Submitted 30 May 2024
Accepted 5 November 2024
Published 29 November 2024

Corresponding authors

Ayesha Saadia,
ayesha.saadia@mail.au.edu.pk,
ayesha.saadia@students.au.edu.pk
Khursheed Aurangzeb,
kaurangzeb@ksu.edu.sa

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 38

DOI 10.7717/peerj-cs.2546

© Copyright
2024 Hussain et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Enhancing ransomware defense: deep
learning-based detection and family-wise
classification of evolving threats

Amjad Hussain', Ayesha Saadia’, Musaed Alhussein’, Ammara Gul* and
Khursheed Aurangzeb’

! Department of Cyber Security, Air University, Islamabad, Pakistan
? Department of Computer Science, Air University, Islamabad, Pakistan

? Department of Computer Engineering, College of Computer and Information Sciences, King Saud
University, Riyadh, Saudi Arabia

* Faculty of Computing, Engineering and the Built Environment, Birmingham City University, Birmingham,
United Kingdom

ABSTRACT

Ransomware is a type of malware that locks access to or encrypts its victim’s files
for a ransom to be paid to get back locked or encrypted data. With the invention
of obfuscation techniques, it became difficult to detect its new variants. Identifying
the exact malware category and family can help to prepare for possible attacks.
Traditional machine learning-based approaches failed to detect and classify advanced
obfuscated ransomware variants using existing pattern-matching and signature-based
detection techniques. Deep learning-based approaches have proven helpful in both
detection and classification by analyzing obfuscated ransomware deeply. Researchers
have contributed mainly to detection and minimaly to family attribution. This research
aims to address all these multi-class classification problems by leveraging the power of
deep learning. We have proposed a novel group normalization-based bidirectional long
short-term memory (GN-BiLSTM) method to detect and classify ransomware variants
with high accuracy. To validate the technique, five other deep learning models are
also trained on the CIC-MalMem-2022, an obfuscated malware dataset. The proposed
approach outperformed with an accuracy of 99.99% in detection, 85.48% in category-
wise classification, and 74.65% in the identification of ransomware families. To verify
its effectiveness, models are also trained on 10,876 self-collected latest samples of 26
malware families and the proposed model has achieved 99.20% accuracy in detecting
malware, 97.44% in classifying its category, and 96.23% in identifying its family. Our
proposed approach has proven the best for detecting new variants of ransomware
with high accuracy and can be implemented in real-world applications of ransomware
detection.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Neural Networks, Cryptocurrency

Keywords Ransomware detection, Ransomware classification, Ransomware family attribution,
Artificial Intelligence, Deep learning, Machine learning

How to cite this article Hussain A, Saadia A, Alhussein M, Gul A, Aurangzeb K. 2024. Enhancing ransomware defense: deep learning-
based detection and family-wise classification of evolving threats. Peer] Comput. Sci. 10:€2546 http://doi.org/10.7717/peerj-cs.2546

https://peerj.com/computer-science
mailto:ayesha.saadia@mail.au.edu.pk
mailto:ayesha.saadia@students.au.edu.pk
mailto:kaurangzeb@ksu.edu.sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2546
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

INTRODUCTION

The evolution of the internet has revolutionized our way of connecting, communicating,
and accessing information but along with its amazing advancements come unexpected
difficulties, especially in cybersecurity. With the internet growing in popularity and
expanding its virtual network around the world, cybercriminals took advantage of the
opportunity to profit from its accessibility and anonymity (Greubel, Andres ¢~ Hennecke,
2023). The inception of the World Wide Web (WWW) provided hackers with new
avenues to infiltrate systems, and with the rise of interconnected devices, the potential for
disruption grew exponentially (Garetto, Gong & Towsley, 2003). With the maturation

of the digital landscape, cybercriminals employed increasingly sophisticated tactics,
including deploying malware (a class of software designed to infiltrate, damage, or gain
unauthorized access to systems and data) (Aslan ¢ Samet, 2020). However, malware was
just the beginning of the cybercriminals’ wicked inventiveness and it reached its zenith with
the advent of ransomware (a malicious software that encapsulates the darkest aspects of
cybercrime) (Richardson & North, 2017). In this research, we aim to develop and evaluate
effective techniques for detecting and classifying ransomware, focusing on overcoming the
limitations of traditional detection methods. We propose an advanced framework that
enhances ransomware detection by leveraging deep learning-based approaches, particularly
for newly discovered and obfuscated threats. This work contributes to improving the
accuracy and robustness of modern antivirus systems.

Ransomware utilizes encryption techniques to lock victims’ files and data, holding
them hostage until a ransom is paid (Aurangzeb & Islam, 2017; Kok, Abdullah & Jhanjhi,
2022). This evolution represented a seismic shift in cyber-attacks, combining extortion
and encryption with potentially devastating consequences (Sharmeen et al., 2020). The
progression from conventional malware to formidable ransomware was symbolic of
the ongoing struggle between security experts and those who sought to exploit the
vulnerabilities of an interconnected world (Beaman et al., 2021). The history of the internet
is thus intertwined with both incredible innovation and the ever-present need to protect
against the dark forces that seek to exploit its potential (Kargaard et al., 2018).

There are two types of ransomware; the first one is crypto ransomware, which works by
encrypting the victim’s files and data and the second type is locker ransomware which locks
or disables the victim’s computer access (Anghel ¢» Racautanu, 2019). Locker ransomware
is not dangerous if it is compared with crypto ransomware because it just disables the user’s
accessibility to the device but the data on the device is usually unaffected (Gémez-Herndndez,
Alvarez-Gonzdlez & Garcia-Teodoro, 2018). Removing infection results in access to the
device and unchanged data. Relocating the storage device, generally, a hard drive, to
another computer that is still in use will often recover data even if the virus is difficult
to remove. In this case, the locker ransomware is less successful in demanding ransom
payments (Subedi, Budhathoki ¢ Dasgupta, 2018; Alhawi, Baldwin & Dehghantanha, 2018;
Mohammad, 2020). Although ransomware has a long history in the late 1980s, cyber
criminals used encryption techniques to exchange cash through postal services (Richardson
¢ North, 2017). One of its examples was the AIDS ransomware, which was invented in

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 2/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

1989, and the victims had to send $180 to a P.O. box located in Panama to restore access
to their systems (Paquet-Clouston, Haslhofer & Dupont, 2019). It was not well-known until
2009, but when Bitcoin was introduced in 2010, the rise of cryptocurrency encouraged
cybercrimes since it gave offenders a safe, untraceable way to make payments without
giving away who they were (Akbanov, Vassilakis & Logothetis, 2019). In 2013, the most
notorious piece of ransomware, CryptoLocker, appeared, targeting Windows operating
systems. It used cryptographic keys for encryption, employing a pair of public and private
keys to encrypt and decrypt the victim’s files (Savenko et al., 2019). Over 300,000 systems
were affected by a new WannaCry ransomware version in many countries in 2017 (Assegie,
2021). A total of 10,666 new ransomware variations were identified in the first half of 2022,
according to research from FortiGuard in 2023. The likely cause of this shift is the mature
operation of Ransomware-as-Service (RaaS), which assisted cybercriminals in introducing
new and disguised ransomware versions (Report, 2023).

The researchers used different techniques to detect and classify malware while
commercial antivirus companies widely depended on signature-based malware detection.
Signatures of executable files are first extracted using static analysis and stored in a database.
The signatures of a suspected sample file are then retrieved and compared to previously
established signatures to classify malicious or benign. This comparison determines whether
the sample file is malicious or not. While this approach is quick and effective for identifying
existing malware, it is insufficient for detecting newly discovered malware. Moreover,
malware from the same family can easily evade detection by using simple obfuscation
techniques (Celdrdn et al., 2023). With behavior-based malware detection, an application
is identified as malicious or benign depending on how a program behaves. The behavior-
based detection approach observes what the sample software does. Based on the behavior
observed, the software sample is categorized into benign or malicious. The three steps of
this technique are behavior extraction, property generation, and the implementation of
machine learning models to determine the safety or benignity of the application under
study. It uses system calls, application programmable interfaces (API) calls, modifications
to files, registries, and computer networks to ascertain behavior. Using these sequences,
behaviors are categorized, sequences are generated, and attributes are produced. Despite
modifications to the software’s source code, the program’s functionality does not change.
Consequently, various dangerous software variations are identified, and the majority of
new malware is discovered using this approach (Muzaffar et al., 2022). Some malware
programs, however, do not operate effectively in a protected environment and may be
classified falsely (Palsa et al., 2022). Another important factor is that classification received
less attention compared to detection, and the majority of researchers have primarily focused
on detection with limited work in classification. Accurate classification of ransomware
families is crucial for effective mitigation and prevention (Razaulla et al., 2023).

With the advancement of machine learning (ML) techniques, many researchers have
utilized them to identify ransomware. ML-based ransomware detection algorithms can
model more complicated data patterns than traditional signature-based ones (Rawson &
Brito, 2023). This allows them to successfully detect new strains of old malware, including
previously undisclosed malware (Alarfaj et al., 2022). In general, there are three types of

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 3/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

machine learning algorithms: unsupervised, semi-supervised, and supervised (Parlett-
Pelleriti et al., 2023). In supervised learning, a prediction model is trained on preexisting
labeled data to predict the labels of incoming data precisely (Yan & Wang, 2022).
Conversely, unsupervised learning utilizes unlabelled data. In contrast, labeled and
unlabeled data are combined with semi-supervised learning during the training phase (Kim
¢ Lee, 2022). In supervised learning, it is challenging for the models to detect ransomware
that has never been identified or is not from known families on which they have been
trained. However, these types of models in general have fewer challenges and can
detect ransomware more easily (Tayyab et al., 2022; Ali ¢ Ullah, 2022). Traditional ML
models normally need human interaction to work because they cannot analyze raw input
data (Moshayedi et al., 2022).

Deep learning (DL), a new branch of Artificial Intelligence (AI) and a type of ML has
gained much attraction and popularity and become a primary machine learning method
in different fields. These models utilize artificial neural networks (ANNSs) and learn from
making use of different hidden layers, and from previous examples. Many layers of synthetic
neurons are included whose weights are continuously adjusted to get the intended results.
These adjustments and modifications are made to make sure that the optimizer may
minimize the loss. The loss is the prediction error of the ANN and can be calculated by a
loss function (Zhang, Liu & Jiang, 2020). Recurrent neural networks (RNNs), multilayer
perception (MLP), and convolution neural networks (CNNs) are the most popular DL
designs (Khan et al., 2020). DL models have complex architectures and many processing
layers, they can learn deeper features automatically with varying degrees of abstraction
and can handle high-dimensional data. More research is needed to evaluate deep learning
properly, which has produced highly accurate results in many fields but has not yet been
implemented widely in ransomware detection, category-wise classification, and family
attribution (Ficco, 2021).

To that purpose, this research presents an RNN-based group normalization-based
bidirectional long short-term memory (GN-BiLSTM) model to not only detect ransomware
with high accuracy but also classify its category and family by integrating different behavioral
variables, derived from dynamic analysis. To verify the applicability of the proposed model
in a real-world scenario, 10,876 samples of 26 malware families including 11 ransomware
families and 10,876 benign samples are collected, analyzed dynamically, and prepared
for machine learning in comma-separated-values (CSV) format. API calls, logs, file
auditing, registry access, and network traffic are among the behavioral characteristics
collected through dynamic analysis. The findings reveal that the proposed model efficiently
identifies, classifies, and assigns unknown ransomware variants to families. This study
makes the following contributions:

e The first contribution is to propose a DL-based method that can detect the latest
obfuscated ransomware variants with high accuracy.

e The second contribution is to perform multi-class classification to detect malware
categories or their family.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 4/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

e The final contribution is to collect the latest ransomware samples, create a dataset, train
models on it, and validate performance.

This paper is further organized in such a way that the second section provides a summary
of previous research. The experimental design methodology and implementation of the
GN-BiLSTM model are provided in the third section. In the fourth section, practical
implementation and results are analyzed, discussed, and compared with related work. The
fifth section provides the conclusion and outlines potential future research directions based
on this study.

RELATED WORK

Researchers have used different techniques and approaches in the literature to detect
ransomware. We conducted a literature review by identifying the motivations, problems
addressed, proposed solutions, datasets used, features extracted or selected, trained models,
reported accuracy, limitations, and especially multi-class classification performed or not
for each paper.

Machine learning
Several researchers have used typical machine learning-based approaches to identify
ransomware. Zhang, Liu ¢ Jiang (2020) suggested a method for analyzing the relationship
between characteristics and malware labels using soft relevance assessment. The authors
used the Microsoft Malware Classification Challenge (BIG 2015) dataset, training models
including naive Bayes (NB), decision tree (DT), Random Forest (RF), and support vector
machine (SVM), and achieved an overall accuracy of 98.8%. Khan et al. (2020) used a digital
DNA sequencing-based approach called linear regression (LR), RF, NB, and sequential
minimal optimization (SMO) to achieve 87.9% accuracy on a dataset of 582 ransomware
and 942 benign samples. Another noteworthy study, Ficco (2021), presented a weighted
average technique called Alpha-Count, which included antiviral, intrusion detection
systems, file entropy, and network traffic analysis. The deep neural network (DNN) model,
trained on 10,634 malicious and 2,000 benign samples, attained an accuracy of 93.28%.
Similarly, Poudyal & Dasgupta (2021) evaluated ransomware activity using system calls,
network traffic, and file actions, training machine learning models (SVM, LR, and RF) with
SVM attaining 99.72% accuracy. Mail, Ab Razak & Ab Rahman (2022) suggested a cloud-
based sandboxing system that used machine learning algorithms (RF, J-48, and NB) to
achieve 99.8% accuracy on a dataset of 9,600 malware samples. Ganfure et al. (2023) created
RTrap, a dynamic analytic tool that detects ransomware in a controlled setting and achieves
99.8% accuracy using models (DT, RF, and SVM). Molina et al. (2021) used a technique
for ransomware family attribution by analyzing the pre-attack behavior of ransomware.
A total of 129,500 malware samples were collected from VirusTotal and VirusShare from
2010 to 2019, of which 19,499 samples belonged to 21 ransomware families. Bernoulli BN,
K-nearest neighbor (KNN), ANN, long short-term memory (LSTM), and RF models were
implemented. The RF model achieved a maximum of 94.92% accuracy.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 5/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Deep learning

Deep learning algorithms have also shown substantial effectiveness in malware detection.
Zhang, Wang ¢» Zhu (2021) suggested a dual GAN-based technique for distinguishing
encrypted and unencrypted files, obtaining 98.1% accuracy on the KDD99, SWaT, and
WADI datasets. Aslan ¢ Yilmaz (2021) used AlexNet and ResNet152 on the Microsoft
BIG 2015, Malimg, and Malevis datasets, obtaining 97.78%, 94.88%, and 96.5% accuracy,
respectively. Li, Rios ¢ Trajkovic (2022) adopted a different strategy, evaluating border
gateway protocol (BGP) routing data using models including LightGBM, CNN, and RNN,
and achieved an accuracy of 64.74%. Darem et al. (2021) introduced an adaptive malware
detection algorithm based on the Drebin Android malware dataset that achieved 99.41%
accuracy. Yazdinejad et al. (2020) used the LSTM-based approach for malware detection
with 10-fold cross-validation. The model achieved 98% accuracy in detecting malicious
samples from benign. Hwang et al. (2020) proposed a DNN-based malware detection
technique and trained the model on a dataset of 10,000 malicious and 10,000 benign
samples. Their proposed approach achieved 94% accuracy.

