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Abstract 

The pseudohomophone effect refers to an established finding whereby in a visual 

lexical decision task, non-word letter strings that are pronounced like real words (e.g., WAWK) 

are harder to reject than non-word strings that are not pronounced like real words (e.g., 

FLIS). This paper reports three lexical decision experiments that aimed at further exploring 

the underlying processing mechanisms. In Experiment 1 and 2, we compared 

pseudohomophones like WAWK with unpronounceable non-words like NRUG and 

pronounceable non-words like FLIS, making sure that all stimuli (including real-word 

fillers) were carefully matched in length, bigram frequency, and number of orthographic 

neighbours. Matching stimuli in this way resulted in the real-word fillers to be of low lexical 

frequency (lower than for the pseudohomophones’ base words). Experiment 1 employed a 

standard lexical decision task, whereas Experiment 2 used the 2AFC eye-tracking paradigm 

originally developed in Kunert & Scheepers (2014). Both experiments converged on showing 

a reversal of the classical pseudohomophone effect: while unpronounceable strings like 

NRUG were correctly rejected relatively quickly, pseudohomophones like WAWK were indeed 

easier to reject than pronounceable non-words like FLIS. Our final Experiment 3, by 

contrast, confirmed a ‘classical’ pseudohomophone effect when the same non-word stimuli 

were tested against high- rather than low frequency words as fillers. We conclude that the 

direction of the pseudohomophone effect strongly depends on the overall material context.  

Keywords:  lexical decision; pseudohomophone effect; non-linear modelling    
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Open Materials and Data: All stimuli, data, and analysis scripts are available from 

the Open Science Framework (OSF) at https://osf.io/98zas/. 

Public Significance Statement: This research employed a standard lexical decision 

task (Experiment 1 and 3) and an innovative eye-tracking task (Experiment 2) to investigate 

the processing of pseudohomophones (non-word letter strings that are pronounced like real 

words, such as WAWK). Experiments 1 and 2 show that pseudohomophones are easier to 

recognise as non-words (compared to pronounceable non-words like FLIS) when using low-

frequency words as fillers. Experiment 3 shows that the effect goes in the opposite direction 

(replicating the ‘classical’ pseudohomophone effect) when using high-frequency words as 

fillers. This highlights the importance of the material context in which the non-word stimuli 

are embedded.  

  

https://osf.io/98zas/
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Wawk on the wild side: Context-dependence of pseudohomophone processing 

 

Reading involves information-processing through the joint activation of orthography, 

phonology and semantics to achieve a transformation from print to meaning (Coltheart, 

2005). The interplay between orthography and phonology during reading is a key element in 

Coltheart et al.’s (2001) Dual Route Cascaded (DRC) model of word recognition. This model 

builds upon previous accounts of dual route processing of letter strings and highlights the 

presence of a lexical route and a non-lexical route to word recognition (e.g., Van Orden et al., 

1988; Seidenberg & McClelland, 1989). According to the DRC model, the lexical route 

involves a direct pathway from the orthographic representation of a letter string to its 

meaning such that exposure to a familiar letter string like MOUSE directly activates a search 

for the related word meaning in the mental lexicon (Taft & Russel, 1992). In contrast, 

processing along the non-lexical route occurs when the reader is faced with a non-word string 

like CLOPE (in English) or a less common word string like DIRGE. This processing route 

relies on phonological decoding to access word meanings via matching strings of phonemes 

onto semantic word representations in the mental lexicon (Braun et al., 2009; Grainger & 

Jacobs, 1996). It is assumed that the non-lexical, phonological route is more effortful than the 

lexical route as it involves an additional conversion from orthography to phonology 

(Borowsky et al., 2002). Experienced readers would therefore process familiar words via the 

more efficient lexical route, but novel or less familiar words, as well as non-words, through 

the more effortful non-lexical route (Ziegler et al., 2001). 

The relevance of phonology in written letter-string processing is highlighted by the 

frequently reported pseudohomophone effect (e.g., Berent & Perfetti, 1995; Frost, 1998; 

Underwood et al., 1988; Van Orden et al., 1990; Ziegler et al., 2001). Pseudohomophones are 

non-word letter strings that are pronounced like real words (e.g., BREIN). Compared to 
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pronounceable non-words that are non-homophonic to real words (e.g., BRULK), 

pseudohomophones typically induce longer correct rejection times in a lexical decision task. 

The standard explanation of the pseudohomophone effect implies that pseudohomophones 

make contact with a phonological entry in the mental lexicon, thereby giving access to 

semantic information associated with the corresponding real words (e.g., brain in the case of 

BREIN) via the non-lexical, phonological processing route (Milota et al., 1997; Taft, 1982). 

The delayed lexical decision for pseudohomophones is assumed to reflect a conflict between 

phonological and orthographic constraints that are considered in parallel: while the 

phonological form of the pseudohomophone suggests that it is a real word, its orthographic 

form suggests that it is not. This results in a kind of competition, which takes time to resolve 

(e.g., Briesemeister et al., 2009; Van Orden et al., 1988; Ziegler et al., 2001; but see, e.g., 

Seidenberg et al., 1996, for an alternative account). For pronounceable non-words like 

BRULK, by contrast, there is no such conflict because phonology and orthography agree on 

the non-word status of such stimuli. Lastly, unpronounceable non-words like BKLUR were 

consistently found to be most easily identifiable as non-words (e.g., Kunert & Scheepers, 

2014; Underwood et al., 1988), as they contain illegal grapheme strings that readers tend to 

detect quickly during pre-lexical analysis. Unpronounceable non-words aside, the contrast 

between pronounceable non-words that sound like real words versus those that do not (with 

lower recognition speed and accuracy for the former) is what we would call the classical 

instantiation of the pseudohmophone effect in lexical decision. It suggests that phonological 

decoding of an unfamiliar letter string occurs automatically and in parallel to accessing the 

orthographic lexicon, with the latter leading to a pseudohomophone’s eventual identification 

as a non-word (Goswami et al., 2001; Borowsky & Masson, 1999). 

However, it has been shown that processing strategies during reading may vary 

depending on different properties of the materials. For example, Taft (1982) found no 
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difference in reaction times for pseudohomophones and pronounceable non-words that were 

orthographically similar to real words – both yielded slower responses compared to 

pronounceable non-words that did not approximate real words orthographically. This 

suggests that orthographic similarity to real words could diminish the pseudohomophone 

effect. Similarly, Martin (1981) found no significant difference in lexical decision times when 

comparing pseudohomophones to orthographically matched non-word controls, while 

‘approximate’ orthographic controls and ‘distant’ orthographic controls were identified as 

non-words significantly faster. This suggests that readers may flexibly adapt their reliance on 

phonological vs. orthographic processing in reading, depending on the specifics of the 

materials. In a study by Kunert and Scheepers (2014), differences between typical versus 

dyslexic English readers were investigated through the use of a novel two-alternative forced 

choice (2AFC) lexical decision task measuring participants’ eye-movements to pairs of word 

vs. non-word strings on screen. This task was also employed in our Experiment 2 and will be 

explained in more detail further below. Regardless of participant group, Kunert and 

Scheepers (2014) found no clear differences in processing speed or accuracy between 

pseudohomophone stimuli like LEPHT and pronounceable non-word strings like STOINT. 

The absence of a significant pseudohomophone effect resonates with the previously discussed 

findings by Martin (1981) and Taft (1982). However, in the case of Kunert and Scheepers 

(2014), the lack of a clear pseudohomophone effect could potentially be attributed to less 

tightly controlled orthographic neighbourhood characteristics of the materials. Indeed, only a 

subset of their pseudohomophone stimuli were orthographic neighbours of the words they 

were derived from (note that Coltheart et al., 2001, previously demonstrated stronger effects 

for pseudohomophones that were orthographic neighbours of their base words than for 

pseudohomophones that were not). 
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Another factor of interest in the present paper is the lexical frequency of a 

pseudohomophone’s base word (essentially, the word it was derived from). Lexical 

frequency refers to how often a word occurs in a language and is known to reliably affect 

response times in lexical decision tasks (e.g., Frederiksen & Kroll, 1976; Monsell et al., 1989; 

Whaley, 1978). From naming tasks (i.e., tasks that require vocal pronunciation of written 

letter strings), it is suggested (i) that pseudohomohones derived from high-frequency words 

evoke shorter latencies than those derived from low-frequency words and (ii) that 

pseudohomophones are named faster than pronounceable non-words that do not sound like 

real words (e.g., McCann & Besner, 1987; Taft & Russel, 1992). In the visual lexical 

decision literature, the picture appears somewhat mixed. Some studies revealed no clear 

evidence for a base-word frequency effect (McCann et al., 1988; Seidenberg et al., 1996) 

while others showed a robust effect in the direction of faster and more accurate lexical 

decisions for pseudohomophones derived from high- rather than low-frequency words, just as 

in naming (Van Orden, 1991; Van Orden et al., 1992; Ziegler et al., 2001, Tiffin-Richards & 

Schroeder, 2018). The perhaps most prominent example is Ziegler et al. (2001)’s study on 

pseudohomophone processing in German. This study confirmed the base-word frequency 

effect on top of the classical pseudohomophone effect, i.e., pseudohomophones were harder 

to reject than appropriate pronounceable controls. Interestingly, this latter aspect contrasts 

with the aforementioned findings from the naming literature (which indicate the reverse), 

suggesting that different task requirements (naming requires explicit pronunciation of written 

stimuli, whereas visual lexical decision does not) might modulate the direction of the contrast 

between pseudohomophones on the one hand and pronounceable non-word controls on the 

other. 

