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ABSTRACT

Following the exposition of quantitative, identifiable idiosyncrasy in violin
performance - via neural network classification - we demonstrate that smartwatch-
based synchronous audio-gesture logging facilitates interpretable practice feedback
in violin performance. The novelty of our approach is twofold: we exploit convenient
multimodal data capture using a consumer smartwatch, recording wrist-movement
and audio data in parallel. Further, we prioritise the delivery of performance insights
at their most interpretable, quantifying tonal and temporal performance trends. Using
such accessible hardware to observe meaningful, approachable performance insights,
the feasibility of our approach is maximised for use in real-world teaching and learn-
ing environments. Presented analyses draw upon a primary dataset compiled from
nine violinists executing defined performance exercises. Recordings segmented via
note onset detection are subject to subsequent analyses. Trends identified include
a cross-participant tendency to ‘rush’ up-bows versus down-bows, along with lesser
temporal and tonal consistency when bowing Spiccato versus Legato.
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1 INTRODUCTION

The role of motion in violin performance has proved a
popular field of study; Palac (1992) attributes this to the
visibility of the sound-producing motion - the bow-stroke.
Prior works demonstrate the utility of computational tech-
nologies for quantitative analyses of the violinist’s exe-
cution. Early works employed pioneering technical appa-
ratus, including a vibration microscope for observation of
the bowed string (Helmholtz, 1895). More recently, works
quantifying gestures have employed optoelectronic tech-
nologies (Volpe etal., 2017), electromyographicinterfaces
(Sarasuaetal., 2017) and inertial measurement unit (IMU)
sensors (Dalmazzo et al., 2018). Many of these works pro-
pose applications in technology-enhanced learning (TEL).
Resultant research products remain largely confined to
laboratory settings, possibly due to an apparent theme
of such works: the dependence upon specialist, niche or
otherwise inaccessible devices. To develop a TEL tool for
use in teaching and learning environments, we investi-
gate the utility of a mainstream consumer device - the
smartwatch - while conducting violin performance anal-
yses. Figure 1 depicts an example multimodal record-
ing, encompassing three-axis gyroscopic data, alongside
concurrent audio. Presented analyses indicate quantita-
tive performer idiosyncrasy, via multi-input deep neu-
ral network (MI-DNN) classification. MI-DNNs facilitate
an assessment of multimodal learning, versus con-
ventional unimodal counterparts (Audio, IMU). We find
multimodality does not improve participant recognition
accuracy invariably.

Further, we delineate shared and individual performer
tendencies via statistical means. Statistically significant
trends are identified, including cross-participant tenden-
cies to ‘shorten’ up-bows versus down-bows, along with
greater tonal and temporal variance when bowing Spic-
cato versus Legato.

This paper is structured as follows: Section 2 presents
a review of literature deemed foundational to our
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primary analyses. Section 3 recounts primary data
capture, detailing our recording and segmentation of
concurrent audio and IMU data. Section 4 details pro-
cessing - or lack thereof - necessitated by each datatype,
ensuring suitability for subsequent classification.
Section 5 details a comparison of neural architectures
trained upon primary data towards participant recog-
nition. Networks include single-input classifiers trained
upon lone datatypes (Audio, IMU) and MI-DNNs trained
upon both simultaneously. Section 6 details findings of
subsequent statistical analyses, with an eye towards
the identification of both tonal and temporal per-
former tendencies, and note-by-note analyses. Section 7
offers a final reflection, detailing a consideration of
feasibility.

2 BACKGROUND AND RELATED WORKS

This section provides an overview of concepts foun-
dational to forthcoming analyses, including the pro-
duction of tone via performer-instrument interaction,
audio-gestural approaches towards analysis of this,
audio feature-extraction techniques and neural network
architectures used in primary classification analyses.

2.1 VIOLIN PERFORMANCE

Most fundamentally, violin performances include series
of audible notes - each note being a product of the violin-
ist’s bow-stroke. When the bow is drawn across the string,
friction causes the string to vibrate audibly.

1 T
f= R (1)
Equation 1: String resonance equation, where f
(Hz) is the vibrational frequency, L (m) is the length
of the string, T (N) is the tension of the string and
u (kg/m?3) is the mass per unit length of the string
(Grimes, 2014).
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Figure 1 A Synchronous Inertial Measurement Unit-Audio dataset recording, with vertical lines denoting note onsets peak-picked from
an onset detection function calculated through use of the Madmom® audio signal-processing library.
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Audible vibrations of the string are amplified by the
resonant instrument body. The frequency of the note pro-
duced is a function of the tension, mass and length of the
bowed string (Equation 1). By pinching a string against the
fingerboard, the violinist effectively shortens the string,
producing a higher frequency note than when the string
is bowed ‘open’; the violinist deliberately - although
subconsciously - manipulates parameters/variables of
Equation 1, towards an intended musical output. The vio-
linist can further manipulate the timbre of the sound pro-
duced by varying gestural aspects of their bow-stroke
execution. These include bow speed, pressure and dis-
tance from the bridge (Guettler, 2010). Through a precise
combination of such gestural parameters, a performer
may produce a note embodying one of many established
bow articulations. Of these, Perez Carrillo (2013) identifies
two categories: on-string and off-string notes.

As an example of off-string notes, Shan et al. (2007)
describe Spiccato notes as a kind of ‘momentary bounc-
ing’ of the bow against the string. While the audible
note is solely a product of contact with the string, the
authors consider Spiccato bow-strokes to be composed
additionally of ‘airborne phases’, wherein the bow either
approaches or has departed the string. However, the
authors note, such phases may prove absent at higher
tempi, given uninterrupted contact. Quantifying bow-
ing kinematics at tempi ranging between 144 and 576
bows per minute, the authors note decreased move-
ment extents at higher tempi, along with non-linearities
in bow-speed and acceleration across tempo conditions.

Perez Carrillo (2013) defines on-string notes as exhibit-
ing contrasting, sustained contact between the bow
and string for the duration of the audible note, citing
Legato as an example. Quantitavist Guettler (1997) con-
siders consistency in the amount of force applied to the
bow a crucial aspect of Legato bow-strokes, contribut-
ing to characteristic fluency in audible phrasing. In a per-
haps contradictory prior description of the Legato stroke,
Dippel (1987) described these as comprising ‘masked
bow changes’, achieved through a reduction in weight
applied to the bow during the transition between notes.

