practice of
medicine, nursing, rehabilitation, and other health professions, other
than descriptive studies of prevalence, and 4) analysis is consistent with
the study question. Type and purpose-specific criteria are also applied.
For original articles with a purpose of treatment, prevention, or quality
improvement to be rated as rigorous, they must be RCTs that have 1)
random allocation of participants to study arms, 2) ≥ 10 patients/par-
ticipants per group completing the primary outcome assessment, 3)
primary outcome(s) assessed in ≥80% of those randomized at the
defined follow-up point, 4) at least one clinically important outcome
measure, and 5) if reporting subgroup analysis, it is preplanned, with
groups analyzed as they were randomized and interaction between two
or more subgroups reported. Articles that fail to meet any one of these
criteria are deemed to be not rigorous.

2.2. Dataset construction

The datasets used in this project focus on RCTs and include all
original studies with the purpose of treatment, prevention, or quality
improvement from the database [47]. To tune hyperparameters during
fine-tuning and internally validate model performance, articles from
2003 to 2023 inclusive were randomly split into the train (80%), vali-
dation (10%), and hold-out test (10%) sets. Articles processed through
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PLUS published in 2024, as well as articles of the same categories in the
Clinical Hedges database, were used for testing [35]. Thus, in total, three
test sets were used, one internal (the hold-out test set) and two external
(PLUS articles in 2024 and Clinical Hedges).

2.3. Data preprocessing

The title and abstract of articles were used as inputs. The input se-
quences were tokenized with amaximum sequence length of 512 tokens.
Shorter inputs were padded with semantically meaningless tokens to
ensure uniform input sizes across all samples. Tokens exceeding the
maximum length were truncated.

2.4. Model configuration during fine-tuning

A linear learning rate scheduler and the AdamW optimizer [48] with
β1 set to 0.9 and β2 set to 0.999 were utilized. Gradient accumulation
between batches was employed when memory was insufficient. Mixed
precision training was enabled (fp16=True) to optimize computational
efficiency. A warmup ratio of 0.1 was used to gradually increase the
learning rate at the beginning of the fine-tuning process. Weight decay
was applied with a factor of 0.01 to prevent overfitting. All layers of the
model, including the embedding, encoder, pooler, and classifier layers,
were fine-tuned to minimize cross-entropy loss.

Each model and hyperparameter combination was fine-tuned for up
to 10 epochs. An early stopping patience of 3 was selected, in which the
fine-tuning process prematurely terminated if the model failed to
decrease validation cross-entropy loss for three consecutive epochs. The
weights from the epoch with the lowest cross-entropy loss on the vali-
dation set were chosen.

2.4.1. Pretrained model selection
Seven domain-specific pretrained models, including BioBERT [37],

BioELECTRA [41], BioLinkBERT [38], BiomedBERT (abstracts only)
[39], BiomedBERT (abstracts + full text) [39], SciBERT-cased [40], and
SciBERT-uncased [40], were fine-tuned. These models were chosen
based on their performance in previous literature [37–41] and on the
Biomedical Language Understanding and Reasoning Benchmark lead-
erboard [42].

We focused exclusively on encoder-only architectures as they have
demonstrated efficiency and ease of use in text classification tasks,
particularly in biomedical domains [42]. Compared with shallow
learning architectures, such as Naïve Bayes and support vector ma-
chines, transformers preclude the need for meticulous feature engi-
neering [49–51]. Decoder-only and encoder-decoder transformers,
including generative large language models, require significant prompt
engineering and computational demands, making them less pragmatic
for text classification over a large number of articles [52–54]. Further-
more, while these models excel at text generation, they often suffer from
inconsistent performance in classification tasks, especially when only
the abstract of articles is available as input [55–57].

2.4.2. Hyperparameter optimization
A grid search of 3 learning rates (LR) (1e-5, 3e-5, 5e-5) and 5 batch

sizes (BS) (16, 32, 64, 128, 256) was performed. While it is suggested
that learning rate selection can be influenced by batch size due to their
interplay in gradient updates for Adam-style optimizers, their relation-
ship is often not linear [58,59]. we opted to tune them independently to
ensure a comprehensive search for optimal configurations. This decision
was made to better capture model behaviors across a wide range of
settings and avoid potential biases introduced by predefining relation-
ships between these parameters.

2.5. Addressing class imbalance

To account for class imbalances in the train set, an alternate model

with each hyperparameter combination was also fine-tuned with class
weights (CW) using the following formula:

weighti =
N
2ni

where N is the total number of samples and ni is the number of samples
in class i. This ensures that the minority class would receive a propor-
tionally higher weight to compensate during the training process. This
weighting strategy was applied directly to the loss function rather than
through data resampling techniques such as undersampling or
oversampling.

2.6. Evaluation metrics

The final dense layer was transformed with Softmax to convert logits
to probabilities. Model performance was evaluated based on 4
threshold-independent metrics: cross-entropy loss, Brier score, AUROC,
AP; as well as 11 threshold-dependent metrics: sensitivity/recall, spec-
ificity, accuracy, precision/positive predictive value (PPV), negative
predictive value (NPV), number needed to read (NNR), F1 score, F2
score, Matthew’s correlation coefficient (MCC), work saved over sam-
pling (WSoS), and Youden’s Index. The definitions and interpretations of
these metrics are in Appendix Table A1.

2.7. Model performance evaluation

2.7.1. Evaluation
Twelve evaluation schemes were chosen to provide a comprehensive

assessment of model performance across various real-world use cases
(Table 1). The average model performances by pretrained model and
class weight adjustments on the validation set based on 12 evaluation
schemes were assembled. The model performance across all hyper-
parameter combinations and seeds was presented using mean and 95%
confidence interval (CI). Subsequently, the models that achieved the
best performance on one or more schemes were selected for further
evaluation on the three test sets. For these models, the 95% CI was
estimated using bootstrapping over 1,000 iterations.

