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ARTICLE INFO ABSTRACT

Keywords: Residential heating accounts for about 27 % of the UK’s energy consumption. While residential heat pumps
Air-to-water heat pump (RHPs) are central to the transition toward sustainable energy, optimising their real-world performance requires
Field data

robust experimental monitoring and predictive modelling. This study presents a data-driven approach for
evaluating and optimising the performance of residential air-to-water heat pumps (A2WHPs) using real-time data
and machine learning (ML). A full-scale experimental setup was deployed in a UK-based end-terrace building,
incorporating IoT-enabled sensors to capture 275 days of operational data that was processed into a 6,600-hour
dataset. Key thermal, electrical, and environmental parameters were measured at high temporal resolution and
used to develop predictive models for the system’s coefficient of performance (COP). Several ML models,
including Random Forest, Support Vector Regression (SVR), eXtreme Gradient Boosting (XGBoost), Artificial
Neural Networks (ANN), and Long Short-Term Memory (LSTM), were evaluated using rigorous preprocessing,
principal component analysis, and GridSearchCV hyperparameter tuning. LSTM, XGBoost, and ANN achieved the
highest prediction accuracy with low error values across MAE, MSE, RMSE, CVRMSE, and NMBE. Diagnostic
plots and residual analysis further confirmed the generalisability of the models and their sensitivity to non-linear
operational behaviours. The findings demonstrate that integrating ML with real-world data can provide a robust
predictive framework for operational diagnostics, performance evaluation, and efficiency improvement in resi-
dential heat pumps. This approach supports scalable, data-driven energy management and contributes to
decarbonising the built environment.

Machine learning

Grid search
Hyperparameter tuning
Feature engineering

Abbreviations: SPF, Season Performance Factor; COP, Coefficient of performance; ASHP, Air Source Heat Pumps; A2WHP, Air-to-water heat pump; GSHP, Ground
source heat pump; DHW, Domestic hot water; SH, Space heating; CH, Central heating; RHPs, Residential Heat Pumps; UFH, Under-floor heating; HP, Heat pump;
SEFF, System efficiency; ML, Machine learning; MID, Measuring Instrument Directive; SVR, Support Vector Regressor; XGBoost, Extreme Gradient Boosting; RF,
Random Forest; LR, Linear Regression; PR, Polynomial Regression; MLR, Multiple Linear Regressor; ANN, Artificial Neural Network; RNN, Recurrent Neural
Network; LSTM, Long Short-Term Memory; LCA, Life Cycle Assessment; KNN, K-Nearest Neighbour; KDE, Kernel Density Estimation; MCS, Microgeneration Cer-
tification Scheme; MIR, Mutual Information Regression; PCA, Principal component analysis; flowT, Flow temperature; returnT, Return temperature; outsideT,
Outside temperature; heat kW, heat output power; heat kWh, heat output energy; elec kWh, cumulative electrical energy consumed; Rhum, Relative humidity;
roomT, Room temperature; U_value (W/m?2.K), overall heat loss coefficient; R?, Coefficient of determination; MAE, Mean Absolute Error; MSE, Mean Squared Error;
RMSE, Root Mean Squared Error; NMBE, Normalised Mean Bias Error; CVRMSE, Coefficient of Variation of Root Mean Squared Error; RFE, Recursive Feature
Elimination; IoT, Internet of Things; IEF, Integrated Evaluation Framework; M & V, Measurement and Validation; HVAC, Heating, Ventilation, and Air Conditioning;
BEM, Building energy management; PINN, Physics-informed neural network; PI-LSTM, Physics-informed long short-term memory; GridSearchCV, Grid search cross-
validation; AFDD, Automated fault detection and diagnosis; EEPOM, Energy Efficiency Prediction and Optimisation Model; EN1434, European standard for heat
meters; m>/hr, metre cube per hour.
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1. Introduction approximately 25.5 million heat pumps were installed across 19 Euro-

pean countries in residential, small office, and retail spaces, helping to
The installation of heat pumps and their market penetration across avoid 21 billion cubic metres of gas importation, and saving about 45

European countries have been steadily increasing, driven by the need for megatonnes of CO, emissions per year in Europe [1]. The sharp rise in
sustainable energy solutions and decarbonisation efforts. Recently, sales in countries such as Sweden and France underscores their potential
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Fig. 1. Schematic diagram of the case-study building (a) A2WHP system (b) The position of heat and electricity meters within the pipe network of the
A2WHP system.
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Table 1
System-level Summary.

Characteristic
Air source: air-to-
water (A2W)

Component
Heat pump type The heat pump extracts heat

from the ambient air

Heat pump capacity 6 kW The manufacturer’s datasheet
capacity for the heat pump
system

Refrigerant R32 Working fluid for the heat
pump system

Design flow temperature 45°C The temperature of water-

glycol that is extracted from
the heat pump condenser
before entering indoor heat
exchangers, such as radiators,
underfloor pipe networks, and
DHW tanks.

The minimum temperature at
which the heat pump system
can operate efficiently, as
specified by the
manufacturer’s datasheet.
Case study building

Manufacturer-defined -2.2°C
outside design

temperature.

Building archetype Semi-detached

Building floor area 96 m? The case study building floor
area.
Data source Field Remotely transmitted data
measurement

Manufacturer model Altherma 3
reference
Electricity meter Measurement device

specification

class 1 with an
accuracy of + 1
%
class 2 with an
accuracy of + 2
%

Measurement device
specification

Heat meter

The combined uncertainty ~1-2% Measurement device
(COP, energy, flow) specification
Manufacturer-defined air A2W35 Characterised by 2 °C outside

source heat pump
operating regime (source/
sink temperatures)

source (air) temperature and a
35 °C Water-glycol sink
temperature

to dominate the residential heating market. Life Cycle Assessment (LCA)
studies on air source heat pumps (ASHPs) indicate significant environ-
mental benefits, reducing heating-related emissions by 37 % in older
dwellings and 54 % in new constructions across 18 European countries
[2]. Heat pumps play a pivotal role in energy network decarbonisation,
efficiently converting low-carbon or zero-carbon electricity into heat for
space heating and domestic hot water supply. Unlike air conditioners,
heat pumps can provide heating and cooling through a four-way diverter
(reversing valve).

Heat pumps offer greater efficiency compared to alternative heating
systems [3]. However, early field trials (e.g., Energy Trust, 2010; 2013)
recorded lower-than-expected seasonal performance factors (SPF), pri-
marily due to installation, commissioning, and control issues [4]. In
contrast, more recent data indicate an average SPF for heat pumps across
hybrid systems is clustered between 2.5 and 3.5, depending on system
boundary definitions [5]. This performance gap has led researchers to
explore the external factors influencing real-world efficiency, ques-
tioning whether broader lessons can enhance heat pump performance.
External environmental variables significantly impact heating systems,
introducing uncertainties within building-integrated heat pump opera-
tions [6]. Addressing these inefficiencies requires modelling, calibration
frameworks, and parameter optimisation, which can enhance energy
efficiency [7]. An integrated evaluation framework (IEF) combined field
experiments, operational monitoring, and modelling to provide a robust
tool for performance assessment and optimisation [8]. Energy and
exergy analysis remain fundamental in identifying heat pump efficiency
improvements through modelling and optimisation strategies [9].
Bridging the gap between predicted and real-world heat pump perfor-
mance requires adopting IEF, enabling stakeholders to make informed
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decisions. Yu et al. [10] emphasise the importance of design-oriented
modelling and uncertainty analysis in evaluating complex systems
under varying conditions. System modelling approaches generally fall
into analytical, empirical, and simulation-based methods [11]. Sub-
ramanian et al. [12] categorised modelling contributions into two do-
mains — modelling approach and field applications.