The present paper aims at gaining further insights into the phonological and 

orthographic processing mechanisms underlying word vs. non-word discrimination in 
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English. We used two different methodologies. Experiment 1 and 3 implemented a standard 

visual lexical decision task, whereas Experiment 2 employed Kunert and Scheepers’s (2014) 

2AFC eye-tracking paradigm. All experiments used the same set of carefully controlled non-

word stimuli, including 50 pseudohomophones like WAWK (these were selected from previous 

papers that revealed ‘classical’ pseudohomophone effects), 50 unpronounceable non-words 

like NRUG, and 50 pronounceable non-words like FLIS, which are non-homophonic to 

existing English words. We also included 150 English word stimuli as filler materials. In 

Experiment 1 and 2, all stimuli (including the real-word fillers!) were carefully matched in 

length, bigram frequency, and number of orthographic neighbours. As far as we are aware, 

matching the filler words with the critical non-word stimuli in this way has not been 

implemented before. Our main motivation behind this setup was to create conditions whereby 

word vs. non-word discrimination should primarily rely on phonological features of the 

stimuli, and less so on orthographic features. One consequence of the rigorous matching was 

that the word materials in Experiment 1 and 2 were of relatively low lexical frequency. In 

Experiment 3, however, we tested our non-word stimuli against relatively high frequency 

words as fillers, which were only matched with the non-words in terms of length. 

The research we report here was primarily exploratory in nature, i.e., we refrained 

from testing specific theoretical hypotheses or models. Rather, we were interested in the 

question of how rigorous control of orthographic variables like length, bigram frequency, and 

number of orthographic neighbours across the entire material set (this included the filler 

words in Experiments 1 and 2, but not in Experiment 3) would affect the size and/or direction 

of the pseudohomophone effect. With 48 participants per study (about twice as many as in 

typical studies on pseudohomophone processing) and 50 items per condition, our experiments 

had reasonable statistical power (see also Required Sample Size below). 
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Experiment 1 

The first experiment used a standard visual lexical decision task whereby letter strings 

were presented one-by-one on screen and participants had to decide (via button response) 

whether the presented string was an actual English word or not. Apart from words serving as 

fillers, there were three critical non-word conditions: pseudohomophones like WAWK were 

compared with unpronounceable non-words like NRUG and pronounceable non-words like 

FLIS, which are non-homophonic to existing English words. The design was fully within-

subjects/between-items, and the dependent variables were recognition accuracy and reaction 

time for correct responses. 

Method 

Required Sample Size. Brysbaert and Stevens (2018) pointed out that RT effect sizes 

can be very small. For example, for data from Adelman et al.’s (2014) large scale lexical 

decision study on orthographic priming (1020 participants, 420 items), they found that a 

population effect of ca. 16 ms translates into to a Cohen’s d of only 0.087 when random 

variation at participant, item, and trial level are taken into account. We used this as a 

benchmark for our own power analyses, which were performed in J. Westfall’s power 

calculation app for designs with crossed random effects (Westfall, Kenny, & Judd, 2014). We 

aimed to be able to detect a cross-condition contrast of 20-40 ms (reflecting the range of 

previously reported pseudohomophone effects) and so we assumed a minimum population d 

of 0.15, which is still a conservatively low estimate. Since our design was within-participants 

but between-items (or “Stimuli-within-Condition” in Westfall et al.’s terminology), we had to 

specify standardized random variance components (in proportions of 1) for the participant 

and item random intercepts, the by-participant random slope, and the trial-level residual term. 

After considering various random effect estimates for RT experiments that are available in 



10 
 

the literature (e.g., Brysbaert & Stevens, 2018; Barr et al., 2013’s appendix on random effects 

in real data sets) we entered the following plausible values into the app: participant intercept 

= 0.298, by-participant slope = 0.002, item intercept = 0.05, and residual variance = 0.65. 

Keeping the number of stimuli fixed at 100 (contrasting two conditions with 50 items each), 

we then increased the number of participants from 20 to 50 by increments of 1. This gave us 

an estimated minimum requirement of 43 participants to be able to detect a cross-condition 

contrast of d = 0.15 at p < .05 (2-tailed) with at least 80% power. Since this figure does not 

take potential data loss due to outliers and/or incorrect responses into account, we set our 

actual participant sample size to N = 48 (10.4% higher than the required minimum).  

Participants. Forty-eight native English speakers (age range: 18-36 years; 65% 

females) took part in this study in exchange for course credits. All participants were right-

handed and had normal or corrected-to-normal vision. None of the participants reported 

having any visual or reading-related impairments. Ethical approval for this study was 

obtained from the College of Science and Engineering Ethics Committee at the University of 

Glasgow. All participants gave written informed consent. 

Materials. The complete list of materials is available at https://osf.io/98zas/, sub-

folder Stimuli_and_Norms. For the pseudohomophone condition (PH), we selected 50 items 

(e.g., WAWK) from previous ‘classical’ demonstrations of the pseudohomophone effect in 

written word processing (Lupker & Pexman, 2010; Reynolds & Besner, 2005; Borowsky et 

al., 2002; Seidenberg et al., 1996; Taft & Russel, 1992). Each of these was closely matched 

with an unpronounceable non-word like NRUG (UP condition), and a pronounceable non-

word like FLIS (PN condition), creating 150 critical non-word stimuli altogether. In 

addition, we selected 150 monosyllabic English words which acted as decoys for the lexical 

decision task. Each word was closely matched with one of the 150 critical non-word stimuli.  

https://osf.io/98zas/
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Primary matching criteria were length in characters, log cumulative bigram frequency, 

and number of real-word orthographic neighbours, extracted from the English Lexicon 

Project database (Balota et al., 2007). All pronounceable stimuli (PH, PN, and the filler 

words) were monosyllabic. For the filler words, as well as the words to which the 50 PH 

stimuli were phonologically related, we also extracted lexical frequency data from the British 

National Corpus (Version 3, BNC XML Edition, 2007).  Table 1 provides a summary of the 

item norms across the different subgroups of stimuli. As can be seen, there were no 

appreciable cross-condition differences in the means per variable. However, note that lexical 

frequencies were considerably higher for the base words of the PH stimuli than for the filler 

words. Indeed, the PH stimuli were phonologically related to relatively high frequency base 

words (with a mean occurrence of ca. 43 per million in the BNC corpus), whereas the filler 

words were from a much lower frequency band (ca. 3 occurrences per million on average). 

The latter was likely due to the close match in the words’ orthographic features to the non-

words. 
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Table 1. Means (SEs in brackets) for the control variables length (in characters), log 

cumulative bigram frequency (Bigram Frequency), and number of orthographic neighbours 

(Orthogr. Neighbours) in each of the critical non-word conditions (PH, UP, and PN). Also 

shown are the relevant figures for the filler words used. The last column (Lexical Frequency) 

shows mean log10 lexical frequencies per million for the PH non-words’ base words and the 

three subgroups of matched filler words, respectively.  

 N Length Bigram 

Frequency 

Orthogr. 

Neighbours 

Lexical 

Frequency 

PH Non-words 50 4.66 (.1) 3.12 (.05) 2.84 (.39) 1.63 (.11) 

UP Non-words 50 4.66 (.1) 3.12 (.05) 2.84 (.37) NA 

PN Non-words 50 4.66 (.1) 3.12 (.05) 2.82 (.38) NA 

PH-matched Words 50 4.66 (.1) 3.13 (.05) 2.82 (.38) 0.41 (.12) 

UP-matched Words 50 4.66 (.1) 3.13 (.05) 2.88 (.39) 0.44 (.14) 

PN-matched Words 50 4.66 (.1) 3.13 (.04) 2.78 (.37) 0.53 (.14) 

  

Length, Bigram Frequency, and Orthographic Neighbors for the critical non-word 

stimuli were entered into a Principal Component Analysis (PCA) with Varimax rotation in 

order to condense them into a smaller set of uncorrelated factors. The PCA showed that ca. 

92% of the original control predictor variability could be preserved by extracting two 

principal components: the first (henceforth labelled LBF) explained 52% of the original 

variance and showed a strong positive loading from Length (.82) and a strong negative 

loading from Bigram Frequency (−.95) (i.e., longer stimuli had lower cumulative bigram 

frequencies); the second component (henceforth ON) explained 39% of the variance and 

received a strong positive loading from Orthographic Neighbours only (.84). The 

standardized factor scores of the two principal components were used as covariates in 

subsequent analysis. Using principal components instead of the original variables not only 
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reduced the number of control predictors, but also prevented collinearity issues in the 

analyses (principal components are uncorrelated).   

