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Abstract

According to the latest Verizon DBIR report, credential abuse, including password reuse and
human factors in password creation, remains the leading attack vector. It was revealed that
most users change their passwords only when they forget them, and 35% of respondents
find mandatory password rotation policies inconvenient. These findings highlight the
importance of combining technical solutions with user-focused education to strengthen
password security. In this research, the “human factor in the creation of usernames and
passwords” is considered a vulnerability, as identifying the patterns or rules used by users
in password generation can significantly reduce the number of possible combinations that
attackers need to try in order to gain access to personal data. The proposed method based on
an LSTM model operates at a character level, detecting recurrent structures and generating
generalized masks that reflect the most common components in password creation. Open
datasets of 31,000 compromised passwords from real-world leaks were used to train the
model and it achieved over 90% test accuracy without signs of overfitting. A new method
of evaluating the individual password creation habits of users and automatically fetching
context-rich keywords from a user’s public web and social media footprint via a keyword-
extraction algorithm is developed, and this approach is incorporated into a web application
that allows clients to locally fine-tune an LSTM model locally, run it through ONNX, and
carry out all inference on-device, ensuring complete data confidentiality and adherence to
privacy regulations.

Keywords: cybersecurity; password security; machine learning; neural networks; social
engineering; digital forensic; cryptography; behavioral analysis

1. Introduction
In the digital age, most people unknowingly expose personal details, such as names,

birthdates, pet names, and hobbies through social media, which often form the basis of their
passwords. These elements, especially when combined into common structural patterns or
“masks,” can be easily exploited by attackers using social engineering. Although many tools
exist to assess password strength based on traditional policies like length and character
variety [1–3], they rarely account for the personalized logic behind how users form their
passwords, as this would require historical login password mappings. This research focuses
on the widespread tendency of users to ignore system-generated password suggestions,
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with nearly 90% opting to create their own based on familiar and predictable patterns [4].
These patterns typically follow one of several common rules: dictionary words, numeric
sequences (like phone numbers or birthdates), or symbolic masks—with symbols rarely
used alone. The method introduced here, which evaluates the potential vulnerability of
a password by analyzing open-source data and password manager exports, highlights
how individual habits and online presence contribute to guessability. While additional
authentication methods such as biometrics and two-factor verification are commonly used,
standard passwords remain the pre-eminent method of access. As a result, they continue
to be a major security risk: in 2024, over 5.5 billion accounts were compromised globally,
nearly eight times more than the previous year [5]. Survey data further reveal that users
often rely on familiar routines, with 42% mixing meaningful words and numbers, 34%
following basic platform requirements, and 32% reusing parts of previous passwords [6].
Existing solutions are presented in the form of websites and, moreover, do not take into
consideration specific password creation rules for a particular individual. Some solutions
allow passwords like “namelastname1!” or do not analyze frequently recurring patterns in
leaked password databases at all. The described approach focuses on the user’s personal
habits, considers characteristic patterns, and offers a convenient format in the form of a
Google Chrome extension with real-time analysis capability. The scientific contributions
of this study include the following: a review of existing password cracking methods to
identify recurring weaknesses in user-created passwords; behavioral analysis of how users
construct passwords using insights derived from leaked password datasets; designing and
training an LSTM-based (Long Short-Term Memory) neural network to identify recurring
structural patterns in password composition; and an implementation of an interactive tool
that helps users improve password security by providing personalized feedback with the
use of social engineering.

This research differs from existing related works by focusing specifically on password
breaches caused by the human factor, rather than purely technical weaknesses or brute-
force vulnerabilities. While many prior studies analyze password strength or propose
password checkers based on length, complexity, or entropy, our work highlights a different
attack vector: in cases when an attacker gains access to the user’s previous login-password
combinations (e.g., through local devices or leaked databases) and combines this with open
data from the user’s social media accounts, they can deduce the user’s login/password
generation rules, thereby making it substantially easier and faster for an attacker to gain
unauthorized access to both previous and recent user accounts.

The novelty of our research lies in the proposed password validation method that ac-
counts for the “human factor in the creation of usernames and passwords” and the factor of
social engineering dependencies, which are overlooked in conventional checkers. By iden-
tifying these common substrings, we construct generalized password masks that highlight
structural weaknesses, potentially enabling future compromise of similar accounts.

The structure of the paper is as follows: Section 2 provides an overview of neural
network architectures and prior research on the influence of personal information in
password creation. Section 3 presents evidence comprising real survey results of user’s
credential formation and usage practices, describes a new method for weakness evaluation
and recurrent user login/password creation rules, and presents proposals for processing
all data directly on the user’s device using an ONNX model to ensure the privacy of
personal data. Section 4 presents the experimental results and an analysis of the observed
behavioral patterns. Section 5 concludes the paper and discusses the model’s potential
practical applications.
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2. Literature Review
Passwords were among the earliest safeguards in multi-user systems, yet research

still shows a tension between security and usability. Early time-sharing hosts accepted
simple dictionary words; administrators later tightened rules—minimum length, varied
character classes, and so on—to curb rising breaches, for example by requiring at least
eight symbols with digits and mixed case. Large-scale telemetry confirms that users keep
trading entropy for memorability: a landmark web crawl found the median password
short, predictable, and reused across sites [7]. Follow-up work identified four common
constructions—dictionary word, numeric string, mask (“Aaaaa11!”), and symbol-heavy
variant [8]. Recent industry polling paints the same picture: 84% of people still embed
names or dates in their credentials [4]. Bonneau’s comparative framework explains why
text secrets persist despite decades of advice: they are the most deployable but also the
least resilient factor [9].