Recently, researchers have looked at multi-class classification for malware family
detection. Roy ¢ Chen (2021) employed a BiLSTM-CRF-based approach to identify
ransomware and categorize anomalous events with 99.87% and 96.5% accuracy
respectively. Keyes et al. (2021) introduced EntropyLyzer, an entropy-based behavioral
analysis tool that classified 147 families and 12 categories of Android malware with 98.4%
accuracy. Lashkari et al. (2018) created a new Android malware dataset (CIC-AndMal2017)
and used KNN to identify malware, obtaining 85.4% accuracy; however, the model struggled
with family attribution (27.24%). Rahali et al. (2020) used deep learning to classify malware
into 12 categories and 191 families, with 93.36% accuracy.

The CIC-MalMem-2022 dataset

Obfuscated malware detection has been a critical challenge addressed by various
researchers. Carrier (2021) used the VolMemLyzer framework with 26 memory features,
achieving 99% accuracy across several classifiers like SVM, DT, RF, and KNN. Smith,
Khorsandroo ¢ Roy (2023b) employed seven classification algorithms and achieved 99%
accuracy using Pearson correlation. Naeem et al. (2023) used the Malware-Exploratory
dataset to apply clustering methods (K-Means, DBSCAN, and GMM) and seven more
classifiers, reaching an average of 99% accuracy. Mezina ¢ Burget (2022) used dilated
CNNs for multi-class classification and achieved 99% accuracy. Roy et al. (2023) proposed
MalHyStack, a multi-class classification model based on stacked ensemble learning,
which achieved 99.98%, 85.04%, 70.20% accuracy in detection, classification, and family
attribution, respectively. Dang (2022) used CatBoost to classify obfuscated malware and
performed binary and multi-class classification. The model achieved 99.9% accuracy in
detection. Dener, Ok ¢ Orman (2022) performed binary classification using RF, DT, GBT,
LR, NB, linear vector support machine, MLP, deep feed forward neural network, and
LSTM. The highest accuracy achieved by the LR algorithm with 99.97%. In Al-Qudah et
al. (2023), one class SVM (OCSVM) classifier was proposed with Component Analysis

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 6/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

(PCA), and 99.4% accuracy in one-class classification using the PCA (OCC-PCA) model
was attained.

Abualhaj et al. (2024) proposed an improved distance metric parameter of the KNN with
K-fold cross-validation for malware detection. They achieved 99.97% accuracy in detection,
82.21% in classification, and 66.93% in family attribution. Shafin, Karmakar ¢» Mareels
(2023) proposed a CNN-BiLSTM-based approach, namely CompactCBL (Compact CNN-
BiLSTM) and RobustCBL (Robust CNN-BiLSTM) to detect the binary attack, its type, and
family. Methods achieved 99.96% and 99.92% accuracy in detecting binary attacks, 84.56%
and 84.22% in family-wise attacks, and 72.60% and 71.41% in types of attacks, respectively.
Smith, Khorsandroo ¢ Roy (2023a) used a CNN-based stacked ensemble method as a base
learner and MLP for meta-learning. IoT-based malware was identified and categorized by
identifying image characteristics and detecting suspicious activities. It helped to classify
malware families and the models achieved 99.01% accuracy in malware detection.

Many existing ransomware detection approaches rely primarily on handmade
characteristics or static signatures, making them less adaptable to new and emerging
malware families. Polymorphic and metamorphic ransomware strains are particularly
difficult to identify using signature-based methods. A large majority of research
concentrates on static or short-term behavioral characteristics, file actions, or network
traffic over a given period. However, ransomware frequently demonstrates dynamic
tendencies that evolve. Approaches that ignore these temporal patterns fail to capture the
entire range of ransomware operations, perhaps leading to more false negatives. Many
machine learning algorithms employed in prior studies perform well on known datasets
but suffer when exposed to novel malware. This problem results from overfitting to specific
patterns in the training data, reducing the model’s capacity to generalize across different
ransomware families and innovative attacks.

Our literature analysis process leads us to the conclusion that it’s critical to identify
obfuscated ransomware by analyzing it deeply, classifying its correct category (ransomware,
Trojan, spyware, etc.), and attributing its families using advanced DL-based techniques to
make defense ready by providing correct solution and path. Therefore, in this research, we
proposed the GN-BiLSTM, a DL-based method to detect, classify, and attribute ransomware
families. Unlike previous techniques that rely on predetermined characteristics, GN offers
a flexible way to represent the links between various system activities (e.g., file operations,
network activity, and registry changes) using a graph structure. This enables the extraction of
rich, interdependent data that can capture the complex, multi-step operations undertaken
by ransomware, resulting in improved detection of sophisticated threats.

THE PROPOSED METHODOLOGY

This section provides the methodology for our proposed GN-BiLSTM model for
ransomware detection, category-wise, and family-wise classification framework. The
methodology of the proposed framework is presented in Fig. 1, comprised of 6 steps;
datasets, data pre-processing, data balancing, feature selection, normalization, and DL
implementation. Algorithm 1 provides a hierarchical view of the proposed methodology.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 7/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Algorithm 1 The Proposed Methodology for Ransomware Detection and Multi-class

Classification
1: Input:

e Two datasets:

— CIC-MalMem-2022:
— Self-Created Dataset:

x Collected ransomware samples.

* Analyzed using Cuckoo Sandbox.

* Generated JSON reports.

x Extracted features and compiled into CSV.

2: Step 1: Data Preparation
e Prepare datasets for multi-class classification.
3. Step 2: Data Cleaning

e Handle missing values and remove duplicated records.
e Perform categorical encoding.

4: Step 3: Outlier Handling

e Identify and address outliers.
s: Step 4: Data Balancing

e Apply data balancing techniques to address the class imbalance.
6: Step 5: Feature Selection

e Use feature selection techniques to choose relevant features.
7: Step 6: Data Normalization

e Normalize data using Min-Max scaling or Z-score normalization.
8: Step 7: DL Model Implementation

e Implement six DL models:

— CNN, MLP, LSTM, CNN-LSTM, CNN-BiLSTM
— GN-BiLSTM (proposed model)

e Train and test each model.
e Evaluate performance using accuracy, precision, recall, F1-score, and AUC.

9: Step 8: GN-BiLSTM for Ransomware Detection and Family Attribution

e Construct graph-based feature representations.
e Apply GN-BIiLSTM to capture sequential dependencies and feature relationships.
e Output classification and family attribution results.

10: Output: Detection results, classification labels, and family attribution.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 8/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Datasets [Preprocessing] [Data Balancing]
[] Prepare fqr Detection, Data
Self-created gﬁfﬁ;ﬁifgﬁn' and Family Balance Balanced Data
Check
@ Handling Missing Values
.............. §9
@ Duplication Removal
Apply Manual Technique
@ Categorical Encoding
CIC-MalMem-2022 @ Similarity Check [Apply SMOTE]
v
Deep Learning Models (..i Training [€==* CFold [Feature Selection]
-FOl

GN-BILSTM Cross

Conn) Cmep) (stv) <..<--.. Validation)
[Apply XGBoost]

[(cNN-LsTM) (CNN-BiLSTM)
b

Sencerereed Pocmeconomsmooseemreone oo . ¥
v v v [Normalization]

[Detection][Classification] [Family Attribution]

& \ J

Figure 1 The proposed methodology.
Full-size G DOI: 10.7717/peerjcs.2546/fig-1

Datasets

Two benchmark datasets are used in this research. The first one is OMM-2022, an
obfuscated malware dataset (Carrier, 2021), and the second one is a self-created ransomware
dataset.

The CIC-MalMem-2022 (OMM-2022) dataset

This is the latest obfuscated malware dataset generated in 2022 by the Canadian Institute for
Cybersecurity. It comprises 58,596 records, including 50% malicious and 50% benign with
56 features and one class. The dataset contains three malware categories (Trojan Horse,
Spyware, Ransomware) and 15 malware families. Table 1 provides sample information on
the malware categories and their families.

Self-created dataset

Samples are collected from multiple online resources to obtain real instances of malware.
A total of 21,752 samples (10,876 malicious and 10,876 benign), including 11 ransomware
families (Cerber, DarkSide, Dharma, GandCrab, LockBit, Maze, Phobos, REvil, Ragnar,
Ryuk, Shade, WannaCry) are collected from VirusTotal, VirusShare, MalwareBazar, and
GitHub. To further check the robustness of models, samples of three more malware
categories (Trojan Horse, Info Stealer, RAT) are included in the dataset. Cuckoo Sandbox
2.0.7 was installed and configured with a Windows 7 (32-bit) operating system to analyze
dynamic behavior. The malware samples are run in a controlled virtual box environment
to capture the activities of malware samples during their execution. The activities include
processes it started, files and registry activities it created, files read, or deleted, dynamic link

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 9/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-1
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Table 1 Malware categories and family information.

Category Family Samples Total samples

Zeus 195
. Emotet 196

glr:rjj: Refrose 200 9,487
Scar 200
Reconyc 157
180Solutions 200
Coolwebsearch 200

Spyware Gator 200 10,020
Transponder 241
TIBS 141
Conti 200
Maze 195

Ransomware Pysa 171 9,791
Ako 200
Shade 220

Benign 29,298

libraries (DLLs), and application programmable interfaces (APIs) calls it made. The main
focus was to capture API calls by malware, files opened, created, or deleted, and registry
entries made. These actions indicate the malware’s behavioral dynamics. Cuckoo Sandbox
produced an extensive JavaScript Object Notation (JSON) report. JSON files are then
parsed and analyzed family-wise, and 51 features are extracted from each sample report
using Python language script, labeled, and converted into a CSV file format.

Preprocessing

ML and DL models require preprocessed data to perform efficiently. Pre-processing is
accomplished in many ways, and different techniques are applied to make datasets work
with ML and DL models. In this research, the datasets are pre-processed through nine
steps. In the first step, the datasets are prepared for detection and multi-class classification.
In the second step, missing values and duplicated records are handled. In the third step,
categorical encoding is performed, and in the fourth step, similarity and outliers are
addressed. In the fifth step, data balancing is applied and in the sixth step, feature selection
is conducted. In the seventh step, normalization is performed, and finally, in the eighth
and ninth steps, deep learning (DL) models are trained, and tested, and the results are
evaluated.

Preparation for multi-class classification

The OMM-2022 dataset has just one feature (Class) which contains two distinct values
(Malicious or Benign) and with this capability, we can just perform detection not category-
wise or family-wise classification. To prepare it for categorization and family attribution,
we used the first feature (Category) to prepare the dataset for multi-class classification.
The malware categories, families, and hashes are extracted from each record and added to

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 10/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

newly created features (Category, Family). A Python script is utilized to parse the dataset,
extracting the first feature, parsing the text, and converting it into two new columns by
eliminating the remaining string before deleting the original feature from the dataset. After
completing this process, the new dataset includes two more characteristics (Category and
Family) at the end. The feature “Class” is utilized to identify malware, while the newly
developed features “Category” and “Family” are used to classify malware categories and
attribute families.

Handling missing values

When data corrupts or is not recorded properly, missing or null values occur in the dataset,
and handling these values is crucial. If the ML or DL algorithms are trained on such data,
they produce incorrect results. We adopted a manual technique by keeping the Forward
Fill/Backward Fill method in mind to handle the missing value of the attributes. After a
comprehensive examination, a Python script is created that iterates on each row, and if it
discovers a missing value in one of the columns, it first checks the target column value,
followed by five backward and five forward values in the same columns. The OMM-2022
dataset has no missing values in the detection phase. However, after making adjustments
and pre-processing for classification and family attribution, the dataset returned null values
in the “Family” column. The null values in the Family field are replaced with “Benign”
since the problem occurs only with “Benign” data. When we split the first column from
“Category” into two columns, “Category” and ”Family”, the algorithm worked perfectly
with malware records but not with benign records. The problem was that the “Category”
column only had a “Benign” value for benign samples, with no family or hash value.
The self-created dataset had no duplicate records since duplication was eliminated during
the dataset development and cleaning process; however, the OMM-2022 dataset has 534
deleted duplicate entries.

Categorical encoding

Categorical encoding is the process of converting categorical values into numeric values
and it must be converted before it feeds to ML or DL models. Typically, two approaches
are used: one-hot encoding and simply substituting category data with numerical values.
One-hot encoding is useful when the values are minimal and it is not appropriate for
classification and family attribution tasks. The self-created and OMM-2022 datasets
include three identical columns that must be transformed into numerical data. The first
column is “Class” which has 2 unique values (Malicious and Benign) in both datasets
and is converted into 0 and 1. In the self-created dataset, the second column, “Category”,
contains five unique values (Benign, Trojan, Ransomware, Stealer, and RAT), whereas the
OMM-2022 dataset has four unique values (Benign, Spyware, Ransomware, Trojan). The
third column, “Family”, contains 27 unique entries in the self-created dataset and sixteen
in the OMM-2022 dataset. All categorical values in both columns (Category and Family)
are converted into machinable encoding.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 11/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Handling similarity and outliers

The OMM-2022 dataset is well-organized and has 2769.40 intra-class and 5821.51 inter-
class similarity, which means there is no similarity issue. With a dataset size of 58,062 rows
and 58 columns, computing pairwise distances for all data points can be computationally
intensive and memory-consuming. However, given the calculation results, we can see
that the intra-class similarity is lower than the inter-class similarity. This suggests that
data points within the same class are, on average, more similar than data points from
different classes, which is generally a desirable property for a well-behaved dataset. Given
the dataset size, the results are pretty interpretable. They indicate that the data points are
well-clustered within their respective classes and have more significant dissimilarity across
different classes.