Recent developments in the use of Internet of Things (IoT) sensors in
management systems, such as real-time monitoring, predictive control,
and online fault detection and diagnosis (OFDD), have significantly
enhanced operational efficiency and energy optimisation in buildings.
IoT-enabled Heating, Ventilation, and Air Conditioning (HVAC) systems
facilitate uninterrupted communication between devices, enabling real-
time data exchange on operational performance and environmental
conditions [13]. Rapid attention is shifting towards IoT integration in
building HVAC systems, to allow real-time prediction and intervention,
while strengthening adaptive and responsive control strategies [14,15].
Several authors have proposed different methods to integrate building
performance evaluation with IoT. Gao and Shardt [16] proposed a
learning-based and iterative IoT system for energy management in
connected buildings, and validated the system through simulation using
real-world building data. Deep reinforcement learning was utilised for
HVAC control actions, and the iterative optimisation algorithm was
employed to integrate physics-based and learning-based models. The
proposed IoT-based system achieves zero-energy building management
leveraging real-time energy efficiency optimisation, renewable energy
integration, and adaptive control strategies. Yaici et al. [15] leveraged
an IoT-based system for monitoring and controlling heating and cooling
in residential buildings, utilising two control strategies based on outside
air temperature and time-oriented temperature. The first control strat-
egy serves as a baseline strategy that is regulated based on external
temperature variations, allowing the control system to alternate be-
tween standby, active, and inactive modes. The second control strategy,
referred to as the optimised baseline strategy after undergoing feedback
and refinement, introduces a time-oriented method for temperature
adaptation when the system is in heating or cooling mode. This
approach relied on time-of-day-dependent thermal dynamics commonly
observed in residential buildings. According to these authors, the IoT
system reduced energy consumption by 21 % during heating scenarios.
This is further validated in Abdelwahed et al. [17] and Corra et al. [18].
Prioritising fault detection and diagnosis in heat pumps is crucial to safe
plant operations, maintaining projected energy consumption, and sus-
taining the set indoor thermal comfort. Chew & Yan [19] developed a
three-layer diagnostic Bayesian network, integrating maintainability
rules to improve intelligent and automated fault detection and diagnosis
(IAFDD) for HVAC systems utilising data from IoT sensors.

Machine learning (ML) models, often referred to as “black-box”
methods, exhibit high flexibility in handling dynamic systems but
require modifications to their input for interpretability [20,21]. These
models use historical data, statistical patterns, and similarity analysis to
generate accurate predictions. ML algorithms are broadly classified into
supervised and unsupervised learning, with empirical methodologies
crucial in Air source heat pump (ASHP) performance prediction. Pre-
diction models generally use single or ensemble learning approaches
[22]. Standard algorithms include decision trees, support vector
regression (SVR), artificial neural networks (ANN), random forest (RF),
XGBoost, and Long Short-Term Memory (LSTM), all of which have
demonstrated success in building performance prediction [23]. These
models learn from historical performance data, gaining insights from
interactions within the overall building system. LSTM, in particular,
excels in handling time-series data, capturing long-term dependencies
and complex temporal patterns [24].

The Coefficient of Performance (COP), as defined in Equation (1), is
the standard metric for evaluating heat pump efficiency under steady-
state conditions; however, it does not always accurately reflect real-
world performance [25]. The COP of ASHP is highly influenced by
ambient conditions, including temperature and humidity [26], but
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Fig. 2. Sequential workflow diagram of this study.

non-weather-related factors also play a significant role [23]. Opera-
tional monitoring and predictive modelling are essential for COP esti-
mation, optimisation, energy savings assessment, and fault detection.
Incorporating real-time data, advanced modelling, and uncertainty
quantification helps align predicted and real-world performance out-
comes [27]. Achieving accurate COP predictions within a
multi-dimensional feature space requires optimal model selection and
parameter tuning [28]. Advanced ML models have demonstrated strong
potential for improving the prediction accuracy of heat pump COP, heat
output, and power consumption, as well as facilitating system control
optimisation [28-30].

__ Heat Energy generated (Qup)

COP =
Input electrical energy (Epp)

(€8]

Existing studies have developed various ML models and optimisation
algorithms for heat pump performance and hydronic modelling across
different applications. Chesser et al. [23] applied ML algorithms to
predict ASHP in situ performance, demonstrating that ensemble
methods like RF outperform advanced statistical and single predictive
algorithms. Tangwe and Simon [31] employed multiple linear regres-
sion (MLR) to model the performance of ASHP water heaters based on
flow and return water temperatures, water quantity, relative humidity,
and ambient temperature. Cho et al. [28] employed TRNSYS 18 to

model a residential ground source heat pump (GSHP) and trained ML
models for GSHP COP prediction. Many studies predicting the coeffi-
cient of performance (COP) of heat pumps rely on previously conducted
field trials or simulated data from models. However, data sparsity across
time and space can introduce confirmation and historical bias. More-
over, the increasing adoption of residential heat pumps necessitates
data-driven energy efficiency assessments using IoT-enabled energy
meters to reduce costs and enhance power grid resilience [27,32].

This study employs an independent performance monitoring
approach for real-time data collection and analysis, evaluating the
effectiveness of eight ML algorithms — linear regression (LR), MLR,
polynomial regression (PR), RF, SVR, XGBoost, ANN, and LSTM, in
predicting COP for monitored air-to-water heat pumps (A2WHPs) in a
residential building. These algorithms were selected based on the multi-
dimensional nature of heat pump datasets and the non-linear in-
teractions between features. The proposed Energy Efficiency Prediction
and Optimisation Model (EEPOM) integrates prognostic methodologies
to enhance model robustness and generalisability, given the complex
relationships in ASHP performance data. The key contributions of this
study are:



R.B. Ayoola et al.

Table 2
Description of features of the trained dataset.

Features/Variables Notation Class Description

Timestamp (Hour) t Independent/ Driving force for other

feature variables

Flow temperature (°C) T _flowT Independent/ Driving force for heat

feature transfer in the hydronic
distribution circuit

Return Temperature T_returnT Independent/ Used to calculate delta

o) feature T (AT)
Volumetric Flowrate FR_flowrate Independent/ Used to determine heat
(m3/hr) feature transfer capacity
Outside temperature T _outsideT Independent/ It affects efficiency and
©c) feature performance
dynamically
Coefficient of COoP Dependent/ Measure of heat pump
performance Target efficiency (to be
predicted and
optimised)

Delta T (AT °C) AT Derived Directly reflects
performance
efficiency.

Electricity consumed P_elec Intermediate Input to COP/SPF

(kw) calculation

Heat output (kW) Q_heat intermediate Input to COP/SPF (Also
dynamically controlled
to achieve the desired
indoor temperature
{DV})

Relative humidity Rhum Independent/ It affects efficiency and

feature performance
dynamically

Usage profile (e.g. Independent/ It affects efficiency and

Temperature feature performance
setpoint) dynamically

Building features (e.g. U_value Independent/ Little impact on season

heat loss or gain from feature efficiency of heat pump
wall, floor, roof, and (Burns et al., 2021)
furniture) (W/m?2. K)
Indoor temperature T_roomT Dependent/ It affects efficiency and
‘o Target performance
dynamically

e Real-Time Data Collection — Unlike most studies, which rely on
simulated or past field-trial data, this work deploys IoT-enabled en-
ergy heat meters to collect fresh, real-world data.

Comprehensive ML Analysis — This study evaluates a diverse set of
state-of-the-art ML algorithms, including ensemble, kernel-based,
and deep learning models, whereas many studies consider only a
few. Furthermore, it incorporates an unsupervised learning approach
for dimensionality reduction, complementing supervised feature se-
lection for more reliable predictions.

Performance Optimisation through GridsearchCV Hyperparameter
Tuning — Assesses manual versus optimised hyperparameter config-
urations to identify potential performance improvements across all
ML models.

Therefore, this work is novel in its integration of IoT-based real-time
monitoring, comprehensive machine learning evaluation, and model
diagnostics to optimise residential A2WHPs performance and provide a
scalable, field-tested approach for energy efficiency and smart heating
system control.