Investigating the influence of gestural execution
towards the perception of violin performance, Bugaj et al.
(2019) reported higher subjective assessments of ‘musi-
cality’ amongst participant-evaluators observing per-
formers recorded playing excerpts in a ‘high-movement’
condition. Participant-evaluators provided no visual stim-
uli instead reported higher ratings of ‘musicality’ when
listening to ‘low-movement’ excerpts. Deducing ‘implica-
tions for practice’, the authors caution that consideration
of gestural execution may occasionally be neglected in
teaching and learning environments, concluding: ‘Music
educators may wish to stress to students that movement
is part of music, and lead students to interpret music
through movement[...]" (Bugaj et al., 2019).

2.2 AUDIO-GESTURES

Inherently, audio-gestural approaches towards vio-
lin performance analyses necessitate multimodal
approaches - typically involving a microphone, along-
side one of various gestural sensing technologies. Used
concurrently, these facilitate quantitative observation
of both performer movements and their resultant tone.
Applications range from creative, compositional tools
(Thorn, 2018) to analytical tools seeking to quantify
aspects of performance - typically, towards pedagogical
utility.

Assessing prior kinematic studies of music perfor-
mance, Shan et al. (2007) described a ‘dearth’ of quan-
titative perspectives. While acknowledging the neces-
sity of qualitative approaches, the authors characterise
quantitative approaches as objective, offering resultant
utility for motor-learning in violin practice. As justifi-
cation, the authors cite potential applications in injury
prevention and the avoidance of discord between sub-
jective teacher/student reflections. Perhaps ironically,
Palac (1992) demonstrates the potential for discordance
between such quantitative study and established vio-
lin pedagogy - deeming elbow positioning idealised by
Suzuki ‘incompatible’ with kinematic criteria, devised by
Helmbholtz, for the production of ‘good tone’.

Towards an understanding of bow-stroke kinemat-
ics, Rasamimanana et al. (2007) employed a combina-
tion of optical and pressure sensors. One violinist and
a violist were recorded performing repeated, successive
bow-strokes escalating in tempo before subsequently de-
escalating. The authors highlighted biomechanical con-
straints towards performance gesture execution, quanti-
fying decreased stroke extent at higher tempi - echoing
the findings of Shan et al. (2007). Further, the authors
characterised bow velocity at higher tempi as approx-
imately sinusoidal; lower tempi bow velocities more
closely approximated a square wave, suggesting greater
gestural continuity at higher tempi. Despite a gradual
transition in tempo, a non-linear fit indicated ‘the transi-
tion from one [state] to the other is abrupt, with a hys-
teresis effect’.

In a study of nine expert violinists, Chander et al.
(2022) employed a 12-camera marker-based opto-
electronic system, observing the influence of musi-
cal cadence on gestural expression and temporal exe-
cution. Detailing practicalities, the authors disclose a
requirement for participants to wear ‘dark, close-fitting
clothing’ to which the researchers affixed reflective mark-
ers, alongside their instruments. During calibration, par-
ticipants were required to assume a reference pose. Par-
ticipants were instructed to recite excerpts as they would
during a solo recital. The authors quantify increased devi-
ation from an established tempo during excerpts incorpo-
rating musical cadences, attributing an observed preva-
lence of ritardando (wherein notes are ‘stretched’ longer


https://doi.org/10.5334/tismir.216

Wilson et al. Transactions of the International Society for Music Information Retrieval DOI: https://doi.org/10.5334/tismir.216 286

than their notated duration) towards intended musical
expression, serving to emphasise cadential content. The
authors also report a greater degree of gestural expres-
sion during excerpts containing ‘global’ versus ‘local’
cadences, quantified via principal component analysis
of ‘non-technical motion” —a term denoting movement
non-crucial for the production of tone.

Leveraging machine learning techniques in TEL appli-
cations, prior works have most frequently demonstrated
the utility of gestural sensor apparatus towards classifi-
cation tasks. Sarasua et al. (2017) and Dalmazzo et al.
(2018) employed the Myo armband (Thalmic Labs, Water-
loo, ON, Canada), assessing the device’s suitability as
a data-capture interface towards bow-articulation clas-
sification. Dalmazzo et al. (2018) assessed device util-
ity through comparison with a benchmark: an infrared
optoelectronic system containing eight cameras. The
authors employed a J48 decision tree algorithm, reporting
marginally higher classification accuracy with the use of
Myo-recorded data (99.847%) versus the optoelectronic
alternative (99.460%). Noting disparate costs, the authors
conclude: ‘this result shows that it is possible to develop
music-gesture learning applications based on low-cost
technology, which can be used in home environments for
self-learning practitioners’. Detailing the performance of
an Hidden Markov Model (HMM)-based bow-articulation
classification implementation, Sarasta et al. (2017) noted
enhanced early recognition rates when including Myo
electromyography data; however, higher overall gestural
recognition rates were achieved using IMU data alone.

Assessing optoelectronic motion capture, D’Amato
et al. (2020) approached participant skill level identifica-
tion using random forest classification algorithms, report-
ing classification accuracies of 73.34% and 80.16% in
binary leave-one-person-out and leave-one-exercise-out
implementations. The authors report a relatively high
frequency of misclassification for two of four expert vio-
linists, attributing this to comparatively expressive ges-
tural execution. Similarly, the authors report a very high
frequency of misclassification for one of three beginner
violinists (Accuracy: 10.36%). The authors suggest this
instance was due to a minimally expressive gestural exe-
cution, attributing this to further concentration required
of the participant given their limited ability. The authors
acknowledge the effective functionality of the developed
implementation: a classifier of “fragility, uncertainty and
hesitation’ - traits inferred by the algorithm as indica-
tive of lesser skilled participants, although evidently con-
founded by idiosyncratic participant motor strategies.
The authors later suggest the prospective utility of deep
learning models towards such classification analyses,
deeming these ‘more sophisticated tools’.

TELMI? project authors Volpe et al. (2017) acknowl-
edged barriers to adoption of their research products.
D’Amato et al. (2021) later assessed low-cost alterna-
tives to the multi-camera array used in TELMI project

analyses. The authors achieved a classification accu-
racy of 87.85% through use of the Kinect - a low-
cost computer-vision device produced by Microsoft Corp.
(Redmond, WA, USA). While its success proved signifi-
cantly lower than that of the benchmark optoelectronic
system (96.98%), the authors reported that the high-
est classification accuracy was achieved through use of
the Myo (98.15%). Following discontinuation of the Myo
in 2018, an assessment of the Apple Watch (Apple Inc.,
Cupertino, CA, USA) as a comparable alternative for the
purposes of violin performance analyses was detailed
previously in Wilson et al. (2023).