Stricter composition policies failed to address the issue. In laboratory experiments,
when users were forced to include capitals, numbers, and symbols, many just added
“1!” or some other simple suffix, a phenomenon Komanduri termed minimum compli-
ance [10]. This discovery, among others, prompted NIST to revise its 800-63B guideline
in favor of extended pass-phrases and blacklist verifications rather than strict character
regulations [11].

Attackers adapted just as quickly. Probabilistic context-free grammars (PCFGs) rank
guesses by likelihood and break large leaks far faster than brute-force enumeration [12].
Neural models raise the bar again: an LSTM evaluator reaches more than 90% recall on
public corpora while remaining “fast, lean, and accurate” [13]; PassGAN’s adversarial
generator, for instance, produces human-like strings and attains up to 73% additional hits
when combined with Hashcat [14]. In a specific context, extracting social media OSINT can
lower the guess budget needed by a factor of ten [15].

Defensive tools have not entirely kept pace. Numerous strength meters consistently
overrate entropy [16]; some even leak training secrets via inference attacks [17]. Server-side
protection improves when operators tune Argon2 memory settings, yet field studies show
many deployments accept vendor defaults, leaving roughly 40% more room for GPU-based
cracking [18]. Client-side feedback helps—for example, Dropbox’s open-source zxcvbn
combines dictionaries and heuristics to give instant, low-budget advice [19]—but adoption
remains uneven. A four-month longitudinal study found that people who install password
managers do craft longer, unique credentials, yet fewer than one-third keep the tools
because of setup friction [20]. Similar usability trade-offs appear in mobile PIN research:
even modern six-digit codes follow guessable patterns [21]. Personalized strength meters
such as DPAR raise entropy without harming recall, but acceptance is still modest outside
laboratory cohorts [22].

Meanwhile, major vendors advocate passkeys. Microsoft’s production rollout stores
public/private key pairs in secure hardware that, for example, neutralise phishing by
design [23]. Its 2023 Digital Defense Report claims that combining passkeys with MFA
blocks more than 99% of credential-phishing attempts, yet also concedes that migration will
be gradual because of legacy devices and limited user awareness [24]. The FIDO Alliance
echoes this view: passwords and passkeys will coexist for years until ecosystems and habits
align [25].

To summarise, the literature converges on four practical lessons. First, personal context
inevitably leaks into passwords, so purely syntactic checks are insufficient. Second, rigid
rules prompt superficial fixes unless paired with usable, meaningful feedback. Third,
adaptive data-driven models—probabilistic or neural—best capture real guessability and
guide users toward safer choices. Fourth, passwordless schemes promise long-term relief
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but will not replace text secrets overnight, creating a window where enhanced evaluation
and guidance for conventional passwords remain essential. These insights motivate the
present study’s LSTM-based evaluator, which blends statistical scoring with social-context
filters and outputs measurable indicators such as average negative log-probability and
leak incidence.

3. Materials and Methods
3.1. User Survey

To assess the scale of the problem under consideration, an anonymous online survey
was conducted among residents of Kazakhstan regarding their password creation practices
when registering on various online platforms.

The results of this survey confirmed previous statistical findings indicating that users
tend to ignore recommended guidelines for creating strong passwords. In most cases,
people rely on familiar and repetitive patterns when choosing their personal login and
password combinations, aiming to simplify memorization and facilitate future logins
and usage.

These findings highlighted the relevance of the issue and served as the starting point
for this research.

The survey included 527 respondents categorized into the following age categories.
The majority of participants were 25–34 years old (174 participants), and the other groups
were 46+ (121), 18–24 (116), and 35–44 (116). Participants included students, educators, IT
specialists, office workers, and others, allowing for a broad perspective on password-related
habits and digital hygiene awareness. The survey aimed to capture real-world practices
regarding password creation, memorization, and attitudes toward password management
policies. Below are the key findings and their interpretation.

All participants took part in the study voluntarily and provided informed consent via
a digital form prior to participation. The study did not collect any sensitive or personally
identifiable information, and no demographic data were linked to password responses.

Respondents were selected by convenience sampling—the questionnaire was dis-
tributed voluntarily to students, teachers, IT professionals and office workers.

The survey was posted via Google Forms and distributed via social media (Telegram,
Instagram) and university chat rooms.

The questionnaire included both closed (multiple choice) and open-ended questions,
allowing participants to give their own wording. Main topics:

• Ways of creating passwords;
• How often passwords are updated;
• Attitudes towards security policies;
• Difficulties in memorization.

The purpose of the survey was to supplement the technical analysis with behavioral
data and assess real user practices. This allowed better understanding of how weak pass-
words are formed and to link the identified vulnerabilities to personal login/password
creation rules, which is critical for personalized analysis within the neural network model.
Specifically, when a user requests a new-password quality assessment, the system performs
personalized fine-tuning (locally) of the base model, leveraging the user’s login and pass-
word historical data in combination with publicly available information retrieved from
their social media profiles. This localized fine-tuning process ensures that the model adapts
its evaluation to the user’s unique behavioral patterns as logic, which could be called their
“rules of login/password creation”, and social engineering contextual background, thereby
enhancing the accuracy and relevance of the password strength assessment.
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One of the key questions focused on attitudes of toward periodic password updates, a
common security requirement in organizational environments. The responses were diverse
and revealed a gap between formal policy expectations and real-world user sentiment, as
illustrated in Figure 1.

 

Figure 1. Survey results—perceptions of mandatory password updates.

The survey results illustrated in Figure 1 show that the perception of the need to regu-
larly change passwords among users remains ambiguous. The largest share of respondents
(34.2%) find this requirement annoying, while 32.9% recognize it as inconvenient but neces-
sary. Only a quarter of respondents (25%) perceive updating passwords as an important
security measure. Meanwhile, 7.9% of respondents do not think changing passwords is
necessary at all. These data indicate that there is security fatigue and a need for more
flexible, unobtrusive solutions in the area of credential management.