Procedure. A computer-based lexical decision task was implemented in DMDX 

(Forster & Forster, 2003). Prior to testing, all participants took part in a short training session 

comprising 20 trials (10 pseudohomophones and 10 words in random succession), using 

stimuli different from those described in the Materials section. This not only acquainted 

participants with the task, but also served to increase the detectability of potential 

pseudohomophone effects (research by Underwood et al., 1988, suggested that 

pseudohomophone effects become stronger after previous exposure to pseudohomophone 

examples). After the training session, each participant completed 300 trials involving the 

presentation of four types of stimuli – pseudohomophones (PH), unpronounceable non-words 

(UP), pronounceable non-words (PN), and actual English words (fillers) – in an individually 

determined random order. On each trial, participants had to indicate whether the presented 

stimulus was a word or not by pressing either the left (index finger) or right (middle finger) 

mouse button, for ‘yes’ and ‘no’ respectively. Reaction times (in ms) and accuracy of the 

button-responses were recorded. We did not counterbalance ‘yes’/’no’ button assignments 

because our primary focus was on the non-word trials only (counterbalancing might have 

added noise related to motoric preferences). The stimuli appeared centred on screen, printed 

in black 14 point Courier font (all capitals) on a white background. After providing a button 

response, participants were given feedback, i.e. either a green tick (for correct) or a red X (for 

incorrect) was presented, which stayed on screen for 400 ms and was followed by a 100 ms 

blank screen before the next trial was initiated. If the participant did not respond within 3.5 

seconds, the message “too late” (printed in red) appeared and the next trial was initiated. The 

task took ca. 10-15 minutes to complete and was carried out on a PC in a dimmed 

experimental room. Every item appeared only once during the experiment. 



14 
 

Analysis. Only non-word trials (PH, UP, and PN condition) were considered, 

resulting in 48 (participants) × 150 (items) = 7200 trial-level observations for analysis (2400 

data points per condition). Response times below 250 ms or above 2500 ms were extremely 

rare, accounting for less than 1% of the data. We excluded the corresponding trials from 

further analysis as they were unlikely to reflect normal processing. 

Inferential analyses were based on Generalized Linear Mixed Models (GLMMs) in R 

(R Core Team, 2018) using the package lme4 (Bates et al., 2015). Two types of analyses 

were performed, one focusing on response accuracy and one on RTs for correct responses 

(excluding trials where participants responded incorrectly). 

Since response accuracy is dichotomous, we analyzed this variable using binary 

logistic GLMMs predicting log odds of correct responses from a combination of various 

fixed and random effect parameters (see below). Correct RT was analyzed via GLMMs 

combining the Gamma distribution with Identity link in the family argument (see Lo & 

Andrews, 2015), thereby accounting for a strong positive skew in the distribution of correct 

RT while still assuming linear relations between predictor and outcome variables. 

The fixed effects of the GLMMs comprised the main effect of condition (PH, UP, and 

PN), the main effects of the two covariates (principal components LBF and ON, see Materials 

section), as well as two-way interactions between condition and each of the covariates (the 

latter to account for potentially different slopes of the covariates dependent on condition). 

Interactions between covariates were not considered, as their inclusion was theoretically 

difficult to justify (exploratory analyses did not justify their inclusion either). Where 

appropriate, we will also report analyses without the covariates. All predictors were entered 

into the models in mean-centred form (deviation coding), such that model intercepts were 

aligned with the grand means. The three-level predictor condition, as well as the covariate by 
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condition interactions, required two contrast-parameters each. We treated the PH condition as 

comparison baseline.     

To ensure generalizability of results across participants and items, all analyses 

employed the maximal random effects structure justified by the design (Barr et al., 2013), 

including random correlations. Since all predictors (covariates included) were within-

subjects, we not only added by-subject random intercepts (accounting for inter-individual 

differences in overall responses) but also by-subject random slopes for every fixed effect 

term in the GLMMs (accounting for participant-specific variation in the fixed effects). By-

item random intercepts were also included (accounting for stimulus-related variation in 

overall responses), but no by-item random slopes since all predictors were between-items. 

In a supplementary set of GLMM analyses, we focused on PH trials only. 

Specifically, we assessed whether accuracy and correct RT for the processing of PH stimuli 

were predictable from the lexical frequencies of their phonologically related base words, 

using the relevant BNC corpus data as a continuous predictor. Again, these analyses 

employed mean-centred predictor variables and maximal random effect structures.    

Collinearity between predictor terms was negligible in all of the reported GLMMs 

(VIFs < 1.5). 

Results 

The raw descriptive figures per condition are shown in Table 2. In terms of both 

speed and accuracy, UP letter-strings were most easily recognised as non-words. 

Interestingly, the PH vs. PN contrasts were in the opposite direction to the ‘classical’ 

pseudohomophone effect, indicating lower accuracy and higher correct RTs for PN than for 

PH stimuli.  
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Table 2. Observed probability of correct responses (Accuracy) and correct RT (in ms) 

across all valid trials per condition in Experiment 1 (PH = pseudohomophone, UP = 

unpronounceable non-word, PN = pronounceable non-word). The last row shows 

corresponding figures for the filler words (these were of relatively low lexical frequency 

and were not considered in subsequent inferential analyses). Means and SEs are not 

adjusted for covariate influences and do not take participant or item variability into account. 

 Accuracy  Correct RT 

 Mean SE  Mean SE 

PH .880 .007  824 6.6 

UP .973 .003  739 5.2 

PN .862 .007  855 6.8 

Filler Words .867 .004  710 3.2 

 

The inferential results corroborated this pattern. Table 3 shows GLMM parameter 

estimates and Figure 1 plots covariate-adjusted model estimates per condition, separately for 

response accuracy and correct RT. As can be seen, UP stimuli had a very clear speed and 

accuracy advantage over both PH and PN stimuli. More critically, there was a significant PH 

vs. PN contrast in correct RT, indicating that PH stimuli were correctly identified faster than 

PN stimuli (a reversal of the classical pseudohomophone effect!). The corresponding contrast 

was not significant in response accuracy, but pointed in the direction of reduced accuracy for 

PN compared to PH stimuli.  

When the control predictors (LBF and ON) and their interactions with experimental 

condition were removed from the GLMMs, significance patterns stayed the same. The UP 

condition differed significantly from the PH baseline, both in terms of response accuracy (b = 

2.095, SE = 0.302, z = 6.946, p < 0.001) and in terms of correct RT (b = –101.21, SE = 4.26, z 

= –23.769, p < 0.001). The PN condition did not differ reliably from the PH baseline in 

accuracy (b = –0.202, SE = 0.230, z = –0.879, p = 0.380), but very clearly so in correct RT (b 
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= 25.10, SE = 4.96, z = 5.056, p < .001), again indicating a reversal of the classical 

pseudohomophone effect. 

Table 3. Fixed effects estimates from the full GLMMs of response accuracy (left; 

corresponding bs and SEs are in log odds units), and correct RT (right; bs and SEs in 

millisecond units) in Experiment 1. The first three rows show estimated grand averages 

(intercepts), estimates for the effect of UP relative to PH, and estimates for the effect of PN 

relative to PH (the PH condition always served as a comparison baseline). The next two rows 

show estimated main effects of the two covariates (LBF and ON), and the last four rows show 

estimates for the condition by covariate interactions (again, relative to the PH baseline). 

Significant effect parameters (p < .05) are highlighted in bold. 

 Accuracy  Correct RT 

Source b SE z P  b SE z p 

Intercept 3.312 0.187 17.700 < .001  842.08 10.92 77.085 < .001 

UP 2.321 0.331 7.006 < .001  −97.79 12.26 -7.977 < .001 

PN −0.208 0.217 −0.961  .337  28.24 13.81 2.045 .041 

LBF −0.383 0.126 −3.041  .002  34.91 5.60 6.233 < .001 

ON −0.361 0.103 −3.517 < .001  13.93 5.76 2.421 .016 

UP × LBF 0.080 0.305 0.262  .794  −23.79 12.36 −1.924 .054 

UP × ON −0.231 0.266 −0.868  .386  11.17 13.59 0.822 .411 

PN × LBF −0.255 0.235 −1.085 .278  3.31 14.09 0.235 .815 

PN × ON 0.490 0.208 2.358 .018  −17.64 14.43 −1.222 .222 
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Figure 1. GLMM-estimated (covariate-adjusted) probabilities of correct responses (left) and 

correct RTs (right) as a function of experimental condition (PH = pseudohomophone, UP = 

unpronounceable non-word, PN = pronounceable non-word) in Experiment 1. Error bars 

represent 95% CIs for contrasts with the PH condition (comparison baseline, as indexed by 

horizontal dotted lines). The asymmetries in the CIs on the left result from converting log 

odds model predictions into probabilities. 

 

In terms of control predictor influences (which are not of primary interest) Table 3 

shows reliably negative main effects of LBF and ON in response accuracy (longer stimuli 

with lower cumulative bigram frequencies, and stimuli with more orthographic real-word 

neighbours, were less likely to be correctly identified as non-words) and reliably positive 

main effects in correct RT (longer stimuli with lower cumulative bigram frequencies, and 

stimuli with more orthographic real-word neighbours, took longer to be correctly identified as 

non-words). The only significant interaction term showed up in response accuracy: relative to 

the PH reference condition, numbers of orthographic real-word neighbours had a less 

negative influence on response accuracy in the PN condition. Finally, the marginal UP × LBF 
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term in correct RT suggests that, relative to the PH reference condition, LBF had a somewhat 

less positive effect on correct RT in the UP condition. 