2.7.2. Threshold tuning
To dichotomize predicted probabilities into rigor classifications, the

maximum and minimum probability thresholds that would achieve 99%
sensitivity and specificity were selected for the target sensitivity and
specificity schemes. For threshold-dependent metrics, the probability
threshold that would achieve the best score, corresponding to the
metric, was selected. The threshold was selected using the validation set
and was kept consistent during testing.

2.8. Post-hoc sensitivity analysis

The Clinical Hedges test set has a different class balance than the
other evaluation subsets. This difference could be due to changes to the
article retrieval process and minor amendments to the rigor assessment
criteria in the intervening years. Specifically, PLUS filters PubMed
content using Clinical Queries Boolean filters, significantly reducing the
number of non-rigorous articles, while Clinical Hedges includes cover-
to-cover content from 160 journals published in 2000. For rating
criteria, articles from the Clinical Hedges were not required to have≥10
patients per group and a clinically important outcome to be considered
rigorous. Overall, the impact of the filtering outweighs the looser rigor
criteria, resulting in significantly more rigorous articles by proportion in
PLUS. To evaluate model performance independent of class balance
differences, we performed undersampling to ensure that the class bal-
ance of Clinical Hedges was identical to the train set. Specifically, in-
stances from the non-rigor class in the Clinical Hedges test set were
randomly removed.

F. Zhou et al.
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2.9. Stochastic stability analysis

To investigate model stochastic stability, all model configurations
were trained over two additional random seeds (2, 3). The difference
between the best- and worst-performing seeds for all model configura-
tions was presented and analyzed.

2.10. Hardware and software

All fine-tuning was conducted using the resources from the Cedar
cluster of the Digital Research Alliance of Canada. Each model was
trained using one NVIDIA V100 Volta (32G HBM2 memory), as well as
an allocation of 8 cores and 40 GB of memory.

Visual Studio Code and Python 3.11.5 were used for all software
development. We utilized the transformers library by Hugging Face [61]
to obtain pretrained models, and torch was used for evaluation pur-
poses. Data management and statistical analysis were conducted using
Pandas, NumPy, and scikit-learn. Data visualization was done with
matplotlib. The full software environment can be found in Table A2.

3. Results

3.1. Characteristics of datasets

The five data subsets include a total of 60,802 articles from 2003 to
2024 and from 2000 only for the Clinical Hedges test set (see Table 2);
overall, 37,488 (61.66%) of the included articles were appraised as
methodologically rigorous. In each data subset, the proportion of arti-
cles meeting rigor assessment ranged from 24.1% to 60.2%. The
undersampled Clinical Hedges Test set for sensitivity analysis had 2,643
articles.

3.2. Average performance on the validation set

Each of the 7 encoder models was trained with 15 possible hyper-
parameter combinations and with CW and without CW. In total, 210
models were trained and evaluated. Table 3 details the average perfor-
mance of the models by pretrained model and CW on the validation set
using the default threshold of ≥0.50. The average performance of the
models after tuning their thresholds can be found in Appendix
Tables A3 to A11.

Using the default threshold of ≥ 0.50, BioLinkBERT demonstrated
the best average performance across 9 and 12 of the 15 metrics among
models with and without class weight adjustments, respectively. After
tuning for thresholds, BioLinkBERT achieved the best performance on
all schemes, except for the highest sensitivity at 99% specificity which
SciBERT-cased obtained the best performance. In general, models with
CW adjustments outperformed those without.

3.3. Best models on the internal sets

Of the 210 fine-tuned models, 6 unique models and hyperparameter
combinations achieved the best validation performance across one or
more of the 12 evaluation schemes, in which 4 models used CW ad-
justments (Table 4). The performance of the 6 models across all evalu-
ation metrics in the PLUS-2003–2023 validation set and test set is in
Table A12 and A13, respectively. In general, the models had good
performance on their corresponding metrics, and the performance on
the validation and test sets was similar. Depending on the optimization
scheme, performance on other metrics varied.

The ROC curve and precision-recall curve of the model that achieved
the best performance on the four threshold-independent metrics

Table 1
Model evaluation schemes.

Evaluation
Scheme

Threshold Tuning Purpose

Threshold-independent
Lowest cross-

entropy loss
N/A To improve the overall certainty of

classifications by minimizing the
difference in bits between
predicted probability and true
probability (i.e., actual class labels
0/1 in a binary classification)
distributions.

Lowest Brier score N/A To improve calibration
performance by minimizing the
mean-squared difference between
predicted probabilities and actual
class labels (i.e., 0/1 in a binary
classification).

Highest AUROC N/A To enhance the overall ability to
distinguish between positive and
negative classes, particularly useful
in imbalanced datasets

Highest AP N/A To reduce overall false positives
and maximize precision,
particularly when high recall is
critical in imbalanced datasets.

Target sensitivity or specificity
Highest specificity

at 99%
sensitivity

Minimum probability
that achieves 99%
sensitivity

To ensure near-perfect
identification of positive instances
to improve the performance and
confidence in identifying negative
instances (minimizing false
positives).

Highest sensitivity
at 99%
specificity

Maximum probability
that achieves 99%
specificity

To ensure near-perfect
identification of negative instances
to improve the performance and
confidence in identifying positive
instances (minimizing false
negatives).

Threshold-dependent
Highest accuracy Maximizes accuracy To balance true positives and true

negatives, assuming class
distribution is balanced. Best when
both false positives and false
negatives are equally important.

Highest F1 Maximizes F1 To optimize the balance between
precision and recall, especially
useful when there is a class
imbalance, and false positives and
false negatives have similar costs. It
ignores true negatives.

Highest F2 Maximizes F2 To prioritize recall over precision,
making it more suitable when
minimizing false negatives is more
critical than minimizing false
positives. It ignores the true
negatives.

Highest MCC Maximizes MCC To optimize overall performance
by balancing both types of errors
(false positives and false
negatives), particularly effective in
more imbalanced datasets. It
incorporates true positives, false
positives, true negatives, and false
negatives in computation.