An observation that substantially differs from the other data points in a dataset is
called an outlier. Measurement errors, natural variation, or exceptional cases can cause
outliers. In machine learning, the presence of outliers can have a considerable impact on
model performance. Statistical measurements like the mean and standard deviation can
be distorted by outliers, which can result in erroneous depictions of the data distribution.
This, in turn, can influence the behavior of certain ML algorithms sensitive to data
distribution. Outliers may also disrupt the learning process by introducing noise and
affecting the generalization ability of models. Addressing outliers is crucial for ensuring
robust and reliable ML models. Depending on the specifications of the modeling job and
the characteristics of the data, outlier detection, transformation, or removal may be used.
Figure 2 shows outliers detected in the OMM-2022 dataset.

Handling outliers is a crucial step, and in this research, each feature is analyzed and
handled separately. Sometimes having outliers does not indicate that there is some issue
with the dataset. To handle outliers Z-sore technique is used and its mathematical formula
for the calculation of the z-score is shown in Eq. (1).
X—H

o

7 =

(1)

where Z presents the z-score, x is the individual data point, pis the mean of the dataset, and
o is the standard deviation of the dataset. For outlier detection using z-scores, a standard
threshold is set (e.g., Z > 30rZ < —3), and data points beyond this threshold are considered
outliers.

Data balancing

Balanced data is the ideal situation for ML and DL-related tasks and original datasets have
no balancing issue, however, after removing duplicate entries it makes the OMM-2022
dataset a little imbalanced. Duplicate entries in malicious samples are removed. In the
classification phase, datasets become imbalanced because the “Category” column has more
than two unique values compared to benign samples, and the ratio becomes imbalanced.
The dataset is balanced by first calculating the number of records category-wise, getting the
average range of all categories, then randomly selecting the indices, dropping the selected
benign records, concatenating the remaining benign and malicious records, shuffling the
final DataFrame to mix benign and malicious records and then saving into new CSV file.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 12/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Box Plot for Outlier Detection in CIC-MalMem-2022 Dataset

pslist.nproc [
pslist.nppid ©
pslist.avg_threads (']
pslist.avg_handlers o
dlllist.ndlls < I —
dillist.avg_dils_per_proc <4
handles.nhandles °
handles.avg_handles_per_proc °
handles.nfile L]
handles.nevent I @D O®@MO O [oo]
handles.ndesktop °
handles.nkey °
handles.nthread — o
handles.ndirectory °
handles.nsemaphore ®
handles.ntimer aj® o
handles.nsection)
handles.nmutant —i-e
Idrmodules.not_in_load o
Idrmodules.not_in_init o
Idrmodules.not_in_mem [
Idrmodules.not_in_load_avg @
Idrmodules.not_in_init_avg 4
Idrmodules.not_in_mem_avg [
malfind.ninjections o
malfind.commitCharge '3
malfind.protection ®
malfind.uniquelnjections |
psxview.not_in_pslist |
psxview.not_in_ethread_pool |
psxview.not_in_pspcid_list |
psxview.not_in_csrss_handles |
psxview.not_in_session |
psxview.not_in_deskthrd [
psxview.not_in_pslist_false_avg I
psxview.not_in_ethread_pool_false_avg |
psxview.not_in_pspcid_list_false_avg |
psxview.not_in_csrss_handles_false_avg 3
psxview.not_in_session_false_avg]
psxview.not_in_deskthrd_false_avg [3
svcscan.nservices 3
svcscan.kernel_drivers L3
svcscan.process_services ¢
svcscan.shared_process_services |
svcscan.nactive 4
callbacks.ncallbacks [
class | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 6000 7000 8000

Figure2 Outliers detected in the OMM-2022 dataset.
Full-size & DOI: 10.7717/peerjcs.2546/fig-2

This manual technique decreased the OMM-2022 dataset from 58,062 to 38,810. All values
inside the “Family” column are converted into 16 unique entries (Benign, Transponder,
Gator, Shade, Scar, Refroso, CWS, 180solutions, Ako, Conti, Emotet, Maze, Zeus, Pysa,
Reconyc, and TIBS) against concerned category using a Python script and the same
technique is used to balance the dataset. This technique decreased the OMM-2022 dataset
from 39,318 to 30,816. Figure 3 depicts the picture of datasets before and after applying
the manual technique.

SMOTE (Synthetic Minority Over-sampling Technique) is a technique that increases
synthetically the number of samples in a dataset in a balanced way. When there are many
classes in a dataset that do not have an equal sample ratio, then an imbalanced data issue
occurs. To handle and overcome this issue, the SMOTE technique produces synthetic data
to make minority and majority classes of equal size. If the ratio of minority or majority
classes is high, it is oversampled instead of undersampled to make equal-sized classes. The
SMOTE selects examples closely related to the feature space and draws a new sample at
a point along that line. Specifically, SMOTE generates synthetic samples for the minority
class (or classes). For each sample in the minority class, the algorithm finds its k nearest
neighbors (k is typically 5). Depending on the amount of over-sampling required, one or
more of these k nearest neighbors are selected to create the synthetic samples. A synthetic
sample is then created by choosing one of the k nearest neighbors and interpolating a new
sample at a randomly selected point between the feature space of the minority sample and
its selected nearest neighbor. In our multi-class classification approach, the SMOTE plays
an essential role when datasets are prepared for the classification and family attribution
tasks. After applying the SMOTE self-created dataset is increased from 15,638 to 23,810,

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 13/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-2
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Imbalanced Families

300004 29298

count

2128 2000 2000 2200

Benign Shade 180solutions CWS Gator TIBS Transponder Emotet Reconyc Refroso

Balanced Families
2500 1 2410

20004

1500 1

count

1000 1

5001

Benign Shade 180solutions CWS Gator TIBS Transponder Emotet Reconyc Refroso

Figure 3 The OMM-2022 dataset families before and after applying the balancing technique.
Full-size Gal DOI: 10.7717/peerjcs.2546/fig-3

and the OMM-2022 dataset from 38,810 to 40,016 in the classification phase. In the family
attribution phase, the self-created dataset is increased from 11,426 to 14,850, and the
OMM-2022 dataset from 30,816 to 38,544.

Feature selection

In this research, correlation and mutual information feature importance techniques are
implemented on both datasets to check feature relations. After analyzing each feature, its
importance concerning malware analysis, the values it contains, and its relation with the
target’s essential features are selected and tested. If a feature has the same values in all
benign and malware samples, then it is removed. A total of 50 53 features are selected from
the OMM-2022 dataset, and 53 components are selected from the self-created dataset.

Normalization

Normalization is also called feature scaling, in which the values of features are normalized
within a fixed range. The datasets used in this research have numeric values but some
columns have high range and some with shallow range values. To increase ML and DL
models’ efficiency, features are scaled from a high numeric value range to a fixed range
from 0 to 1. The StandardScaler technique is employed to scale the data to a fixed range.
The StandardScaler normalizes the data making each of the features have a mean = 0 while
the standard deviation = 1.

Implementation of deep learning
The proposed model GN-BiLSTM is a combination of normalization layer GN and the DL
model BiLSTM. The BiLSTM is the extension of the LSTM architecture, which captures

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 14/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-3
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

— Yit-1 Yt-1 Yt-1
<« Hb Hb Hb

—

Figure 4 Structure of the BILSTM.
Full-size & DOI: 10.7717/peerjcs.2546/fig-4

information from past and future time steps in a sequence. This bidirectional working
process helps the model to improve the understanding of context in sequential data. These
models are mostly used in natural language processing (NLP) and in the application that
captures contextual information essentially (Dang, Di Troia ¢ Stamp, 2021). The BILSTM
network is composed of a forward LSTM hidden layer and a backward LSTM hidden
layer in which data is processed in both (forward and backward) directions. The BiLSTM
is differentiated from LSTM based on the backward direction which is only used in the
BiLSTM, but not in the LSTM. The backward direction helps the model to capture hidden
patterns of features of the data that are ignored by LSTM normally (Schuster ¢ Paliwal,
1997). This bidirectional functionality helps and enables to capturing of more sophisticated
tasks and more detail (Xiao et al., 2019). The architecture of the BILSTM network can be
seen in Fig. 4.

Here, Hy, is the forward layer and the backward layer is Hf while y* is the output sequence
used in updating the work. It applied to update backward from ‘t’ to ‘1’ and forward from
‘1’ to ‘t’ step by step. The Eqgs. (2), (3) and (4) are the mathematical expressions of the

BiLSTM model.

Hf = o (wiy:(t) +waHp 1 +bry) (2)
Hy =0 (wyy;(t) +wsHp_1 +brp) (3)
y =0 (wsHy +wsH +by) (4)

where Hy, Hy, and y; are forward, backward pass, and final output layers, respectively.
w is the weights coefficient, and by, byp, and b; are the biases (Shan et al., 2021). Group
normalization (GN) is a normalization technique in which channels are divided into groups
and features are normalized within each group. It does not modify the batch dimension

Hussain et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2546 15/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-4
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

4
l
l

l

g
l
l

l

g
l
l

ki

l

|
N

v
7

v
=

Figure 5 Structure of the GN-BiLSTM.
Full-size & DOI: 10.7717/peerjcs.2546/fig-5

because it computes independently of the batch size. The GN is defined in Eqs. (5), (6) and
(7) if the group size is 1.

1

Wi = —Zxk (5)
m keSi
1 n

ol =— Z(xk —ui)? (6)
m keSi

%= Xi— Wi 7)

\10'1'2"‘6

Here x is the computed feature by a layer, and i is an index. A Group Norm layer
computes pand o in a set Si and is defined in Eq. (8).

o [ke _[Ic
Si_{kN_’N’[aG‘[aG]]}' (®)

The number of groups is represented by the pre-defined hyper-parameter G, which by
default equals 32. C|G indicates how many channels there are in each group. If each group
of channels is maintained in a sequential sequence along the C axis, the last word indicates
that the indexes i and k are in the same group of channels (Singla, Duhan ¢ Saroha, 2022).
The basic idea of this work is to improve ransomware detection, classification, and family
attribution accuracy using Group group-normalized BiLSTM network. Figure 5 shows the
structure of the GN-BiLSTM model.

Input sequence x = (x1,x2,x3,......... xt) where ¢ is the sequence length. Hidden states
ht forward and hr backward for each timestamp i.GN is the number of groups, y, and

Hussain et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2546 16/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-5
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

are learnable parameters. The Group Normalization operation is applied to each direction
d of the BiLSTM for a given hidden state h¢.

Equation (9) represents a reshaping operation that transforms the hidden state h¢ based
on the batch size, group size, and the hidden state dimensions within each group. This
operation organizes the hidden state into a new shape defined by BatchSize, the number of
groups G, the size of each group (GroupSize), and the GroupedHiddenSize.

Reshape = hfl (BatchSize, G, GroupSize, GroupedHiddenSize) (9)

where BatchSize refers to the number of samples in each mini-batch, G represents the
number of groups the hidden state is divided into, GroupSize is the size of each group, and
GroupedHiddenSize is the size of the hidden state for each group. Equation (10) calculates
the mean of the GroupedHiddenState across the batch and group dimensions.

Mean = Mean(GroupedHiddenState, axis = (BatchSize, GroupedSize)) (10)

where GroupedHiddenState is the reshaped hidden state after grouping, the mean is
computed along the dimensions defined by BatchSize and GroupedSize. Equation (11)
computes the variance of the GroupedHiddenState, again across the BatchSize and GroupSize
dimensions.

Variance = Variance(GroupedHiddenState, axis = (BatchSize, GroupSize)) (11)

where the variance calculation captures the spread of the grouped hidden states across the
specified axes. Equation (12) normalizes the hidden state by subtracting the computed
mean and dividing by the square root of the variance plus a small constant € to prevent
division by zero.

hd — mean
W/ variance + €

where Mean and Variance are the mean and variance computed earlier, € is a small constant

Normalizationh® = (12)

added for numerical stability. Finally, Eq. (13) reshapes the normalized hidden state y¢
back to its original shape of (BatchSize, HiddenSize) after the normalization process.

Reshape()/td, (BatchSize, HiddenSize))+/variance + € (13)

where the normalized hidden state y¢ is reshaped back to its original dimensions, and the
scaling factor «/Variance + € is applied to maintain numerical stability. These equations
outline the steps for performing group normalization, where hidden states are normalized
within groups for better stability and training performance.

To avoid bias, five other state-of-the-art DL models (CNN, MLP, LSTM, CNN-LSTM,
and CNN-BIiLSTM) are also implemented on both datasets. The CNN is ANN with many
layers for image processing, detection, classification, and time series data, and is mainly
developed for structured grid data processing like photos and videos (Ganfure et al., 2023).
The convolutional layers use several kernels, also called learnable filters, to analyze the
given input parameters (Yazdinejad et al., 2020). These filters move over the provided
input images and analyze them to identify different elements like textures, edges, and

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 17/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

patterns. Two important standard methods max-pooling and average-pooling minimize
computational cost and complexity without changing translation invariance. After multiple
convolutional and pooling layers, one or more fully connected layers are integrated by
CNNs. These layers perform feature extraction and make predictions on the extracted
features by connecting them to a classifier (Yazdinejad et al., 2020).

MLPs are more versatile, and useful and can handle a wider range of data types than
CNNs because CNN s are focused on processing grid-like data (Hwang et al., 2020). MLP
consists of three layers, an input layer, an output layer, and a hidden layer. Neurons
apply neural activation functions on inputs in the hidden and output layers to achieve
non-linearity (Dener, Ok ¢ Orman, 2022). The hybrid model CNN-LSTM, a combination
of CNN and LSTM, is widely used in the processing of sequential data, and due to its hybrid
functionality, researchers have widely used it in malware detection and classification tasks.
The convolutional layers apply kernels or learnable filters to the input data to capture edges,
textures, spatial patterns, and other features related to the task. After the convolutional
layers, one or more LSTM layers are used. These layers are responsible for capturing
sequential dependencies within the spatial features extracted by the CNN. LSTM layers
have memory cells that maintain information about past inputs, which allows them
to model and understand the temporal relationships within the data. After the LSTM
layers, fully connected layers (dense layers) can be added for further processing of the
extracted features (Shafin, Karmakar ¢ Mareels, 2023). CNN-Bi-LSTM is a neural network
architecture that combines the strengths of both CNNs and BiLSTMs. The primary area
where BiLSTM differs from LSTM is that it uses two hidden layers to process data in
two directions. BiLSTM is widely used in the processing of natural language and other
classification tasks (Aslan, Ozkan-Okay ¢ Gupta, 2021).