Pseudohomophone processing as a function of base-word frequency. Results from 

the complementary GLMMs indicated that increasing lexical frequencies of the 

pseudohomophones’ base words led to a marginal increase in response accuracy and to a 

significant decrease in correct RT (Figure 2). These effects held true regardless of whether 

the control predictors (LBF and ON) were included in the analysis or not. Accuracy: b = 

0.366, SE = 0.207, z = 1.767, p = 0.077 (including control predictors); b = 0.351, SE = 0.207, 

z = 1.695, p = 0.090 (excluding control predictors); correct RT: b = –27.77, SE = 8.67, z = –

3.205, p = .001 (including control predictors); b = –49.03, SE = 11.89, z = –4.122, p < .001 

(excluding control predictors). 
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Figure 2. Response accuracy (left) and correct RT (right) for pseudohomophone stimuli (PH 

condition) as a function of associated base-word frequency (BWF) per million in the British 

National Corpus, represented on a mean-centred log10 scale. For illustration, observed data 

were aggregated into item means (blue dots, N = 50). GLMM fits were determined using trial-

level data (also accounting for by-participant variation, which is not visible in the plots). The 

regression line on the left stems from a binary logistic GLMM predicting probability of correct 

responses from BWF and the two control predictors (LBF and ON, not shown); the curvature 

of the line results from converting model-estimated log odds into probabilities. The regression 

line on the right stems from a Gamma GLMM predicting correct RT from BWF and the two 

control predictors (LBF and ON, not shown). 

 

Discussion 

Apart from confirming that unpronounceable (UP) stimuli are considerably easier to 

identify as non-words than PH or PN stimuli (in line with earlier studies), Experiment 1 

found a clear trend in the direction opposite to the classical pseudohomophone effect: PH 

stimuli were correctly classified faster than PN stimuli, and participants were numerically 

(though not significantly) more accurate in identifying PH than PN stimuli as non-words 

(Figure 1). This is remarkable considering that we not only selected our PH stimuli from 
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previous ‘classical’ demonstrations of the pseudohomophone effect, but also implemented 

conditions that should have promoted the occurrence of such an effect (warm-up session at 

the start of the experiment, cf. Underwood et al., 1988).  

Our results go beyond previous findings whereby the pseudohomophone effect 

disappeared when PH and PN stimuli were closely matched in terms of orthographic features 

(e.g., Martin, 1981; Taft, 1982; Kunert & Scheepers, 2014). Indeed, the present data suggest 

that not only the occurrence, but even the direction of the pseudohomophone effect is subject 

to modulation in a lexical decision task. Specifically, when (i) orthographic features are 

carefully matched across the entire stimulus set and (ii) filler words are from a lower lexical 

frequency band than the PH stimuli’s base words, the pseudohomophone effect is reversed.  

There was evidence that the present setup created conditions whereby the 

pseudohomophones were often perceived as incorrectly spelled words. In particular, the 

complementary results in Figure 2 revealed that PH stimuli were classified as non-words 

faster (and marginally more accurately) when the lexical frequencies of their base words 

increased. This result resonates with findings from the naming literature (e,g., McCann & 

Besner, 1987; Taft & Russel, 1992) and with Ziegler et al. (2001)’s findings on lexical 

decision in German. It suggests that PH non-words were likely to activate phonologically 

related real-word representations during lexical decision, but crucially, in a way that benefited 

their correct identification as non-words rather than causing interference.   

We hypothesize that the present findings reflect a two-stage process. In line with 

Coltheart et al. (2001), we assume that the first stage consists of phonological decoding of 

unfamiliar word candidates (the default, relatively slow processing route for non-word 

strings, according to the DRC model), combined with a search through the mental lexicon for 

associated word meanings. The second stage consists of an additional orthographic check 
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before the final lexical decision (see also, e.g., Ziegler et al., 2001; Tiffin-Richards & 

Schroeder, 2018). The first stage (phonological decoding and lexical search) is likely to be 

cut short when readers are presented with UP stimuli like NRUG, because such strings do not 

lend themselves to meaningful phonological decoding. This implies relatively fast and highly 

accurate ‘non-word’ decisions for UP stimuli. With pronounceable (PH and PN) stimuli on 

the other hand, phonological decoding and search through the mental lexicon continues, 

which may explain the increased RTs relative to the UP condition. The crucial difference 

between PH and PN stimuli is that while the latter (e.g. FLIS) do not possess any matching 

phonological representations in the mental lexicon, the phonological forms of the former 

(e.g., WAWK) are likely to activate the meanings of their base words (walk in this example). 

This means that the second stage (orthographic verification) can be initiated within a 

reasonable amount of time in the PH trials (leading to correct ‘non-word’ decisions), whereas 

in PN trials, search through the mental lexicon continues until a potential time-out threshold 

is reached. This could explain the longer RTs and slightly lower response accuracies for PN 

compared to PH stimuli.  

More generally, perceiving pseudohomophones as misspelled words (via 

phonological access to their base-word meanings) could have given PH stimuli a small but 

measurable processing advantage over PN stimuli, since the lack of any phonological 

matches for the latter prolongs lexical search and creates more uncertainty about their lexical 

status. That is, PN stimuli were more likely to be perceived as potential words that are 

unfamiliar.  

Importantly, under the conditions implemented here, a non-word’s orthographic 

familiarity is unlikely to be assessed before phonological search through the mental lexicon 

has been completed – either via early interruption (UP condition), via finding a match (PH 

condition), or via cancellation after a time-out period (PN condition). In fact, without the 



23 
 

assumed precedence of phonological over orthographic processing, it would be difficult to 

account for the present data. Recall that bigram frequencies and numbers of orthographic 

real-word neighbours were controlled for (both by design and analytically), which renders 

cross-condition differences in word-like orthographic appearance an implausible explanation 

of our findings. 

The mechanisms outlined above allow for specific predictions with regard to the time-

course of processing PH, UP, and PN stimuli. In particular, we expected that PH stimuli are 

more likely to be confused with real words ‘early on’ compared to UP or PN stimuli. PN 

stimuli, by contrast, should exhibit longer periods of uncertainty about their lexical status 

than PH or UP stimuli. To test these predictions, the following experiment employed a 

continuous lexical decision task based on eye-tracking. 

Experiment 2 

This experiment used the same 2AFC lexical decision eye-tracking technique as in 

Kunert and Scheepers (2014). Participants saw pairs of letter strings (one being a word, the 

other being a non-word) and were instructed to keep looking at the word and ignore the non-

word for a period of 3.5 seconds while their eye movements were recorded. Word and non-

word stimuli were identical to those in Experiment 1. As explained in Kunert and Scheepeers 

(2014), the 2AFC eye-tracking paradigm offers advantages over classical lexical decision 

techniques in that it allows for the modelling of lexical decision processes as a continuous 

function of time rather than relying on a single response per trial. As such, it is not only 

virtually immune to speed-accuracy trade-offs in responding, but also enables a more fine-

grained modelling of the time course of lexical decision processes.   
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Method 

Participants. A new sample of 48 native English speakers took part in exchange for 

course credits. Participants’ age ranged from 18 to 36 years, and 73% were female. All 

participants had normal or corrected-to-normal vision and reported having no visual or 

reading-related impairments. Ethical approval for this study was obtained from the College of 

Science and Engineering Ethics Committee at the University of Glasgow. All participants 

provided written informed consent. 

Design and Materials. For Experiment 2, the PH, UP and PN stimuli, as well as the 

word stimuli, were identical to those in Experiment 1. Using a Latin square rotation scheme, 

we compiled six counterbalanced lists of word/non-word pairs.  

The original non-words came in triplets of stimuli that were matched in terms of 

length, bigram frequency, and number of orthographic neighbours (e.g., PH: WAWK, UP: 

NRUG, PN: FLIS,). Moreover, each member of a triplet was closely matched to a real word 

(e.g., QUAY, GAWK, and FEUD, respectively). Thus, we first created three lists such that, 

across lists, each member of a non-word triplet was paired with each of the three real word 

counterparts. Further, to counterbalance the positioning of the word versus non-word per pair 

(with the word appearing either above or below the centre of the screen, and vice versa for 

the non-word), we had to generate another three lists. Each of the resulting six lists therefore 

contained 150 word/non-word pairs, such that (i) each of the 150 non-word stimuli (50 per 

condition) was paired with three different words across lists (the same word/non-word 

pairings therefore occurred in two of the six lists) and (ii) positioning of words versus non-

words (above or below screen centre) was fully counterbalanced across conditions, both 

within and across lists. That is, half of the word/non-word pairings per condition per list had 
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the word appearing above and the other half below the centre of the screen, and this was 

counterbalanced across lists.      