2. Methodology

The methodology of this study consists of two phases, involving
measurement and validation (M&V) processes that utilise experimental
and data curation techniques. The first phase includes installing and
commissioning an IoT-enabled energy monitoring device (heat meter)
on operational A2WHPs (6 kW capacity, R32 refrigerant, and design
flow and outside temperatures of 45 and — 2.2 °C, respectively) with a
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hot water tank (Mixergy MX012661, 180 L capacity with legionella
target temperature of 55 °C and equipped with immersion heater of 3.0
kW) to capture real-time performance data from a single-family semi-
detarched dwelling (case study building) with a total floor area of 96 m?,
located in the United Kingdom. The heat meter — Sontex-Superstatic-
789, with a capacity of up to 7 kW, features a measurement accuracy
of 1-2 %, Pt1000 Temperature Sensors, continuous flow rates of 2.5 m®/
hr, and is glycol tolerant. It is class 2 MID approved to EN1434, ensuring
compliance with industry norms. Sensor networks were used to measure
various parameters, including instantaneous indoor and ambient tem-
peratures, heat energy input/output, flow temperatures, and the con-
tributions of heat energy toward central heating and domestic hot water.
The schematic diagram of the installed A2WHP and associated
measuring system setup is shown in Fig. la. Fig. 1b. Specifically, the
measurement devices used for data collection possess the following
specifications: The Electricity meter is class 1 with an accuracy of + 1 %,
the Heat meter is of class 2 with an accuracy of + 2 %, and the combined
uncertainty (COP, energy, flow) is ~ 1-2 % [33]. Table 1 gives a sum-
mary of System-level parameters in the study.

2.1. Air-to-water heat pump (A2WHP)

The A2WHP provides space heating (SH) and domestic hot water
(DHW), and the monobloc outdoor unit (installed at the rear of the
building to comply with MC regulation) is integrated with an indoor hot
tank system to maximise heat recovery (Fig. 1). It incorporates three
energy controls, a solar diverter, an immersion heater, and a heat
exchanger, to manage the building’s dynamic load profile. The solar
diverter supplies power to the immersion heater as needed and redirects
excess energy to the grid. The secondary circuit, comprising 85 % water
and 15 % glycol (Propylene), circulates fluid through radiators, under-
floor heating systems, and the DHW tank. A 3-way Honeywell’s esbe’
valve is installed to enable the A2WHP unit to provide SH and DHW
effectively. The monobloc A2WHP generates hot water with distinctive
properties, which is then delivered to each secondary circuit unit
through pipes and pumps. This study focuses on the thermal and hy-
draulic behaviour of the system at the secondary circuit level, analysing
water flow rates, heat capacity, and flow/return temperatures at
different operating conditions. However, the thermodynamic behaviour
of the refrigerated circuit (standalone A2WHP) is not considered here.

2.2. Challenges and mitigations in field-based monitoring

To achieve seamless and reliable data collection from the site, pri-
oritising high monitoring quality is vital. One of the early challenges
encountered was incorporating external environmental variables, such
as ambient temperature, into the monitoring scheme, which proved to
be challenging due to the extended period required for data integration.
However, the Met Office weather data was successfully integrated with
other operational features of the ASHP systems, facilitating the collec-
tion of comprehensive data blocks. Furthermore, securing constant
approval from the occupier of the case study site (test bed) for necessary
interventions requires several days, which delays the proposed
commencement of the data collection exercise. However, this was sub-
sequently resolved through the coordinated efforts of the field moni-
toring team and the site manager.

2.3. A2WHP monitoring, data acquisition and processing

The second phase of the study focused on data curation and prepa-
ration. This included preprocessing, imputation of missing values using
the K-nearest neighbour (KNN) method, normalisation, and dimen-
sionality reduction through Principal Component Analysis (PCA). These
steps were conducted using Python 3.11 (64-bit) in an Anaconda envi-
ronment, with a system powered by a 2.10 GHz AMD Ryzen 5 PRO
4650U processor. The overall research workflow is summarised in Fig. 2,
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Fig. 3. Time series profiles of key operational features from the heat pump system over a week, with subplots (a, c, e, g) showing the raw data before preprocessing

and subplots (b, d, f, h) showing the data after preprocessing.

and an overview of the dataset features is provided in Table 2. The
dataset consisted of 275 days of real-time data collected from the case
study building between January 12, 2023, and September 1, 2024. Data
collection was enabled through sensor-integrated heat meters from
OpenEnergyMonitor [34], providing detailed readings on flow and re-
turn temperatures, electric power consumption, heat output, flow rate,
indoor and ambient temperatures, and corresponding hourly COP
values. Measurements were initially recorded at 15-minute intervals and
later aggregated to hourly resolution, resulting in a dataset of 6,600
hours. In real-world scenarios, high-frequency data are often accompa-
nied by noise and transient effects, particularly during compressor
startup and ramp-down. This can temporarily raise or reduce COP values
due to a lag between the electrical power consumed and heat delivery at

these instances. Several studies have documented this phenomenon as
transient cycles that skew performance metrics [35]. To minimise this
temporal fluctuation and focus on steady-state trends, the dataset was
aggregated to hourly intervals, as recommended in prior studies [23,
36]. This smoothing decreases signal noise and enhances model stabil-
ity, which is essential for our targeted control-oriented modelling and
MPC implementation. This is particularly crucial due to the factors
related to heat pump cycling behaviour [37]. The dataset was split into
training and test sets. K-fold cross-validation was performed on the
training set alone to select and tune models, and the final model was
evaluated on the test set. GridSearchCV was employed to enhance pre-
diction accuracy for hyperparameter tuning. The predictive perfor-
mance of each ML algorithm was assessed using actual vs. predicted
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outputs, error analysis, and R? scores, both before and after tuning. This
robust combination of real-time monitoring and advanced data-driven
methods helped identify performance inefficiencies and optimise the
A2WHP.

2.3.1. Data preprocessing

Data preprocessing is essential for preparing raw data for ML models,
involving cleaning, organising, and standardising data to ensure it is
suitable for modelling and to enhance model reliability. Due to varia-
tions in data sources, collection techniques, and sensor accuracy, raw
datasets often contain noise, missing values, and inconsistencies [38].
ML algorithms are susceptible to data quality, and preprocessing can
directly influence their accuracy and predictive performance [39]. In
this study, the ‘date’ feature was removed as it offered limited predictive
value for some models. A quartile transformation technique was applied
to normalise feature distribution, ensuring a rank-based adjustment
[40]. This transformation redistributes modal values, enhancing data
uniformity while reducing the impact of outliers (Zuang et al., 2020).
Furthermore, this technique fosters model robustness, mitigating the
influence of near-outliers and improving generalisation [41]. Fig. 3
displays the time series profiles of observed features, including power
consumption, heat output, flow temperature, and outside temperature.
Subplots (a, c, e, g) present the raw data before preprocessing, while
subplots (b, d, f, h) show the data after preprocessing. The comparison
demonstrates the effects of initial conditioning, which involved linear
interpolation of missing values, smoothing, and outlier filtering on the

time-series data [42,43].

2.3.2. Data normalisation and transmission

Data normalisation ensures data integrity by structuring and
organising information, reducing redundancy (duplicate data), and
minimising skewness in statistical analysis [44]. Given its role in
improving feature distribution, normalisation is critical for ensuring ML
models operate efficiently. Studies have demonstrated its importance in
enhancing model performance and preventing feature dominance [45].

Regression models and other statistical approaches often assume
homoscedasticity (constant variance in errors). However, violations of
this assumption will lead to heteroscedasticity, where variance fluctu-
ates across different predictor levels [46]. Detecting and addressing
variance inconsistencies is crucial for ensuring reliable model pre-
dictions [47]. Data transformation techniques are widely used to miti-
gate heteroscedasticity [48]. This study applies quantile transformation,
redistributing data based on principles of uniform or normal distribu-
tion. This approach spreads out frequent observations, effectively
reducing the influence of outliers and making it a robust preprocessing
strategy. A quantile transformation was performed on the training
dataset, ensuring that all features were scaled between 0 and 1. Fig. 4
depicts the original variable distributions, revealing a multimodal and
skewed structure indicative of heteroscedasticity. After applying a
quartile-based data transformation, Fig. 5 demonstrates a stabilised
variance, approximating a normal distribution and improving model
consistency.
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2.3.3. Feature engineering

To account for seasonal variations in estimating COP, seasonal
decomposition techniques were employed [49], [50], [51]. This process
isolates seasonal components, allowing a deeper understanding of the
relationship between key features independent of cyclical variations.
Therefore, trend analysis of the target feature (COP), seasonal decom-
position for heat output, and anomaly detection in daily electricity
consumption were carried out. Furthermore, seasonal components were
removed using STL (Seasonal-Trend Decomposition using Loess (Locally
Estimated Scatterplot Smoothing)) to ensure data stationarity for further
modelling. This technique enhances predictive accuracy by eliminating
cyclical distortions.