Performance evaluation

Performance evaluation of the ML and DL models is an important task and to estimate the
performance, the confusion metrics are considered the first choice to evaluate the results.
Confusion metrics clarify the prediction of the model by measuring true positive (TP),
true negative (TN), false positive (FP), and false negative (FN). Evaluation of DL-based
model performance is to assess how well the model performed on a given task. Evaluation
metrics vary depending on the type of task or problem being addressed by the DL models.

Accuracy

The first factor used to measure a model’s performance is to check its accuracy. It is reviewed
and verified by watching a DL model’s accuracy and loss in each epoch and calculating
average or mean accuracy at the end to predict the model’s accuracy. Equation (14) is the
representation of accuracy.

TP+ TN
Accuracy = (14)
TP+ FP+TN +FN

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 18/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Precision
The second factor used to measure performance is precision. Precision is assessed by
measuring the ratio of correctly identified positives by model and the total number of
identified positives. Precision is presented in Eq. (15).

TP

Precision= ——. (15)
TP+ FP

Recall
The third important factor is recall. It is also called sensitivity, and it represents the ratio
of linked instances retrieved to the overall number of retrieved instances. It is represented
in Eq. (16).

TP

Recall = ——. (16)
TP +FN

F-1 Score
The fourth important factor is considering the F1-score which is measured by considering
both precision and recall. It is assumed to be the average weight of all values and is presented
in Eq. (17).

2 X Precision x Recall

F1—Score = — . (17)
Precision + Recall

RESULTS

This section provides a detailed performance analysis of implemented DL models. To assess
their capabilities, three different detection tasks are conducted. The first one is malware
detection, the second one is category-wise classification, and the third one is family
attribution. Moreover, a comparison analysis is performed with the existing literature on
the same dataset to validate the performance of the proposed approach.

The experiments are performed on an HP Z230 Workstation Core(TM) i7-4790 CPU @
3.60 GHz (8 CPUs), equipped with a Windows 10 Profession 64-bit operating system with
16 Giga Byte Random Acess Memory (RAM). Additionally, the Google Colab platform is
utilized by configuring Cloud Tensor Processing Units (TPUs) and Graphical Processing
Units (GPUs) to check the computational performance. To implement practical work,
popular software Anaconda 2.4.2 with Jupyter Notebook 6.4.12 and important libraries
like Sklearn, TenserFlow, Numpy, and Pandas for ML and DL tasks are utilized. The
dataset is divided into 80% for training and 20% for testing. K-Fold cross-validation is
applied to ensure training and testing are performed on all classes. Table 2 describes the
basic parameters set for all the DL models in training and testing. To avoid bias, the
DL models are constructed with 32 batch size, 0.001 learning rate,, Adam optimizer for
model optimization, and categorical cross-entropy function to track the loss and handle
multi-class problems.

Malware detection
At first, we experimented with malware detection by training DL models on both datasets
using 20, 30, 50, 100, and 150 Epochs. All models are evaluated based on the average

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 19/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Table 2 Parameter detail of the implemented models.

Parameters OMM-2022 dataset Self-created dataset
Batch size 32 32

Epochs 20,30,50,100,150 20,30,50,100,150
Learning rate 0.001 0.001

Loss function Categorical cross entropy Categorical cross entropy
Optimization algorithm Adam Adam

Normalization Standard Standard

Randomization 42 42

Number of classes 50,51,52 46,47,48

Cross-validation K-Fold K-Fold

Number of splits 5 5

Table 3 Average training time, loss, and accuracy on the OMM-2022 dataset.

Model Average time (Minutes) Average loss Average accuracy
CNN 41 0.0011 99.99%

MLP 18 0.0007 99.99%

LSTM 74 0.0010 99.99%
CNN-LSTM 61 0.0011 99.97%
CNN-BILSTM 95 0.0012 99.97%
GN-BiLSTM 131 0.0002 99.99%

accuracy of the epoch, training time, and loss. The CNN achieved 99.99% accuracy with
0.0011 loss, 41 min for training on the OMM-2022 dataset, and 97.40% accuracy with
0.0828 loss, 10 min for training on the self-created dataset. The MLP achieved 99.99%
accuracy with 0.0007 loss, 18 min for training on the OMM-2022 dataset, and 72.92%
accuracy with 0.7899 loss, 5 min for training on the self-created dataset. The LSTM
achieved 99.99% accuracy with 0.0010 loss, 74 min for training on the OMM-2022 dataset,
and 74.20% accuracy with 0.4916 loss, 29 min for training on the self-created dataset.
The CNN-LSTM achieved 99.97% accuracy with 0.0011 loss, 61 min for training on the
OMM-2022 dataset, and 99.09% accuracy with 0.0263 loss, 39 min for training on the
self-created dataset. The CNN-Bi-LSTM achieved 99.97% accuracy with 0.0012 loss, 95 min
for training on the OMM-2022 dataset, and 99.15% accuracy with 0.0277 loss, 39 min for
training on the self-created dataset. Our proposed model the GN-BiLSTM achieved 99.99%
accuracy on the OMM-2022 dataset and 99.20% on the self-created dataset. Tables 3 and
4 provide the average accuracy, loss, and training time of models on both datasets in the
malware detection phase.

The performance of the models on the OMM-2022 dataset can be seen in Fig. 6. All
models performed well on the OMM-2022 dataset, with accuracy rates approaching 99.99%.
The GN-BIiLSTM, CNN, and MLP models all scored an excellent 99.99% accuracy, while
the CNN-LSTM and CNN-BiLSTM models achieved a slightly lower 99.97%. Although this
difference in accuracy appears little, it demonstrates the GN-BiLSTM model’s durability,
since it retains greater accuracy despite its more complicated design. The incorporation of

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 20/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Table 4 Average training time, loss, and accuracy on the self-created dataset.

Model Average time (Minutes) Average loss Average accuracy
CNN 10 0.0828 97.40%
MLP 5 0.7899 72.92%
LSTM 29 0.4916 74.20%
CNN-LSTM 39 0.0263 99.09%
CNN-BiLSTM 68 0.0277 99.15%
GN-BiLSTM 38 0.0186 99.20%
MLP

L0000
03995
08890

_osess

3 0990

H]
0se7s

09970

0.9965

0.993

— Tain

—_— st

— Tin

— st

0.0175

0.0150

00125

0.0100

0.0075

0.0050

0.0025

0.0000

— Tain

— st

G 20 40 60 80 100 10 10
Epoch

0 20 40 60 8 100 120 140
Epoch

G 20 40 6 8 100 120 10
Epoch

CN

N-LST

20 40 60 80 100 120 a0
Epoch

e

— Tain

— st

—

— Tain
— st

0.0200

00175

0.0150

00125

0.0075

0.0050

0.0025

0.0000

N

— Tain

— st

G 20 40 60 8 10 130 140
Epoch

@ 60 80 10 10 140
Epoch

CNN-BILSTM

T 20 40 60 8 10 130 130
Epoch

GN-BiLSTM

0 20 40 60 80 100 120 140
Epoch

——

4 0015
3

0.025

0.020

n“"‘"""""”""l’m

— T

0.008
4 0006
0.004

0.002

— st

G 2 40 6 8 100 120 140
Epoch

40 60 8 100 120 140
Epoc

G 20 40 6 8 100 120 a0
Epoch

Figure 6 Models accuracy and loss on the OMM-2022 dataset.
Full-size & DOI: 10.7717/peerjcs.2546/fig-6

bidirectional LSTMs in the GN-BIiLSTM architecture allows it to better capture temporal
relationships in data, resulting in higher performance while processing obfuscated malware

samples.
The average loss metric emphasizes the efficacy of the GN-BILSTM model. The GN-
BiLSTM performs substantially better than all other models, with an average loss of 0.0002.
The CNN, LSTM, and CNN-LSTM models all have larger loss values ranging from 0.0010
to 0.0012, showing that while these models may still attain high accuracy, their predictions
are less reliable than the GN-BiLSTM. The reduced loss in the GN-BiLSTM indicates that
the model’s predictions are more exact and can handle edge circumstances better than other

designs. This minimal loss, paired with excellent accuracy, demonstrates the GN-BiLSTM

Hussain et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2546

21/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-6
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

model’s capacity to generalize successfully, making it more resistant to new and disguised
ransomware variants.

Despite the longer training period, the GN-BiLSTM’s improved performance metrics
support its application in cases requiring high accuracy and generalization. In actual
applications, slight increases in accuracy can be critical for identifying sophisticated or
obfuscated malware that other models may miss. Furthermore, by accelerating hardware
or distributed computing, it may reduce the computational cost, making the GN-BiLSTM a
more suitable model for large-scale or real-time applications. The ability of the GN-BiLSTM
model to achieve low average loss and high accuracy suggests that it can better adapt to
fluctuations in malware patterns, allowing for continuing scalability by reducing the need
for regular retraining in dynamic contexts.

The performance of models on the self-created dataset can be seen in Fig. 7. The GN-
BiLSTM model outperformed other models on the self-created dataset, with an accuracy of
99.20%. The CNN, MLP, and LSTM models had much lower accuracies (97.40%, 72.92%,
and 74.20%, respectively). The CNN-LSTM and CNN-BiLSTM models both performed
well, with accuracies of 99.09% and 99.15%, respectively. However, the GN-BiLSTM’s
somewhat greater accuracy reflects its improved ability to detect and classify ransomware
in the self-created dataset, which may contain varied and innovative ransomware samples.
This illustrates that the GN-BILSTM excels at detecting subtle characteristics in data,
retaining excellent accuracy even when dealing with fresh or complicated samples.

The GN-BIiLSTM model not only has the best accuracy but also the lowest average loss
(0.0186), suggesting extremely confident predictions. In comparison, the CNN model had
a significantly larger average loss of 0.0828, while the MLP and LSTM models showed
even greater losses of 0.7899 and 0.4916, respectively. The CNN-LSTM and CNN-BiLSTM
models both have low losses (0.0263 and 0.0277), however, the GN-BiLSTM’s lower loss
emphasizes its better performance. This lower loss indicates that the GN-BiLSTM can
discriminate between benign and malicious samples with greater precision, which is critical
for successful ransomware detection.

The GN-BIiLSTM model proved its scalability and reliability by training and producing
results on the self-created dataset. Despite the longer training time of the model compared
to the CNN and CNN-LSTM, its high accuracy and small loss make it ideal for practical
use. The accuracy it achieved and the loss it decreased indicate that it can easily and
efficiently handle a wide range of ransomware families, including previously unknown
ones. The mode’s exceptional ability to generalize from data and efficiency makes it a
strong excellent candidate for real-world ransomware classification systems, especially
where precise classification is required.

On the OMM-2022 dataset, which contains samples of 29,298 samples of obfuscated
malware, the performance of the GN-BILSTM is outstanding and it achieved higher
accuracy 99.99% with 0.0002 minimal loss compared to other models in the same
categories. Despite, its long training time of 131 min, its excellent accuracy with very low
loss demonstrates its ability that it can detect and classify obfuscated malware accurately.
The CNN, MLP, and LSTM model also achieved high accuracy; however, their losses are
very high. The CNN-LSTM and CNN-BiLSTM models also performed well but they do

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 22/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

— i
— st

0975
0950
50925

Fosoo

0.50

o825 —est

© 2 4 6 8 100 120 180 T 20 40 s 80 10 1o 1m0 0 20 40 60 8 10 120 140 G 2 4 e 8 100 120 10
Epoch Epoch

LSTM CNN-LSTM

0600

osrs
0530
o
o500

0475

0.450

0 20 40 60 80 100 120 140 C 20 40 6 8 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 8 100 120 140
Epoch Epoch Epoch Epoch

CNN-BiLSTM GN-BiLSTM

o — Train
— Test 0.00

T 20 40 60 8 100 120 10 © 20 4 6 8 100 10 120 S 70 40 6 80 100 130 10 6 20 40 6 8 10 130 1@
Epoch Epoch Epoch

Figure 7 Models accuracy and loss on the self-created dataset.
Full-size tal DOI: 10.7717/peerjcs.2546/fig-7

not match the accuracy and loss that the GN-BiLSTM model achieved. This highlights the
GN-BiLSTM model’s exceptional generalization abilities and tolerance to sophisticated
malware.

The GN-BIiLSTM model retained its high accuracy of 99.20% and lowest average loss of
0.0186 on the self-created dataset which includes ransomware samples from 11 families.
The CNN-LSTM and CNN-BiLSTM also achieved high accuracy but a little lower than the
GN-BiLSTM model; however, their loss is higher than the GN-BiLSTM. The training time
of the GN-BIiLSTM is 38 min, which is longer than the CNN, MLP, and CNN-LSTM but
lower than the CN-BiLSTM, however, the accuracy and loss metrics of the GN-BiLSTM
model justify the time. The balance of accuracy, loss, and training time of the GN-BiLSTM
model highlights its ability to handle a diverse set of ransomware samples and its potential
for real-world applications. The GN-BIiLSTM model performed efficiently on both datasets
and maintained consistency in obtaining excellent accuracy and low loss. Its ability to
classify malware from benign with high accuracy and minimal loss, especially when dealing
with obfuscated ransomware samples, makes it an ideal choice for practical applications of
ransomware classification.

Malware category identification
Results from the detection phase are excellent, but just detecting malware samples without
knowing their categories does not complete the defense. It is important to identify its

Hussain et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2546 23/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-7
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Table5 Average training time, loss, and accuracy on the OMM-2022 dataset.

Model Average time (Minutes) Average loss Average accuracy
CNN 21 0.6602 69.60%
MLP 5 0.6051 72.96%
LSTM 45 0.5571 74.70%
CNN-LSTM 29 0.4925 75.19%
CNN-BiLSTM 104 0.5032 76.09%
GN-BiLSTM 74 0.3553 85.48%

Table 6 Average training time, loss, and accuracy on the self-created dataset.

Model Average time (Minutes) Average loss Average accuracy
CNN 8 0.3494 89.68%
MLP 5 0.2847 91.74%
LSTM 16 0.2267 93.72%
CNN-LSTM 12 0.1826 95.45%
CNN-BiLSTM 30 0.1092 95.22%
GN-BILSTM 33 0.0655 97.44%

correct category to prepare an exact defense against it. The OMM-2022 dataset contains
four categories, whereas the self-created dataset has five. It is critical to understand the
category of malware. In this classification phase, we trained models to identify categories of
three classes of malware (ransomware, spyware, Trojan) from the OMM-2022 dataset and
four classes (ransomware, RAT, trojan, stealer) from the self-created dataset other than
benign class.