Each participant was randomly assigned to one of the six presentation lists. We 

therefore ended up with eight participants per list. Each list further included 10 word/non-

word pairings as warm-up trials at the beginning. These were derived from the materials of 

the training session in Experiment 1 and were identical across lists. Half of the warm-up 

pairings had a PH stimulus above and an actual word below the screen’s centre, and vice 

versa for the other half.       

Procedure. Participants were tested using an SR-Research EyeLink II head-mounted 

eye-tracker using a sampling rate of 500 Hz. Participants were seated ca. 80 cm from a 21 

inch CRT display running at 120 Hz refresh rate in 1024 × 768 pixel resolution. Prior to 

testing, the participants’ dominant eye was determined using a simple parallax test. Viewing 

was binocular, but only the participant’s dominant eye was tracked. The eye-tracker was 

calibrated using the standard 9-point calibration and validation routines of the SR-Research 

ExperimentBuilder software. Spatial calibration error stayed below 0.5 degrees of visual 

angle (software default). This happened at the start of each session, after the initial block of 

10 warming-up trials, and then after each block of 50 experimental trials. The experiment 

ended with a “thank you” message after all 150 experimental trials were completed. The 

experimenter could interrupt the trial sequence at any point for recalibration (e.g., if they 

noticed a decline in measurement accuracy), but this was required very rarely. Before 

recalibration, participants were given the opportunity to take a short break if needed.   

The 10 warming-up trials at the beginning appeared in a fixed random order. The 

ordering of the 150 experimental trials thereafter was randomly determined for each 

participant. Each trial started with the presentation of a black fixation dot against a light grey 
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background (RGB 225, 225, 225) which appeared in the centre of the screen. When the 

participant fixated it, the experimenter pressed the space bar of the Operator PC to trigger an 

automatic drift correction, upon which the fixation dot was replaced with a pair of letter 

strings for 3.5 seconds. The letter strings were printed in black 28pt Courier all-cap font on 

the same light grey background as before. Their geometric centres were located ca. 1.5 

degrees of visual angle above respectively below the previous fixation dot, so that 

participants had to perform a vertical eye-movement away from the screen’s centre to inspect 

either of them more closely. One of the letter strings was a word and the other one a non-

word. Half of the trials per participant showed the word above and the non-word below the 

centre, and vice versa for the other half of trials (see Design and Materials). The participants’ 

task was to keep looking at the word and ignore the non-word. After 3.5 seconds, a 500 ms 

blank screen appeared before the next trial was initiated.  

No button responses were required, and a typical session lasted around 15-20 minutes. 

Analysis 

Data Pre-processing. To model probabilities of looks to the word vs. non-word over 

time, we first defined three areas of interest (AOIs): word, non-word, and background. The 

pixel coordinates of the longest letter strings in our materials were extended by roughly 0.5 

degrees of visual angle above and below and to the left and right of its perimeters. Any 

fixations that were within those extended pixel coordinates were scored as looks to the word 

or non-word, respectively (depending on whether the word was above or below the centre of 

the screen), and all remaining fixations were scored as looks to the background. Eye-blink 

events (plus 50 ms before and after the they were detected by the eye-tracker) were scored as 

missing values on any of these AOIs. These scorings were down-sampled to 40Hz resolution 

(25 ms per time-slice) over the entire trial period of 3.5 seconds. We further discarded ca. 
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10% of trials where participants were already looking at the word or non-word AOI at the 

start of the trial, which was likely due to faulty drift-correction. For analysis, the data were 

normalised such that probabilities of looks to the word, non-word, and background always 

added up to 1 in each time-slice.  

Figure 3 shows cumulative-average fixation probabilities over time for each AOI. In 

line with Kunert & Scheepers (2014), we used cumulative averages over time for statistical 

modelling since they produced smoother curves than the corresponding raw averages (albeit 

with somewhat delayed timing characteristics).1 The general pattern was very similar in the 

raw averages and can be described as follows. During the first 125 ms, virtually all fixations 

were on the background, mainly because this AOI also included the position of the central 

fixation dot at the start of the trial. Thereafter, probabilities of fixations to the word versus 

non-word continuously increased at about equal rates (i.e., showing no discrimination 

between word and non-word) up until a point before probabilities of looks to the non-word 

approached their overall maximum. From then onwards (after around half a second), 

probabilities of looks to the non-word continuously dropped in favour of looks to the word, as 

is visible in a clear separation between the red and the green curves in the figure.  

 
1 The cumulative average (a.k.a. rolling average) of a time series can be illustrated as follows. 

Assume that over four consecutive time slices, a given AOI was either fixated (score of 1) or not 

(score of 0) as in the following example: 0 → 1 → 1 → 0. The cumulative average per time slice is 

calculated as  
0

1
  →  

0+1

2
  →  

0+1+1

3
  →  

0+1+1+0

4
  (i.e., 0 → 0.5 → 0.667 → 0.5). Note that the function 

is not monotonically increasing since the averaging denominator increases with each additional time 

slice.    
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Figure 3. Cumulative-average fixation probabilities over time (40 Hz resolution), broken down 

by AOI: word in green, non-word in red, and background in grey. 

 

Curve Modelling. In our analyses, we were primarily concerned with modelling 

cumulative-average proportions of looks to the non-word AOI as a function of time (red 

curve in Figure 3), which is conceptually analogous to modelling error rates in a lexical 

decision task. Through trial and error (employing the extensive library of non-linear peak 

functions in TableCurve2D®), we identified the Equilibrium Peak function as the best 

description of these data, both overall and across individual non-word conditions. Figure 4 

illustrates the function and its parameters. While being rather complex, this function offered 

sufficient flexibility to ensure optimal fits of our data.   
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Figure 4. Six-parameter Equilibrium Peak function. The model equation is shown in the 

grey box at the top. The plots below illustrate how variation in each parameter (using 

arbitrarily ‘low’ [blue], ‘medium’ [black], and ‘high’ [red] settings) affects the shape of the 

curve while holding the remaining parameters constant. Parameter A indexes the y-axis 

intercept at 𝑥 = 0. Parameter F captures the x-axis intercept (𝑦̂ > A); parameters B, C, D, and 

E are responsible for different growth characteristics of 𝑦̂ as a function of x before and after 

reaching the peak of the curve. 

 

The next analytical steps involved (1) model optimization (identifying how much cross-

condition parameter variation is truly necessary to accurately describe differences between the 

PH, UP, and PN conditions), and (2) statistical inferencing (deriving critical measures from 

the best model and testing differences between conditions for significance). Both of these steps 

relied on statistical bootstrapping, as explained in the next section. 
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Bootstrapping. We used resampling with replacement to simulate the sampling 

distribution of the cumulative-average probabilities of looks to PH, UP, and PN non-words 

over time, simultaneously considering participant- and item-related variability in those data. 

The approach was inspired by Brysbaert and Stevens (2018, p. 9), but tailored to the specifics 

of the present design.  

Each resampling cycle proceeded as follows (see R code in online materials at 

https://osf.io/bd5c8). To preserve the counterbalancing across the six presentation lists, we 

randomly sampled (with replacement) eight participant IDs from each list, giving 8 × 6 = 48 

participant ID samples. Next, since condition was between-items, we sampled 50 item IDs 

(again, with replacement) per each of the three non-word conditions, giving 50 × 3 = 150 

item ID samples. Combining these samples via their Cartesian product (function 

expand.grid() in R) resulted in 48 × 150 = 7,200 random ‘cases’ in which some of the 

original participant-item combinations were over- or underrepresented, respectively (but 

importantly, without distorting the counterbalancing structure of the original design). For 

each of these random cases, we extracted the cumulative-average time series data from the 

original data set, and then calculated the (bootstrapped) mean cumulative-average time series 

per condition. 

 The above was repeated 10,000 times for the model optimization analysis and – to 

avoid ‘double dipping’ – another 10,000 times for statistical inferencing.  

Model Optimization. Using the Levenberg-Marquardt algorithm (R package 

minpack.lm, Elzhov et al., 2023), we fitted the Equilibrium Peak function (Figure 4) to each 

of the 10,000 bootstrapped time series triplets (one time series per condition). We explored a 

range of different models that were nested within an 18-parameter Full Model (each 

condition was fitted to its own set of six parameters, 3A-3B-3C-3D-3E-3F) and a 6-parameter 

https://osf.io/bd5c8
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Null Model (a single curve fitted through all three conditions, 1A-1B-1C-1D-1E-1F). Across 

resamples, the Null Model achieved a median R2 of 0.9609 (variance explained by time only) 

and the Full Modell of 0.9995 (variance explained by time and condition); as is logically 

expected, the Full Model always improved on R2 (min. improvement = 0.0017; max. 

improvement: 0.1727).  

Using a nested backward model reduction approach (for details, see supplemental 

online materials at https://osf.io/m4zuk), we progressively simplified the Full Model to identify 

the most parsimonious model that performed ‘virtually identically’ to the Full Model, but 

with fewer parameters. Specifically, we required the selected model to have at least 99% 

distributional overlap with the Full Model in terms of R2-improvement over the Null Model 

(see Figure 5 for illustration), while using the smallest number of free-varying parameters 

possible.  

  

https://osf.io/m4zuk
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Figure 5. Example bootstrapped sampling distributions for R2-improvement over the Null 

Model (x-axis values are positive because the Null Model always achieved inferior fits). 