The data presented in Figure 2 suggest that password change habits are largely reactive
rather than proactive. A significant 40% of respondents reported changing passwords only
when they forget them, while another 25% do so approximately once a year. Regular
updates are relatively rare: just 10% change passwords every few weeks, and 25% every
few months. These results point to the fact that, for most users, password maintenance is
not a routine security measure but a response to inconvenience or necessity.

Figure 2. Survey results—frequency of password changes for existing accounts (1—“About once a
year”, 2—“Only when I forget a password”, 3—“Every few months”, 4—“Every few weeks”).
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Figure 3 presents how respondents perceive the difficulty of remembering their pass-
words, using a scale from 1 (very easy) to 5 (very difficult). The most frequent response
was level 3, selected by 185 participants, indicating a moderate level of difficulty. This
suggests that while recalling passwords is not a major issue for most users, it is also not
entirely effortless. The results reveal a range of user experiences: 66 respondents found it
very easy (1), while 52 considered it very difficult (5). These extremes highlight the contrast
between users who handle password recall with ease and those who find it challenging.
Additionally, a notable number of users selected levels 2 (105) and 4 (119), which may
imply that a portion of the population adopts insecure coping strategies such as reusing or
writing down passwords.

 

Figure 3. Survey results—difficulty in remembering passwords on a scale from 1 (very easy) to 5
(very difficult).

Taken together, these results underscore the importance of developing security so-
lutions that go beyond static policy enforcement and instead account for real-world user
behavior. While traditional password policies emphasize complexity and regular updates,
the survey data reveal that many users perceive these measures as inconvenient, unnec-
essary, or difficult to follow in practice. This discrepancy suggests that rigid security
requirements—without adequate consideration of usability—may lead to negative out-
comes such as password reuse, oversimplification, or reliance on insecure storage practices
(e.g., writing passwords down).

To address this, password management systems and security interfaces should incor-
porate adaptive mechanisms that respond to individual behavior and cognitive patterns.
For example, systems could provide personalized recommendations based on users’ pass-
word history or known habits, offering safer alternatives without overwhelming the user.
Context-aware reminders triggered not by arbitrary time intervals but by risk signals or
behavioral indicators—may encourage healthier password hygiene more effectively than
fixed expiration policies.

3.2. New Detection Method of Recurrent Rules in Login/Password Creation

A new method, the logical explanation presented in Figure 4, is introduced by analyz-
ing the transparency and predictability of logins and passwords.
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Figure 4. Logical flow-chart of proposed method.

It is important to highlight that this method is only applicable when the user’s login
and password history is available. This is precisely what makes the research both scientifi-
cally and practically novel. Existing methods do not take into account the fact that each
user has their own creation rules.

The proposed method is a combination of two analytical components: first, pattern
recognition in the structure of a user’s login and password history; and second, identifica-
tion of the user’s personal “dictionary” by analyzing their social network activity. Based on
the results of these two stages, the system evaluates the uniqueness and complexity of any
newly created credential in real time and provides tailored recommendations regarding
its strength.

To realise the research goal, a multi-level methodology was developed, including
empirical data collection, technical processing of the data, model training and deployment
of user solutions. The experimental material was based on a dataset generated from
publicly available sources of compromised passwords (including RockYou 2024, LinkedIn
v9.1.467, GitHub v3.17.2). After cleaning for duplicates, service characters and invalid
strings, the final dataset contained more than 31,000 anonymised records suitable for
sequential analysis.

Open-source datasets collected from Kaggle [26] and GitHub [27] were used as the
training set. The DecisionTreeClassifier model was trained on a portion of these data,
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with all tags being manually typed before training—each password was assigned a type.
During training, the algorithm sequentially selects the most informative features and forms
a hierarchical tree structure (Figure 5), where each internal node corresponds to a logical
condition that allows the data to be divided into more homogeneous subgroups according
to the target feature.

 

Figure 5. Decision tree results.

After training was completed, the model was tested on a deferred sample, which made
it possible to evaluate its ability to generalize patterns to new, previously unencountered
data. To analyze the results, model predictions were obtained and then compared with
actual class labels, which made it possible to quantitatively assess the accuracy of the
classification. However, this solution was subsequently transformed in favour of more
flexible and expressive models capable of taking into account the sequential nature of
passwords and identifying complex latent dependencies in the structure of characters.

The decision tree classifier learns a mapping:

f (x) → {0, 1, . . . , K − 1} (1)

where x = [x1, x2, x3] are binary features indicating the presence of letters (x1), digits
(x2), and symbols (x3) in a password, and K is the number of possible password classes.

At each node, the model selects a feature and threshold to split the data in a way that
minimizes the Gini impurity:

G = 1 − Σ pi
2 (2)

where pi is the proportion of class i within the node. The tree recursively partitions the
feature space and assigns the most frequent class label at each leaf. This results in an
interpretable model for password type classification based on lexical properties.
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Decision trees were selected as one of the baseline models due to their widespread use
in classification tasks. This algorithm was employed in a preliminary experiment to classify
all passwords based on simple features such as the presence of letters, digits, symbols,
and their combinations. This allowed the identification of typical structures and recurring
patterns in passwords, which subsequently served as a foundation for deeper analysis and
the construction of generalized masks. Thus, the decision tree model acted as an initial
analytical stage from which hypotheses were formed, leading to the use of more flexible
and expressive models such as LSTM.

Another investigated approach is a model based on Probabilistic Context-Free Gram-
mar (PCFG) designed to identify stable structures in user passwords. The method involves
splitting a password into logical fragments—sequences of letters (L), digits (D) and special
characters (S)—and then constructing a probabilistic grammar based on the length and
type of these segments.