In practice, the adoptability of any TEL implementa-
tion is bound by the interpretability of its output. While
the ability to deduce macro characteristics, such as level
of expertise, may facilitate observation or charting of
user ability and progression, this offers limited construc-
tive feedback by which future practice may be informed.
Various authors have sought to address this, quantify-
inginferred quality indicators like bow skewness, dynamic
stability and pitch stability through feature derivation.

Assessing complete beginners, Blanco et al. (2021),
evaluated SkyNote, a TELMI-developed Graphical user
interface (GUI), for the provision of real-time visual
feedback (RTVF). Continually quantified, the three afore-
mentioned performance metrics were displayed to par-
ticipants during performance. The authors indicated
mixed results.

During a final ‘retention’ condition, the authors noted
occasionally significant improvements to performance
metrics - albeit following 40 ‘baseline’ and ‘acquisi-
tion’ trials. During intermediate ‘acquisition’ trials, RTVF
was found to impede participants’ sound-quality met-
rics. Between ‘baseline’ and ‘retention’ conditions, the
experimentalgroupdemonstratedgreaterimprovements.
However, the intra-group improvement between ini-
tial ‘acquisition’ (sans RTVF) and ‘retention’ conditions
appears far less pronounced. These findings suggest
retained improvements were primarily a result of short-
term repetition versus RTVF. The authors also acknowl-
edge RTVF may pose a distraction during practice; 55%
of participants polled agreed with the statement: ‘Can-
not play whilst watching feedback’. While Provenzale
et al. (2024) also reported a reduction in bowing errors
during assessment of their own RTVF system, 10 of 12
participantsreported difficulty interpreting feedback while
playing. While the real-time aspect of such implementa-
tions may seem inherently advantageous, these findings
indicate that the feasibility of such feedback may be con-
strained as a result of additional user attention demands.
For this reason, we consider the real-time availability of
data to be a non-crucial functionality at this time.

2.3 AUDIO FEATURE EXTRACTION
Schedl et al. (2014) declare the aim of music informa-
tion retrieval (MIR) techniques to be ‘the extraction and


https://doi.org/10.5334/tismir.216

Wilson et al. Transactions of the International Society for Music Information Retrieval DOI: https://doi.org/10.5334/tismir.216 287

inference of meaningful features from music’. Towards
this aim, low-level descriptors are used to quantify
characteristic aspects of audio signals. Occasionally, such
descriptors may prove visually interpretable—as in a
spectrogram, wherein note durations, frequencies, and
harmonics can be observed. Elsewhere, the primary util-
ity of such descriptors is their suitability towards integra-
tion within automated classification systems.

Waveform representations of audio data depict signal
amplitude over time. Frequency-domain representations
differ, depicting constituent frequency magnitudes com-
prising the input signal. Such a representation can be cal-
culated via discrete Fourier transform. One-dimensional,
this representation fails to depict changes to the har-
monic content of an audio signal over time. Schedl
et al. (2014) suggest a short-time Fourier transform
(STFT) ‘spectrogram’ for this purpose. The spectrogram
includes iterative discrete Fourier transformations, denot-
ing averaged harmonic content for short, successive
‘frames’ of an input signal.

Defined as ‘the results of a cosine transform of the
real logarithm of the STFT expressed on a mel-frequency
scale’ (Zheng et al, 2001), mel-frequency cepstral
coefficients (MFCCs) have demonstrated utility within
speech-recognition systems (Davis and Mermelstein,
1980). Providing a ‘compact representation of the spec-
tral envelope’ (Wu et al., 2017), MFCCs have demon-
strated similar utility in MIR applications. These include
artist and genre identification (Li and Ogihara, 2004;
Mandel and Ellis, 2005) and violin bow-stroke classifica-
tion (Alar et al., 2021).

While useful for representing timbre, McFee et al.
(2015) consider these limited in their depiction of pitch,
offering ‘poor resolution of pitches and pitch-classes’.
Given an ability to ‘encode harmony while suppress-
ing variations in octave height, loudness or timbre’, the
authors instead suggest use of Chroma representations
towards the depiction of pitch.

2.4 DNNs
Comprising numerical inputs fed towards a single node,
Alpaydin (2020, p. 201) declares the perceptron: ‘the
basic processing element’ of any DNN. Weights are
ascribed to each numerical input; an output value is pro-
duced through summation of the product of each input
and ascribed weight. The multi-layer perceptron (MLP)
may be considered an expansion of the single-layer per-
ceptron, containing any number of node layers linked by
interconnecting weights feeding forward towards an out-
put layer. During training upon labelled data, weights are
refined, towards classification of input data to a corre-
sponding output. The utility of such networks hinges on
their ability to generalise, towards accurate classification
of unseen data.

A development of the MLP, the recurrent neural net-
work (RNN) incorporates weights fed backwards, from

the output of intermediate nodes to the input of preced-
ing nodes. Such connections enhance the ability of the
network to interpret sequential contexts of input data,
rendering these well suited to time-series classification
tasks (Russell and Norvig, 2020, p. 824). Developed fur-
ther, the bidirectional RNN processes input data in both
chronological and reverse-chronological order simulta-
neously, facilitating classification based on both ‘past’
and “future’ information. Insignificant temporal associ-
ations are disregarded through gating of recurrent con-
nections; devised implementations vary in complexity.
Summarising two such implementations (Chung et al.,
2014, p. 5) distinguish between gated recurrent units
(GRUs) and long-short term memory (LSTM) units -
attributing enhanced capability of the latter, to control
the quantity of stored memory-content, to an incorpo-
rated third gate.

Ismail Fawaz et al. (2019) liken one-dimensional con-
volutional neural networks (CNNs) to the application of
a sliding filter over a time-series. Discussing applica-
tions of these towards time-series classification tasks —
including detection of cardiac arrhythmias and abnormal
structural vibrations—Kiranyaz et al. (2021) conclude:
‘..even a low-power mobile device [...] will suffice to
make real-time monitoring and analysis possible’. Detail-
ing the incorporation of one-dimensional CNNs within
multi-input deep CNNs (MI-DCNNs), Chen et al. (2022)
characterise these as multiple parallel CNNs fed, via con-
catenation, into an MLP. During assessment of such net-
works towards classification of bioinformatic data, the
authors reported higher classification accuracies com-
pared to conventional machine-learning architectures.