2.3.4. Exploratory analysis of time series data

Effective system optimisation and energy-saving strategies require a
comprehensive analysis of performance trends, efficiency metrics, and
seasonal influences, particularly in high-dimensional energy systems.
New features were derived from the key variables influencing residential
A2WHP performance. Seasonal analysis, day-of-the-week analysis,
temperature differences over time, patterns in energy consumption, and
comparative analysis of evaluation metrics across seasons and day-of-
the-week are visualised using techniques such as lines, bar charts, and
box plots. Fig. 6 (a-f) shows the patterns that are derived from the sea-
sonal decomposition of the time series data, including trend analysis of
heat output, seasonal components, cumulative energy consumption,
heat-to-electricity ratios, seasonal heat demand, and average energy

usage patterns by day of the week. Fig. 6a illustrates the visible jump in
daily aggregated heat demand in January, likely aligning with a rise in
heat demand due to colder outdoor conditions. Following that period,
the heat demand remains relatively stable, with mild fluctuations,
through to November. The cumulative slope observed suggests the
presence of temporal dependencies (the influence of historical and
current states on future operations) in the operation of the heat pump
system. Fig. 6b shows the seasonal component of heat output usage,
highlighting the recurring variation in heat demand. For instance, the
high peaks observed in January, March, July, and September indicate
above-average seasonal heating demand during those periods. Mean-
while, February, April, August, and October witness below-average
seasonal demand. A large magnitude of fluctuation reflects season
variation, mainly attributed to either weather, occupancy, or system
efficiency. Fig. 6¢ reveals that there is a stable but cyclic heat-to-
electricity ratio, alternating between 3.6 and 3.8 throughout the
period. Based on the observed regular crests and troughs, we can iden-
tify predictable seasonal and operational patterns, likely attributed to
prevailing external temperature and usage profile. Fig. 6(d) presents the
distribution of daily heat output across four seasonal periods, revealing
an asymmetric distribution with a median range of 140,000-150,000
kWh, highlighting variability across seasons [52,53]. However, winter
and fall, characterised by consistent heating demand, exhibit higher
variability in daily heat demand with a wider interquartile range.
Overall, heat demand remains stable but elevated year-round, likely due
to system configuration. Fig. 6e compares the average daily heat energy
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Fig. 6. Characteristics of the time-dependent sequential dataset, (a) Trend analysis of heat output, (b) season component of heat output, (c) Heat to electricity ratio
over time, (d) Heat output for four typical UK seasons, (e) Average daily energy usage pattern by day of the week.

demand pattern to electrical consumption by day of the week. The plot
shows consistent heat demand across the weekdays with a slight dip on
Saturday, suggesting reduced occupancy [54]. Meanwhile, the electrical
energy mirrors the heat energy profile, raising the possibility that the
system maintains a consistent energy balance across the week. The
embedded error bars reflect the natural variability in heat demand and
energy consumption across the week. This observed spread conformed
with the 1-2 % uncertainty range of the class 1 (electric meter) and class
2 (heat meter) used for our measurements.

2.4. Machine-learning-based models

It has been established that no single ML model excels across all
problem domains, as performance varies by application [55,56]). For
instance, decision trees provide interpretability for smaller datasets,
while neural networks capture complex patterns in high-dimensional
data [55]. This study uses SVR, RF, LSTM, PR, and XGBoost based on
their effectiveness in handling complex datasets and their proven
effectiveness across various predictive tasks [57-59]. After identifying
the model, its hyperparameters are systematically tuned to enhance the
prediction effectiveness of the model on the given dataset, avoid
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overfitting and enhance the model’s generalisability [,60,61]. Various
techniques were employed, including exploratory data analysis, statis-
tical tests, feature engineering, and visualisation methods to assess the
non-linearity within the case study dataset. Fig. 7(a) presents a
three-dimensional (3D) scatter plot to provide an intuitive insight into
variable relationships through clusters, trends, and outliers [62,63].
However, scatter plots are limited by noise and data sparsity, restricting
their ability to capture complex interactions between variables fully. To
address these limitations, Fig. 7(b) introduces a 3D surface plot, which
provides smooth approximations of local topology, effectively high-
lighting non-linear relationships and intricate feature interactions in the
dataset [64], [65]. These visualisations collectively confirm that the
dataset has high dimensionality and complexity, necessitating advanced
modelling approaches. Furthermore, the high variability in the
measured COP over time, as shown in the 3D plot, suggests fluctuations
beyond ambient and secondary circuit flow temperatures, implying
multiple underlying factors influencing system performance [66].
Following the characterisation of the dataset as dynamic and highly
dimensional, the following five ML algorithms, including RF [67], SVR
[68], XGBoost [69], LSTM [70], and ANN were selected for predictions
based on their ability to model the inherent non-linearity observed be-
tween the features in the dataset and target variables. These algorithms’
hyperparameters are fine-tuned before retraining on the training dataset
and the unseen case study A2WHP dataset (i.e., test dataset). A grid
search was employed, given the limited and discrete characteristics of
the hyperparameter space for the selected ML and the simplicity of the
parameter architecture. This systematic exploration approach examines
all possible hyperparameter combinations within a specified grid to

W Heat kWh
b Elec kWh

Thu Sat Sun

Day of the Week

(continued).
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optimise model performance [71], [72]. Table 3 presents various ML
algorithms and their effectiveness according to the characteristics of the
dataset, which are used as model suitability criteria in the proposed ML
models.

2.4.1. Random forest (RF)

The RF is an advanced ensemble learning approach widely used for
classification, regression, and non-standard processes, such as clus-
tering, ranking, feature selection, and outlier detection [73]. By
combining multiple decision trees, RF enhances prediction accuracy and
mitigates overfitting. This method effectively captures complex patterns
and reduces errors associated with individual tree models. RF is
particularly well-suited for high-dimensional datasets, making it appli-
cable across diverse domains [74]. It employs bootstrap aggregation
(bagging), where individual decision trees are trained on random sub-
sets of the dataset, and the mean prediction from all trees determines the
final output in regression tasks [73]. This aggregation process controls
errors, improves model robustness, and enhances predictive reliability
[67]. Additionally, due to its tree-based framework, RF excels in
modelling non-linear relationships and capturing complex variable
interactions.

2.4.2. Support vector regression (SVR)

The SVR is a supervised learning algorithm based on support vector
machine (SVM) principles. It predicts continuous values by mapping
data into a high-dimensional feature space and identifying a best-fitting
function within a defined tolerance margin (e). This approach allows
controlled error tolerance, making SVR particularly effective in
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of the dataset.

modelling non-linear interactions among variables. Fig. 8 shows the
structure of SVR.

where f(x) represents predicted values for input x, k(x;, x) denotes
the kernel function defining the shared features between training sam-
ples x; and the input x. The support coefficients a; represent the non-zero
weights of data points outside the ¢ tube influencing model predictions.
¥; denotes the target outputs in the training data and b" represents the
bias term, ensuring the model accurately fits the data while keeping the
deviation within € boundaries. SVR uses loss functions that show that
data points within the ¢ tolerance limits do not affect the error, while
those outside the margin influence the prediction error. Mathematically,
Equation (2) shows the e-Intensive loss function is expressed as:

O,lfly1 —f(x) < e
y1 — f(x;) | — &, otherwise

Ly f(x) = { @

2.4.3. Long short-term memory (LSTM)

The LSTM is a specialised recurrent neural network (RNN) archi-
tecture that retains past inputs using memory cells and a gating mech-
anism. These features enable effective handling of sequential data,
making LSTM well-suited for time series predictions [75]. Unlike con-
ventional RNNs, LSTM mitigates vanishing and exploding gradient
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Table 3
Features of machine learning algorithms for this study.
S/ Machine learning Characteristics of the dataset as suitability criteria for

N algorithms the ML models

1 SVR Effective for small datasets with non-linear patterns
[68]. Small-to-moderate datasets, linear or slightly
non-linear relationships, high-dimensional data, and
noisy datasets.

Handles non-linear relationships, is robust to outliers,
and performs well on structured data [69]. Tabular
datasets, large datasets, non-linear relationships,
imbalanced data, need for computational efficiency.
Baseline model and easy to interpret

Captures non-linear interactions and reduces
overfitting [67]. Large datasets, non-linear
relationships, mixed data types, outliers, feature
importance insights.