For each password, its structure was generated, for example, L5-D4 for a password of
the form Merei1611. From a formal standpoint, the PCFG model decomposes a password p
into segments s1, s2, . . ., sn, where each segment si = (τi, vi), with τi ∈ {L, D, S} representing
the type (Letter, Digit, or Symbol), and vi the corresponding substring.

The structural pattern of a password is expressed as follows:

σ(p) = τ1|v1| − τ2|v2| − . . . − τn|vn| (3)

For example, the password “Merei1611” corresponds to the structure L5–D4.
The probability of a structure is defined as follows:

P(σ) = C(σ)/N

where C(σ) is the frequency of structure σ in the dataset, and N is the total number of
observed structures.

The conditional probability of a segment is as follows:

P(vi | τi) = Ci(vi)/ΣCi (4)

where Ci(vi) is the count of substring vi among segments of type τi, and ΣCi is the total
number of such segments (Figure 6).

Figure 6. PCFG training progress.

Assuming independence between segments, the overall probability of the password is
as follows:

P(p) = P(σ(p)) × Π P(vi | τi) (5)
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Password strength is then calculated as the normalized negative base-10 logarithm of
this probability:

Score(p) = − (1/|p|) × log10 P(p) (6)

A greater score signifies a rarer and more robust password. This approach enables
the model to assess the distinctiveness and predictability of passwords by analyzing
their structural and lexical patterns. The model underwent training on a tailored dataset,
capturing the occurrence frequencies of these structures along with the frequencies of
specific substrings within the categories. During the password assessment stage, the model
employs a logarithmic metric that represents the likelihood of the structure and its elements
adjusted for length.

The model was trained iteratively, with progress monitoring by average score and
accuracy of recognizing known structures. Two graphs were created for visualization: one
shows the change in the average logarithmic score on the training and validation samples
as the training batch increases (Figure 7), and the other shows the accuracy of matching
structures on both samples (Figure 6). This allows tracking of how well the model adapts
to new data and captures recurring patterns in passwords.

 

Figure 7. Structure matching accuracy.

It turns out that PCFG and decision tree models rely on predefined rules and charac-
teristics for password analysis. PCFG represents passwords as structured segments and
uses probabilistic estimation based on their frequency, while decision trees classify data
according to explicitly defined characteristics, such as length or character types.

The PCFG model was chosen as a comparative baseline due to its established role
in password structure analysis. In this approach, passwords are decomposed into logical
segments (e.g., letters, digits, symbols), and probabilistic rules are generated based on the
frequency and arrangement of these segments in the dataset. This method was applied
to explore the distribution of structural patterns and to estimate the likelihood of specific
password formats. The PCFG model enabled assessment of the strength and predictability
of passwords using a rule-based probabilistic framework. While effective for capturing
common patterns, its limitations in handling non-standard or user-specific behaviors
motivated the transition to more adaptive models such as LSTM.

However, neither approach is flexible enough. They require manual feature speci-
fication and do not take into account the human factor in password creation. Decision
trees use rigid logical divisions, and PCFG does not cope well with non-standard patterns,
individual habits, or emotionally charged combinations.

These limitations led to a shift towards neural network models, such as LSTM, which
are capable of learning from raw data and identifying complex, personalized patterns
without manual rule configuration. The basis for password analysis in this paper is a neural
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network model based on the LSTM architecture. This architecture was chosen due to its
ability to efficiently process sequential data and capture temporal dependencies between
elements of the input sequence. These properties are critical in the context of password
analysis, where even minor permutations of characters can significantly alter the semantics
and complexity of a password. Moreover, LSTM models have proven effective in tasks
such as text generation, next-element prediction, and behavioral pattern recognition.

3.3. Technical Realization of the Proposed Method

The architecture of the developed model comprises three logical levels. The first stage
involves converting input characters into dense vector representations of fixed dimension-
ality. This approach enables more efficient training than classical one-hot encoding, as
it allows the model to capture syntactic and structural features of characters rather than
merely their position in the alphabet.

At the second stage, a two-layer LSTM block is applied, which analyzes contextual
relationships across the entire password string. This enables the model to recognize stable
combinations of letters and digits, as well as positions of special characters characteristic of
user habits. The use of two layers facilitates the processing of both short- and long-term
dependencies between characters, while a dropout regularization mechanism helps prevent
overfitting on limited datasets.

The final stage includes a fully connected layer that transforms the LSTM output
states into a probability distribution over all possible characters in the vocabulary. This
enables the model to both predict the next character and estimate the likelihood of specific
structural patterns appearing in a password.

The primary distinction between the LSTM model proposed in this study and the
neural network approach introduced by Melicher et al. [13] lies in the level of abstraction
and the underlying objectives of modeling password structure. Melicher et al. employ a
character-level recurrent neural network aimed at estimating the probability of individual
character transitions, thereby enabling fine-grained modeling of password guessability
based on positional dependencies. Their architecture is optimized for client-side pass-
word strength estimation and large-scale adversarial simulation, focusing on the statistical
likelihood of character sequences within passwords.

In contrast, the work presented here shifts the emphasis toward the behavioral dimen-
sion of password generation, aiming to uncover structural regularities and semantically
meaningful patterns that reflect human cognitive habits and social influences. The proposed
LSTM architecture is designed to detect recurrent substrings and typical combinations such
as names, and birth years with the goal of constructing generalized structural masks. These
masks abstract the compositional logic employed by users, allowing the model to infer
common behavioral tendencies that shape password formation rules.

Thus, while Melicher et al. make a significant contribution to password guessability
modeling from a probabilistic standpoint, our approach focuses on the socio-technical
aspect of password creation, offering complementary insights into the human factors that
contribute to predictable and vulnerable password structures.