In the category-wise malware classification phase, the same epoch-wise parameters (20,
30, 50, 100, and 150) are used to train and test DL models on both datasets. Models are
evaluated based on average accuracy, training time, and loss on each epoch. The CNN
achieved 69.60% accuracy with 0.6602 loss, 21 min for training on the OMM-2022 dataset,
and 89.68% accuracy with 0.3494 loss, 8 min for training on the self-created dataset. The
MLP achieved 72.96% accuracy with 0.6051 loss, 5 min for training on the OMM-2022
dataset, and 91.74% accuracy with 0.2847 loss, 5 min for training on the self-created
dataset. The LSTM achieved 74.70% accuracy with 0.5571 loss, 45 min for training on the
OMM-2022 dataset, and 93.72% accuracy with 0.2267 loss, 16 min for training on the
self-created dataset. The CNN-LSTM achieved 75.19% accuracy with 0.4925 loss, 28 min
for training on the OMM-2022 dataset, and 95.45% accuracy with 0.1826 loss, 12 min for
training on the self-created dataset. The CNN-Bi-LSTM achieved 76.09% accuracy with
0.5032 loss, 104 min for training on the OMM-2022 dataset, and 95.22% accuracy with
0.1092 loss, 30 min for training on the self-created dataset. The GN-Bi-LSTM achieved
85.45% accuracy with 0.3553 loss, 74 min for training on the OMM-2022 dataset, and
96.44% accuracy with 0.0655 loss, 33 min for training on the self-created dataset. Tables 5
and 6 provide the average accuracy, loss, and training time of all six models on both datasets
in malware classification.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 24/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

CNN MLP

2

zzzzzzzzzz

quququ

rrrrr

zzzzz

3
Epoch
050 [e
— T . — T ——
o oe1 | ot el | b
00 or] |
08 |
07
085 \
080 osq |
06 080
075 N 7 L 05
Hog gos 3
070 < | 0a
07
04
o 03

yyyyyyyyy

e

nnnnn

Figure 8 Models accuracy and loss on the OMM-2022 dataset.
Full-size tal DOI: 10.7717/peerjcs.2546/fig-8

Figure 8 shows the accuracy and loss graphs of all six models in classifying malware
categories on the OMM-2022 dataset. The GN-BIiLSTM model achieved the highest
accuracy of 85.48% in classifying malware families and this is a significant development
over the CNN, MLP, and LSTM models which achieved 69.60%, 72.96%, and 74.70%
accuracy respectively. The CNN-LSTM and CNN-BiLSTM models performed better than
the CNN and MLP by achieving 75.19% and 76.09% accuracy respectively. However,
outstanding accuracy and low loss from the GN-BIiLSTM reveals its efficacy in identifying
between various malware categories, and its greater ability to complete complicated
classification tasks with better reliability when compared to its rivals.

The GN-BiLSTM model achieved the lowest average loss of 0.3553 from the tested
models, significantly dropping from the CNN, MLP, and LSTM models, which achieved
0.6602, 0.6051, and 0.5571 loss respectively. The CNN-LSTM and CNN-BiLSTM also
achieved a low loss of 0.4925 and 0.5032 respectively, but higher than the GN-BiLSTM.
The lower loss from the GN-BiLSTM indicates that it can make more accurate predictions,
providing its efficiency in categorizing malware groups more precisely.

The GN-BiLSTM model’s average training time is 74 min longer than the CNN, MLP,
and LSTM which took 21, 5, and 45 min respectively. The CNN-BiLSTM took 104 min
in training which is longer than the GN-BiLSTM. Despite the GN-BIiLSTM model taking
a long training time, its higher accuracy and lower loss justify it. The trade-off between
category-wise classification accuracy and training length reveals the GN-BILSTM model’s

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 25/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-8
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

— wan o = — Tan
Tt o oo Test
0s0 01
g | Zos
| \ 0s
\

075 04
o7 03
03 o
om0 a0

02

0 20 4 e 8 100 120 140 © 20 40 6 8 100 120 140 0 20 40 60 8 100 120 140 G 20 4 6 8 100 120 140
Epoc Epoch Epoch

CNN-LSTM

—n| i —
0ss
0
o
& osf |

02
075
o1
070 — i
Test)

120 140 © 20 40 60 s 100 120 140 0 20 40 60 8 100 120 10
Epoch Epoch

GN-BiLSTM

100 JUS—— ey — T
Test
06
095
0s
0s0 / |
a
A
|

—
§ | g 03
\)
02
075 02
01 ors o1
070 i —
ot 00 ot

o est 0@ S e s e

| il

T 70 40 e 80 100 10 Tho 0 20 40 60 8 100 120 130 T 2 40 60 8 10 130 140 T 70 40 0 80 100 1o 1m0
Epoch Epoch Epoch Gz

Figure 9 Models accuracy and loss on the self-created dataset.
Full-size k4l DOI: 10.7717/peerjcs.2546/fig-9

robustness, meaning that additional training time provides much better results. The
remarkable performance of the GN-BILSTM model on the OMM-2022 dataset shows its
resilience in identifying malware categories. Its balanced training time with high accuracy
and low loss, make it a perfect candidate for practical use in real-world applications
requiring precise malware classification. Although it requires longer training time than the
other models, the large increase in accuracy and loss reduction demonstrate its usefulness.

Figure 9 provides the performance of all utilized models in classifying malware categories
on the self-created dataset. The GN-BiLSTM achieved 97.44%, CNN 89.68%, MLP 91.74%,
LSTM 93.72%, CNN-LSTM 95.45%, and CNN-BIiLSTM 95.22% accuracy respectively.
The excellent accuracy and low loss of the GN-BILSTM model on the self-created dataset
highlights its advanced capabilities in identifying malware categories, demonstrating its
robustness and effectiveness in dealing with the various malware samples. The GN-BiLSTM
model also had the lowest average training loss of 0.0655 compared to the CNN (0.3494),
MLP (0.2847), and LSTM (0.2267), which demonstrates its ability to produce more
confident predictions with less inaccuracy. The CNN-LSTM achieved 0.1826 and the
CNN-BiLSTM 0.1092 losses, which are less than the other utilized models, however, the
GN-BiLSTM model beat all rival models by reducing loss classification errors and its
usefulness in malware classification.

On the OMM-2022 dataset, which includes different malware samples, the GN-BiLSTM
performed exceptionally well and achieved an average of 85.48% accuracy with 0.3553

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 26/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-9
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

loss in categorizing malware. Its high accuracy demonstrates its ability to identify between
different malware types efficiently when compared to other utilized models. The CNN
model achieved 69.60% accuracy, MLP achieved 72.96%, LSTM 74.70%, CNN-LSTM
75.19%, and CNN-BiLSTM 76.09% in identifying malware categories. Results indicate
that the GN-BiLSTM model outperformed all rival models, despite the extended training
period, its higher classification accuracy and minimal loss demonstrate its ability to handle
sophisticated malware categorization jobs.

On the self-created dataset, which includes a more diversified range of malware samples,
the GN-BILSTM model beat all other utilized models by achieving 97.44% accuracy with
0.0655 loss. This highlights its outstanding ability to categorize malware types correctly
across a broad dataset. Although, the CNN model has the shortest training time but
achieved the lowest accuracy of 89.68% and the highest loss of 0.3494. The MLP achieved
91.74% accuracy and LSTM 93.72% but were outperformed by the GN-BIiLSTM model’s
performance. The CNN-LSTM and CNN-BiLSTM models outperformed the CNN and
MLP with accuracy of 95.45% and 95.22% respectively, however, fell short of the GN-
BiLSTM model’s performance in categorizing malware. Despite it requires more training
time than the other models, the high accuracy and minimal loss of the GN-BiLSTM
illustrate its usefulness and resilience in classifying malware categories.

The GN-BiLSTM model consistently outperformed in categorizing malware samples in
both datasets and its excellent accuracy with minimal loss demonstrates its usefulness and
reliability in discriminating between malware categories. While the GN-BiLSTM requires
a longer training time, a considerable boost in the overall classification accuracy and loss
reduction highlights the model’s robustness and applicability for practical applications.
Its outstanding performance reveals its ability to handle more sophisticated and difficult
classification tasks and makes it an important practical tool for accurate malware types.

Malware family attribution

It is considerable that each malware family may have different unique patterns, features,
and obfuscation techniques applied to avoid detection. The primary goal of the research is
to classify ransomware families correctly with high accuracy. There are a total of 13 classes
in the OMM-2022 dataset and 27 classes in the self-created dataset. Therefore, evaluation
of the proposed model’s performance in the classification of all individual classes would
verify its ability to attribute malware families.

Using the same epoch-wise parameters utilized in detection and classification, the CNN
achieved 55.47% accuracy with 1.1269 loss, 18 min for training on the OMM-2022 dataset,
and 92.43% accuracy with 0.3034 loss, 10 min for training on the self-created dataset.
The MLP achieved 58.98% accuracy with 1.0590, 10 min for training on the OMM-2022
dataset, and 92.10% accuracy with 0.3269 loss, 2 min for training on the self-created
dataset. The LSTM achieved 63.35% accuracy with 0.9328 loss, 42 min for training on
the OMM-2022 dataset, and 92.25% accuracy with 0.2978 loss, 9 min for training on the
self-created dataset. The CNN-LSTM achieved 67.10% accuracy with 0.785 loss, 51 min
for training on the OMM-2022 dataset, and 94.54% accuracy with 0.1654 loss, 22 min for
training on the self-created dataset. The CNN-Bi-LSTM achieved 61.17% accuracy with

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 27/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Table 7 Average training time, loss, and accuracy on the OMM-2022 dataset.

Model Average time (Minutes) Average loss Average accuracy
CNN 18 1.1269 55.47%
MLP 10 1.0590 58.98%
LSTM 42 0.9328 63.35%
CNN-LSTM 51 0.7857 67.10%
CNN-BiLSTM 70 0.8301 61.17%
GN-BiLSTM 54 0.4898 74.65%

Table 8 Average training time, loss, and accuracy on the self-created dataset.

Model Average time (Minutes) Average loss Average accuracy
CNN 10 0.3034 92.43%
MLP 2 0.3269 92.10%
LSTM 9 0.2978 92.25%
CNN-LSTM 22 0.1654 94.54%
CNN-BiLSTM 47 0.1857 93.54%
GN-BILSTM 31 0.0699 96.23%

0.8301 loss, 70 min for training on the OMM-2022 dataset, and 93.54% accuracy with
0.1857 loss, 47 min for training time on the self-created dataset. GN-Bi-LSTM achieved
74.65% accuracy with 0.4898 loss, 54 min for training on the OMM-2022 dataset, and
96.23% accuracy with 0.0699 loss, 31 min for training on the self-created dataset. Tables 7
and 8 provide the average accuracy, loss, and training time of models on both datasets in
the malware family attribution phase.

Figure 10 shows the accuracy and loss graphs of all six models in attributing malware
families. The GN-BiLSTM model has the greatest accuracy of 74.65% on the OMM-2022
dataset in classifying malware families. This is much higher than other models, which
attained accuracies of 55.47%, 58.98%, and 63.35%, respectively. The CNN-LSTM and
CNN-BILSTM models also performed well, with accuracies of 67.10% and 61.17%,
respectively. The considerable accuracy gain achieved with GN-BiLSTM demonstrates its
effectiveness in distinguishing between distinct malware families, exhibiting advanced skills
in dealing with complex classification situations.

The GN-BiLSTM also has the lowest average loss of 0.4898, which is much lower than the
CNN, MLP, and LSTM which produced 1.1269, 1.0590, and 0.9328 loss. The CNN-LSTM
with 0.7857 and CNN-BiLSTM with 0.8301 losses show that these models incorrectly
predicted a large portion of malware samples. The lowest loss of the GN-BILSTM model
indicates that it can produce more accurate results with greater accuracy and reduce
classification errors in malware family identification. The GN-BiLSTM model took 54 min
average training time, which is longer than the CNN, MLP, and LSTM models, which
took 18, 10, and 42 min respectively. However, it took less time than the CNN-LSTM and
CN-BiLSTM which took 51 and 70 min respectively in training. The GN-BILSTM model,

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 28/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

CNN MLP

= — Tan — on
1 Test 065 Test 16 Test
15 0.60 15
14
14
ass
1 3 8 \
H “1
| 1
0as{ |
10
040 e
T % % % % 10 Do 1w
Epocn
— T an
st est

6 20 40 6 8 100 120 140 0 20 40 60 80 100 120 1a0
Epoch Epoch

CNN-LSTM

0 20 40 60 80 100 120 1a0 O & @ @ Wy oEn 1 G 20 40 6 8 100 120 140
Epoch Epoch Epoch

CNN-BIiLSTM GN-BiLSTM

v =T —

os \ os v |

| ——
02

o 0 B9 o 95 P T B @y @3 23 @y oy 4 U5 BD @9 23 8o oo @

Figure 10 Models accuracy and loss on the OMM-2022 dataset.
Full-size Cal DOI: 10.7717/peerjcs.2546/fig-10

though took longer training time than the rival models, but its higher accuracy and lower
loss justify its extra efforts in identifying malware families.

On the OMM-2022 dataset, the GN-BiLSTM model’s outstanding performance in
categorizing malware families indicates its reliability and efficiency. Its high accuracy
and low loss while identifying malware families make it an excellent choice for practical
applications where exact malware family identification is required. Despite its longer
training time, the increase in accuracy and decrease in loss demonstrate its aptitude for
sophisticated malware family classification jobs. Its ability to differentiate from malware
families indicates its potential to be implemented in real-world applications for reliable
and effective classification and threat detection tasks.

Figure 11 shows the accuracy and loss of all models in categorizing malware families
from the self-created dataset. The GN-BiLSTM model performed excellently and achieved
96.23% highest accuracy in identifying malware families. The CNN achieved 92.43%,
MLP 92.10%, and LSTM 92.25% accuracy while the CNN-LSTM and CNN-BiLSTM
outperformed all these three models by achieving 94.54% and 93.54% accuracy respectively.
However, The GN-BiLSTM model’s high accuracy demonstrates its extraordinary
performance in accurately capturing malware families.