Highest WSoS Maximizes WSoS To maximize efficiency in
screening tasks by minimizing the
number of false positives and
saving effort in reviewing non-
relevant (i.e., non-rigorous in our
study) items. Note that WSoS is
dataset-specific and equivalent to
specificity when normalized [60].

Highest Youden’s
Index

Maximizes Youden’s
Index

To achieve an optimal balance
between sensitivity and specificity,
especially when false negatives and
false positives are equally
important. Mostly agnostic to class
balance like ROC AUC.

AP Average precision; AUROC Area under the receiver operating characteristic
curve; MCC Matthews correlation coefficient; ROC Receiver operating charac-
teristic; WSoS Work saved over sampling.
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(BioLinkBERT [CW: Yes; LR: 1e-05; BS: 32]) are in Fig. 1. The model’s
performance on threshold-dependent metrics against the probability
threshold and the calibration curve can be found in Fig. 2 and Fig. 3,
respectively. The ROC curve and precision-recall curve of the 5 other
models can be found in Figs. A1 to A5. The threshold-dependent metrics
plot can be found in Figs. A6 to A10. The calibration plots can be found
in Figs. A11 to A15. The models were generally well-calibrated on the
validation and tests.

3.3.1. Threshold-independent metrics
BioLinkBERT (CW: Yes; LR: 1e-05; BS: 32) achieved the best cross

entropy loss of 0.294 (0.275, 0.311), Brier score of 0.089 (0.083, 0.094),
AUROC of 0.952 (0.945, 0.959), and AP of 0.942 (0.935, 0.949). There
was a nonsignificant improvement across all four threshold-independent
metrics on the hold-out test set.

3.3.2. 99% Target sensitivity or specificity
BioBERT (CW: No; LR: 1e-5; BS: 16) achieved the best specificity of

0.628 (0.606, 0.650) at 99% sensitivity. SciBERT-cased (CW: Yes; LR:
1e-5; BS: 16) achieved the best sensitivity of 0.335 (0.319, 0.350) at 99%
specificity. The specificity and sensitivity decreased by a nonsignificant
amount on the hold-out test set.

3.3.3. Threshold-dependent metric
BioLinkBERT (CW: Yes; LR: 1e-5, BS: 256) achieved the best accuracy

of 0.882 (0.874, 0.891), F1 of 0.906 (0.899, 0.914), and MCC of 0.753
(0.734, 0.771). BioLinkBERT (CW: No; LR: 1e-5; BS: 32) performed the
best on F2 with a value of 0.946 (0.941, 0.95). BiomedBERT (abstracts
only) (CW: Yes; LR: 1e-5; BS: 32) achieved the best WSoS of 0.298
(0.286, 0.310), and Youden’s index of 0.749 (0.730, 0.769). The models
achieved similar performance on all threshold-dependent metrics on the
hold-out test set with a maximum absolute difference of 0.011 on You-
den’s index.

3.4. Performance on the external sets

The 6 models, using the same threshold where applicable, were
applied to predict outcomes for the PLUS-2024 and the Clinical Hedges
set (Table 4). The performance across all evaluation metrics is in
Table A14 and A15. Overall, model performance in the PLUS-2024 set
showed a significant decline across all metrics. Performance on the
Clinical Hedges set was mixed, in which metrics prioritizing true nega-
tives (specificity, NPV, and WSoS) improved while the others further
declined.

The models were, in general, well calibrated on the PLUS-2024 set.
However, the models severely overestimated the predicted probability
of rigor across the ranges of probability scores on the Clinical Hedges set
(Fig. 3, Figs. A10 to A15).

3.4.1. Threshold-independent metrics
Compared with the internal validation set, the performance across all

four metrics significantly declined in the PLUS-2024 set and further
declined in the Clinical Hedges set. Notably, there was an approximate
0.091 increase in Brier score and a 0.192 decrease in AP on the Clinical
Hedges set.

3.4.2. 99% Target sensitivity or specificity
For the PLUS-2024 set, the specificity and sensitivity decreased by

0.119 and 0.225, respectively, resulting in the worst sensitivity at 99%
specificity across all four evaluation sets. On the Clinical Hedges set, the
models saw a decrease in specificity by 0.204 and an increase in sensi-
tivity by 0.128, resulting in the best sensitivity at 99% specificity of
0.463 (0.438, 0.487).

3.4.3. Threshold-dependent metrics
Significant decreases in performance were evident for the PLUS-2024

set. Notably, MCC and Youden’s index decreased by 0.131 and 0.150,
respectively. For the Clinical Hedges set, F1, F2, and MCC decreased by
over 0.15, while accuracy and Youden’s index decreased by 0.12 and
0.082, respectively. The best WSoS of 0.506 (0.488, 0.525) was ach-
ieved, a 0.208 increase over the validation set.

3.5. Post-hoc sensitivity analysis

Undersampling of the Clinical Hedges dataset created a subset of
1587 (60%) rigorous articles and 1056 (40%) non-rigorous articles
(Table 2). The performance of the 6 models is in Table 4 and Table A16.
Compared with the original Clinical Hedges dataset, there was signifi-
cant improvement in cross-entropy loss, Brier score, AP, accuracy, MCC,
F1, and F2. As expected, AUROC, sensitivity, specificity, and Youden’s
Index were similar as they are independent of class prevalence. WSoS
decreased as it is dependent on the proportion of negative instances. The
performance on the Clinical Hedges – undersampled set was similar to
the PLUS-2024 set. The models were better calibrated on the under-
sampled dataset compared with the original (Fig. 3, Figs. A10 to A15).

3.6. Stochastic stability analysis

The stability of the fine-tuned models was analyzed by additionally
fine-tuning each configuration over two additional seeds and assessing
the range between the best and worst performing seeds for each model.
Table A17 to A21 tabulate the mean range and 95% CI for all metrics
and the optimal decision thresholds.