Each plot shows the R2-improvement distribution for a given model (densities in pink) 

compared to that of the 18-parameter Full Model (densities in turquoise); darker-shaded 

areas indicate distributional overlap. Of the two examples shown, model 13b (top panel) 

performed notably worse than the Full Model (92.3% distributional overlap), whereas 

model 13d (bottom panel) was almost indistinguishable from the Full Model (99.6% 

distributional overlap).  

 

Of the 25 models tested, two fulfilled the above criteria, namely models 13d and 

13e. They differed only in whether parameter D or parameter B was allowed to vary 

freely across all three conditions (potentially due to a trade-off between these two 

parameters in constraining the shape of the curve). In model 13d, parameter B was 
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shared between the PH and PN condition and in model 13e, it was parameter D that was 

shared between these two conditions. Apart from this, the two models were structurally 

identical. Both assumed the A and the F parameter to be shared across all three 

conditions – this is reassuring because these two parameters constrain the x-and y-axis 

intercepts at the very beginning of each trial (Figure 4), where conditions are not 

expected to differ. Moreover, both models assumed parameters C and E to vary freely 

across all three conditions. Model 13d therefore comprised 13 parameters (1A-2B-3C-

3D-3E-1F) and the same was true for model 13e (1A-3B-3C-2D-3E-1F). Models with 

fewer parameters achieved notably poorer fits compared to the Full Model. Models 13d 

and 13e were therefore selected for statistical inferencing. Both came to virtually 

identical conclusions (see below).  

Inferential Analyses. The selected models (13d and 13e) were applied to 

cumulative-average time series data from 10,000 new resamples. Across these, both 

models achieved a median R2 of 0.9993 (same as in the model optimization analysis, in 

fact). In line with Kunert and Scheepers (2014), we compared the three conditions (PH, 

UP, and PN) in terms of three composite measures that were derived from the relevant 

model fits: Maximum Error Probability, Initial Uncertainty Time, and Home-In Time 

(Figure 6). 
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Figure 6. The three composite measures for comparison: (1) Maximum Error 

Probability, (2) Initial Uncertainty Time, and (3) Home-In Time. 

  

 

Maximum Error Probability indexes the global peak in the cumulative-average 

probability of looks to the non-word. Higher values in this measure indicate that the non-

word was more likely to be confused with the word in the given task. Initial Uncertainty 

Time measures the time from the onset of the trial until error probability reaches its 

maximum. As mentioned earlier, perceivers hardly discriminate between the word and the 

non-word during this time period (Figure 3), suggesting uncertainty about the non-word’s 

lexical status. Finally, Home-In Time measures the time from having reached Maximum Error 

Probability to the point where error probability has dropped to 70% of the maximum in the 

right tail of the curve (interpretable as standardised time for homing-in on the actual word in 

the display). 

Across resamples, the three conditions were compared to non-parametrically derive 

confidence intervals and p-values (bias-corrected and accelerated, cf. Efron & Tibshirani, 

1994) for the differences in each measure. 

  



35 
 

Results   

 Table 4 shows parameter estimates and composite measures, as established by fitting 

each of the two selected models (13d and 13e) to the actually observed data per condition. 

Values in brackets refer to bootstrapped standard errors. Notice in particular the difference 

between the PH and PN conditions in parameter C (see also Figure 4), indicating that initial 

error rate rose faster (and to a higher amplitude) in the PH than in the PN condition. Figure 7 

shows the corresponding plots with model 13d being fitted to the originally observed data 

(plots for model 13e looked nearly identical, and are therefore omitted), and Table 5 lists 

two-tailed BCa p-values for each pairwise contrast across conditions, separately for each 

composite measure and model. 
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Table 4. Parameter estimates (A to F) and composite measures (Max. Error Probability, 

Initial Uncertainty Time, Home-in Time), broken down by selected model (13d on the 

left, 13e on the right) and experimental condition (PH, UP, and PN). Shown are model 

estimates for the observed cumulative-average error probabilities per condition (see also 

Figure 7, top). Values in parentheses represent bootstrapped SEs per estimate, taking 

both by-participant and by-item variability into account. The scales for parameters A to 

F differ by order of magnitude, as indexed by the square-bracketed scaling factors in the 

leftmost column. For each parameter and model, the estimate from the mean observed 

data was always within one SE from the mean across the 10,000 bootstrap-models.  

 13d (1A-2B-3C-3D-3E-1F)  13e (1A-3B-3C-2D-3E-1F) 

Estimate PH UP PN  PH UP PN 

A  [10-3 ×] 4.987 

(1.336) 

4.987 

(1.336) 

4.987 

(1.336) 

 4.987 

(1.336) 

4.987 

(1.336) 

4.987 

(1.336) 

B  [10-1 ×] 4.378 

(0.140) 

4.181 

(0.187) 

4.378 

(0.140) 

 4.396 

(0.149) 

4.181 

(0.187) 

4.368 

(0.164) 

C  [10-3 ×] 5.171 

(0.354) 

4.673 

(0.338) 

4.272 

(0.285) 

 5.133 

(0.344) 

4.673 

(0.338) 

4.288 

(0.303) 

D  [10-4 ×] 4.995 

(0.584) 

5.759 

(0.610) 

5.099 

(0.564) 

 5.057 

(0.512) 

5.759 

(0.610) 

5.057 

(0.512) 

E  [10-4 ×] 1.827 

(0.341) 

1.678 

(0.270) 

2.116 

(0.344) 

 1.867 

(0.323) 

1.678 

(0.270) 

2.086 

(0.335) 

F  [102 ×] 1.373 

(0.242) 

1.373 

(0.242) 

1.373 

(0.242) 

 1.373 

(0.242) 

1.373 

(0.242) 

1.373 

(0.242) 

Max. Error 

Probability 

0.348 

(0.007) 

0.319 

(0.009) 

0.336 

(0.008) 

 0.349 

(0.008) 

0.319 

(0.009) 

0.336 

(0.008) 

Initial Uncert. 

Time (ms) 

650 

(23) 

661 

(21) 

722 

(29) 

 651 

(23) 

661 

(21) 

721 

(30) 

Home-in Time 

(ms) 

1117 

(107) 

999 

(79) 

1207 

(117) 

 1111 

(100) 

999 

(79) 

1210 

(113) 
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Figure 7. (Top panel) Observed cumulative-average probabilities of looks to the non-word 

over time by experimental condition (blue: PH, red: UP, amber: PN). Dots represent observed 

data points per time-slice, and the model fits (model 13d only) are indicated by solid curves in 

the relevant colours. Horizontal dashed lines designate Maximum Error Probabilities per 

condition; vertical dashed lines indicate Initial Uncertainty Time and (Initial Uncertainty Time 

plus) Home-In Time per condition, respectively. (Bottom panels) Maximum Error Probability 

(left), Initial Uncertainty Time (middle), and Home-In Time (right) by levels of experimental 

condition (PH, UP, and PN). Error bars represent bootstrapped 95% CIs (two-tailed) for 

contrasts with the PH condition (comparison baseline, as indexed by horizontal dotted lines).  
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Table 5. Two-tailed BCa p-values for each cross-condition contrast (rows) and 

measure (columns), derived via applying the two selected models (13d and 13e) to 

each of the 10,000 resamples; asterisks indicate significance at p < .05. 

 Max. Error Prob.  Init. Unc. Time  Home-In Time 

 13d 13e  13d 13e  13d 13e 

PH vs. UP .002 * .003 *  .720 .756  .177 .192 

PH vs. PN .131 .205  .016 * .021 *  .357 .197 

PN vs. UP .079 .093  .041 * .044 *  .032 * .023 * 

 

 

Discussion 

Under the assumption of a two-stage process (phonological decoding/search followed 

by orthographic verification), we hypothesised that the lexical status of PN stimuli like FLIS 

can only be determined relatively late after a prolonged (yet unsuccessful and eventually 

timed-out) search for matching phonological entries in the mental lexicon. With UP stimuli 

like NRUG, by contrast, the initial phonological stage would be cut short because such stimuli 

cannot be phonologically decoded in a meaningful way. In accordance with the task 

instructions (keep looking at the word and ignore the non-word), UP stimuli should therefore 

be dismissed faster than PN stimuli. PH stimuli like WAWK should also be dismissed faster 

than PN stimuli, but this time because the former actually possess matching phonological 

representations in the mental lexicon, such that the phonological search stage can be 

completed relatively early (by finding an actual match) before the final stage (orthographic 

verification) is initiated. 

Experiment 2 largely supported the above hypotheses. Specifically, we found that PN 

stimuli like FLIS were associated with significantly longer Initial Uncertainty Times than 
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UP stimuli like NRUG or PH stimuli like WAWK (Figure 7, Table 4, and Table 5). A 

comparable PN vs. UP difference also emerged in Home-In Time (again, indicating prolonged 

processing for PN stimuli), whereas contrasts involving the PH condition were not significant 

in this measure. 