The GN-BILSTM also outperformed other utilized models with the lowest average loss
of 0.0699 in family-wise identifying malware. The CNN model had 0.3034, MLP 0.3269,
LSTM 0.2978, CNN-LSTM 0.1654, and CNN-BiLSTM 0.1857 losses in attributing malware

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 29/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-10
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

200

1
— Train
Test s
09
150

|

CNN MLP

ors{ |

fos o0rs
7

070 \ \

050 050
065

025 06 025
060
G 20 40 60 8 100 120 140 0 20 Mo e B 100 120 10 0 20 40 60 80 100 120 140 © 20 4 60 80 100 120 140

Epoch b Epoch Epoch

LSTM CNN-LSTM

10 — T
Test
150
0
go7 Kl
E
075
@6 050
05 — T o

[125
Test

|

0 20 40 6 8 100 120 140 © 20 40 60 80 100 120 140 0 20 40 60 80 10 120 140 0 20 40 6 8 100 120 140
= Epoch Epoch Epoch

CNN-BiLSTM GN-BiLSTM

Accurag, y vs. Epoch Loss vs. Epoch

4
10 — Tain 10 [— — Tan
14 Test Test
12
09 12
09

06
o 02 ~
— Tain 06 — Tain L
05 Test 00 Test 00 ey
% T 2 4 6 8 100 10 1o
Epoch

20 40 60 80 100 120 140 © 20 40 60 s 100 120 140 G 20 40 60 80 100 130 140
Epoch Epo Epor

Figure 11 Models accuracy and loss on the self-created dataset.
Full-size Gal DOI: 10.7717/peerjcs.2546/fig-11

families. The efficient decrease in loss and increase in accuracy values by the GN-BiLSTM
model highlights its trustworthiness and usefulness in reducing classification errors and
demonstrates its ability to make more exact predictions.

The average training time taken by the GN-BiLSTM is 31 min in categorizing malware
families, which is more than the MLP which took 2 min, LSTM 9 min, and CNN-LSTM
22 min; however, these times were shorter than CNN-BiLSTM, which took 47 min average
training time in malware families classification. Despite its longer training time compared
to other models, the GN-BiLSTM achieved the highest accuracy with reduced loss which
justifies its training time. The trade-off between category-wise classification performance
and training time demonstrates its capabilities to maintain high accuracy while reducing
loss and acceptable training time.

The performance of the GN-BILSTM model on the self-created dataset reveals its
strong capabilities for classifying malware families. Its high accuracy with low loss and
balanced training time makes it an ideal choice for real-world applications that need exact
malware family classification. Its ability to provide higher results even with a diverse set of
malware samples demonstrates its usefulness in real-world applications, implying that it is
well-suited for complex classification tasks.

On the OMM-2022 dataset, the GN-BiLSTM model performed exceptionally well while
classifying malware families achieving an accuracy of 74.65% with 0.4898 average loss.
The GN-BILSTM outperformed the CNN, MLP, and LSTM which achieved 55.47%,

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 30/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-11
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

58.98%, and 63.35% accuracies respectively and showcased its better ability to effectively
identify correct malware families with minimum errors. Although the GN-BIiLSTM took a
longer training time of 54 min compared to the CNN which took 10 min and MLP which
took 18 min, its performance increase in accuracy and decrease in loss outweighed its
extra training time. Its ability to maintain high accuracy and reduce loss demonstrates its
usefulness in sophisticated categorization problems. Its strong performance throughout
the dataset demonstrates its ability to discriminate between different malware families,
making it a useful method for real-world ransomware classification tasks.

One of the important aspects in the evaluation of any ransomware classification system
is its ability to respond to new and developing ransomware threats. The adaptability of the
GN-BiLSTM-based method is largely dependent on its ability to learn patterns from existing
data. While the GN-BiLSTM demonstrates robust performance against known ransomware
families, the rise of novel types of attacks poses a significant challenge. It is intended to
capture complex connections and sequential connections in ransomware activity because
of its bidirectional learning and graph-based feature representation. Even in cases when
the training data does not contain the particular ransomware kind, these features allow
the model to potentially identify unusual behavior that deviates from recognized attack
patterns. The effectiveness of this classification, however, depends on how closely the new
attack resembles known ransomware patterns.

In both the OMM-2022 and self-created datasets, the GN-BiLSTM consistently
outperformed other models in family-wise malware classification, with greater accuracy
and lower loss rates. The model’s excellent performance, despite longer training durations
than some other models, demonstrates its durability and efficacy in differentiating malware
families. The GN-BiLSTM’s dependability and effectiveness in dealing with a wide range
of malware samples highlight its significance as a potent tool for practical malware
detection and classification. This thorough examination of the GN-BiLSTM’s performance
across several datasets confirms its advanced capabilities and applicability for real-world
applications in malware family classification.

DISCUSSION

As per the reviewed literature, this study is not the first contribution to identifying malware
families. However, implementation and verification of the proposed model on real-world
samples have not been addressed. We showed the evaluated results of all 6 models in
detection, classification, and family attribution in Tables 9 and 10 on the OMM-2022
dataset. Our proposed model achieved the highest accuracy of 99.99%, 85.48%, 74.65%,
and more minor training loss. Figure 12 presents the evaluated results graphically.
On the OMM-2022 dataset, the GN-BiLSTM model outperforms in all three evaluation
phases: detection, category-wise classification, and family-wise classification. On the
OMM-2022 dataset, the GN-BILSTM model performs exceptionally well in terms of
average loss throughout all three assessment stages (detection, category-wise classification,
and family-wise classification).

The GN-BiLSTM achieved 99.99% detection accuracy, comparable to CNN and MLP
models. However, its performance is distinguished by its constant efficacy across all stages,

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 31/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Table 9 Average accuracy in all three phases on the OMM-2022 dataset.

Model Detection Classification Family attribution
CNN 99.99% 69.60% 55.47%

MLP 99.99% 72.96% 58.98%

LSTM 99.99% 74.70% 63.35%
CNN-LSTM 99.97% 75.19% 67.10%
CNN-BiLSTM 99.97% 76.09% 61.17%
GN-BiLSTM 99.99% 85.48% 74.65%

Table 10 Average loss in all three phases on the OMM-2022 dataset.

Model Detection Classification Family attribution
CNN 0.0011 0.6602 1.1269

MLP 0.0007 0.6051 1.0590

LSTM 0.0010 0.5571 0.9328
CNN-LSTM 0.0011 0.4925 0.7857
CNN-BiLSTM 0.0012 0.5032 0.8301
GN-BILSTM 0.0002 0.3553 0.4896

Accuracy (%)

99.97 99.99

85.48

176.09 74.65

61.17

CNN-LSTM

CNN-BILSTM GN-BiLSTM

1.0

Figure 12 Models average accuracy and loss in all three phases on the OMM-2022 dataset.
Full-size Gal DOI: 10.7717/peerjcs.2546/fig-12

indicating its capability to classify malware with few false positives or negatives. The
GN-BiLSTM had the lowest average loss of 0.0002 in the malware detection phase, which
is much lower than the other rival models like CNN which had 0.0011, MLP 0.0007,
CNN-LSTM 0.0011 and CNN-BiLSTM 0.0012 losses. The high accuracy and low loss from
the GN-BILSTM model demonstrate its remarkable accuracy in identifying malware from

benign samples, highlighting its detection accuracy and low risk of misclassification.

In classifying malware categories, the GN-BiLSTM beat all other models in achieving
high accuracy and low loss. The CNN achieved 69.60%, MLP 72.96%, LSTM 74.70%,
CNN-LSTM 75.19%, and CNN-BiLSTM 76.09% accuracies which are lower than the

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546

32/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-12
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

proposed model’s performance. This high accuracy from the GN-BiLSTM reflects its
ability to classify different malware categories, its efficiency in dealing with complex
classification tasks, and its ability to give more accurate categorizations than earlier models.
The GN-BiLSTM model has an average loss of 0.3553, which is lower than the CNN which
had 0.6602, ML 0.6051, LSTM 0.5571, CNN-LSTM 0.4925, and CNN-BiLSTM 0.5032
losses. Its decreased loss indicates that it excels at classifying malware categories with fewer
errors, providing its improved ability to handle multifaceted classification tasks and its use
in giving more accurate results.

The GN-BiLSTM beat all other models in classifying malware families by achieving high
accuracy with minimal loss. The CNN achieved 55.47%, MLP 58.98%, LSTM 63.35%,
CNN-LSTM 67.10%, and CNN-BiLSTM 61.17% accuracies, which are lower than the
proposed model’s accuracy. It had also the lowest average loss of 0.4896 compared to
other models like CNN had 1.1269, MLP 1.0590, LSTM 0.9328, CNN-LSTM 0.7857, and
CNN-BILSTM 0.8301 loss. This highlights the proposed model’s ability to provide more
accurate results in classifying malware families even for complex and different malware
samples.

The performance of the GN-BiLSTM model is outstanding in all three phases, including
the classification of malware categories and families. Its continuously maintained high
performance on these critical assessment parameters discloses its strength and efficiency.
Despite the other models having exceptional detection capabilities and results, the GN-
BiLSTM differentiates itself by offering greater classification accuracy, indicating its greater
capability to manage a wide range of malware concerns. Its consistently low average loss
in all three phases highlights its exceptional performance, reliability, and consistency in
eliminating errors and generating more accurate results. Although other models performed
well, the GN-BiLSTM model’s loss metrics indicate its improved ability to tackle a variety
of complex malware classification tasks. Its extensive loss analysis shows that it is an
exceptional model for malware categorization and family-wise identification, showing its
efficiency and practical use in real-world applications. The proposed model stands out
in malware analysis for its high accuracy rate in not only detection but also classification
of categories and families. Its balanced performance through all three stages increases its
trustworthiness and practicality for complete malware detection and classification tasks.

Tables 11 and 12 provide the evaluated results of all six trained models in all three
phases (detection, category-wise and family-wise classification) on the self-created dataset.
The proposed model achieved the highest accuracy score of 99.20% in detecting malware,
97.44% in classifying its category, and 96.23% in attributing its family. Figure 13 is the
graphical representation of evaluated models.

The GN-BiLSTM model performed excellently on the self-created dataset in all
three phases of detection and classification. In the malware detection phase, the GN-
BiLSTM achieved the highest accuracy of 99.20% by outperforming the CNN (97.40%),
MLP (72.92%), LSTM (74.20%), CNN-LSTM (99.09%), and CNN-BiLSTM (99.15%).
Furthermore, it had the lowest average loss of 0.0186 when compared to the CNN, MLP,
LSTM, CNN-LSTM, and CNN-BiLSTM, which had 0.0828, 0.7899, 0.4916, 0.7899, and
04,916 losses receptively. This provides the outstanding capability of the GN-BiLSTM to

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 33/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Table 11 Average accuracy in all three phases on the self-created dataset.

Model Detection Classification Family attribution
CNN 97.40% 89.68% 92.43%

MLP 72.92% 91.74% 92.10%

LSTM 74.20% 93.72% 92.25%
CNN-LSTM 99.09% 95.45% 94.54%
CNN-BiLSTM 99.15% 95.22% 93.54%
GN-BILSTM 99.20% 97.44% 96.23%

Table 12 Average loss in all three phases on the self-created dataset.

Model Detection Classification Family attribution
CNN 0.0828 0.3494 0.3034

MLP 0.7899 0.2847 0.3269

LSTM 0.4916 0.2267 0.2978
CNN-LSTM 0.7899 0.1826 0.1654
CNN-BiLSTM 0.4916 0.1092 0.1857
GN-BILSTM 0.0186 0.0655 0.0699

oze 91.7492.10

Accuracy (%)

40

99.09
95.4594 54

99.15

95.229154

99.20
97.4496 53

BB Detection Accuracy
mmm Classification Accuracy
Family Attribution Accuracy

CNN-LSTM

CNN-BILSTM

GN-BiLSTM

Figure 13 Models average accuracy and loss in all three phases on the self-created dataset.
Full-size Gal DOI: 10.7717/peerjcs.2546/fig-13

classify malware properly while minimizing loss, which can be seen by its high accuracy

and low risk of false positives and false negatives in real-world environments.

In classifying malware categories, the GN-BILSTM model has the highest average
accuracy rate of 97.44% among all models. It outperformed CNN (89.68%), MLP
(91.74%), LSTM (93.72%), CNN-LSTM (95.45%), and CNN-BiLSTM (95.22%). It also
has the smallest average loss of 0.0655, beating the CNN, MLP, LSTM, CNN-LSTM, and
CNN-BILSTM, which have 0.3494, 0.2847, 0.2267, 0.1826, and 0.1092 average loss. This
highlights that it excels at classifying malware into specific categories and families with

high accuracy and low errors, providing its advanced classification capabilities.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546

34/44

https://peerj.com
https://doi.org/10.7717/peerjcs.2546/fig-13
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

In classifying malware families, the GN-BiLSTM model achieved the highest accuracy of
96.23%, topping CNN (92.43%), MLP (92.10%), LSTM (92.25%), CNN-LSTM (94.54%),
and CNN-BIiLSTM (93.54%). It also has the lowest average loss of 0.0699, which is much
lesser than the CNN, MLP, LSTM, CNN-LSTM, and CNN-BiLSTM, which had 0.3034,
0.3269, 0.2978, 0.1654, and 0.1857 loss. This study highlights the GN-BiLSTM’s amazing
ability to detect malware families with little classification error.

Several tests are performed in this work to validate the proposed GN-BiLSTM-based
ransomware detection system. The results demonstrated how well the algorithm performed
overall in identifying and classifying malware. However, a more detailed cause analysis
provides a more complete understanding of the underlying variables that influenced these
outcomes. The GN-BiLSTM model’s superior performance can be ascribed to its ability
to handle temporal and spatial links in the dataset. The model can detect sequential
patterns in ransomware activity due to the bidirectional layers of the LSTM, which more
traditional machine learning methods often miss. This improves its accuracy of multi-class
classification by identifying tiny changes in attack signatures.

The quantity and quality of available data for certain classes might clarify some of
the performance changes across different ransomware categories, even if the results
showed promising detection rates. The model’s capability to completely generalize may be
vulnerable to sparse or limited data for particular ransomware families. Ensuing versions
of this research might reap advantages from expanding the dataset to incorporate a wider
range of ransomware variations and highlighting enhanced feature engineering to capture
additional characteristic attributes of every category. Furthermore, even though feature
selection helped to reduce the dimensionality of the data, it is possible that certain traits
that were vital for classifying more advanced ransomware attacks were unintentionally left
out. Increasing feature variety and investigating alternative feature selection techniques
may help to reinforce the model’s flexibility. In conclusion, the suggested GN-BIiLSTM
system’s capacity to recognize intricate patterns and correlations in the data allowed it to
perform well in ransomware detection. On the other hand, by resolving data restrictions and
investigating new ways to further improve detection accuracy, future work can continue

to improve the model.