Neural architectures detailed within this section were
selected for discussion given their use during forthcoming
primary analyses.

3 MULTIMODAL DATA CAPTURE AND
SEGMENTATION

This section recounts a compilation of the primary
dataset used. While detailed previously in Wilson et al.
(2023), an understanding of this process is considered
essential towards contextualising subsequently detailed
analyses. A comparison of existing datasets is depicted in
Supplementary Table 1, including summaries of their use
in prior analyses.

3.1 RECORDING

Participants were sourced from the student body of the
Royal Birmingham Conservatoire, each having received
substantial, formal conservatoire training in classical vio-
lin performance. Research participation was not incen-
tivised. All recordings were conducted in a controlled
Conservatoire live room, characterised by alow noise floor
and short reverberation time. This sought to minimise
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room-acoustic colouration of the recorded audio, while
remaining a setting familiar to research participants.

Nine participants (three male, six female) were asked
to recite two-octave G and D Major scales, repeating
every note twice such that an up- and a down-bow value
was captured for each. Each violinist recited these using
their own violin. These exercises were selected given a
reasonable expectation that they would prove familiar
to all research participants. Further, the consistency of
defined tonal and temporal ‘targets’ was considered utile
towards subsequent observation of performer tenden-
cies. Participants performed each scale in two bow artic-
ulations: Legato and Spiccato. Three takes of each exer-
cise were captured. Participants were communicated a
target tempo of 110 BPM, with a duration of one bow-
stroke per beat. All participants were provided a reference
metronome initially, and upon request; however, partic-
ipants were not permitted to use a metronome during
active recording.

Participants wore an Apple Watch Series 8 (model no.
2770), running VioLogger, an ad-hoc recording interface,
based upon Logger7? by GitHub user Shakshi3104. Vio-
Logger synchronously logs both Audio (SR = 44.1kHz) and
IMU (SR = 100 Hz) data, captured via a device’s micro-
phone and accelerometer. Audio files are timestamped
upon the commencement and cessation of recording;
IMU samples are timestamped individually.

3.2 DATA SEGMENTATION

Low-pass filtered root mean squared (RMS) envelopes
were used to gate audio recordings, towards the removal
of excess audio, pre- and post-activity. A threshold of
0.6x the envelope mean was calculated; indices at
which the filtered envelopes first exceeded the calcu-
lated threshold were used to gate the start of the record-
ing. Similarly, indices at which the filtered RMS envelopes
finally subceded the calculated threshold were used to
gate the end of the recording. Sequential application of
the prior method at cutoff frequencies of 0.5 and 2 Hz
were found to effectively remove soft-onset and tran-
sient noise, respectively.

IMU data concurrent with the trimmed audio data
were identified via timestamping; excess data beyond the
bounds of the trimmed audio duration were discarded.
Resultant multimodal recordings were segmented into
series of component bow-strokes through use of the
Madmom bi-directional RNN onset detector.

A total 3455 segments of multimodal data were iso-
lated; this is lower than the expected 4176 notes (58
notes x 3 takes x 6 participants x 2 scales x 2 artic-
ulations), constituting 83% of the expected total. This
figure approximates the accuracy (F1: 0.778) observed by
Tomczak and Hockman (2023) during application of the
Madmom detector towards their QTDS string recordings
dataset. Reported findings indicated greater precision

(0.926) versus recall (0.679), suggesting a greater preva-
lence of false negatives relative to false positives. Previ-
ously, this diminished sensitivity has been attributed to
string instruments’ characteristically ‘soft onsets’ (Bock
and Widmer, 2013). During implementation, such inac-
curacy produces segments comprising multiple notes. To
mitigate, segments of a duration considered infeasible
(>0.8 s / <75 BPM) were excluded from classification. The
number of segments isolated corresponds to a mean of
575.8 per participant*. Segments used in classification
totalled 27 min and 10 s. Each comprising audio and
IMU data, these averaged 0.47 s in duration (standard
deviation: 0.09 s). While this approximates an expected
average duration of 0.54 s, the shorter mean-duration
indicates participants exceeded the target tempo by an
average of 17.7 BPM.

4 AUDIO AND IMU DATA PROCESSING

The extent of processing required prior to the forthcom-
ing analyses varied by datatype. Where implemented,
data processing sought to ensure the suitability of
recorded data towards classification and statistical anal-
yses. Although recorded simultaneously via our multi-
modal smartwatch interface, IMU and Audio data were
processed separately.

4.1 AUDIO DATA PROCESSING

Features were derived from isolated audio segments,
towards a compact representation. These sought to
minimise computational expense of classification while
maintaining recorded audible characteristics. Features
selected sought to represent recorded audio segments
comprehensively, towards time-series representation of
both pitch and timbre.

Following demonstrated utility during prior classifica-
tion tasks, MFCCs were selected as a preferred feature for
the representation of timbre, given their compact reso-
lution and precedented use in prior participant recogni-
tion analyses (Ali-MaclLachlan et al., 2020). MFCC matri-
ces of sizes 13 x M were computed (13 is the number of
cepstral coefficients computed per frame; M is the num-
ber of frames). During computation, a Hanning window
of 2048 samples was used, alongside a hop length of
256 samples. Similarly sized matrices of Delta- and Delta-
Delta-MFCCs were computed. Concatenated along their
first axis, these matrices formed a resultant matrix of
39 x M).

Towards representation of pitch, Chroma coefficients
were selected as a preferred feature, computed via the
Librosa fixed-window STFT-based implementation dis-
cussed in McFee et al. (2015, p. 20). To maintain con-
currency with prior calculated MFCCs, these were framed
similarly. Derived Chroma coefficients were subsequently
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Figure 2 Apple Watch rotational axes as relative to the device.

concatenated with the initial MFCC matrix, such that each
column comprised the four features per frame.