Model non-linear relationships. Simple datasets with
clear polynomial trends, low-dimensional data, and
small datasets.

Handles complex and high-dimensional relationships
and addresses vanishing gradients with gating
mechanisms. [70]. Sequential or time-series data,
long-term dependencies, large datasets, and non-
stationary data.

2 XGBoost

w

MLR

6 LSTM

1

Z a;y;, k(x;,x) +b"

i=1

f(x) = sgn

N
a1y1 ay,

ke(xq, x) k (x5, x)

Fig. 8. Structure of support vector regression.

issues through its gated memory structure. By preserving long-term
dependencies, LSTM captures complex temporal patterns in time series
data, including trends, seasonality, cyclic fluctuations, and residual
(random) noise [76,77]. Fig. 9 shows the LSTM architecture, depicting
the flow of information and memory control through its gating
mechanism.

2.4.4. Artificial neural network (ANN)

The ANN regressor is a deep learning model designed to predict
labelled outcomes by learning patterns and feature interactions within a
dataset rather than relying on explicitly programmed rules. Inspired by
the processing system of the human brain, ANNs generalise from
training data to accurately predict unseen inputs [78]. The primary
benefits of ANNSs include their ability to model non-linear relationships,
fast runtime, and robust performance under varying conditions. ANNs
optimise learning through backpropagation and gradient descent,
adjusting internal parameters to minimise prediction error [79]. The
ANN architecture is shown in Fig. 10.
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Table 4
The hyperparameter tuning architecture for the ML algorithms.
Algorithm  Hyperparameters combinations unique Total
evaluated combinations fits
(5-
fold
CcV)
ANN hidden_layer; 2%3%2%2 = 24; 24 120
number of units; each 5 times —
activation functions 120
(‘relw’, ‘tanh’);
optimiser (‘adam’,
‘rmsprop’)
LSTM hidden_layer; 2%3%2%2 = 24; 24 120
number of units; each 5 times —
activation functions 120
(‘relw’, ‘tanh’);
optimiser (‘adam’,
‘rmsprop’)
RF max_depth; 3*2 = 6; each 5 6 30
n_estimator times — 30
XGBoost max_depth; 3*2 = 6; each 5 6 30
n_estimator times — 30
SVR C’; ’gamma’; 4*4*3 = 48; 48 240
’kernel’ each 5 times —

240
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2.5. Evaluation metrics

Evaluating the predictive performance of machine learning models is
critical to ensuring their robustness and reliability. This study employed
a multi-metric evaluation approach, recognising that no single metric
can fully capture the complexity of model behaviour. Six metrics are
used, including Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root MSE (RMSE), Coefficient of Variation of RMSE (CVRMSE), Nor-
malised Mean Bias Error (NMBE) and R-squared (RZ). Each metric pro-
vides insight into model accuracy, variance, and bias [80]. As shown in
Equations (3)-(8), these error-based metrics form the foundation for
assessing the goodness-of-fit and generalisability of the models across
different scenarios. Following an initial screening of the eight ML
models, five top-performing algorithms were selected based on these
metrics for further analysis. In the context of measurement and verifi-
cation (M&V), combining multiple metrics enhances interpretability
and ensures a more nuanced understanding of predictive capability.
Residual patterns and quantitative error scores provide a comprehensive
basis for comparing model performance and identifying potential
limitations.

R? — = (Y - V)

= L 3)
S (Yi—Y)?



R.B. Ayoola et al.

Energy & Buildings 348 (2025) 116352

—— Daily Mean SPF

3851 --- Mean SPF = 3.65
3.80
3.75

SPF

3.70 4 V

Daily Mean Outside Temperature |

// \J\\ L
2 e .
3.60 7 \\
202‘3-12 202&-01 20221-02 202“1-03 20221-04 20211-05 202“1-06 20221-07 202;1-08 20221-09
Date
Fig. 11. Daily aggregated SPF variability and outside temperature.
Table 5
Descriptive statistics for AZWHP operational periods.
Count Mean std min 0.25 0.50 0.75 max
P_elec (kW) 3520.00 441.38 398.34 10.70 232.61 333.66 480.04 3000.02
Q_heat (kW) 3520.00 1630.74 1140.25 3.19 948.90 1456.95 1944.25 8013.73
T_flowT (°C) 3520.00 28.67 6.54 10.03 25.34 28.08 30.66 55.78
T_returnT (°C) 3520.00 26.53 5.29 12.97 24.63 25.85 27.24 50.73
FR_flowrate (m>/hr) 3520.00 10.35 5.00 0.00 6.96 9.00 14.77 24.94
T_roomT (°C) 3520.00 20.28 1.50 6.43 19.97 20.66 21.04 25.10
T_outsideT (°C) 3520.00 8.73 4.78 -6.18 5.74 9.12 11.39 29.89
Hourly_COP 3520.00 3.86 1.04 0.10 3.33 4.11 4.58 5.99
MAE — 1Zn v, ¥ | @ parameters for maximising the heat pump operational performance
T pl—imh T factor (Hourly COP). The following are the model-specific and sequen-
tial steps to perform a grid search for hyperparameter tuning. The grid
MSE = 12“ (Y — ¥;)? (5) search cross-validation method was implemented using GridSearchCV in
i=1 P . . .
n— the scikit-learn Pythonic library to perform an exhaustive search over
the specified hyperparameter combinations for individual ML models
RMSE — ®) [81]. Table 4 shows the optimal parameter search space, resulting in
optimal hyperparameter values.
Input: Machine learning model fyy, Training dataset .DGenerate: A set of candidate
oo 3 72 hyperparameters .H = {61, ---, 6, }Partition: Split D into k-fold cross-validation
b= UL subsets .{ (Dirqin1Dya1, }» s { (Deraink Dvark, }For each hyperparameter
CVRMSE = \| —Z— x 100% ) . { (D, o }F {(}:‘}l"ldgﬂ"}l) e oD with
Y configuration 6, in H:  For each fold Dyqing, Dyalj: rain fy, using Dirginj, Wit
.0; Compute error .E;; = Error(fMLtTainedonDrmm jvalidatedonD, J) Compute
S 1
IS (Y, - Y; the average error for 6;: .E; = <7) 3(fromj = 1tok)E;;Select optimal
B — 1210~ Y0 3 660 ® Tk y

Y

Where Y; is the observed value of the heat demand in the building, Y:is
the predicted value, Y is the mean of measured values, and n represents
the number of data points.

2.6. Hyperparameter tuning

Optimising hyperparameter for ML algorithms involves balancing
computational efficiency and accuracy. Various methods, including
traditional and metaheuristic approaches, have been explored to ach-
ieve this balance. The choice of method can significantly impact the
model’s performance, as different techniques offer unique advantages in
terms of convergence speed, flexibility, and robustness. There are four
key characteristics of design parameter space, including dimensions,
bounds, and size, and the goal is to identify the optimal combination of
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hyperparameters:.0° = argmin(over§;inH)Output: 6", fyy, trained with .6

Input: Machine learning model \(f {ML} \), Training dataset \ (D \).Generate: A set of
candidates hyperparameters \ (H = \ {\theta_1, \dots, \theta_n\} \).Partition: Split
\ (D \) into \ (k \)-fold cross-validation subsets \(\{(D_{train,1}, D_{val,1}), \dots,
(D_{train, k}, D_{val, k}) \} \).for each hyperparameter configuration \ (\theta_i \in
H\): for each fold \ ((D_{train, j}, D_{val, j}) \)

Train \(f {ML} \) using \ (D_{train, j} \) with \ (\theta_i \).

Compute error \ (E_{i, j} = Error(f {ML} \text {trained on} D_{train, j}, \text
{validated on} D_{val, j}) \)
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Fig. 12. Principal Component Analysis (a) Biplot (b) Variable loading plot.

Compute average error for \ (\theta_i \): \ (E_i = \frac{1}{k} \sum_{j = 1}k E_{i, j} \)
Select optimal hyperparameters: \ (\theta™* = \text{argmin}_{\theta_i \in H} E_i \).
Output: \ (\theta™ \), \(f_{ML} \text {trained with} \theta™ \).