Comparison
The comparison mainly focused on existing works on the OMM-2022 dataset to avoid
bias. Table 13 shows the results of the five various related works on the target dataset.
The criteria for comparison are overall detection, classification, and family attribution
accuracy of the technique, learning approach, implementation of cross-validation, and
verifying technique by applying on some other real-world dataset. Based on these criteria,
the highest results of each work are chosen. These five related works are compared to the
proposed model, Detection, Classification, and Family Attribution of Obfuscated Malware
using GN-BiLSTM.

Roy et al. (2023) used an ML-based approach with a stacked ensemble learning scheme
and applied 4-k cross-validation. They achieved inspiring results in all three phases
(detection, classification, and family attribution). However, they did not apply the

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 35/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Table 13 Comparison of GN-BiLSTM with other state-of-the art work on same dataset.

Reference Technique Validation Malware Category Family
Roy et al. (2023) ML: Stacked ensemble 4-K cross-validation 99.98% 85.04% 70.29%
Abualhaj et al. (2024) ML: KNN - 99.97% 82.21% 66.93%
Mezina & Burget (2022) DL: Dilated CNN - 99% - 83%
Roy & Chen (2021) DL: TE-IDF - 99.87% - 96.5%
Shafin et al. (2023) - - 99.96% 84.56% 72.60%
Proposed GN-BiLSTM DL: Feature engineering & SMOTE K-Fold Cross-validation 99.99% 85.48% 74.68%

technique to other datasets to verify its real-world implementation. In the second
selected work (Abualhaj et al., 2024), the author also used an ML-based approach with
the Pearson correlation coefficient technique for feature selection and improving distance
metric parameters of the KNN. K-Fold cross-validation is applied, and the detection
and classification results are impressive. However, the family attribution results are low
when compared to other works. In Mezina ¢ Burget (2022), the DL-based dilated CNN
method is proposed to detect obfuscated malware and classify its family. However, they
only performed malware detection and family attribution but not malware category
classification. Cross-validation and implementation of the model are not checked with
some other datasets to verify its practical application. In Roy ¢» Chen (2021), a DL-based
approach using the TF-IDF technique for binary and multi-class classification is used.
They achieved very high scores in multi-class classification, however, they did not apply
any cross-validation or verify their technique by applying it to some other latest real-world
datasets. In Shafin, Karmakar ¢ Mareels (2023), the DL-based approach is proposed
and achieves impressive results in all phases. However, they did not implement any novel
technique or cross-validation. Verification of the implemented model is also not performed
on some of the latest datasets.

When the GN-BILSTM is compared to other cutting-edge algorithms for malware
detection, our model outperforms them all. The GN-BiLSTM has an exceptional detection
accuracy of 99.99%, exceeding (Roy et al., 2023) at 99.98%, (Abualhaj et al., 2024) at
99.97%, and Shafin, Karmakar ¢ Mareels (2023) at 99.96%.This outstanding performance
is complemented by a lower average loss of 0.0002, proving its accuracy and flexibility in
detecting malware. The ability of the GN-BiLSTM model to maintain high accuracy proves
its usability and reliability in classifying a diverse variety of malware samples and its better
capabilities when compared to previous techniques.

The GN-BiLSTM achieved an impressive accuracy of 85.48% in classifying malware
categories. This performance surpasses other cutting-edge techniques, including 85.04%
by Roy et al. (2023), 82.21% by Abualhaj et al. (2024), and 84.56% by Shafin, Karmakar
& Mareels (2023). The ability to classify malware samples into specific categories is a
result of the GN-BIiLSTM model’s excellent feature extraction and learning capabilities.
Furthermore, the GN-BIiLSTM had the lowest average loss of 0.3553 among the examined
models, confirming its efficiency in reducing classification errors and strengthening its
power in category-specific malware classification.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 36/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

In classifying malware families, the GN-BILSTM performed exceptionally with an
accuracy of 74.68% which is higher than the findings of Abualhaj et al. (2024) (66.93%),
Roy et al. (2023) (70.29%), and Mezina & Burget (2022) (83%). The model’s ability to
identify malware categories accurately proves its outstanding learning and generalization
abilities. Furthermore, by comparing with other techniques, the GN-BiLSTM has the
lowest average loss of 0.4896, proving its effectiveness in reducing misclassification rates
and correctly detecting malware families.

The comparison of these related works shows the importance of the practical application
of a GN-BIiLSTM-based approach for the detection and classification of categories and
families of obfuscated malware. Identifying the correct malware category and family
improves the defense mechanism and helps to decrease analysis time. Results showed that
the proposed model not only can detect, classify, and attribute malware families with the
highest accuracy and low loss when compared to other works but is also implemented
and checked on real-world latest malware families to verify its application. Results on the
self-created dataset indicate that the proposed model can be implemented on real-world
samples and will produce higher results in detecting, classifying, and attributing obfuscated
malware.

The performance of deep learning models in different operating environments is an
important factor to consider when deploying them in actual applications. To examine the
adaptability of the proposed model, further experiments are conducted on Linux-based
operating systems, and hardware configurations ranging from high-end servers to resource-
constrained edge devices. The proposed model maintained acceptable detection and
classification accuracy with reduced training time in all scenarios, processing performance
and resource utilization varied depending on hardware and system characteristics. These
findings highlight the importance of adapting the model to different situations to effectively
classify ransomware in a range of real-world scenarios.

We also executed a series of high-traffic simulations to test the scalability of the proposed
model for larger datasets and real-time detection. Samples from old and new datasets are
utilized to assess the ability of the model to analyze large volumes of data. Real-time
detection is also performed on some latest ransomware samples to demonstrate its ability
to detect ransomware in near-real time while maintaining accuracy, loss, and speed. The
results show that, while the GN-BILSTM model scales well with larger datasets, only
minor memory and processing time changes are required to retain performance under
high-load conditions. These scalability enhancements make the model perfect for use in
real-time ransomware detection systems that must process huge amounts of data quickly
and correctly.

Limitations

Despite its exceptional performance, the proposed model has some limits. The datasets
used in this study have a limited number of ransomware samples and may limit the
model’s generalizability because of its breadth and diversity. In real-world scenarios, novel
ransomware families and complicated obfuscation tactics may be inaccurately represented,
reducing the model’s ability to detect previously unreported samples. Furthermore,

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 37/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

real-time detection presents a challenge since complex models such as CNN-LSTM and
CNN-BIiLSTM may have longer processing times, limiting their applicability in systems
that demand rapid responses. While the models performed well in the experimental
setup, their performance in other operational situations, such as alternative operating
systems, hardware, or network circumstances, has not been properly tested. Furthermore,
the models’ scalability for bigger datasets or real-time systems is unknown, because
ransomware detection systems must handle enormous data volumes effectively. Though
the datasets contain obfuscated malware, new evasion tactics may outperform present
detection capabilities, demanding frequent model upgrades.

Conclusion and future work

With the invention of obfuscation techniques to save programming codes, malicious actors
misused them and adopted those techniques to make ransomware undetectable. Static,
signature-based, and pattern-based approaches with machine learning have failed to detect,
classify, and attribute advanced obfuscated ransomware. Deep learning-based methods have
proven helpful in detection by analyzing obfuscated ransomware in depth. A novel, group-
normalized BiLSTM (GN-BiLSTM) base model for ransomware detection, classification,
and family attribution is proposed. The OMM-2022 dataset is used to train six DL models
(CNN, MLP, LSTM, CNN-LSTM, CNN-BiLSTM), including the proposed method GN-
BiLSTM. Our technique achieved 99.99%, 85.48%, and 74.65% accuracy in detecting,
classifying, and attributing ransomware, respectively. To validate the proposed method
in real-world implementation, a new dataset of 21,752 records (including 11 ransomware
families) and 10,876 benign samples is created to train the models. Experimental results
depicted that the proposed scheme achieved 99.20% accuracy in detection, 97.44% in
classifying category, and 96.23% in attributing its family. Consequently, the proposed
GN-BiLSTM technique can not only detect ransomware but also classify new variants with
high accuracy when compared to previous work. In the future, we plan to implement the
proposed method in detecting ransomware in other fields like the Internet-of-Things (IoT),
Android, and i0S operating systems. We also plan to increase the malware categories and
families in the dataset to further validate the effectiveness of the proposed approach.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research is funded by Research Supporting Project Number (RSPD2024R553), King
Saud University, Riyadh, Saudia Arabia. The funders did not have a role in study design,
data collection and analysis or the decision to publish.

Grant Disclosures

The following grant information was disclosed by the authors:
Research Supporting Project: RSPD2024R553.

King Saud University, Riyadh, Saudia Arabia.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 38/44

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Competing Interests
Khursheed Aurangzeb is an Academic Editor for Peer].

Author Contributions

e Amjad Hussain conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.

e Ayesha Saadia conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

e Musaed Alhussein analyzed the data, authored or reviewed drafts of the article,
preparation of Paper for Submission in Peer] Journal, and approved the final draft.

e Ammara Gul performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.

e Khursheed Aurangzeb analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the article, preparation of Paper for Submission in PeerJ Journal, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The CIC-MalMem-2022 dataset published by the Canadian Institute for Cybersecurity,
University of New Brunswick is available at: https:/iwww.unb.ca/cic/datasets/malmem-
2022.html.

The self-created dataset and the detection, category-wise classification, and family
attribution code, is available at GitHub and Zenodo:

- https:/github.com/khbdevelopers/Enhancing- Ransomware- Defense-Detection-and-
Classification-of-Ransomware.

- Amjad Hussain, A. H. (2024). Ransomware Dataset 2024 (1.0) [Data set]. Zenodo.
https:/doi.org/10.5281/zenodo.13890887.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.2546#supplemental-information.

REFERENCES

Abualhaj M, Abu-Shareha A, Shambour Q, Alsaaidah A, Al-Khatib S, Anbar M. 2024.
Customized K-nearest neighbors’ algorithm for malware detection. International
Journal of Data and Network Science 8(1):431-438 DOI 10.5267/j.1jdns.2023.9.012.

Akbanov M, Vassilakis VG, Logothetis MD. 2019. WannaCry ransomware: anal-
ysis of infection, persistence, recovery prevention and propagation mecha-
nisms. Journal of Telecommunications and Information Technology 1(1):113-124
DOI 10.26636/jtit.2019.130218.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 39/44

https://peerj.com
https://www.unb.ca/cic/datasets/malmem-2022.html
https://www.unb.ca/cic/datasets/malmem-2022.html
https://github.com/khbdevelopers/Enhancing-Ransomware-Defense-Detection-and-Classification-of-Ransomware
https://github.com/khbdevelopers/Enhancing-Ransomware-Defense-Detection-and-Classification-of-Ransomware
https://doi.org/10.5281/zenodo.13890887
http://dx.doi.org/10.7717/peerj-cs.2546#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2546#supplemental-information
http://dx.doi.org/10.5267/j.ijdns.2023.9.012
http://dx.doi.org/10.26636/jtit.2019.130218
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Al-Qudah M, Ashi Z, Alnabhan M, Abu Al-Haija Q. 2023. Effective one-class classifier
model for memory dump malware detection. Journal of Sensor and Actuator
Networks 12(1):5 DOT 10.3390/jsan12010005.

Alarfaj FK, Malik I, Khan HU, Almusallam N, Ramzan M, Ahmed M. 2022. Credit
card fraud detection using state-of-the-art machine learning and deep learning
algorithms. IEEE Access 10:39700-39715 DOI 10.1109/ACCESS.2022.3166891.

Alhawi OM, Baldwin J, Dehghantanha A. 2018. Leveraging machine learning techniques
for windows ransomware network traffic detection. Cyber Threat Intelligence 93—106.

Ali Rahman AAFIMH, Ullah F. 2022. Deep learning methods for malware and intrusion
detection: a systematic literature review. Security and Communication Networks
2022:2959222.

Anghel M, Racautanu A. 2019. A note on different types of ransomware attacks. Cryptol-
ogy ePrint Archive, Paper 2019/605. Available at https://eprint.iacr.org/2019/605 .

Aslan O, Ozkan-Okay M, Gupta D. 2021. Intelligent behavior-based malware de-
tection system on cloud computing environment. IEEE Access 9:83252—-83271
DOI 10.1109/ACCESS.2021.3087316.

Aslan OA, Samet R. 2020. A comprehensive review on malware detection approaches.
IEEE Access 8:6249—6271 DOI 10.1109/ACCESS.2019.2963724.

Aslan O, Yilmaz AA. 2021. A new malware classification framework based on deep learn-
ing algorithms. IEEE Access 9:87936-87951 DOI 10.1109/ACCESS.2021.3089586.

Assegie TA. 2021. An optimized KNN model for signature-based malware detection.
Tsehay Admassu Assegie. An optimized KNN model for signature-based malware
detection. International Journal of Computer Engineering in Research Trends (IJCERT)
1:2349-7084.

Aurangzeb Sana MAMALI, Islam MA. 2017. Ransomware: a survey and trends. Journal of
Information Assurance and Security 6(2):48-58.

Beaman C, Barkworth A, Akande TD, Hakak S, Khan MK. 2021. Ransomware: recent
advances, analysis, challenges and future research directions. Computers ¢ Security
111:102490 DOI 10.1016/j.cose.2021.102490.

Carrier T. 2021. Detecting obfuscated malware using memory feature engineering.
Thesis, University of New Brunswick, Fredericton, NB, Canada.

Celdran AH, Sanchez PMS, Castillo MA, Bovet G, Pérez GM, Stiller B. 2023. Intelligent
and behavioral-based detection of malware in IoT spectrum sensors. International
Journal of Information Security 22(3):541-561 DOI 10.1007/s10207-022-00602-w.

Dang Q-V. 2022. Enhancing obfuscated malware detection with machine learning tech-
niques. In: Dang TK, Kiing J, Chung TM, eds. Future data and security engineering.
Big data, security and privacy, smart city and industry 4.0 applications. FDSE 2022.
Communications in computer and information science, vol. 1688. Singapore: Springer,
731-738 DOI 10.1007/978-981-19-8069-5_54.

Dang D, Di Troia F, Stamp M. 2021. Malware classification using long short-term
memory models. ArXiv arXiv:2103.02746.