Regarding our second hypothesis, that PH stimuli should initially be more likely to be 

confused with real words than UP or PN stimuli, the relevant contrasts in Table 5 (leftmost 

columns) only partially confirmed what we expected: while Maximum Error Probability was 

numerically highest in the PH condition, only the contrast with the UP condition was 

significant. However, we can see in Figure 7 (top) that initial error probability rose faster, 

and to a higher amplitude, in the PH condition compared to the remaining two conditions. 

The Maximum Error Probability measure probably did not capture this because of its relative 

insensitivity to cross-condition differences before reaching the peak amplitude in error 

probability. When considering differences in parameter C specifically (Table 4), which is 

more sensitive to such pre-amplitude differences (Figure 4), it emerged that that the relevant 

estimates were indeed significantly higher for the PH condition than for the PN condition, 

with associated BCa p-values (two-tailed) of .008 and .019 in model 13d and 13e, 

respectively. Thus, while results regarding PH stimuli were not as clear-cut as expected, they 

were still consistent with our predictions. 

The two experiments reported so far employed different methodologies (standard 

lexical decision in Experiment 1; 2AFC eye tracking in Experiment 2) and they both 

converged on showing a clear reversal of the classical pseudohomophone effect. In the 

discussion to Experiment 1, we conjectured that an important contributing factor to this 

reversal could be the material context in which the non-word stimuli were embedded. The 

following experiment put this conjecture to the test by using different word materials as 

fillers. 
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Experiment 3 

The final experiment was a replication of Experiment 1. It employed the exact same 

lexical decision task, but instead of low-frequency filler words (matched with the PH, PN, 

and UP stimuli in terms of orthographic features), we now used words that fell into the same 

lexical frequency range as the PH stimuli’s base words (i.e., the words that the PH stimuli 

were derived from). 

Method 

Participants 

We recruited a new sample of 48 native English speakers aged 19 to 58 years (median 

= 23 years). About 64% of them were female. All participants were right-handed and had 

normal or corrected-to-normal vision. Ethical approval for this study was obtained from the 

BCU Faculty of Business, Law & Social Sciences Research Office. All participants gave 

written informed consent before taking part. 

Materials, Procedure, and Analysis 

Experiment 3 differed from Experiment 1 only in terms of the material context in 

which the non-word stimuli were embedded. We replaced the 150 words from Experiment 1 

and 2 with new monosyllabic words that were sampled from roughly the same (i.e., relatively 

high) lexical frequency band as the base words of the PH stimuli. The new words had an 

average occurrence of 40.8 per million in the BNC (mean log10 frequency per million = 1.61; 

SE = 0.05). Recall that the word materials in Experiment 1 and 2 were of much lower lexical 

frequency (only three occurrences per million on average). As before, the new words were 

matched in numbers of characters with the non-word stimuli. Matching in terms of bigram 

frequency and/or number of orthographic neighbours was not feasible. The new words, and 

associated norms for length and lexical frequency, are available at https://osf.io/kqy9g.  

https://osf.io/kqy9g
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In all other respects (non-word stimuli, experimental procedures, analysis), 

Experiment 3 was identical to Experiment 1. 

Results 

Excluding trials with RTs below 250 ms or above 2500 ms resulted in less than 1% 

data loss. The raw descriptive figures per condition are shown in Table 6. As would be 

expected, the high-frequency filler words in Experiment 3 were recognised ca. 10% more 

accurately and about 60 ms faster than the low-frequency filler words in Experiment 1. UP 

letter-strings were, again, most easily recognised as non-words. Most strikingly, the contrast 

between the PH and the PN condition now clearly pointed in the direction of the classical 

pseudohomophone effect.   
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Table 6. Observed probability of correct responses (Accuracy) and correct RT (in 

ms) across all valid trials per condition in Experiment 3 (PH = pseudohomophone, 

UP = unpronounceable non-word, PN = pronounceable non-word). The last row 

shows corresponding figures for the filler words used (these were of relatively high 

lexical frequency and were not considered in the inferential analyses). Means and 

SEs are not adjusted for covariate influences and do not take participant or item 

variability into account. 

 Accuracy  Correct RT 

 Mean SE  Mean SE 

PH  .929 .005  871 9.3 

UP .983 .003  639 5.3 

PN .952 .004  735 6.8 

Filler Words .971 .002  653 3.3 

 

The inferential results for the non-word stimuli are shown in Table 7. Figure 8 plots 

covariate-adjusted GLMM estimates per condition. Once again, UP stimuli were confirmed 

to have a very clear speed and accuracy advantage over both PH and PN stimuli. The PH vs. 

PN contrast in correct RT confirmed a classical pseudohomophone effect, with PH stimuli 

taking significantly longer to reject than PN stimuli. The corresponding contrast in response 

accuracy was not significant.  

When the control predictors (LBF and ON) and their interactions with experimental 

condition were removed from the GLMMs, significance patterns stayed the same. The UP 

condition differed significantly from the PH baseline, both in terms of response accuracy (b = 

1.463, SE = 0.323, z = 4.534, p < 0.001) and in terms of correct RT (b = –280.60, SE = 5.21, z 

= –53.879, p < 0.001). The PN condition did not differ reliably from the PH baseline in 
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response accuracy (b = 0.137, SE = 0.289, z = 0.474, p = .636), but very clearly so in correct 

RT, confirming a classical pseudohomophone effect (b = –168.58, SE = 4.78, z = –35.246, p 

< .001). 

Table 7. Fixed effects estimates from the full GLMMs of response accuracy (left; 

corresponding bs and SEs are in log odds units), and correct RT (right; bs and SEs in 

millisecond units) in Experiment 3. The first three rows show estimated grand averages 

(intercepts), estimates for the effect of UP relative to PH, and estimates for the effect of PN 

relative to PH (the PH condition always served as a comparison baseline). The next two rows 

show estimated main effects of the two covariates (LBF and ON), and the last four rows show 

estimates for the condition by covariate interactions (again, relative to the PH baseline). 

Significant effect parameters (p < .05) are highlighted in bold. 

 Accuracy  Correct RT 

Source b SE z p  b SE z p 

Intercept 4.099 0.180 22.700 < .001  813.88 14.28 56.983 < .001 

UP 1.155 0.359 3.219  .001  −281.14 21.29 −13.206 < .001 

PN −0.167 0.316 −0.530  .596  −169.42 20.13 −8.416 < .001 

LBF −0.307 0.132 −2.328  .020  47.22 6.27 7.533 < .001 

ON −0.327 0.113 −2.893  .004  13.45 5.82 2.311  .021 

UP × LBF 0.935 0.346 2.699  .007  −45.83 14.93 −3.070    .002 

UP × ON 0.331 0.300 1.119 .263  −14.05 14.79 −0.950    .342 

PN × LBF 0.704 0.313 2.254 .024  −48.68 15.63 −3.114    .002 

PN × ON 0.459 0.240 1.917 .055  −45.44 15.14 −3.000    .003 
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Figure 8. GLMM-estimated (covariate-adjusted) probabilities of correct responses (left) and 

correct RTs (right) as a function of experimental condition (PH = pseudohomophone, UP = 

unpronounceable non-word, PN = pronounceable non-word) in Experiment 3. Error bars 

represent 95% CIs for contrasts with the PH condition (comparison baseline, as indexed by 

horizontal dotted lines). The asymmetries in the CIs on the left result from converting log odds 

model predictions into probabilities. 

 

In regards to control predictor influences (LBF and ON), Table 7 confirms reliably 

negative main effects for response accuracy and reliably positive main effects for correct RT, 

just as in Experiment 1 (cf. Table 3). There was, however, a higher number of significant 

interaction terms compared to the earlier experiment. 

Pseudohomophone processing as a function of base-word frequency. In analogy to the 

complementary analyses for Experiment 1, we also analyzed how the PH stimuli’s base-word 

frequencies affected lexical decision performance in the PH condition. When the control 

predictors (LBF and ON) were excluded from analysis, the effect of base word frequency was 

marginally positive for response accuracy (b = 0.472, SE = 0.251, z = 1.876, p = .061) and 

marginally negative for correct RT (b = –32.48, SE = 19.14, z = –1.697, p = .090). However, 
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once influences of the covariates were accounted for, these trends changed direction and were 

clearly not significant (accuracy: b = –0.085, SE = 0.256, z = –0.331, p = .741, correct RT: b 

= 15.58, SE = 19.98, z = 0.780, p = .435). Base-word frequency therefore had no measurable 

impact beyond influences of the control predictors, which is in contrast to what we found in 

Experiment 1 (cf. Figure 2).    

Discussion 

Experiment 3 established two main findings that contrasted very sharply with the 

results from the previous two experiments. Firstly, it revealed that PH stimuli like WAWK were 

much harder to reject as words than PN stimuli like FLIS, consistent with a ‘classical’ 

pseudohomophone effect. Secondly, it failed to register any clear impact of the 

pseudohomophones’ base-word frequencies on lexical decision performance in the PH 

condition. Experiment 3 differed from the previous two experiments in that the non-word 

stimuli (PH, UP, and PN condition) were tested within the context of high- rather than low 

frequency words as fillers. Material context obviously matters a lot in regard to the direction 

of the pseudohomophone effect and whether PH stimuli like WAWK are perceived as 

misspelled words or not. 