Training was performed using the Adam optimization algorithm, which ensures fast
and stable convergence in deep neural networks. Cross-entropy was used as the loss
function, which is standard for multi-class classification problems. To ensure result stability
and reproducibility, a fixed seed value was set across all modules involving randomness.
This allows the experiments to be repeated under identical conditions, yielding consistent
results. The process was conducted on a local workstation equipped with a graphics
accelerator, enabling reasonable training times even when processing large volumes of
string data. The training dataset consisted of thousands of passwords sourced from public
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leaks, which were pre-cleaned to remove duplicates and non-informative characters. Input
sequences typically ranged in length from 8 to 24 characters, consistent with common user
password practices.

The following formulas describe the LSTM operations for the first layer of the Pass-
wordLSTM model, with embedding_dim = 128, hidden_dim = 256, and num_layers = 2, as
per the PyTorch (2.6.0+cpu) torch.nn.LSTM documentation.

Input gate (i t)—a fundamental component of the LSTM architecture—is responsible
for regulating the inclusion of new information into the cell state. It controls the extent to
which the input data at the current time step influences the memory cell update.

it = σ(Wiixt + bii + Whiht−1 + bhi) (7)

where Wii ∈ R256×128, Whi ∈ R256×256, bii, bhi ∈ R256, xt ∈ R128, ht−1 ∈ R256

xt ∈ R128 − input vector at time step t

ht−1 ∈ R256 − hidden state f rom the previous time step

Wii ∈ R256×128 − weight matrix f or input

Whi ∈ R256×256 − weight matrix f or hidden state

bii, bhi ∈ R256 − bias vectors

σ(·)− sigmoid activation f unction

Forget gate ( ft) is the part of the LSTM that decides what information to delete from
memory. It receives current data and the previous state as input and outputs numbers from
0 to 1, where 0 means “forget it completely” and 1 means “leave it as it is”.

ft = σ(Wi f xt + bi f + Wh f ht−1 + bh f ) (8)

where
xt ∈ R128 − input vector at time step t

ht−1 ∈ R256 − hidden state f rom the previous time step

Wi f ∈ R256×128 − weight matrix f or input xt

Wh f ∈ R256×256 − weight matrix f or hidden state ht−1

bi f , bh f
∈ R256 − bias vectors

σ(·)− sigmoid activation f unction

Cell gate (candidate cell state) (C̃t) is the part of LSTM that creates new content for
memory, i.e., it suggests what can be added. It calculates possible new values using the
input and previous state, but does not add them directly—this is done by the input gate.

C̃t = tanh
(

Wigxt + big + Whght−1 + bhg

)
(9)

where
xt ∈ R128 − input vector at time step t

ht−1 ∈ R256 − hidden state f rom the previous time step

Wig ∈ R256×128 − input weight matrix f or candidate cell

Whg ∈ R256×256 − hidden weight matrix f or candidate cell
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big, bhg ∈ R256 − bias vectors

tanh(·)− hyperbolic tangent activation f unction

Output gate (ot) is the part of the LSTM that decides which part of the current memory
state to show to the outside, i.e., what will become the new hidden state ht. IT uses the
current memory Ct, passes it through tanh, and filters the result using sigmoid (values from
0 to 1).

ot = σ(Wioxt + bio + Whoht−1 + bho) (10)

where
xt ∈ R128 − input vector at time step t

ht−1 ∈ R256 − hidden state f rom the previous time step

Wio ∈ R256×128 − input weight matrix f or output gate

Wio ∈ R256×256 − hidden weight matrix f or output gate

bio, bho ∈ R256 − bias vectors

σ(·)− sigmoid activation f unction

Cell state (Ct) is the process of updating the internal state of memory Ct in the LSTM.
It combines the old memory Ct−1, multiplied by the forget gate, and the new proposal from
the cell gate C̃t, multiplied by the input gate.

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (11)

where
Ct−1 ∈ R256 − previous cell state

ft ∈ R256 − f orget gate output

it ∈ R256 − input gate output

C̃t ∈ R256 − candidate cell state

⊙ denotes element − wise multiplication

Hidden state (ht) is the output of the LSTM at the current step, what the LSTM “gives
out”’. It is calculated based on the updated memory Ct (passed through tanh) and the
output gate ot, which decides what part of it to demonstrate.

ht = ot ⊙ tanh(Ct) (12)

where
Ct ∈ R256 − current cell state

ot ∈ R256 − output o f output gate

ht ∈ R256 − resulting hidden state

tanh(·)− hyperbolic tangent activation f unction

⊙ denotes element − wise multiplication

In conclusion, the LSTM architecture was selected for its balanced combination of
accuracy, computational efficiency, and interpretability. It not only detects repetitive struc-
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tures and vulnerabilities in user passwords but also holds promise for generating secure yet
memorable combinations, making it highly applicable in practical cybersecurity contexts.

Figure 8 illustrates the evolution of the loss function during the training of the Pass-
wordLSTM model over 43 epochs. At the initial stage, both the training and validation
loss curves show a sharp decrease, particularly within the first 10 epochs. This rapid
drop indicates that the model quickly captures core structural dependencies in password
sequences and effectively minimizes prediction error early in the learning process.

Figure 8. Training vs. validation loss.

After epoch 10, the rate of loss reduction gradually slows, and by approximately
epoch 15, both curves stabilize at values below 0.15. This plateau suggests that the model
has reached convergence, with only marginal improvements beyond that point. The
close alignment between the two curves throughout the training process reflects a strong
generalization ability and an absence of overfitting, which is particularly important when
working with character-level sequence data.

Overall, the training loss dynamics confirm that the model was well-tuned and trained
on a clean and representative dataset. The consistent behavior of both curves across
epochs demonstrates the robustness of the LSTM architecture and the adequacy of the
preprocessing steps, including character tokenization, sequence normalization, and feature
enrichment. These results confirm the reliability of the model in password structure
recognition tasks and its readiness for practical deployment.