4.2 IMU DATA PROCESSING

Given a comparatively low sample rate, recorded IMU
data necessitated no such feature derivation. Recorded
via the Core Motion API°, ‘Device Motion’ data were
favoured versus raw IMU data. Normalized relative to
device geometry, as depicted in Figure 2, this enhanced
interpretability during plotting and indicated greater
accuracy during preliminary testing for the identification
of bow direction, due largely to a visible reductionin noise.
Axes depicted in Figure 2 correspond to gyroscopic axes
depicted in Figure 1.

5 NEURAL NETWORK-BASED
PARTICIPANT RECOGNITION

Given an intention to gauge performer idiosyncrasy, par-
ticipant recognition was implemented via neural network
classification, towards an assessment of the extent to
which recorded data proved identifiable.

5.1 NEURAL NETWORK IMPLEMENTATION
To facilitate an assessment of multimodality as a tool to
enhance accuracy in violin note classification, a variety of
disparate DNN architectures were used in classification.
Conventional sequential DNNs were used towards
the classification of unimodal input datatypes, compris-
ing a single input layer (Figure 3A), two hidden-layers
(Figure 3B) - of types denoted by the Network Architec-
ture column in Table 2 - followed by a densely connected
layer (Figure 3E) and an output layer (Figure 3F).
Comprising individual subnetworks similar in form
to the aforementioned single-input networks, MI-DNNs
were used, enabling classification of both audio and
IMU datatypes within a single, unified architecture.
Final dense layers of these unimodal subnetworks were

7

AR

4

Figure 3 Conventional deep neural network used in unimodal
classification implementations, comprising an input layer (A),
two variable layers (B), a dense layer (E) and an output layer (F).

IMU Subnetwork
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o
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V

Audio Subnetwork

Figure & Multi-input deep neural network used in multimodal
classification implementations, comprising two input layers (A),
four variable layers (B), two flattened layers (C), a concatenation
layer (D), a dense layer (E) and an output layer (F).

Layer Parameter MLP GRU LSTM CNN

Units 128 - - -

Activation RelLU - - _

Units/Filters* 128 128 128 50*
128 88 88 50*
B Kernel Size - - - 5
Activation RelU RelU RelU RelLU
Units 88 - - -
C
Activation RelLU - - -
D N/A - - - -
E Units 64 - - -
Units N Classes - - -
F
Activation  Softmax - - -

Table 1 Participant Recognition Network Parameters.

flattened (Figure 4C), concatenated (Figure 4D) and fed
through a further dense layer (Figure 4E) to an output
layer (Figure 4F).

A stratified 80:10:10 train/test/validation split was
used alongside five-fold cross-validation, enhancing the
reliability of model behaviour observations. An early
stopping function halted training following failure to
reduce validation loss over eight successive epochs. Once
stopped, model weights were reset to those that had pro-
duced the lowest observed validation loss before testing.
Network parameters used are depicted in Table 1.
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5.2 RESULTS

Table 2 depicts test classification metrics - comprising
classification accuracy, areas under the receiver operat-
ing characteristic curve, and F-score values - by architec-
ture and input datatype. Proving the most accurate clas-
sifier, the single-input LSTM trained upon lone IMU data
demonstrates that combining data modalities may not
always reliably improve classification accuracies.

Figure 5 depicts train/validation accuracies calculated
per-epoch, per-fold. These suggest MI-DNN architectures
exhibited a greater degree of overfitting when com-
pared to the Single input (SI)-DNN IMU classifier; this is
likely due to an increased number of model parame-
ters. SI-DNN Audio networks demonstrated the greatest
degree of overfitting, however, as is demonstrated by
the divergence of train/validation accuracies. Notably, SI-
DNN Audio training accuracies also demonstrate a degree
of underfitting relative to thier IMU-trained counterparts.
This suggests the idiosyncrasy of participants’ gestural
execution may exceed that of their audible output. How-
ever, this result is also a product of feature selection,
reflecting the utility of selected features; it is likely that
alternative feature selection would influence classifica-
tion accuracies - thus, the prior interpretation cannot be
assumed to be correct.

Networks trained upon IMU data - whether com-
bined with derived audio features or otherwise - exhib-
ited higher classification accuracies. Assessed via a
t-test, this proved to be statistically significant at P <
0.01. Neither grouping indicated a significant departure
from normality when assessed using a Shapiro-Wilk test
(IMU: P = 0.415, Audio: P = 0.998). While achieving
a higher mean accuracy over tested network architec-
tures (94.67%) than their MI-DNN counterparts (93.88%),
single-input IMU classifiers did not demonstrate a sta-
tistically significant improvement in classification accu-
racy (P = 0.426). Shapiro-Wilk testing again indicated
no significant departure from normality amongst these
groupings (SI-DNN: P = 0.134, MI-DNN: P = 0.290).
Despite the implications of this statistical testing, while
normally distributed, notable variation in classifica-
tion accuracy was observed between single-input IMU

Single-Input Networks: Audio

Single Input Networks: IMU

networks (91.83-96.43); single-input IMU LSTM and
CNN1D classifiers achieved the highest classification
accuracies observed (96.43 and 96.00, respectively), with
the former demonstrating a +0.84% increase in classifi-
cation accuracy versus the most accurate MI-DNN (GRU-
GRU). This finding demonstrates that the inclusion of an
additional modality cannot be assumed to enhance clas-
sification accuracy in all instances, despite further avail-
able data upon which to train.

Input Participant Recognition
Data Network
Type Architecture Acc (%) AUC F-Score
Audio MLP 76.38 0.948 0.765
7 LSTM 82.43 0.967 0.828
" CNN1D 80.75 0.964 0.812
" GRU 79.39 0.957 0.796
IMU MLP 94.41 0.991 0.947
" LST™M 96.43 0.996 0.965
" CNN1D 96.00 0.994 0.961
7 GRU 91.83 0.989 0.918
Audio’ MLP? MLP 94.66 0.993 0.950
+ LSTM? LST™M 93.85 0.988 0.938

IMU CNN1D" CNN1D 94.20 0.986 0.942

, GRU'  GRU 9559 0995  0.956

" MLP? CNN1D 94.08 0.992 0.942

7 CNN1D* MLP 93.68 0.992 0.937

" LSTM? CNN1D 93.79 0.987 0.936

7 CNN1D* LSTM 91.72 0.979 0.911

Table 2 Participant recognition classification accuracy metrics,
by network architecture and input data type.