For both internal datasets, the models demonstrated strong stability.
On the validation and hold-out test sets, the mean cross-entropy loss
range was 0.061 and 0.057, respectively. The differences in the optimal
decision threshold across different seeds were substantive for most
tuning schemes. Notably, for accuracy, F1, MCC, WSoS, and Youden’s
index, the mean range of optimal thresholds were ≥0.239.

For the external datasets, the stability was generally worse compared
to the internal datasets. The mean cross-entropy loss range was 0.090,
0.384, and 0.202 for the PLUS 2024, Clinical Hedges, and Clinical
Hedges – Undersampled sets, respectively.

4. Discussion

This experiment is a comprehensive evaluation of encoder-only
transformers on classifying RCTs per rigor, utilizing a large dataset, a
leaderboard top set of models and hyperparameter combinations,
threshold tuning, and multiple evaluation schemes. Our previous pub-
lication included articles addressing any purpose category and article

Table 2
The characteristics of included datasets.

Dataset Name Publication Year of the Articles Purpose (Proportion) No. of Articles Rigorous Articles (%) Non-Rigorous Articles (%)

PLUS-2003–2023 2003 to 2023 Train (80%) 42,575 25,561 (60.0) 17,014 (40.0)
2003 to 2023 Validation (10%) 5,322 3,203 (60.2) 2,119 (39.8)
2003 to 2023 Hold-out Test (10%) 5,322 3,164 (59.5) 2,158 (40.5)

PLUS-2024 2024 External Test 1,011 575 (56.9) 436 (43.1)
Clinical Hedges 2000 External Test 6,572 1,587 (24.1) 4,985 (75.9)
Clinical Hedges – Undersampled 2000 External Test 2,643 1,587 (60.0) 1,056 (40.0)

F. Zhou et al.
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Table 3
Average performance of model configurations on the PLUS-2003–2023 validation dataset using a threshold of ≥ 0.50.

Pre-trained
Model

Cross-
entropy
Loss

Brier
Score

ROC AUC AP Sensitivity/
Recall

Specificity Accuracy Precision/
PPV

NPV NNR F1 Score F2 Score MCC WSoS Youden’s
Index

With Class Weights
BioBERT 0.334

(0.28,
0.387)

0.097
(0.091,
0.102)

0.935
[missing
word]
(0.932,
0.938)

0.945
(0.942,
0.948)

0.93 (0.923,
0.938)

0.784
(0.772,
0.796)

0.872
(0.87,
0.874)

0.867
(0.861,
0.873)

0.882
(0.872,
0.892)

1.153
(1.146,
1.161)

0.897
(0.896,
0.899)

0.917
(0.912,
0.921)

0.731
(0.727,
0.736)

0.284
(0.282,
0.287)

0.714
(0.708,
0.721)

BioELECTRA 0.338
(0.321,
0.354)

0.099
(0.096,
0.101)

0.934
(0.931,
0.936)

0.943
(0.941,
0.946)

0.940
(0.931,
0.949)

0.764
(0.747,
0.781)

0.870
(0.868,
0.872)

0.858
(0.851,
0.866)

0.895
(0.882,
0.907)

1.166
(1.155,
1.176)

0.897
(0.896,
0.898)

0.922
(0.917,
0.927)

0.728
(0.725,
0.731)

0.280
(0.277,
0.284)

0.704
(0.696,
0.712)

BioLinkBERT 0.314
(0.306,
0.323)

0.093
(0.092,
0.095)

0.937
(0.935,
0.939)

0.948
(0.945,
0.95)

0.924
(0.919,
0.93)

0.802
(0.793,
0.811)

0.876
(0.874,
0.878)

0.876
(0.871,
0.881)

0.876
(0.868,
0.883)

1.142
(1.136,
1.148)

0.899
(0.898,
0.901)

0.914
(0.91,
0.918)

0.739
(0.734,
0.743)

0.289
(0.287,
0.291)

0.726
(0.721,
0.732)

BiomedBERT
(abstracts
only)

0.328
(0.314,
0.342)

0.097
(0.094,
0.1)

0.934
(0.932,
0.937)

0.945
(0.942,
0.948)

0.917
(0.906,
0.928)

0.803
(0.788,
0.818)

0.872
(0.869,
0.875)

0.876
(0.869,
0.883)

0.867
(0.853,
0.88)

1.142
(1.133,
1.151)

0.896
(0.893,
0.899)

0.909
(0.901,
0.916)

0.731
(0.725,
0.737)

0.287
(0.284,
0.289)

0.72
(0.713,
0.727)

BiomedBERT
(abstracts +
full text)

0.323
(0.313,
0.334)

0.096
(0.094,
0.098)

0.936
(0.934,
0.938)

0.946
(0.945,
0.948)

0.916
(0.909,
0.922)

0.809
(0.799,
0.82)

0.873
(0.872,
0.875)

0.879
(0.874,
0.884)

0.865
(0.857,
0.872)

1.138
(1.131,
1.144)

0.897
(0.896,
0.898)

0.908
(0.904,
0.912)

0.734
(0.731,
0.738)

0.289
(0.287,
0.291)

0.725
(0.72,
0.73)

SciBERT-cased 0.327
(0.318,
0.336)

0.099
(0.097,
0.101)

0.931
(0.929,
0.933)

0.944
(0.942,
0.946)

0.931
(0.926,
0.936)

0.772
(0.762,
0.782)

0.868
(0.866,
0.869)

0.861
(0.856,
0.866)

0.881
(0.874,
0.888)

1.162
(1.155,
1.168)

0.894
(0.893,
0.896)

0.916
(0.913,
0.919)

0.722
(0.718,
0.726)

0.280
(0.277,
0.282)

0.703
(0.697,
0.709)

SciBERT-
uncased

0.349
(0.331,
0.367)

0.103
(0.1,
0.106)

0.927
(0.925,
0.93)

0.938
(0.936,
0.941)

0.925
(0.914,
0.936)

0.772
(0.753,
0.79)

0.864
(0.862,
0.866)

0.86
(0.852,
0.869)

0.874
(0.861,
0.887)