Figure 9 presents the classification accuracy of the PasswordLSTM model across
43 training epochs on both training and validation datasets. A notable increase in accuracy
is observed within the first 10 epochs, where the model transitions from near-random
performance to a highly accurate state. This steep growth indicates the model’s ability to
rapidly extract meaningful patterns and semantic relationships within password sequences,
despite the limited character set and relatively short input lengths.

Around epoch 15, both training and validation accuracy stabilize above 95%, with
minimal divergence between the two curves. The close alignment of these metrics suggests
that the model is not only accurate on seen data but also generalizes well to previously
unseen samples. The consistent tracking of validation accuracy alongside training accuracy
implies that the network did not overfit, even after prolonged exposure to the training set,
which is often a challenge in character-level sequence models.



Information 2025, 16, 655 15 of 25

Figure 9. Training vs. validation accuracy.

The high and stable accuracy across later epochs also validates the quality of the
data preprocessing pipeline and the effectiveness of the regularization techniques applied
during training. Dropout between the LSTM layers and fixed sequence normalization likely
contributed to the model’s robustness. These results reinforce that the model is capable
of maintaining high performance in realistic, user-facing scenarios, such as live password
strength assessment or pattern analysis in browser-based security tools.

The training results presented in Figures 5 and 6 confirm the robustness and reliability
of the proposed LSTM model. The rapid convergence of the loss function and the stable
accuracy above 95% on both training and validation sets demonstrate that the model
effectively captures underlying patterns in password data without overfitting. The close
alignment of the curves indicates strong generalization, making the model well-suited for
real-world applications involving password structure analysis and prediction. Overall, the
training process was successful, resulting in a stable and high-performing architecture.

To evaluate the impact of publicly available personal data on the structure of user
passwords, a two-stage analysis was performed. At the first stage, text snippets for queries
containing name, city, date of birth, and address were collected using the Serper API. After
text normalization, key tokens were matched to passwords from the corpus. Next, exact
and partial name/login matches as well as semantic proximity to OSINT tokens were
evaluated using RapidFuzz metrics. The results were combined with the main password
attributes (length, presence of digits and symbols) and presented as a correlation matrix.

The analysis in Figure 10 showed that password length is positively correlated with
its similarity to the name (r ≈ 0.65), while partial matches are strongly correlated with both
full similarity (r ≈ 0.87) and semantic evaluation (r ≈ 0.42). Meanwhile, adding digits or
wildcards hardly reduces the predictability of a password if personal tokens remain in it.

Thus, names and related elements remain a key source of vulnerability: simply compli-
cating the structure without removing such fragments does not provide reliable protection.

After the training phase, the model was exported in ONNX format, which allowed
it to be integrated into two application tools: a web application developed in Vue 3, and
a Google Chrome browser extension. This way, all of the processing is performed locally
and without sending sensitive data to remote servers. By avoiding server-side storage
or analysis, this design ensures maximum data confidentiality, as no user credentials are
collected, stored, or processed on the server side.
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Figure 10. Heat map describing correlations between password and personal data.

The interfaces function in real time. After entering a password, the user receives instant
feedback: visualization of the string decomposition into structural elements, assignment of
the security level (WEAK, MED, STRONG), and probabilistic evaluation of its guessability
based on the output distribution of the model. The extension uses IndexedDB to store
repetitive patterns, which allows tracking typical input patterns and tailoring recommen-
dations to the user’s individual behavioral habits. Thus, the model implementation is not
only focused on technical accuracy, but also on practical value in everyday cyber hygiene.

Building on the LSTM model’s probabilistic scoring, the system was embedded into a
comprehensive password-analysis platform that delivers real-time feedback through both
a browser-based web app and a Chrome extension. In the web application, the ONNX
(v1.18.0) -exported model and a character-to-index dictionary are fetched on page load
via onnxruntime-web (1.22.0.) (WASM), ensuring all inference runs entirely client-side.
As soon as a user types a password into the bound input field and clicks “Check,” an
asynchronous routine first validates that the field is not empty—resetting scores and emit-
ting a console warning, if necessary, then calls the predictStrength function to compute
two key metrics: the average negative log-probability (avg (–log P)), and a normalized
strength percentage (0–100). These values update reactive Vue.js variables, instantly re-
painting a colored label—red for WEAK (<40%), yellow for MED (40–70%), and green for
STRONG (≥70%)—alongside the raw avg metric for power users who want deeper insight
(Figure 11).

Once scored, the system cross-references the password against a precomputed list
of vulnerable substrings extracted during training, flagging any matches with warning
icons to highlight structural weaknesses. To guard against credential-reuse attacks, it then
sends only the first five characters of the password’s SHA-1 hash to the Have I Been Pwned
k-anonymity API (v3), retrieves the matching suffix list, and filters locally to display any
breach count without ever exposing the full secret. Below the main panel, a dynamic
password chart (Figure 12) renders the top seven most-reused passwords, and text lists
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titled “Masks that make passwords easy to guess” and “Recommended to avoid” (Figure 13)
guide users away from both generic and personalized patterns.

 

Figure 11. Web application: password analysis.

 

Figure 12. Web application: most reused passwords chart.

Figure 13. Web application: patterns that are recommended to avoid.

The Chrome extension mirrors this logic on every site with ‘<input type=“password”>’
fields. Defined in manifest.json, it comprises a popup UI, background worker, and content
script built with Vue 3, TypeScript 5.8, and Vite 7.0. During onboarding, users optionally
enter their name and city, triggering a DuckDuckGo lookup that scrapes meaningful
keywords for personalized pattern checks and stores them locally in chrome.storage and
IndexedDB. The content script then injects a live badge next to each password field and
listens for keystrokes; on every input it runs the same ONNX inference, pattern matching,
and breach lookup via a unified rate() function, updating the badge and inline diagnostics
in milliseconds. Hot-reload support via chrome.runtime messaging keeps patterns up
to date without refreshing pages. All processing—model execution, keyword parsing,
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pattern checks—occurs on the user’s device, with only non-identifying hash prefixes or
search queries leaving the browser, fully preserving privacy while delivering fast, insightful
feedback (Figure 14).