Tdenotes corresponding subnetwork modality.
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Figure 5 Participant train/validation accuracies per fold, by epoch, averaged across networks by datatype.
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5.3 DISCUSSION

The ability of such architectures to distinguish partic-
ipants suggests the recorded data to be inherently
idiosyncratic - incorporating unique, identifying char-
acteristics of participants’ execution. Further, enhanced
accuracy through the inclusion of gestural data suggests
that such idiosyncrasies are not solely audible in nature.
This implementation demonstrates that - while the com-
bined use of multiple modalities cannot be assumed to
be invariably beneficial - the use of additional modalities
available may serve to enhance conventional MIR imple-
mentations and may prove feasible through the use of
commercially accessible hardware. Within the context of
MIR, this could be considered an application of the advice
of Bugaj et al. (2019): to consider music through move-
ment. Notably, the aforementioned definition attributed
to Schedl et al. (2014) does not compel the use of audio
as a medium for the study of MIR.

Each architecture discussed may be considered a black
box; despite demonstrating that distinctions between
participants prove identifiable, such networks’ ‘reason-
ing’ is minimally interpretable. Thus, we consider conven-
tional statistical analyses utile in observing and under-
standing such differences.

6 TENDENCY ANALYSES

Following prior demonstration of participant idiosyncrasy
via DNN classification, statistical analyses seek to explore
the nature of such idiosyncrasy. These quantify tonal
and temporal performer tendencies, both individual and
cross-participant.

6.1 TEMPORAL AND TONAL DISTRIBUTION
ANALYSES

Towards the provision of interpretable practice feedback,
the visualisation of participant tendencies was consid-
ered extensively. Intended to further interpretability of

Legato

—~

-200 -150 -100 -50 110 450 +100 +150 +200
Temporal Deviation (BPM)

resultant data, calculated note durations were converted
to their equivalent BPM. Note tunings were calculated
in cents using the yin pitch-tracking algorithm?®; devi-
ation of a recorded note’s detected fundamental fre-
quency is calculated from the frequency of the nearest
note established within equal temperament conventions
(A4 =440 Hz).

Figure 6 depicts temporal execution at the participant-
level, via kernel density estimate plotting. This displays
the distribution of note lengths for each participant in G
Major Legato and Spiccato conditions. Upper, red-toned
density curves depict the distribution of up-bow note
durations. Conversely, lower, blue-toned density curves
depict the distribution of down-bow note durations. While
the shaded, left-most portion of the graph is impossi-
ble to play (given the target tempo, playing below this
region would require notes of negative durations), this
region has been retained, allowing plotting of the target
tempo centrally along the X-axis, such that slow/fast =
left/right. Each curve includes three shades, representing
the distribution of note durations in each take. Darker,
outermost curves depict initial takes, while lighter, inner-
most curves depict final takes. These are stacked, such
that the innermost curves effectively form the X-axes of
each successive curve. This seeks to facilitate observation
of overall participant trends, while maintaining visibility
of iterative changes in participant execution. Figure 7 is
composed similarly, albeit with assumed target tuning
(0 cents) plotted instead along the Y-axes. Tuning plots
were transposed in this manner given conventional verti-
cal depictions of pitch in staff notation.

Participants exhibited greater temporal variance in the
Spiccato condition, indicating lesser temporal precision.
During post-hoc consultation, participants attributed this
to the inherently disjointed nature of such bow-strokes
compared to the Legato condition, citing lesser conti-
nuity to provide timing references for sequential bow-
strokes. Participants also consistently exhibited higher

Spiccato

e

e
~
[

e |, Take:
r——— 1237

Up-bo
~ Dowﬁ-boami
-200 -150 -100 -50 110 +50 +100 +150 +200
Temporal Deviation (BPM)

Figure 6 Distribution of participants’ G Major scale individual note tempi, by articulation.
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Tonal Deviation (cents)

Temporal Deviation (BPM)

Bow Condition Down Up Both Down Up Both

Legato 0.48 4.40 2.43 8.97 15.90 12.42

Mean Spiccato -6.16 -4.19 -5.17 33.64 53.03 43.35
Both -3.04 -0.19 -1.62 22.07 35.72 28.89

Legato 12.03 11.70 12.03 23.78 23.44 23.86

Std. Spiccato 15.03 14.95 15.20 52.50 57.08 55.68
Both 14.10 14.19 14.22 43.35 4835 46.42

Legato 144.8 136.6 144.5 565.3 549.3 569.1
Variance Spiccato 2259 2234 2255 2756.2 3257.9 3100.5
Both 198.8 201.3 202.1 1879.6 2337.6 2154.6

Legato 1.90 5.30 3.70 6.02 12.22 8.80

Median Spiccato -4.30 -1.90 -3.10 18.60 38.29 27.89
Both -1.40 2.00 0.60 9.28 19.64 14.21

Legato 1.613 2.064 1.650 37.37 29.61 31.87

Kurtosis Spiccato 0.510 0.884 0.658 5.301 1.631 2.866
Both 1.080 1.471 1.199 10.41 4.743 6.755

Legato -2.16 -0.49 -0.347 5.316 4.527 4.767

Skew Spiccato -0.50 -.722 -.608 2.305 1.431 1.777
Both -0.528 -.770 -.638 3.075 2.152 2.514

Table 3 Tonal and temporal deviation descriptive statistics, by bow articulation and direction.

average tempo in the Spiccato condition, likely stimulated
by the rapid acceleration necessitated by this articula-
tion. While interpretation of the aforementioned as indi-
cators of ‘quality’ or level of expertise may seem intuitive,
given our implementation of quantitative techniques in
an inherently qualitative field, we do not seek to assess
participants in this way.

Given a visibly anomalous temporal distribution,
Participant 1 was excluded from subsequent statistical
significance and descriptive testing. A total 5643 data-
points remained, across eight participants. Participant-
specific anomaly detection was implemented via com-
putation of z-scores. Datapoints with z-scores greater
than 3 - indicating three standard deviations from the
mean - were discarded; these amounted to 251. Given
resultant sample sizes of between N = 586 and N = 712
per participant, Shapiro-Wilk tests were used to assess
normality; results indicated both BPM and Tuning devi-
ations are non-normally distributed in Articulation and
Bow Direction conditions, with significance values in all
cases of <0.001. Appropriately non-parametric, Wilcoxon
signed-rank tests were used to assess the significance of
observed differences in the grouped distributions. These
returned P-values of <0.001, indicating significance.