1.163
(1.151,
1.174)

0.891
(0.889,
0.893)

0.911
(0.905,
0.918)

0.715
(0.711,
0.719)

0.277
(0.274,
0.281)

0.697
(0.688,
0.706)

Without Class Weights
BioBERT 0.334

(0.32,
0.349)

0.098
(0.096,
0.1)

0.934
(0.932,
0.936)

0.944
(0.943,
0.945)

0.936 (0.93,
0.942)

0.773
(0.762,
0.784)

0.871
(0.869,
0.873)

0.862
(0.857,
0.867)

0.889
(0.881,
0.897)

1.161
(1.154,
1.168)

0.897
(0.896,
0.899)

0.920
(0.916,
0.924)

0.730
(0.725,
0.734)

0.282
(0.28,
0.285)

0.709
(0.702,
0.715)

BioELECTRA 0.344
(0.332,
0.356)

0.101
(0.099,
0.103)

0.931
(0.929,
0.934)

0.942
(0.938,
0.946)

0.938
(0.932,
0.945)

0.763
(0.752,
0.774)

0.869
(0.867,
0.87)

0.857
(0.852,
0.862)

0.892
(0.883,
0.901)

1.167
(1.16,
1.174)

0.896
(0.895,
0.897)

0.921
(0.917,
0.925)

0.725
(0.721,
0.728)

0.279
(0.277,
0.282)

0.701
(0.696,
0.707)

BioLinkBERT 0.330
(0.310,
0.349)

0.096
(0.093,
0.099)

0.937
(0.935,
0.939)

0.947
(0.945,
0.95)

0.938
(0.929,
0.946)

0.781
(0.768,
0.794)

0.875
(0.873,
0.877)

0.866
(0.86,
0.872)

0.893
(0.882,
0.904)

1.154
(1.146,
1.162)

0.900
(0.899,
0.902)

0.922
(0.917,
0.928)

0.739
(0.735,
0.743)

0.286
(0.284,
0.288)

0.719
(0.713,
0.725)

BiomedBERT
(abstracts
only)

0.330
(0.317,
0.344)

0.097
(0.094,
0.101)

0.934
(0.932,
0.937)

0.945
(0.942,
0.947)

0.931
(0.921,
0.942)

0.782
(0.766,
0.799)

0.872
(0.869,
0.875)

0.867
(0.859,
0.874)

0.884
(0.871,
0.898)

1.154
(1.144,
1.164)

0.898
(0.895,
0.9)

0.917
(0.911,
0.924)

0.732
(0.726,
0.738)

0.284
(0.281,
0.288)

0.714
(0.705,
0.722)

BiomedBERT
(abstracts +
full text)

0.330
(0.316,
0.345)

0.096
(0.094,
0.099)

0.935
(0.933,
0.938)

0.945
(0.942,
0.948)

0.929
(0.923,
0.934)

0.79
(0.782,
0.799)

0.874
(0.872,
0.875)

0.870
(0.866,
0.874)

0.880
(0.873,
0.887)

1.149
(1.144,
1.155)

0.898
(0.897,
0.900)

0.916
(0.913,
0.920)

0.735
(0.731,
0.738)

0.286
(0.284,
0.288)

0.719
(0.714,
0.724)

SciBERT-cased 0.338
(0.324,
0.353)

0.101
(0.098,
0.104)

0.931
(0.928,
0.934)

0.944
(0.941,
0.946)

0.934
(0.926,
0.941)

0.766
(0.755,
0.777)

0.867
(0.865,
0.869)

0.858
(0.853,
0.863)

0.885
(0.875,
0.895)

1.166
(1.159,
1.172)

0.894
(0.892,
0.896)

0.918
(0.913,
0.922)

0.721
(0.716,
0.726)

0.279
(0.276,
0.281)

0.700
(0.694,
0.706)

SciBERT-
uncased

0.350
(0.334,
0.365)

0.103
(0.101,
0.105)

0.927
(0.925,
0.93)

0.939
(0.936,
0.942)

0.936
(0.928,
0.944)

0.754
(0.741,
0.768)

0.864
(0.862,
0.866)

0.852
(0.846,
0.858)

0.887
(0.876,
0.898)

1.173
(1.165,
1.182)

0.892
(0.89,
0.894)

0.918
(0.913,
0.923)

0.714
(0.71,
0.719)

0.275
(0.272,
0.278)

0.690
(0.683,
0.697)

Note: All values are presented as the mean (95% CI) of the 15 hyperparameter combinations. Bolded values indicate best performance.
AP Average precision; AUROC Area under the receiver operating characteristic curve; BERT Bidirectional Encoder Representations from Transformers; ELECTRA Efficiently Learning an Encoder that Classifies Token
Replacements Accurately; ROC Receiver operating characteristic.

F.Zhou
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type, focusing on a high-sensitivity approach with a single best-
performing model [43], while this experiment discovered models for a
range of use cases where identifying high-quality RCTs is critical. This

study serves as a benchmark for classifyingmethodological rigor in RCTs
using transformer-basedmodels and as a framework for selectingmodels
based on the specific needs of real-world applications. By incorporating

Table 4
Best model performances according to the 12 evaluation schemes.