Figure 14. Chrome extension.

4. Evaluation and Results
To evaluate user-made password strength against brute force attacks, the LSTM model

was trained on a personalized dataset. During training, it identified frequently repeated
character sequences specific to an individual user.

Based on this, a list of the most frequent substrings was generated to help detect
predictable and vulnerable passwords. Repeating fragments often suggest the use of
names, birth years, or typical keyboard patterns. Below is an example of the detected
pattern list:

```json json
{

"merei": 20,
"erei04": 1,
"merei04": 1,
"zha": 49,
"apa": 96

}
```json 

Figure 15 shows a word cloud built from the most frequent substrings. The visualiza-
tion highlights the prevalence of numeric fragments (e.g., ‘2004’) and personal tokens (e.g.,
“zhap”, “khan”, “Merei”), indicating a tendency to include names and dates in passwords.

 

Figure 15. Frequently repeated patterns represented in word cloud.
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This type of analysis is especially relevant when working with personalized data, as it
exposes recurring structural weaknesses. These insights can later inform the development
of personalized password-strength meters or adaptive security feedback systems.

Figure 8 demonstrates the convergence of the loss function during training. Both
training and validation losses rapidly decreased in the first 10 epochs and stabilized below
0.15, indicating a stable and generalizable model. Figure 9 shows that the model reached
a validation accuracy of 96.7%, with training accuracy closely matching, confirming the
absence of overfitting.

In addition to classification accuracy, the average negative log-probability score (Avg
Log-Score) was used to measure password uniqueness. The final average score on the
validation set was 0.224, where lower scores indicate higher predictability. This score
captures not only structural correctness but also semantic familiarity of patterns.

These results (Table 1) show that the LSTM model significantly outperforms classical
models both in predictive accuracy and in capturing deeper structural dependencies of
password composition. It is particularly effective in detecting behavioral patterns that are
not explicitly rule-based.

Table 1. Model results comparison.

Model Accuracy Avg Log-Score Adaptability Manual Feature
Design

Human Behavior
Modeling

Decision Tree 81.4% 0.421 Low Required Absent

PCFG 88.2% 0.318 Medium Required Partial

LSTM 96.7% 0.224 High Not required Present

Finally, the connection between public personal information and password elements
was examined through a method that utilized OSINT keyword extraction through the
Serper API. The correlation heatmap (Figure 10) indicates that the relationship between
passwords and personal names exhibited a robust positive correlation (r ≈ 0.65), while
partial string matches and semantic closeness also played a notable role in predictability.
These results indicate that incorporating personal data in passwords continues to pose
a significant security threat, even if users use slight alterations like inserting numbers or
special characters.

Taken together, the evaluation outcomes validate that the LSTM-based model suc-
cessfully grasps the structural and semantic characteristics of user passwords. It exceeds
conventional methods in predictive capability and in its capacity to represent individual-
ized patterns, thus providing a more smart and flexible solution for real-time password
strength evaluation.

5. Discussion
Based on survey results [28], 84% of users use insecure passwords, relying on easily

guessable and predictable sources of inspiration to create them.
The most common examples were the following: favorite number (24%), pet name

(23%), date of birth of the user or their loved ones (19%), reuse of an old password (17%),
and names of family members or partners (16%).

Also frequently encountered are the names of favorite movies, music groups, sports
teams, memorable dates (8%), favorite color (8%), and even such trivial elements as the
word “password” and its variations (4%).

These patterns (Figure 16) indicate that users are more often guided by their con-
venience and memorability than by information security requirements. As the survey
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results show (see Figures 1–3), the majority of respondents admit that they try to minimize
cognitive load by choosing simple, easy-to-remember combinations, often repeating or
slightly modifying old passwords. The obligation to comply with formal requirements is
perceived more as an onerous necessity than as a real protection measure.

 

Figure 16. Frequency of occurrence of personal data in passwords.

The trend is especially pronounced in corporate environments where employees are
pressed for time and often perceive cybersecurity requirements as a barrier to effective
work performance. Under conditions of stress and high workload, even formally secure
policies begin to be perceived as interfering, leading to superficial compliance: employees
create passwords that formally comply with the rules (e.g., capitalization of letters and
symbols) but are easy to guess (e.g., “Password2024!”).

Moreover, this behavior leads to the illusion of security: the system meets external
criteria but remains vulnerable to attack. Rigid and inflexible requirements can lead to
user resistance or encourage users to adopt workaround strategies that do not provide real
security gains.

Existing online password evaluation services vary significantly in terms of the depth
of their analysis and their approaches to verification. The most advanced of these is
PasswordMonster [27], which simulates real attacks, including dictionary and substitution
attacks (e.g., a → @, e → 3), analyzes sequences (12345, qwerty) and estimates the time
required to crack the password. It also provides recommendations on digital hygiene,
making it not only a diagnostic tool but also an educational one. In contrast, Kaspersky
Password Checker [29] and Security.org [30] rely on simple heuristics (password length,
presence of different types of characters) and do not take into account structural features or
behavioral patterns. Another solution, UIC Password Checker [31], is a rule-based system
limited by fixed criteria

Such methods are prone to errors and do not reflect the actual strength of a password.
This highlights the need for intelligent adaptive approaches, such as neural network models,
capable of identifying hidden patterns in the behavior of a specific user.