2.7. Season performance factor (SPF)

The SPF is the COP over time, often called the season coefficient of
performance, and is defined in Equation (9). It is the main metric that
heat pump manufacturers use while following regulatory specifications
(e.g., MCS regulation for heat pump specifications). Fig. 11 shows the
variation of daily aggregated SPF and outside temperature in this study.

14

_ Total Seasonal Heating Output Qup + Qawx
" Total Seasonal Electric Energy Input ~ Epp + Eaux -+ Efanjup + Efrost

)]

SPF

Where Qg is the heat generated by the heat pump, Qau is the heat
generated by the auxiliary heater, Eyp is the electrical energy consumed
by the heat pump, Eq,y is the electrical energy consumed by the auxiliary
heater, Efy,/wp is the electrical energy consumed by the fan or water
pump, Ep, is the electrical energy consumed due to the defrosting
operation

3. Results and analysis

The evaluation of various ML algorithms based on goodness of fit,
error analysis, and hyperparameter optimisation has been
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systematically conducted using a real-world dataset from a monitored
residential heat pump. The primary objective of this prediction is to
compare the accuracy of ML algorithms in predicting heat pump effi-
ciency in domestic settings by identifying the best-performing ML
model, which can be utilised in a subsequent study and integrated into
smart controls. This can be applied within adaptive control frameworks
such as model predictive control (MPC) to enhance energy efficiency
and thermal comfort in residential buildings.

3.1. Data descriptive statistics

Table 5 presents summary statistics that provide a quantitative
snapshot of the characteristics of the dataset when the system was in
active operation. It shows that the mean P-elec and Q_heat are 441.38
kW and 1630.74 kW, respectively. The average T_flowT for the case
study when the system is operational is 28.67 °C. The maximum T_flowT
is 55.78 °C, attributed to water heating and legionella prevention mode.
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The mean hourly T_outsideT is 8.73 °C when the A2WHP is in operation,
whereas the minimum T_outsideT is —6.18 °C. In summary, the data
demonstrate that the mean Hourly_COP during the operational period is
3.86, while the maximum Hourly_COP is 5.99 for the A2WHP active
period. As part of the data diagnostic, Quick anomaly detection, such as
a data acquisition (DAQ) error, idle periods, or performance drift, was
spotted at a glance from the summary statistics before filtering the
dataset of operational periods.

3.2. Principal component analysis (PCA)

RHPs often generate large volumes of high-dimensional, noisy data
that require advanced processing and dimensionality reduction for
efficient supervised learning [82]. Given the RHPs’ complexity, incor-
porating unsupervised learning techniques such as PCA for dimension
reduction is a justified approach to enhance predictive performance and
reduce model complexity. PCA is a powerful dimensionality reduction
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Fig. 14. Feature selection with a heatmap of correlation.

tool that eliminates redundancy by transforming the original feature
space into a smaller set of principal components while preserving as
much of the data’s variance as possible [83]. This approach mitigates
the effects of multicollinearity and overfitting, which are common issues
in high-dimensional datasets, thereby contributing to the development
of more robust and interpretable models. As shown in Fig. 13, this study
used PCA and feature selection techniques to ensure alignment with the
research objective and optimise model performance.

Fig. 12a presents the PCA biplot, which graphically shows both the
scores (observations) and loadings (variable contributions) for the
principal components, providing insights into the relationships between
variables and observations [84]. For example, the arrow indicates that
electrical power and heat energy contribute more significantly to PCA2,
while the flow rate and outside temperature dominate PCA1. The angles
between vectors in the biplot also reveal correlations among variables.
For instance, flow and return temperatures are closely aligned, indi-
cating a strong positive correlation, just like the electricity and heat
output, which are given multivariate insights. Fig. 12b shows the vari-
able loading plot, highlighting the magnitude and direction of each
variable’s contribution to the principal components. This plot helps
identify the most influential features in explaining the data structure
[85]. Although PCA is effective for capturing linear relationships, it may
not adequately represent non-linear patterns within the data, as further
described by the pair plot in Fig. 13, which shows complex and non-
monotonic interactions among several variables.

3.3. Feature selection

Feature selection is critical in high-dimensional datasets, as it sys-
tematically identifies and retains the most informative variables while
eliminating redundant or less relevant ones [69]. These techniques
complement dimensionality reduction methods such as PCA, helping to
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improve model efficiency, reduce overfitting, and enhance interpret-
ability. Feature selection methods are generally classified into super-
vised and unsupervised techniques. Under the supervised category,
commonly used techniques include filter, wrapper, and embedded
methods. In this study, four tools were applied, which include
correlation-based filtering (i.e., correlation heatmap), univariate feature
selection using mutual information regression (MIR), recursive feature
elimination (RFE), and RF. The correlation analysis represents the linear
relationships between variables using Pearson coefficients, where + 1
indicates a strong positive correlation, 0 is no correlation, and —1 is a
strong negative correlation. It enables rapid identification of key feature
interactions for model development. The heatmap uses colour gradients
to help identify the strength and direction of these relationships across
multiple variables. The MIR is a filter-based univariate method that
excels at identifying linear and non-linear relationships between fea-
tures and the target variable. It helps eliminate duplicated, redundant,
and weakly informative features but does not address multicollinearity,
which involves interdependencies among variables [86]. In contrast,
RFE is a wrapper method that recursively eliminates less important
features and provides an optimal subset for training. While RFE often
yields higher predictive accuracy, it is computationally intensive
[87,88]. The RF serves as an embedded feature selection method,
combining the strengths of filter and wrapper approaches. It leverages
multiple decision trees to rank features based on their importance,
providing a balance of speed, accuracy, and the ability to handle feature
interactions [89]. RF’s built-in feature importance metric provides
robust insights and improves model generalisability and resilience to
overfitting.

Figs. 14-18 display the feature selection results obtained from
applying four methods to the dataset, including correlation-based se-
lection, MIR scores, features ranked via RFE, and importance rankings
derived from RF. Fig. 14 shows the correlation analysis heatmap. The
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analysis revealed several significant positive relationships among key
variables in the dataset. Notably, a strong positive correlation exists
between “heat_kwh” and “elec_kwh”, suggesting that increases in heat
output are closely aligned with rises in electrical energy consumption
over time, reflecting a consistent relationship between heat generation
and power usage. Similarly, “heat kw” correlates strongly with both
“elec” and “ch + dhw”, indicating that higher heat demand, whether for
central heating (CH) or domestic hot water (DHW), is met with
increased electricity usage, underscoring the energy-intensive nature of
combined heating loads. The correlation between “volumetric flow rate”
and “Hourly_COP” suggests that higher flow rates are associated with
better heat pump performance, reflecting their proportional influence
on system efficiency. Additionally, the relationship between “dhw” and
“elec” highlights the dependency of DHW on electricity consumption. As
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seen in the heatmap, these correlations uncover essential patterns and
interdependencies between heat output and electricity-related vari-
ables, offering valuable insights for further modelling and system opti-
misation. The pair plot in Fig. 15 complements this analysis by showing
relationships among variables through a matrix of scatter plots. Each
diagonal element presents a density plot of variable distributions, while
off-diagonal plots show pairwise relationships. The plot reveals that only
the outside temperature follows a normal distribution and maintains a
monotonic relationship with the target variable (Hourly_COP). In
contrast, other variables exhibit non-linear and multivariate in-
teractions, implying that multiple factors influence residential heat
pumps (RHPs) in their performance. Also, the diagonal plots provide
insight into the central tendency and dispersion of each variable, which
reinforces the high dimensionality and non-linearity of the dataset and
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highlights the need for advanced modelling techniques to capture these
dynamics effectively.