Scheme Best Performing Model
(CW, LR, BS)

Threshold Scores Corresponding to the Metric Used in the Scheme
PLUS-2003–2023
Validation Set

PLUS-2003–2023
Hold-out Test Set

PLUS-2024 Clinical
Hedges

Clinical Hedges
¡Undersampled

Threshold-independent
Lowest cross-entropy

loss
BioLinkBERT (Yes, 1e-05,
32)

− 0.294 (0.275, 0.311) 0.284 (0.266, 0.303) 0.422
(0.379,
0.469)

0.585 (0.561,
0.61)

0.472 (0.437, 0.506)

Lowest Brier score ​ − 0.089 (0.083, 0.095) 0.087 (0.082, 0.092) 0.134
(0.119,
0.149)

0.180 (0.173,
0.187)

0.147 (0.137, 0.158)

Highest AUROC ​ − 0.942 (0.935, 0.948) 0.947 (0.941, 0.953) 0.889
(0.869,
0.906)

0.882 (0.871,
0.891)

0.883 (0.869, 0.895)

Highest AP ​ − 0.952 (0.944, 0.959) 0.959 (0.953, 0.964) 0.899
(0.873,
0.922)

0.760 (0.738,
0.779)

0.919 (0.907, 0.931)

Target sensitivity or specificity
Highest specificity at

99% sensitivity
BioBERT (No, 1e-05, 16) 0.063 0.628 (0.607, 0.648) 0.644 (0.624, 0.665) 0.509

(0.462,
0.558)

0.440 (0.427,
0.453)

0.438 (0.407, 0.47)

Highest sensitivity at
99% specificity

SciBERT-cased (Yes, 1e-
05, 16)

0.983 0.335 (0.319, 0.352) 0.326 (0.311, 0.343) 0.080
(0.058,
0.102)

0.463 (0.438,
0.487)

0.463 (0.439, 0.487)

Threshold-dependent
Highest accuracy BioLinkBERT (Yes, 1e-05,

256)
0.425 0.882 (0.874, 0.891) 0.877 (0.867, 0.886) 0.815

(0.791,
0.839)

0.762 (0.752,
0.772)

0.809 (0.794, 0.824)

Highest F1 0.422 0.906 (0.899, 0.914) 0.901 (0.894, 0.909) 0.849
(0.827,
0.869)

0.636 (0.619,
0.652)

0.844 (0.830, 0.858)

Highest MCC 0.422 0.753 (0.734, 0.771) 0.745 (0.726, 0.762) 0.622
(0.573,
0.671)

0.514 (0.493,
0.533)

0.600 (0.568, 0.630)

Highest F2 BioLinkBERT (No, 1e-05,
32)

0.172 0.946 (0.941, 0.95) 0.944 (0.940, 0.949) 0.917
(0.902,
0.931)

0.731 (0.717,
0.743)

0.891 (0.880, 0.902)

Highest WSoS BiomedBERT (abstracts
only) (Yes, 1e-05, 32)

0.707 0.298 (0.286, 0.310) 0.299 (0.288, 0.312) 0.258
(0.232,
0.288)

0.506 (0.488,
0.525)

0.274 (0.258, 0.29)

Highest Youden’s
Index

0.707 0.749 (0.730, 0.769) 0.738 (0.721, 0.756) 0.599
(0.550,
0.646)

0.667 (0.645,
0.689)

0.685 (0.659, 0.713)

Note: Values are presented as score (95% CI from bootstrapping over 1,000 iterations).
AP Average precision; AUROC Area under the receiver operating characteristic curve; BERT Bidirectional Encoder Representations from Transformers; BS Batch size;
CW Class weights; LR Learning rate; MCC Matthews correlation coefficient; NNR Number needed to read; NPV Negative predictive value; PPV Positive predictive
value; ROC Receiver operating characteristic; WSoS Work saved over sampling.

Fig. 1. Receiver operating characteristic curve and precision recall curve for BioLinkBERT (CW: Yes; LR: 1e-05; BS: 32). A: Receiver operating characteristic curve; B:
Precision recall curve.

F. Zhou et al.
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diverse evaluation metrics and threshold-tuning approaches, we provide
a structured methodology for optimizing classification performance
depending on the user priorities. Additionally, we perform stochastic
stability analysis and sensitivity analyses to assess model robustness and
generalizability over time. These insights address critical gaps in pre-
vious research and establish a more robust foundation for automated

classification in evidence-based medicine workflows.

4.1. Model performance

On average, all chosen models displayed satisfactory performance on
the validation set after fine-tuning. BioLinkBERT outperformed other

Fig. 2. Threshold-dependent metrics versus probability threshold plot for BioLinkBERT (CW: Yes; LR: 1e-05; BS: 32). A: Sensitivity/recall; B: Specificity; C: Ac-
curacy; D: PPV/precision; E: NPV; F: F1 score; G: F2 score; H: MCC; I: Youden’s Index; J: WSoS.

F. Zhou et al.
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models in most instances, while SciBERT had a worse performance for
this task in general. The inclusion of class weight adjustments margin-
ally improved performance in most instances. Of the 210 models, the 6
best-performing models achieved respectable performance on the vali-
dation set in the context of clinical literature classification. Three of the
6 achieved the best performance on multiple evaluation schemes.
Regarding global, threshold-independent performances, our top models
achieved a Brier score of <0.1, and ~ 95% AUROC and AP. We explored
numerous schemes with threshold tuning and obtained the best possible
performance. Notably, 64% specificity was achieved when sensitivity
was set at 99%, and F1 and F2 scores >0.90 and MCC >0.75 when
thresholds were tuned to maximize these metrics.

While we saw no notable degradation on the hold-out test set, we did
on the external datasets. Sensitivity analysis revealed that the models
performed similarly on the undersampled Clinical Hedges set compared
with the PLUS-2024 set. While the models overestimated on the original
Clinical Hedges set, undersampling brought calibration in line. These
results demonstrate that the models had good generalizability to Clinical
Hedges despite slight changes in the rigor evaluation criteria over time.
However, the modest decrease in performance in the PLUS-2024 and
undersampled Clinical Hedges set could not be explained by class
prevalence. We suspect these differences may be attributable to sys-
tematic changes in clinical literature over time, including text structure

and complexity [62–64]. Experiments incorporating time series data
during training or analyzing whether the exclusion of older articles from
training would lead to better predictive performance on recent studies
may be warranted. Additionally, it may be justified to continuously fine-
tune deployed models to mitigate performance degradation over time
[64].