Table 3 presents statistical descriptors averaged
across the included eight participants - from these, a
number of aforementioned trends can be quantified. Par-
ticipants played the scale exercises faster than the estab-
lished target tempo in both Legato and Spiccato con-
ditions, averaging 138.89 BPM (+26.26%) across both
up- and down-bows. Following discussion with partic-
ipants during recording, it is expected that familiar-
ity with such fundamental exercises led to this over-
all trend. Notably, the highest deviation in mean tempo
was observed in the Spiccato condition, wherein partic-
ipants averaged 153.35 BPM (+39.41%). Given sample
sizes of N =2996 and N = 2647, a Kolmogorov-Smirnov
test was used to confirm normality, returning a P-value
of <0.001. An independent-samples t-test was used to
assess significance of the observed trend, again returning
a P-value of <0.001. Likewise, participants were observed
to perform up-bows at a higher tempo than down-
bows, averaging these 13.65 BPM (+10.34%) faster.
Again, Kolmogorov-Smirnov testing indicated normality
(P < 0.001); a subsequent independent-samples t-test
indicated statistical significance (P < 0.001).

This finding indicates that a performer’s effective
tempo is the product of averaging across unequal
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Figure 7 G Mgjor scale tonal distributions per participant, by
articulation.

up- and down-bow-stroke durations; respectively, these
are observed as characterised by relatively short and long
durations.

Through further consideration of the aforementioned
means, a compounding effect of these two factors can
be seen; the highest mean temporal deviation observed
was in upwards Spiccato bow-strokes, at 53.03 BPM

(+48.21%) faster than the target tempo. While partici-
pants exhibited similar temporal variance across both up-
bows and down-bows, an increase of 2531.4 is observed
in the Spiccato condition, corroborating the lesser tem-
poral precision depicted previously. A Levene’s test value
of P < 0.001, indicates significance of this observed
trend in variance. Kurtosis values indicate the greatest
temporal precision in Legato down-bows. A moderate
decrease is apparent through comparison to Legato up-
bows; however, the most notable decrease in kurtosis
is again observed as a result of the Spiccato condition.
These trends appear to compound, in a similar pattern
to mean temporal deviations. Similarly, the Spiccato con-
dition appears to be the most prominent driver of tonal
variance. Averaged variances differ little between up- and
down-bows, and Levene’s test indicates homogeneity of
variance (P = 0.744). An increase of 81 is observed in
the Spiccato condition, however. Corresponding standard
deviations suggest tonal spread is increased by 3 cents,
each side of the mean; this is substantiated by a Levene’s
test P-value of <0.001. We note the limitations of ide-
alising equally-tempered pitches during tonal analyses;
depending on musical context, such exact tunings may
be neither preferred nor intended. Despite this, variation
analyses remain utile in observing differences across con-
ditions, as these are relative to performer mean tunings.

6.2 TEMPORAL AND TONAL CORRELATION
ANALYSES

Bivariate correlational testing was used to assess the
relationship between temporal deviation and tonal pre-
cision; BPM deviations were binned into equal percentiles
of 5%, tonal variance was then calculated per bin. Resul-
tant Kendall’s Tau (zb) of 0.780 and P < 0.001 indi-
cate a strong positive correlation between BPM and tonal
variance. This correlation persists in partial correlation
testing, when controlling for participant ID (zb = 0.864,
P < 0.001). Separate correlational analyses indicate that
this correlation was stronger in the Spiccato condition
(tb = 0.940, P < 0.001) versus the Legato condition
(tb=0.682, P <0.001). Subsequent linear regression indi-
cates a steeper correlation gradient in the Spiccato con-
dition (TonalVar = 1.963 (BPM) + 134.786) versus the
Legato condition (TonalVar = 1.613 (BPM) + 150.004).
These results demonstrate that, as tempo increases,
tonal consistency is impaired regardless of note articula-
tion; however, this decreased tonal consistency is more
pronounced - and more reliably so - during the Spiccato
condition.

6.3 NOTE-BY-NOTE ANALYSES

Intended to further the observability of take-specific
participant trends, further plots were developed. These
depict various aspects of participant execution note-by-
note. Figure 8 depicts calculated note tunings over time,
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Figure 8 Note-by-note tunings, in cents, of a recorded D Major scale (Legato).

illustrating the constituent notes of which the prior distri-
bution curves comprise.

Figure 9 depicts a piano-roll plot of a recorded D
Major scale. Audio segments are aligned on a logarithmic
Y axis, binned and labelled by equally tempered notes.
Y-axis alignment is determined by the averaged funda-
mental frequency of each segmented note, calculated
via the yin pitch-tracking algorithm. This presentation
was favoured to enhance interpretability in prospective
TEL use-cases, wherein familiarity with effectively simi-
lar plots such as the spectrogram cannot be assumed.
Yellow-shaded regions denote expected note durations,
demonstrating the effects of accumulated error due to
even slight temporal inaccuracy.

6.4 NOTE FINGERING ANALYSES

In the G-major condition, Shapiro-Wilk tests again
indicated BPM deviation and tonal variance were non-
normally distributed per-note and per-finger. Wilcoxon
signed-rank tests indicated significant differences
between distributions of tonal variance and temporal
deviation, at P-values of <0.001. Second finger notes
demonstrated the highest tonal variance: 199.990; this
contrasts with the lowest observation of 151.196, char-
acterising open bow-strokes. This corresponds to an
increased spread of +1.9 cents either side of the origin.
Despite lesser precision, the second finger demonstrated
the greatest tonal accuracy. Participants averaged a
mean tuning of —0.7 cents, whereas open, first, and third

finger notes averaged -2.44, —1.86 and —5.49 cents,
respectively.

Similarly, significant differences were observed in the
D Major condition. Participants averagely demonstrated a
similar trend of slightly ‘flattening’ first, second and third
finger notes (with respective mean tunings of —1.9, -0.56
and -0.24 cents). Fourth finger notes, in contrast, aver-
aged notably sharp, at +2.17 cents. Tonal variance across
fingers was reasonably consistent, ranging between
13.86 and 14.85 cents. Notes A3, F#4 and C5 demon-
strated the lowest tonal precision, with respective stan-
dard deviations of 14.72, 14.53 and 14.93 cents. Notes A4
and C4 demonstrated the greatest tonal precision, with
respective deviations of 10.45 and 10.88 cents. Lacking
correspondence across conditions, these results do not
suggest note-fingers to be a reliable predictor of habits in
tonality.