Fig. 16 shows insights that affirm that MIR effectively captures
complex dependencies that are not evident through linear correlation
alone [16,90]. The univariate ranking method positions all variables as
equally important, implying that it is less sensitive to the interactions
between variables. Although it provides insights, it does not fully
explore the multi-dimensional interaction of the features in the dataset.
Fig. 17 shows the ranking of input variables based on their predictive
relevance, with flow rate, electric power consumption, and combined
heating and hot water demand (CH + DHW) identified as the most
influential features. Variables such as return temperature and timestamp
(date) were found to contribute minimally and were excluded. Despite
the low linear correlations observed in the heatmap (cf. Fig. 14), high
mutual information scores for flow rate, electricity consumption (Elec),
and combined heating demand (CH + DHW) in Fig. 18 reveal underlying
non-linear relationships with the target variable, Hourly COP. These
three features consistently emerge as the most influential across all
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selection methods, making them prime candidates for inclusion in the
model. The RF method also highlighted flow and return temperatures as
important predictors, reflecting non-linear interactions not captured by
linear filters or univariate methods. While MIR did not prioritise the
outside temperature, its selection by supervised methods, such as RFE
and RF, suggests a monotonic relationship with Hourly_COP. Overall, RF
demonstrated superior feature selection performance among the four
methods, likely due to its integrated selection mechanism [69,91,92].

3.4. Regression-Based model fitting

To identify the most suitable ML model for Residential heat pumps
(RHPs), eight ML algorithms were initially trained on the dataset to
mitigate bias and improve the robustness of performance predictions.
Hyperparameter tuning using grid search and K-fold cross-validation
was performed to optimise model performance. This combined data-
and algorithm-focused strategy ensured fair and reliable model com-
parison. Table 6 shows the baseline model performance before
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Table 6
Baseline model performance before optimisation.
ML Algorithm R? MAE MSE RMSE NMBE (%) CVRMSE (%)
LR 0.681 0.759 0.774 0.880 6.191 38.049
RF 0.917 0.276 0.202 0.449 3.845 19.435
XGBoost 0.920 0.296 0.194 0.441 —0.867 19.070
PR 0.798 0.554 0.491 0.701 7.105 30.296
MLR 0.681 0.759 0.774 0.880 6.191 38.050
ANN 0.875 0.401 0.304 0.551 7.266 23.840
LSTM 0.900 0.358 0.243 0.493 6.640 21.323
SVR 0.806 0.464 0.470 0.685 12.505 29.643
Table 7
Refined model performance after optimisation.
ML Algorithm R? MAE MSE RMSE NMBE (%) CVRMSE (%)
LSTM 0.998 0.046 0.008 0.088 1.460 4.170
XGBoost 0.996 0.063 0.017 0.131 —0.022 1.287
RF 0.994 0.069 0.025 0.159 0.025 7.544
ANN 0.997 0.071 0.011 0.107 —2.652 5.073
SVR 0.985 0.113 0.067 0.259 0.303 12.250
Ensemble 0.992 0.097 0.035 0.188 0.443 8.920

optimisation across the evaluation metrics. The baseline performance of
all the models across the key performance indicators (KPIs) is generally
low and likely due to their inability to capture the non-linear relation-
ships within the dataset, as illustrated in the 3D surface plot (cf. Fig. 7b).
Additionally, this highlights potential issues such as overfitting or model
sensitivity to data quality [93,94]. However, among the evaluated
models, the tree-based algorithms (RF and XGBoost) relatively out-
performed others within the acceptable measurement device uncer-
tainty bound. They achieved the highest R? (0.917 and 0.920) and
lowest RMSE (0.449 and 0.441). Neural-based models (ANN, LSTM)
offer comparable performance but with marginally higher error metrics.
The kernel-based algorithm (SVR) also exhibits competitive perfor-
mance metrics, with the error metrics slightly above measurement de-
vice resolution. The baseline model performance derived via default
tuning was subsequently used to establish initial performance bench-
marks, which were later optimised using the refinement pipeline. To
develop ML models that are statistically coherent with the acceptable
measurement device’s threshold. For example, the ideal NMBE should
fall within the measurement uncertainty range of + 2 and + 10 %, while
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ASHRAE guidelines 14 recommend a CVRMSE of less than 30 % for
energy, temperature, and flow measurements [95]. It is then essential to
implement a rigorous optimisation pipeline involving k-fold cross-
validation, residual diagnostics, feature scaling, and grid-search hyper-
parameter tuning. Revilla-Leon et al. [96] emphasised the importance of
comprehensive evaluation criteria and model selection strategies in
developing a robust ML model for a complex system like a heat pump.
Table 7 presents the summary of refined model performance after
optimisation. Following the model tuning, LSTM emerged as the best-
performing predictor with an R? of 0.998 and an RMSE of 0.088, out-
performing other model architectures across all error metrics. XGBoost
demonstrated significant generalisation with minimal bias (NMBE —
0.022 %) and lowest CVRMSE (1.287 %). All models demonstrate sub-
stantial improvements, such as NMBE values falling within + 2 %,
which satisfies both the measurement device uncertainty bound and the
ASHRAE guideline 14 conservative threshold for hourly data across all
models. However, the ANN algorithm yielded NMBE of — 2.652 %,
which slightly above the tighter + 2 % measurement device threshold, it
satisfy the broader + 10 % accuracy bounds recommended by ASHRAE
guidelines 14 [95]. Meanwhile, SVR with a CVRMSE of 12.250 %, which
marginally exceeds the ASHRAE guideline 14 conservative threshold
(£10 %), remains well within the acceptable standard of < 30 % for
hourly resolution datasets. LSTM, ANN, RF, XGBoost, and ensemble al-
gorithms achieve R? values above 0.99, aligning with DOE/FEMP best
practice for hourly predictive modelling in building performance eval-
uation [97]. Overall, these metrics confirm that the optimised models
are statistically coherent with the measurement device’s resolution,
aligning with ASHRAE guidelines 14 and 140, and adhere to DOE/FEMP
best practice for predictive modelling of hourly resolution data in
building applications, making them deployment-ready. Details of the
measurement device’s uncertainty bounds are presented in Table 1.

Fig. 19 compares the predicted and actual outcomes for each model.
The linear regression (baseline) model, based on the aggregated dai-
ly_cop dataset, shows a significant deviation from the observed values.
XGBoost exhibits near-perfect alignment with field data, followed by RF,
while SVR, LR, and MLR significantly underperform. Fig. 20 illustrates
the five shortlisted models selected for further evaluation based on their
initial performance, as assessed using a mix of evaluation metrics under
the default parameter configuration.
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3.5. Hourly COP prediction before hyperparameter tuning

In the predictions from different algorithms, the ideal fit line is a
visual benchmark to compare how closely the model’s predictions
match the actual output. The reference line signifies optimal model
performance and visually interprets the model prediction. As shown in
Fig. 21 (a - e), the strengths and weaknesses of each algorithm can be
understood from the data distribution around the ideal line under
manual hyperparameter settings, despite the default internal optimisa-
tion attributes of certain ML models, such as XGBoost and LSTM, which
are typically defined in popular frameworks like TensorFlow Keras.
However, these default settings do not usually provide optimal perfor-
mance, requiring further tuning approaches [98]. XGBoost, RF, and
ANN predictions reasonably align with the ideal fit line under the
standard hyperparameters. The near-accurate performance of these

20

algorithms necessitates further hyperparameter optimisation to enhance
predictive performance. The conceptual model of heat pump perfor-
mance that has been computationally implemented requires verification
and validation [99]. This assessment is partly supported by expressing
the model in a plotted form after it has been automatically implemented
on a computer. The five subplots in Fig. 21 represent the ML results of
the target feature (Hourly_COP) on the training set for SVR, XGBoost,
RF, ANN, and LSTM before the hyperparameter training. XGBoost, ANN
and RF model predictions show moderate alignment with the field data
as opposed to SVR and LSTM.