General Discussion 

We reported three visual lexical decision experiments comparing the processing of 

pseudohomophones like WAWK (PH condition) with that of unpronounceable non-words like 

NRUG (UP condition) and pronounceable non-words that are non-homophonic to real words, 

like FLIS (PN condition). The materials were carefully matched in terms of orthographic 

features (length, bigram frequency, and number of orthographic neighbours). In Experiment 1 

and 2, this was true not only for the critical non-word stimuli, but also for the word materials 
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used. As a consequence of this matching, the real-word stimuli were from a generally much 

lower lexical frequency band than the PH stimuli’s base words. Under these conditions, we 

found that the ‘classical’ pseudohomophone effect, whereby PH stimuli like WAWK are harder 

to recognise as non-words than PN stimuli like FLIS, was in fact not just neutralised (as in, 

e.g., Martin, 1981; Taft, 1982; Kunert & Scheepers, 2014) but indeed reversed. That is, PH 

stimuli were easier to recognize as non-words than PN stimuli. In Experiment 3, by contrast, 

we found clear evidence for a classical pseudohomophone effect when the non-word stimuli 

were tested against high- rather than low frequency words as fillers.  

Experiment 1 employed a standard lexical decision task with a single button response 

per trial. Apart from reversing the ‘classical’ pseudohomophone effect, another key result 

from Experiment 1 was that lexical frequencies of the of the PH stimuli’s base words (e.g., 

walk in the case of WAWK) were reliably negatively related to correct RTs in the PH condition 

(Figure 2). This suggests that the phonological forms of the PH stimuli activated 

corresponding word meanings in the mental lexicon, but in a way that benefited correct 

recognition of PH stimuli as non-words rather than causing interference. We hypothesized 

that PH stimuli were likely to be recognized as misspelled words, in the sense that their 

phonological forms activated related word meanings relatively quickly, and that correct ‘non-

word’ decisions for these stimuli were actually based on an additional orthographic 

verification stage of processing (see also Tiffin-Richards & Schroeder, 2018). In contrast, PN 

stimuli like FLIS, which are pronounceable but do not possess any matching phonological 

(or indeed orthographic) forms in the mental lexicon, were likely to be perceived as potential 

words that are unfamiliar, causing longer (and eventually timed-out) searches through the 

mental lexicon and thus longer periods of indecision. Lastly, UP stimuli like NRUG, which 

cannot be phonologically decomposed in a meaningful way, were quickly recognized as non-

words, causing the shortest RTs.  
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Based on the findings from Experiment 1, we derived two specific hypotheses with 

regards to the time-course of processing the relevant non-word stimuli. The first was that, 

compared to UP and PH stimuli, PN stimuli like FLIS should be associated with longer 

periods of uncertainty about their lexical status (whether the given string is a word or a non-

word, respectively). The second was that PH stimuli like WAWK should initially be the most 

likely to be confused with actual words. These predictions were tested in Experiment 2, 

which employed the 2AFC eye-tracking paradigm originally proposed by Kunert and 

Scheepers (2014). Instead of collecting a single button response per trial, this experiment 

measured participants’ eye-movement responses to word vs. non-word stimuli continuously 

over a relatively long period. Participants were presented with pairs of word vs. non-word 

letter strings for 3.5 seconds, and their task was to keep looking at the word and ignore the 

non-word. The materials were the same as in Experiment 1, except that they were arranged 

into word/non-word pairs. Through non-linear modelling of error probabilities (looks to the 

non-word rather than the word) as a continuous function of time, we found that our two 

predictions were confirmed: PN stimuli engendered the longest periods of uncertainty about 

their lexical status, as revealed in significant contrasts with the PH and the UP condition in 

Initial Uncertainty Time. In addition, PH stimuli were initially more likely to be confused 

with real words, both compared to UP stimuli (significant contrast in Maximum Error 

Probability) and compared to PN stimuli (significant contrast in parameter C of the 

Equilibrium Peak function used for modelling). The pattern of results in Experiment 2 

therefore supported our interpretations of the data in Experiment 1.  

Our final Experiment 3 replicated Experiment 1, but critically, it employed high 

frequency rather than low frequency words as fillers. This experiment established that the 

classical pseudohomophone effect likely only holds true when PH, UP, and PN stimuli are 
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tested within the context of relatively high frequency words as fillers. We also found no 

evidence for a PH base-word frequency effect in this experiment. 

 In the discussion of Experiment 1, we already highlighted that the present results are 

broadly in line with Coltheart et al.’s (2001) DRC model of word recognition. This theory 

postulates a fast and automatic lexical processing route for familiar letter strings such as 

LIFE, PUSH, MEET, etc., and a slower phonological processing route for less familiar letter 

strings like WAWK, NRUG, and FLIS (non-words used in all our experiments) or indeed 

QUAY, GAWK, and FEUD (real-word stimuli used in Experiment 1 and 2). We believe that this 

is key to understanding why we found a reversal of the classical psudohomophone effect in 

Experiment 1 and 2. 

The low lexical frequencies of the filler words in Experiment 1 and 2 were likely to 

have made the phonological targets of the PH stimuli more salient (contributing to their 

recognition as misspelled words) than in classical demonstrations of the pseudohomophone 

effect, including our Experiment 3. Put differently, while classical findings suggested parallel 

consideration of phonological and orthographic constraints (leading to competition in case of 

PH stimuli, but no competition in case of PN stimuli), results from Experiment 1 and 2 of the 

present paper suggested a clear ordering of constraints (phonology before orthography)2 such 

that PH stimuli exhibited a measurable processing advantage over PN stimuli in lexical 

decision.  

Assuming adaptive flexibility in the cognitive processing architecture, we propose 

that the wider material context in which PH and PN stimuli are embedded (specifically, 

 
2 Alternatively, one could conceptualize this kind of adaptation as giving phonological 

constraints a higher weight relative to orthographical constraints. Indeed, parallel constraint 

satisfaction architectures (e.g., McRae, Spivey-Knowlton, & Tanenhaus, 1998) are capable of 

emulating the behaviour of a serially ordered process in this way. 
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whether filler words are from a high or low lexical frequency band) acts as an important 

moderator of the relevant processing strategy, which in turn affects the direction of the 

pseudohomophone effect. This proposal is strongly supported by the contrasting findings 

between Experiment 1 and 2 on the one hand and Experiment 3 on the other.   

Unfortunately, in most of the older studies, there is hardly any information about the 

lexical and orthographic features of the real-word fillers used. Some used a balanced set of 

high- and low-frequency words as fillers (e.g., Ziegler et al., 2001), while in most others, the 

real-word materials were considered theoretically irrelevant task necessities (e.g., Martin, 

1981; Taft, 1982; Underwood et al., 1988; Van Orden et al., 1988; Seidenberg et al., 1996; 

Borowsky & Masson, 1999; Goswami et al., 2001, but see, e.g., Milota et al., 1997, who 

provided length and bigram frequency norms on the word materials used). With few 

exceptions (e.g., Ziegler et al., 2001; Kunert & Scheepers, 2014; Tiffin-Richards & 

Schroeder, 2018), there is also not much information about the lexical frequencies of the 

pseudohomophones’ base words. This lack of information prohibits a detailed meta-analytical 

reexamination of previous work.  

Our final point concerns the temporal dynamics of the purported context-sensitive 

adaptation processes. Our hunch is that it takes only a few word vs. non-word trials for 

participants to adjust their lexical decision strategy in accordance with the materials 

encountered so far. After mostly encountering low-frequency words (alongside non-words), 

they are likely to give phonological constraints precedence over orthographic ones (cf., 

Experiment 1 and 2); after mostly encountering high-frequency words, they are likely to 

adopt a more competitive lexical decision strategy (cf. Experiment 3). Unfortunately, our 

present data hardly allow us to explore this kind of adaptation in much detail, mainly because 

we used standard (i.e., rather unsophisticated) trial-randomization procedures that are not 

optimized for detecting learning over the course of an experiment. Future research could 
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make use of smarter randomization techniques (e.g., Liang & Barr, 2024) to investigate the 

process of adapting to the material context in greater temporal resolution. 

Conclusion 

In comparison to previous ‘classical’ demonstrations of the pseudohomophone effect, 

the present findings indicate an important role of the material context in which 

pseudohomophones like WAWK and comparison non-words like FLIS are embedded. 

Specifically, when real-word fillers are from a lower lexical frequency band than the 

pseudohomophones’ base words (cf. Experiment 1 and 2), the likelihood of perceiving 

pseudohomophones as misspelled words increases, leading to a reversal of the classical 

pseudohomophone effect in relation to comparison non-words. In contrast, a classical 

pseudohomophone effect pattern emerges when using high-frequency words as fillers (cf. 

Experiment 3).  

Our findings have both theoretical and methodological implications. On the 

theoretical side, they suggest that perceivers can flexibly adapt their lexical decision strategy 

(specifically, their reliance on phonological vs. orthographic constraints) in accordance with 

the overall material context. On the methodological side, our results highlight that lexical 

decision studies on non-word processing should also consider the lexical and orthographic 

properties of the real-word fillers used. Researchers should at minimum report the lexical 

frequencies of their real-word materials in the future. 
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