6.5 SUMMARY
While it should not be assumed that observed participant
trends ground the participant classification accuracies
demonstrated previously, such analyses do indicate sta-
tistically significant idiosyncrasies shape tonal and tem-
poral execution.

Immediately, one might conclude that performers
may wish to expend greater attention towards the prac-
tice of Spiccato bow-strokes, addressing consistently
lower degrees of temporal precision and accuracy. Like-
wise, one may infer that, through repeated practice,

Note Pitch
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Figure 9 Piano roll graph depicting a recorded D Major scale (Legato).
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performers may minimise their individual correlation
between tempo and tonal variance, towards greater
tonal consistency at higher tempi. In authoring our find-
ings, however, we suggest that the role of biomechan-
ical constraints - as discussed in prior literature - must
be considered carefully before drawing such conclusions;
almost certainly, task-specific ceilings exist at which fur-
ther quantitative ‘improvements’ cannot be made. Iden-
tification of these would require further, longitudinal
study; these are not identifiable within the scope of this
work.

We must acknowledge that the application of such
quantitative perspectives may be considered reductive in
aninherently qualitative discipline. Notably, during discus-
sion, one participant characterised the implied demands
of such feedback as ‘robotic’. It is therefore neces-
sary to consider the applicability of an isochronous ‘tar-
get’ tempo. While Chander et al. (2022) demonstrate
that rigid isochrony may not be invariably desirable -
particularly during solo recital, as was stipulated - cer-
tainly there remain circumstances wherein an ability to
maintain an established tempois crucial; Ihas et al. (2023)
identify violin pedagogues Samuel Applebaum, Louis Kiev-
man and Simon Fischer as proponents of metronome
practise, while Prynn (2018) declares the metronome: ‘an
essential tool for the preparation of ensemble work....
We consider our proposed implementation feasible as a
supplement to metronome practise, facilitating assess-
ment of continued adherence to notated tempi following
departure from the metronome. We do not profess that
our implementation serves to replace traditional studen-
t/teacherinstruction. Instead, we believe the documented
ability to quantify and visualise such performer tendencies
can offer utility to both teachers and students - whether
as a tool for the triage of student ‘habits’ or the provi-
sionof ‘habit’-informed practise feedback. While rudimen-
tal, presently recorded exercises facilitated our analyses
of two fundamental performance aspects - tonality and
temporality. Analyses of music of further technical com-
plexity may be facilitated via score-following. This would
enable observation of tonal and temporal deviation from
defined melodies, comprising notes of different lengths
and ground-truth pitches.

Our usage of the Apple Watch eliminated the require-
ment of many control measures typically imposed in
optoelectronic studies. These include regulation of cloth-
ing, lighting and positioning of the participant (Chander
et al., 2022; McGuirk et al., 2022). Further, the devised
recording interface requires minimal set-up, necessitat-
ing no consideration of camera placement, framing, ref-
erence pose or marker-placement.

Naturally, this solution does not fully parallel opto-
electronic systems - movement captured is limited to
the wrist. Whole-body gestural consideration is endorsed
in pedagogy (Bugaj et al., 2019), and the significance

of whole-body movement has been demonstrated
by Chander et al. (2022). The wrist, however, con-
stitutes a fulcrum of the bow-stroke: the essential,
sound-producing motion (Palac, 1992). Thus, while an
analysis of ‘non-technical’ performer movements may
necessitate whole-body motion capture, we deem this
non-essential for the provision of such insights, focussed
currently towards the bow-stroke.

Further exploratory work was undertaken to assess
the system’s utility towards analysis of a trial-recorded
melody. Temporal and tonal deviations presented chal-
lenges identifying which segments corresponded to
scored notes. To address this, we calculated recorded-
note ‘centroids’ (midpoints of frequency and duration,
normalised), pairing these with scored-note ‘centroids’,
based on the minimum total Euclidean distance with
which all could be paired. Issues arose during instances
wherein false negatives produced an unequal number
of centroids to be paired. Thresholding was therefore
introduced, enabling disposal of erroneous centroids.
Determination of a suitable threshold is complicated by
variation in pitch and tempo. Figure 10 depicts a pro-
totype implementation, demonstrating circumstantial
utility; however, we do not consider this approach suit-
ably reliable for further analyses at this time. Given the
difficulties encountered, we anticipate that score-based
onset detection would prove more feasible for analyses
of non-isochronous melodies.

We also recognise that intentional deviation from
‘metronomical exactitude’ may be preferred during
such expressive musical contexts (Flesch, 1939q, p. 50;
Galamian, 1964, p. 7). The dependence of such inten-
tional temporal deviation upon musical context has
been demonstrated previously via quantitative means
(Chander et al., 2022; Huberth et al., 2020). Further, we
note limitations towards the feasibility of attaining ‘per-
fect intonation’; again, this concept is discussed within
pedagogical literature (Flesch, 1939b, p. 20). Our imple-
mentation provides a means by which the extent of such
deviation - whether preferred, intended or otherwise -
can be observed.

7 CONCLUSION

By quantifying technically simplistic aspects of a user’s
practice, meaningful tendencies - or ‘habits’ - can
be observed, providing insights which may prove con-
structive by informing practice. Through combination
of the documented analytical approach with an accu-
rate, gesture-based articulation classifier - as detailed in
Wilson et al. (2023) - we intend that such insights may
be automated for excerpts containing multiple bow artic-
ulations.

This research sought to minimise barriers to both
research engagement and conduction, through use of a
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Figure 10 Piano roll graph depicting a multimodal recording of an excerpt from Gossec’s Gavotte, bars 27-34. Tempo: Allegretto

(120 BPM).

device more readily available than those used in prior vio-
lin TEL applications; however, the significance of remain-
ing barriers should not be understated. Ownership of an
Apple Watch cannot be assumed, limiting adoptability
of our approach in real-world practice scenarios. Given
observed, audible differences between up- and down-
bows, an audio-only classifier facilitating identification
of these may prove feasible. Use of available gestu-
ral modalities may enable development of this through
expedited, albeit assumed labelling. Provided sufficient
accuracy, this would provide similarly detailed practice
feedback, while negating entirely the requirement of spe-
cific hardware.
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