3.6. Residual analysis

The residual plots are employed to evaluate the presence of sys-
tematic error patterns, with ideally unbiased predictions appearing
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randomly distributed around zero. As defined in Equation (10), the re-
sidual should demonstrate no visible trends or patterns and instead be
symmetrically distributed about the zero axis. The presence of system-
atic patterns indicates model deficiencies that require improvements,
such as the inclusion of higher-order terms, data transformation, or
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. actual observations (a) SVR (b) XGBoost (c) RF (d) ANN (e) LSTM.

hyperparameter tuning, to fit the underlying relationship better. To
assess how effectively models capture underlying data patterns and to
affirm the absence of bias, residual analysis, as illustrated in Fig. 22,
compares model performance under manually configured and optimised

hyperparameters.
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Residuals(e;) = Actual(Y;) — Predicted(Y;) 10)

3.7. Model performance under hyperparameter optimisation

Fig. 23 shows the performance of each model after the parameter
tuning on the test dataset. The plot describes the percentage distribu-
tions of evaluation metrics for the models. LSTM performs better over
other models across all the metrics, followed by ANN. This is likely due
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to the ability of the LSTM model to handle long-term dependencies in
sequential data effectively. Additionally, nuances like underprediction
that are not as apparent in the conventional error metrics, such as MAE,
MSE, and RMSE, are revealed by NMBE and CVRMSE. The LSTM and
ANN models exhibiting negative NMBEs are likely due to the algorithms
predicting lower values than the actual target values, as observed by
O’Neill and Costello [100]. It is worth noting that R2is referred to in this
study as a relative model comparison tool rather than treated as an
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(d) Residual vs predicted values. Best Hyperparameters: {‘activation’: ‘tanh’, ‘hidden_layers’: 1,

‘lstm_units’: 150, ‘optimiser’: ‘adam’}

and Test Set Evaluation Metrics: MAE = 0.046, MSE = 0.008, RMSE = 0.088, R> = 0.998, NMBE = 1.46% and CVRMSE) = 4.170%.

absolute performance measure because of the non-linear characteristics
of the datasets.

3.8. Model diagnostics and residual analysis following hyperparameter
optimisation

Figs. 24 to 28 show model diagnostic plots, which comprise
frequently used plots in regression. These include predicted vs. actual,
residual vs. actual values, residual vs. predicted values, and error dis-
tribution (Histogram/KDE) for each figure. These plots reflect the
models’ prediction performance and residual patterns, particularly on
the unseen data, showing bias, variance, and the capacity of the models
to generalise. In all cases, the coefficient of determination (R2) is
interpreted as a relative comparison tool among the models, but not as a
measure of goodness of fit. The best hyperparameters influencing the
performance of each model consist of discrete and categorical values.
For instance, the best hyperparameters for the ANN model are:
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{‘activation’: ‘tanh’, ‘hidden_layers’: 2, ‘optimiser’: ‘adam’, ‘units’: 32}
while the resulting error metrics are evaluated as - MAE = 0.043, MSE =
0.009, RMSE = 0.093, R2 = 0.998, NMBE = -2.652%, and CVRMSE) =
5.073%. The best Hyperparameters and the test set evaluation metric
values are captioned in the figures corresponding to each model. ANN
and LSTM prediction models exhibit high accuracy (R2 = 0.998 and
0.999), as reflected in their prediction vs. actual plots in Figs. 24 and 25,
respectively. The two residual plots in Fig. 25 indicate that the errors
cluster into two distinct regions of the input space, accounting for the
bimodal distribution observed in the histogram-KDE of the LSTM pre-
sented in the plot. The three ensemble algorithms, RF (Fig. 26), XGBoost
(Fig. 27), and SVR (Fig. 28), perform reasonably well but require further
tuning to match the performance of the deep-learning algorithms (ANN
and LSTM).
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Fig. 27. XGBoost-based model performance after hyperparameter tuning. (a) Predictions vs Actual (b) Residuals vs actual values (c) Residual Histogram-KDE plot (d)
Residual vs predicted values. Best Hyperparameters: {‘max_depth’: 10, 'n_estimators’: 100} and Test Set Evaluation Metrics - MAE = 0.063,
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3.9. Effect of hyperparameter tuning on model performance

Fig. 29 (a to f) shows the relative improvement in model perfor-
mance resulting from hyperparameter optimisation within their archi-
tecture, as evidenced by the percentage increase in R? and the reduction
in error metric values. The percentage improvement from optimising the
model’s hyperparameters using GridsearchCV and k-fold validation was
estimated. Comparing R? and error metrics obtained before and after ML
parameter optimisation allows an explicit comparison between the
models and reveals the best performers. Percentage improvements in
model performance are as follows: ANN recorded 22 % improvement in
R2, 22 % reduction in MAE, 21 % reduction in MSE, 22 % reduction in
RMSE, 23 % reduction in CVRMSE, and 24 % reduction in NMBE; LSTM
recorded 21 % improvement in R?% 22 % reduction in MAE, 21 %
reduction in MSE, 23 % reduction in RMSE, 19 % reduction in CVRMSE,
and 20 % reduction in NMBE; XGBoost recorded 13 % improvement in
R?, 19 % reduction in MAE, 20 % reduction in MSE, 19 % reduction in
RMSE, 19 % reduction in CVRMSE, and 20 % reduction in NMBE; RF
recorded 13 % improvement in R? 18 % reduction in MAE, 19 %
reduction in MSE, 17 % reduction in RMSE, 18 % reduction in CVRMSE,
and 18 % reduction in NMBE; SVR recorded 31 % improvement in R?,
19 % reduction in MAE, 19 % reduction in MSE, 19 % reduction in
RMSE, 17 % reduction in CVRMSE, and 18 % reduction in NMBE. ANN
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and LSTM consistently demonstrate improved error reduction and a
higher coefficient of determination (R2) across all evaluation metrics,
establishing them as the best ML models for COP prediction based on the
primary method adopted in this study. The XGBoost, RF, and SVR
perform relatively well, and their performance can be further improved
to match ANN and LSTM.

While prior studies have explored predictive modelling for heat
pump systems using data-driven and application of ML methods, such as
[23] and [101], this study advances the field by integrating real-time
experimental data and uncertainty-aware KPIs to assess ML models.
Unlike previous approaches that relied on existing datasets, employed
single baseline models, and empirical tuning, our framework demon-
strates statistically coherent performance across regimes and improved
interpretability.

Table 7 summarises optimised key performance indicator (KPI) re-
sults obtained through the systematic optimisation pipeline, bench-
marked against the existing standards. All evaluated MLs’ performance
not only aligns with the uncertainty limit of IoT equipment but also
conforms to ASHRAE guideline 14. These metrics underscore the novelty
and practical relevance of our method, particularly in the context of real-
time system operation and control.
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4. Conclusions

This study presented a comprehensive data-driven methodology for
evaluating and optimising the operational performance of residential
air-to-water heat pumps (A2WHPs) using real-time IoT-enabled moni-
toring and machine learning. By combining field-based experiments
with advanced analytics, the study bridges the gap between theoretical
modelling and actual system behaviour under dynamic residential
conditions. Eight ML models were rigorously evaluated using structured
preprocessing, principal component analysis, and hyperparameter tun-
ing via GridSearchCV and k-fold cross-validation. Among these, artificial
neural networks (ANN) and long short-term memory networks (LSTM)
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consistently achieved superior prediction of coefficient of performance
(COP), achieving an accuracy of R? values of 0.998 and 0.999, respec-
tively, and minimal error across all evaluation metrics, including MAE,
MSE, RMSE, CVRMSE and NMBE. Including diagnostic tools such as
residual histograms and KDE plots added interpretability to model
outputs, helping to detect prediction bias and assess generalisation
across unseen data. Beyond predictive accuracy, the findings emphasise
the value of integrating ML techniques with real-time sensor data to
inform fault detection, energy optimisation, and performance di-
agnostics in residential heating systems. This approach provides a
replicable and scalable solution for smart building management, sup-
porting broader energy transition goals by enhancing system-level
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efficiency and mitigating operational uncertainty. The methodology in
this study can be extended to diverse housing typologies, varied climatic
zones, and other low-carbon heating technologies.

Future research should investigate the integration of this approach
with reinforcement learning for adaptive control and real-time optimi-
sation, enabling intelligent, autonomous residential energy systems
aligned with smart grid and decarbonisation goals. Incorporating
physics-based models into A2WHP performance predictions may
enhance model generalisability. Although the machine learning models
in this study performed well within the training horizon, their extrap-
olation to unseen seasonal conditions remains constrained, a common
challenge with purely data-driven models. Ongoing further work will
compare the performance of these ML models against deep learning
architectures, including Physics-informed long short-term memory (PI-
LSTM) and Physics-informed neural network (PINN), to address this
limitation. This benchmarking will support the selection of models best
suited for energy optimisation, control, and fault detection and diag-
nosis (FDD) in residential settings. Ultimately, this work will contribute
to building a robust, scalable framework for energy-efficient and ther-
mally comfortable homes, with potential for integration in building
energy management (BEM) systems.
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