In addition, previously used methods, such as decision trees and probabilistic context-
free grammars (PCFG), proved to be less flexible and limited in accounting for the pe-
culiarities of human behavior when choosing passwords, compared to the LSTM model.
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Decision trees are strictly dependent on predefined features and use clear logical divisions,
which limits their ability to identify complex or hidden patterns. The PCFG model is
more adaptive and allows for the probabilistic structure of passwords to be taken into
account, but its effectiveness decreases with non-standard inputs and the absence of explicit
grammatical rules (Table 2).

Table 2. Comparison of different approaches.

Criteria Decision Tree PCFG PassGAN LSTM

Model Type Discrete, tree-based
logic

Statistical
grammar-based
model

Generative
adversarial network

Recurrent neural
network

Sequence Processing Not supported
Limited by
predefined grammar
rules

Fully supported, via
generative sampling

Fully supported,
context modeling

Requires Manual
Feature Design Yes Yes No No

Flexibility with
Novel Patterns Low Medium High High

Human Factor
Consideration

Mostly not
considered

Partially considered
through probabilities

Indirect, inferred
from data
distribution

Present, models real
user behavior

Robustness to
Unconventional Data Low Medium High High

Interpretability High Medium Very low (black-box
generator)

Low (black-box
model)

Password
Representation Logical rule tree Structure + segment

frequencies
Latent vector
encoding

Embeddings and
memory

Main Limitation Requires manual
feature selection

Cannot detect nested
patterns

Lacks interpretability
and user-specific
feedback

Requires large data
and training time

More advanced models, such as PassGAN [14], represent a further step forward,
employing generative adversarial networks to synthesize human-like passwords based on
learned distributions. However, while PassGAN [14] excels at generating realistic password
candidates in bulk, it lacks the interpretability and structural analysis capabilities required
for real-time feedback and user-specific vulnerability detection.

Unlike these approaches, the LSTM recurrent neural network is trained on sequential
data and is capable of automatically identifying latent dependencies and contextual patterns
without the need to manually specify feature structures or grammatical rules. This makes
it more robust and effective when analyzing passwords formed under the influence of
individual and behavioral factors.

The solution proposed in this paper, an LSTM-based password analysis model, an-
swers this problem through a personalized approach. Instead of applying a single rule to
everyone, the system analyzes the password structure, identifies recurring patterns and
matches them with typical vulnerabilities, including the user’s personal data. In this way,
it provides feedback tailored to the individual’s behavior, reducing cognitive load while
increasing awareness and protection.

A promising avenue for future development involves the expanded application of
profiling techniques through multimodal analysis of publicly available data from users’
social media accounts, including LinkedIn, X (formerly Twitter), and Instagram. By lever-
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aging additional AI agents, such as domain-specific natural language processors, vision
models, and entity linkers, the system could be significantly enhanced in its ability to
extract behavioral, contextual, and semantic features. These agents would allow for more
granular and accurate modeling of a user’s digital identity, enabling more precise password
pattern inference and risk evaluation. The integration of such agents with the proposed
framework could mark a shift towards more intelligent user modeling systems.

Another important direction for future research involves evaluating the long-term
behavioral impact of our approach. A longitudinal study is planned to examine how
the real-time feedback generated by the LSTM-driven password analysis tool influences
users’ future password creation strategies. This includes identifying which insecure
behaviors—such as embedding personal data, using common patterns, or recycling old
passwords with minimal modifications—users are most likely to abandon. Moreover,
the study will assess the degree to which adaptive, context-sensitive feedback fosters
the adoption of more secure, structurally diverse password habits. The findings may
inform the design of adaptive behavioral cybersecurity tools that evolve in parallel with
user tendencies, promoting long-term improvements in digital hygiene and self-aware
security behavior.

6. Conclusions
This study introduces an LSTM-based password-strength model that fuses neural

pattern detection with personalized behavioral insight. Deployed in both a web application
and a Chrome extension, the system analyzes passwords locally, enriches its judgement
with OSINT-derived personal tokens, and delivers real-time feedback that goes far beyond
traditional length and character set rules. When benchmarked against classical methods
(Section 4), the LSTM reached 96.7% validation accuracy and an average –log P of 0.224,
outperforming a probabilistic context-free grammar (88.2%, 0.318) and a decision-tree
baseline (81.4%, 0.421). These gains in performance, 15% greater than that of decision trees
and 8.5% over PCFGs, while nearly halving predictability, confirm that learning sequential
dependencies and user-specific cues yields a more reliable assessment and exposes hidden
vulnerabilities that rule-based systems miss. This approach, therefore, boosts both accuracy
and usability in personal, educational, and corporate settings, underlining the decisive
role of human factors in security practices. Planned extensions, such as direct integration
with password managers, adaptive user coaching, and optional multi-factor authentication
checks, should broaden its reach and further promote digital hygiene while reducing
real-world security risks. In conclusion, while the model provides meaningful insights
into password patterns and user behavior, its client-side execution requires significant
resources, which may limit accessibility on low-end devices. Additionally, the accuracy of
its predictions is closely tied to the quality and recency of the training data. At this stage,
automatic fine-tuning on the platform remains unimplemented, presenting an opportunity
for future development.
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API Application Programming Interface
Avg Average
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CSV Comma-Separated Values
GRU Gated Recurrent Unit
GPU Graphics Processing Unit
HTTP HyperText Transfer Protocol
JSON JavaScript Object Notation
LSTM Long Short-Term Memory
ML Machine Learning
NIST National Institute of Standards and Technology
ONNX Open Neural Network Exchange
OWASP Open Web Application Security Project
PCFG Probabilistic Context-Free Grammar
RNN Recurrent Neural Network
SMS Short Message Service
SSPR Self-Service Password Reset
TOTP Time-Based One-Time Password
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UI User Interface
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