4.2. Comparison with existing literature

Our previous experiment [43] utilized the entire PLUS and Clinical
Hedges datasets which include a broader array of study types. On the
validation sets, the best model from the previous experiment achieved
97% AUROC and 70% specificity at 99% sensitivity, which are 3% and
7% higher, respectively. In general, deep learning models tend to
perform better when the dataset is more homogeneous, anticipating that
the models in this experiment should be equal to or better than the
previous [65]. However, due to the inclusion of other types of articles,
the comparison is not straightforward. We suspect that the higher per-
formance in the previous experiment could be from including other
types of articles, and that the model may perform worse on RCTs but
significantly better on the other types of articles. On the Clinical Hedges
dataset, the sensitivity of the model from the previous experiment
dropped to 84% using the same threshold, and specificity was 81%. In

Fig. 2. (continued).

Fig. 3. Calibration plot for BioLinkBERT (CW: Yes; LR: 1e-05; BS: 32).

F. Zhou et al.
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contrast, the model and threshold in this experiment were more resilient
in maintaining a high sensitivity (96%), albeit achieving lower speci-
ficity (44%).

Del Fiol et al. [22] tested neural networks on treatment articles from
the Clinical Hedges dataset and achieved a precision, recall and F1 score
of 35%, 97% and 0.51, respectively. Our best-F1 model achieved an F1
of 0.64, albeit with a lower recall (86%). Our best specificity at 99%
sensitivity model achieved similar recall and precision. Ambalavanan
and Devarakonda [66] used SciBERT as a cascade learner to classify all
steps of Clinical Hedges, including article format, interest to human
healthcare, article purpose, and methodological rigor. The model ach-
ieved an F1 score of 0.778 at 91% sensitivity. Devarakonda’s model
achieved a precision of 38% at 99% recall when applied to the dataset
used by Del Fiol et al. [22]. Aphinyanaphongs et al. [20] examined
shallow learning models to classify internal medicine articles. They
retrieved MEDLINE articles and considered all articles from the ACP
Journal Club as high quality. The polynomial support vector machine
achieved an average cross-validation AUROC of 0.97 on treatment ar-
ticles, which is slightly higher than our best models. However, the au-
thors utilized extensive feature engineering, including the original
journal and MeSH terms as inputs plus encoded texts, and optimized
specifically for AUROC. These limitations undermine the goal of auto-
mation and may lead to over-optimistic AUROC. Nevertheless, this in-
dicates that sophisticated shallow learning methods remain relevant in
text classification tasks.

To our knowledge, there are no other experiments that used articles
labelled using HIRU’s criteria. Two studies used ML to classify RCTs
based on the Cochrane ROB [14,18]. Marshall et al. [14] presented
evaluations on RobotReviewer and achieved a document-level accuracy
of 71%. However, the lack of reporting on class prevalence precludes
meaningful comparison. Millard et al. [18] evaluated logistic regression
models to classify RCTs based on the random sequence generation,
allocation concealment, and blinding domains of ROB. The highest
average AUROC across 10-fold cross-validation was 78% on allocation
concealment. Wang et al. [23] evaluated deep learning models for risk of
bias assessment in preclinical literature. Depending on the domain of the
tool, the F1 scores ranged from 0.82 to 0.92 on the held-out test set.
However, the difference in class prevalence, where positive instances
made up 12% to 78% of the dataset, precludes any meaningful com-
parison as well. Afzal et al. [67] developed multiple models to identify
kidney disease studies cited in Cochrane reviews, which they labelled as
being scientifically rigorous. On the test set, a maximum AUROC of 91%
was achieved by the multilayer perceptron model.

4.3. Proxying rigor criteria from abstracts and tokenization concerns

One concern of this study is that classification labels are derived from
full-text appraisals, yet the models are trained on abstracts due to input
token limitations for encoder-only transformers. Rigor criteria for
human assessments require details not included in abstracts (e.g.,
attrition and preplanned subgroup analyses) so the model cannot
directly assess these [68,69]. Additionally, criteria-level labels were not
available, and the model was fine-tuned using the final rating of rigor.
The classifier likely relies on indirect indicators or patterns detected
during fine-tuning that would proxy the final rigor evaluation, which
may not correspond to the specific criteria applied to full text or external
datasets. Considering the strong performance in the internal datasets, it
is likely that the abstracts contain sufficient information for effective
proxying. However, performance degradation on the two external test
sets suggests that generalizability remains a concern.

BERT and ELECTRA models have a maximum token limit of 512
(~400 words). This is unlikely to be an issue as most titles and abstracts
fall under this limit [69,70]. Models like Longformer [71] or BigBird
[72], with a higher limit of 4096 tokens, utilize a sliding window to
reduce the complexity associated with self-attention [73]. A study
examining clinical Longformer and BigBird for clinical document

classification found that they offered limited benefits for shorter inputs,
but may uplift performance for longer sequences [74]. Future studies
working with longer inputs could explore these architectures.

Another concern is the limited ability of transformer models to
process numerical information due to the tokenization of numbers [75],
which could lead to difficulties in evaluating and generalizing to criteria
associated with sample sizes. While this is unlikely to be an issue in this
study as RCTs with <10 participants per group are rare [76,77], it could
be an issue for a different criterion (e.g., attrition) or study design.

4.4. Threshold tuning

Threshold tuning is an important process to improve classification
performance [78–80]. Our experiment demonstrated that there is
relatedness in the optimal thresholds that would maximize a certain
metric. Accuracy, F1 and MCCwere maximized using similar thresholds,
and WSoS and Youden’s Index were maximized using the same
threshold. However, depending on the prioritized metric, optimal
thresholds can differ significantly from each other and from the typical
arbitrary threshold of ≥0.50, especially for imbalanced datasets. For
instance, a lower threshold improved metrics that prioritize sensitivity,
such as F2. Importantly, threshold tuning, similar to hyperparameter
tuning, must be conducted on the validation set and not the training or
independent test sets to prevent overfitting [25]. As setting the threshold
to prioritize one metric may affect the performance of another, re-
searchers should carefully consider and justify their tuning process in
the context of their objectives.