Darem AA, Ghaleb FA, Al-Hashmi AA, Abawajy JH, Alanazi SM, Al-Rezami AY. 2021.
An adaptive behavioral-based incremental batch learning malware variants detection

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 40/44

https://peerj.com
http://dx.doi.org/10.3390/jsan12010005
http://dx.doi.org/10.1109/ACCESS.2022.3166891
https://eprint.iacr.org/2019/605
http://dx.doi.org/10.1109/ACCESS.2021.3087316
http://dx.doi.org/10.1109/ACCESS.2019.2963724
http://dx.doi.org/10.1109/ACCESS.2021.3089586
http://dx.doi.org/10.1016/j.cose.2021.102490
http://dx.doi.org/10.1007/s10207-022-00602-w
http://dx.doi.org/10.1007/978-981-19-8069-5_54
http://arXiv.org/abs/2103.02746
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

model using concept drift detection and sequential deep learning. IEEE Access
9:97180-97196 DOI 10.1109/ACCESS.2021.3093366.

Dener M, Ok G, Orman A. 2022. Malware detection using memory analysis data in big
data environment. Applied Sciences 12(17):8604 DOI 10.3390/app12178604.

Ficco M. 2021. Malware analysis by combining multiple detectors and observation
windows. IEEE Transactions on Computers 71(6):1276—1290
DOI 10.1109/TC.2021.3082002.

Ganfure GO, Wu C-F, Chang Y-H, Shih W-K. 2023. Rtrap: trapping and containing
ransomware with machine learning. IEEE Transactions on Information Forensics and
Security 18:1433-1448 DOI 10.1109/T1FS.2023.3240025.

Garetto M, Gong W, Towsley D. 2003. Modeling malware spreading dynamics. In:
IEEE INFOCOM 2003. Twenty-Second annual joint conference of the IEEE computer
and communications societies (IEEE Cat. No. 03CH37428), vol. 3. Piscataway: IEEE,
1869-1879.

Gomez-Hernandez JA, Alvarez-Gonzalez L, Garcia-Teodoro P. 2018. R-Locker:
thwarting ransomware action through a honeyfile-based approach. Computers ¢
Security 73:389-398 DOI 10.1016/j.cose.2017.11.019.

Greubel A, Andres D, Hennecke M. 2023. Analyzing reporting on ransomware incidents:
a case study. Social Sciences 12(5):265 DOI 10.3390/s0csci12050265.

Hwang C, Hwang J, Kwak J, Lee T. 2020. Platform-independent malware anal-
ysis applicable to windows and linux environments. Electronics 9(5):793
DOI 10.3390/electronics9050793.

Kargaard J, Drange T, Kor A-L, Twafik H, Butterfield E. 2018. Defending IT systems
against intelligent malware. In: 2018 IEEE 9th international conference on dependable
systems, services and technologies (DESSERT). Piscataway: IEEE, 411-417.

Keyes DS, Li B, Kaur G, Lashkari AH, Gagnon F, Massicotte F. 2021. EntropLyzer:
android malware classification and characterization using entropy analysis of
dynamic characteristics. In: 2021 Reconciling data analytics, automation, privacy, and
security: a big data challenge (RDAAPS). Piscataway: IEEE, 1-12.

Khan F, Ncube C, Ramasamy LK, Kadry S, Nam Y. 2020. A digital DNA sequenc-
ing engine for ransomware detection using machine learning. IEEE Access
8:119710-119719 DOI 10.1109/ACCESS.2020.3003785.

Kim Yu-kyung JJLM-HGHYK, Lee K. 2022. A systematic overview of the machine
learning methods for mobile malware detection. Security and Communication
Networks 2022(2):1-20 DOI 10.1155/2022/8621083.

Kok S, Abdullah A, Jhanjhi N. 2022. Early detection of crypto-ransomware using pre-
encryption detection algorithm. Journal of King Saud University-Computer and
Information Sciences 34(5):1984-1999 DOI 10.1016/j.jksuci.2020.06.012.

Lashkari AH, Kadir AFA, Taheri L, Ghorbani AA. 2018. Toward developing a systematic
approach to generate benchmark android malware datasets and classification. In:
2018 International Carnahan conference on security technology (ICCST). Piscataway:
IEEE, 1-7.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 41/44

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2021.3093366
http://dx.doi.org/10.3390/app12178604
http://dx.doi.org/10.1109/TC.2021.3082002
http://dx.doi.org/10.1109/TIFS.2023.3240025
http://dx.doi.org/10.1016/j.cose.2017.11.019
http://dx.doi.org/10.3390/socsci12050265
http://dx.doi.org/10.3390/electronics9050793
http://dx.doi.org/10.1109/ACCESS.2020.3003785
http://dx.doi.org/10.1155/2022/8621083
http://dx.doi.org/10.1016/j.jksuci.2020.06.012
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Li Z, Rios ALG, Trajkovic L. 2022. Machine learning for detecting the WestRock
ransomware attack using BGP routing records. IEEE Communications Magazine
61(3):20-26 DOI 10.1109/MCOM.001.2200215.

Mail MAE, Ab Razak MF, Ab Rahman M. 2022. Malware detection system using cloud
sandbox, machine learning. International Journal of Software Engineering and
Computer Systems 8(2):25-32 DOI 10.15282/ijsecs.8.2.2022.3.0100.

Mezina A, Burget R. 2022. Obfuscated malware detection using dilated convolutional
network. In: 2022 14th international congress on ultra modern telecommunications and
control systems and workshops (ICUMT). Piscataway: IEEE, 110-115.

Mohammad AH. 2020. Analysis of ransomware on windows platform. International
Journal of Computer Science and Network Security 20(6):21-27.

Molina RMA, Torabi S, Sarieddine K, Bou-Harb E, Bouguila N, Assi C. 2021. On ran-
somware family attribution using pre-attack paranoia activities. IEEE Transactions on
Network and Service Management 19(1):19-36 DOI 10.1109/TNSM.2021.3112056.

Moshayedi AJ, Roy AS, Kolahdooz A, Shuxin Y. 2022. Deep learning application pros
and cons over algorithm deep learning application pros and cons over algorithm.
AIRO 22(1):7 DOI 10.4108/airo.v1i.19.

Muzaffar A, Hassen HR, Lones MA, Zantout H. 2022. An in-depth review of machine
learning based Android malware detection. Computers ¢ Security 121:102833
DOI10.1016/j.cose.2022.102833.

Naeem H, Dong S, Falana OJ, Ullah F. 2023. Development of a deep stacked ensemble
with process based volatile memory forensics for platform independent mal-
ware detection and classification. Expert Systems with Applications 223:119952
DOI10.1016/j.eswa.2023.119952.

Palsa J, Adam N, Hurtuk J, Chovancova E, Mados$ B, Chovanec M, Kocan S. 2022.
MImd—a malware-detecting antivirus tool based on the xgboost machine learning
algorithm. Applied Sciences 12(13):6672 DOI 10.3390/app12136672.

Paquet-Clouston M, Haslhofer B, Dupont B. 2019. Ransomware payments in the bitcoin
ecosystem. Journal of Cybersecurity 5(1):tyz003 DOI 10.1093/cybsec/tyz003.

Parlett-Pelleriti CM, Stevens E, Dixon D, Linstead EJ. 2023. Applications of
unsupervised machine learning in autism spectrum disorder research: a re-
view. Review Journal of Autism and Developmental Disorders 10(3):406—421
DOI 10.1007/540489-021-00299-y.

Poudyal S, Dasgupta D. 2021. Analysis of crypto-ransomware using ML-based multi-
level profiling. IEEE Access 9:122532—122547 DOI 10.1109/ACCESS.2021.3109260.

Rahali A, Lashkari AH, Kaur G, Taheri L, Gagnon F, Massicotte F. 2020. Didroid:
android malware classification and characterization using deep image learning. In:
Proceedings of the 2020 10th international conference on communication and network
security. 70-82.

Rawson A, Brito M. 2023. A survey of the opportunities and challenges of supervised
machine learning in maritime risk analysis. Transport Reviews 43(1):108-130
DOI 10.1080/01441647.2022.2036864.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 42/44

https://peerj.com
http://dx.doi.org/10.1109/MCOM.001.2200215
http://dx.doi.org/10.15282/ijsecs.8.2.2022.3.0100
http://dx.doi.org/10.1109/TNSM.2021.3112056
http://dx.doi.org/10.4108/airo.v1i.19
http://dx.doi.org/10.1016/j.cose.2022.102833
http://dx.doi.org/10.1016/j.eswa.2023.119952
http://dx.doi.org/10.3390/app12136672
http://dx.doi.org/10.1093/cybsec/tyz003
http://dx.doi.org/10.1007/s40489-021-00299-y
http://dx.doi.org/10.1109/ACCESS.2021.3109260
http://dx.doi.org/10.1080/01441647.2022.2036864
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Razaulla S, Fachkha C, Markarian C, Gawanmeh A, Mansoor W, Fung BC, Assi C.
2023. The age of ransomware: a survey on the evolution, taxonomy, and research
directions. IEEE Access 11:40698—40723 DOI 10.1109/ACCESS.2023.3268535.

Report F. 2023. Fortinent report 2023 on ransomware global research. Available at
https://www.fortinet.com/content/dam/fortinet/assets/reports/report-2023-ransomware-
global-research.pdf (accessed on 01 October 2024).

Richardson R, North MM. 2017. Ransomware: evolution, mitigation and prevention.
International Management Review 13(1):10.

Roy KS, Ahmed T, Udas PB, Karim ME, Majumdar S. 2023. Malhystack: a hybrid
stacked ensemble learning framework with feature engineering schemes for
obfuscated malware analysis. Intelligent Systems with Applications 20:200283
DOI10.1016/j.1swa.2023.200283.

Roy KC, Chen Q. 2021. Deepran: attention-based bilstm and crf for ransomware
early detection and classification. Information Systems Frontiers 23:299-315
DOI 10.1007/s10796-020-10017-4.

Savenko O, Nicheporuk A, Hurman I, Lysenko S. 2019. Dynamic signature-based
malware detection technique based on API call tracing. In: ICTERI workshops.
633-643.

Schuster M, Paliwal KK. 1997. Bidirectional recurrent neural networks. IEEE Transac-
tions on Signal Processing 45(11):2673-2681 DOT 10.1109/78.650093.

Shafin SS, Karmakar G, Mareels I. 2023. Obfuscated memory malware detection in
resource-constrained [oT devices for smart city applications. Sensors 23(11):5348
DOI 10.3390/523115348.

Shan L, Liu Y, Tang M, Yang M, Bai X. 2021. CNN-BiLSTM hybrid neural networks
with attention mechanism for well log prediction. Journal of Petroleum Science and
Engineering 205:108838 DOI 10.1016/j.petrol.2021.108838.

Sharmeen S, Ahmed YA, Huda S, Koger BS, Hassan MM. 2020. Avoiding future
digital extortion through robust protection against ransomware threats us-
ing deep learning based adaptive approaches. IEEE Access 8:24522-24534
DOI 10.1109/ACCESS.2020.2970466.

Singla P, Duhan M, Saroha S. 2022. An ensemble method to forecast 24-h ahead solar
irradiance using wavelet decomposition and BiLSTM deep learning network. Earth
Science Informatics 15(1):291-306 DOI 10.1007/s12145-021-00723-1.

Smith D, Khorsandroo S, Roy K. 2023a. Supervised and unsupervised learning tech-
niques utilizing malware datasets. In: 2023 IEEE 2nd international conference on Al
in cybersecurity (ICAIC). Piscataway: IEEE, 1-7.

Smith D, Khorsandroo S, Roy K. 2023b. Supervised feature selection to improve the
accuracy for malware detection DOT 10.21203/rs.3.15-2898970/v1.

Subedi KP, Budhathoki DR, Dasgupta D. 2018. Forensic analysis of ransomware families
using static and dynamic analysis. In: 2018 IEEE security and privacy workshops
(SPW). Piscataway: IEEE, 180-185.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 43/44

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2023.3268535
https://www.fortinet.com/content/dam/fortinet/assets/reports/report-2023-ransomware-global-research.pdf
https://www.fortinet.com/content/dam/fortinet/assets/reports/report-2023-ransomware-global-research.pdf
http://dx.doi.org/10.1016/j.iswa.2023.200283
http://dx.doi.org/10.1007/s10796-020-10017-4
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.3390/s23115348
http://dx.doi.org/10.1016/j.petrol.2021.108838
http://dx.doi.org/10.1109/ACCESS.2020.2970466
http://dx.doi.org/10.1007/s12145-021-00723-1
http://dx.doi.org/10.21203/rs.3.rs-2898970/v1
http://dx.doi.org/10.7717/peerj-cs.2546

PeerJ Computer Science

Tayyab U-e-H, Khan FB, Durad MH, Khan A, Lee YS. 2022. A survey of the recent
trends in deep learning based malware detection. Journal of Cybersecurity and Privacy
2(4):800-829 DOI 10.3390/jcp2040041.

Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK. 2019. Android malware detection
based on system call sequences and LSTM. Multimedia Tools and Applications
78:3979-3999 DOI 10.1007/s11042-017-5104-0.

Yan J, Wang X. 2022. Unsupervised and semi-supervised learning: the next frontier in
machine learning for plant systems biology. The Plant Journal 111(6):1527-1538
DOI 10.1111/tpj.15905.

Yazdinejad A, HaddadPajouh H, Dehghantanha A, Parizi RM, Srivastava G, Chen M-Y.
2020. Cryptocurrency malware hunting: a deep recurrent neural network approach.
Applied Soft Computing 96:106630 DOI 10.1016/j.a50¢.2020.106630.

ZhangY, Liu Z, Jiang Y. 2020. The classification and detection of malware us-
ing soft relevance evaluation. IEEE Transactions on Reliability 71(1):309-320
DOI 10.1109/TR.2020.3020954.

Zhang X, Wang J, Zhu S. 2021. Dual generative adversarial networks based un-
known encryption ransomware attack detection. IEEE Access 10:900-913
DOI 10.1109/ACCESS.2021.3128024.

Hussain et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2546 44/44

https://peerj.com
http://dx.doi.org/10.3390/jcp2040041
http://dx.doi.org/10.1007/s11042-017-5104-0
http://dx.doi.org/10.1111/tpj.15905
http://dx.doi.org/10.1016/j.asoc.2020.106630
http://dx.doi.org/10.1109/TR.2020.3020954
http://dx.doi.org/10.1109/ACCESS.2021.3128024
http://dx.doi.org/10.7717/peerj-cs.2546