4.5. Evaluation metric selection

As previously mentioned, a limitation of many studies is the reliance
on F1 scores and AUROC [18–23,27]. We mitigated this issue by
providing 15 evaluation metrics, 12 optimization schemes, and the best-
performing models. These schemes cover a range of use cases. For
instance, those looking to obtain high-quality articles while minimizing
effort should focus on metrics that optimize false positives, such as F1
[28], and setting a high specificity. A researcher who wishes to exclude
as many low-quality articles as possible without misclassifying rigorous
ones may find WSoS [81] and setting a high sensitivity beneficial [43].
Sensitivity and specificity, unlike PPV, NPV, WSoS, among others, are
independent of class prevalence [82]. Therefore, AUROC [83] and
Youden’s Index [84] provide a better assessment of a model’s capabil-
ities independent of class prevalence on the testing data, and metrics
that are sensitive to class prevalence should not be used to compare
models across datasets unless normalized by class distribution [60]. For
ranking tasks, models that have a low cross-entropy loss or Brier score
would likely produce the most accurate predictions [85,86]. While in
our experiment, the models generally performed well on related metrics,
such as F1, accuracy, and MCC, this may not be the case on another
dataset. As we demonstrate, a model that performed well on one metric
may suffer in another. We argue that it is important to comprehensively
evaluate model performance and present multiple models, bearing in
mind the most common use cases, to ensure that model selection and
deployment align with the articulated goal.

4.6. Effect of class balance during training

The most common methods to improve performance are resampling
and using class weight adjustments [87]. We used class weights as the
training set was relatively balanced, and there is no consensus on the
superiority of any one method. This contrasts with our previous exper-
iment where we undersampled the majority class as only 20% of articles
were rigorous [43]. In this study, 7 of the 8 best-performing models
utilized class weight adjustments, indicating that even slight imbalances
may adversely affect performance despite the validation set having a
similar balance as the training set. Interestingly, there was no notable
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degradation in the predictive performance on the independent and
prospective testing sets and the Clinical Hedges set compared to the
hold-out test set in our previous experiment [43]. However, a direct
comparison is not feasible due to the differences in the included articles.
Comparing resampling versus class weight adjustments and the effect of
class balance of the training and evaluation sets on model performance
are areas for continued exploration.

4.7. Stochastic stability

The stochastic nature of neural networks, including random weight
initialization, may impact model performance after training, and the
general consensus for random seeds is for reproducibility. However, how
random seeds should be utilized in the training and evaluation process is
still debated [88–90]. A seed may consistently lead to better results on a
particular dataset due to the prioritization of important features over
noise in the training data by chance, yet selecting a specific seed may
result in overfitting and poorer performance on an external dataset
[90,91].

We analyzed the stochastic stability of all models by fine-tuning over
two additional seeds and analyzing the differences between the best- and
worst-performing seeds across all models, metrics, and threshold tuning
schemes. In general, the models tended to be more stable on datasets
that performed well. For datasets with worse performance, including
Clinical Hedges, the stability deteriorated as well. The optimal threshold
during tuning differed substantially across seeds, indicating that the best
threshold for a model trained on one seed may not necessarily perform
well on another seed. Based on these results, it was unlikely that aver-
aging performance scores over multiple seeds as opposed to one would
have led to significant differences in model selection during hyper-
parameter tuning. Nevertheless, model performances on external data-
sets could differ significantly based on random seeds [90–92].

4.8. Limitations

Limitations include that the models are specific to HIRU’s rigor
evaluation criteria; generalizability to other tools has not yet been
examined. Cross-validation and nested cross-validation could not be
conducted for hyperparameter selection due to computational and
storage limitations. Nevertheless, the large number of included articles
should mitigate the risk of sampling bias [93–95]. Some hyper-
parameters, such as the optimizer, remained fixed due to infeasible
computational costs associated with a larger search grid. The choice of
certain hyperparameters, especially the optimizer, may alter the effect
of others [58,96,97]. Using less demanding hyperparameter tuning
methodology, such as Bayesian optimization and Hyperband [98], may
be warranted in future research. Lastly, we did not examine other
methods to address class imbalance [79].

5. Conclusion

In this study, we evaluated the performance of 7 domain-specific,
encoder-only transformer models for the classification of methodolog-
ical rigor in RCTs. By fine-tuning 210 models with comprehensive
hyperparameter tuning and applying a range of evaluation metrics, we
demonstrated that BioLinkBERT with specific hyperparameters consis-
tently outperformed other models across most evaluation schemes. Our
findings highlight the importance of using a broad set of metrics,
including threshold-independent and dependent approaches, to opti-
mize model performance based on specific use cases. Future work should
explore model generalization to newer articles, the impact of class bal-
ance on training and testing sets, and the performance benefits of
training on full text data.
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[4] J.A.C. Sterne, J. Savović, M.J. Page, R.G. Elbers, N.S. Blencowe, I. Boutron, et al.,
RoB 2: a revised tool for assessing risk of bias in randomised trials, BMJ 28 (366)
(2019 Aug) l4898.

[5] T.H. Barker, J.C. Stone, K. Sears, M. Klugar, C. Tufanaru, J. Leonardi-Bee, et al.,
The revised JBI critical appraisal tool for the assessment of risk of bias for
randomized controlled trials, JBI Evid. Synth. 21 (3) (2023 Mar 1) 494–506.

[6] [cited 2024 Aug 19]. Available from: https://hiruweb.mcmaster.ca/hkr/what-we-
do/methodologic-criteria/.

[7] Number of clinical trials by year, country, WHO region and income group (1999-
2022) [Internet]. [cited 2024 Sep 16]. Available from: https://www.who.int/
observatories/global-observatory-on-health-research-and-development/
monitoring/number-of-clinical-trials-by-year-country-who-region-and-income-
group.

[8] K. Kolaski, L.R. Logan, J.P.A. Ioannidis, Guidance to best tools and practices for
systematic reviews, Jun;11(6) Available from: JBJS Rev. [Internet] (2023) https://
doi.org/10.2106/jbjs.rvw.23.00077.
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