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A B S T R A C T

Residential heating accounts for about 27 % of the UK’s energy consumption. While residential heat pumps 
(RHPs) are central to the transition toward sustainable energy, optimising their real-world performance requires 
robust experimental monitoring and predictive modelling. This study presents a data-driven approach for 
evaluating and optimising the performance of residential air-to-water heat pumps (A2WHPs) using real-time data 
and machine learning (ML). A full-scale experimental setup was deployed in a UK-based end-terrace building, 
incorporating IoT-enabled sensors to capture 275 days of operational data that was processed into a 6,600-hour 
dataset. Key thermal, electrical, and environmental parameters were measured at high temporal resolution and 
used to develop predictive models for the system’s coefficient of performance (COP). Several ML models, 
including Random Forest, Support Vector Regression (SVR), eXtreme Gradient Boosting (XGBoost), Artificial 
Neural Networks (ANN), and Long Short-Term Memory (LSTM), were evaluated using rigorous preprocessing, 
principal component analysis, and GridSearchCV hyperparameter tuning. LSTM, XGBoost, and ANN achieved the 
highest prediction accuracy with low error values across MAE, MSE, RMSE, CVRMSE, and NMBE. Diagnostic 
plots and residual analysis further confirmed the generalisability of the models and their sensitivity to non-linear 
operational behaviours. The findings demonstrate that integrating ML with real-world data can provide a robust 
predictive framework for operational diagnostics, performance evaluation, and efficiency improvement in resi
dential heat pumps. This approach supports scalable, data-driven energy management and contributes to 
decarbonising the built environment.

Abbreviations: SPF, Season Performance Factor; COP, Coefficient of performance; ASHP, Air Source Heat Pumps; A2WHP, Air-to-water heat pump; GSHP, Ground 
source heat pump; DHW, Domestic hot water; SH, Space heating; CH, Central heating; RHPs, Residential Heat Pumps; UFH, Under-floor heating; HP, Heat pump; 
SEFF, System efficiency; ML, Machine learning; MID, Measuring Instrument Directive; SVR, Support Vector Regressor; XGBoost, Extreme Gradient Boosting; RF, 
Random Forest; LR, Linear Regression; PR, Polynomial Regression; MLR, Multiple Linear Regressor; ANN, Artificial Neural Network; RNN, Recurrent Neural 
Network; LSTM, Long Short-Term Memory; LCA, Life Cycle Assessment; KNN, K-Nearest Neighbour; KDE, Kernel Density Estimation; MCS, Microgeneration Cer
tification Scheme; MIR, Mutual Information Regression; PCA, Principal component analysis; flowT, Flow temperature; returnT, Return temperature; outsideT, 
Outside temperature; heat_kW, heat output power; heat_kWh, heat output energy; elec_kWh, cumulative electrical energy consumed; Rhum, Relative humidity; 
roomT, Room temperature; U_value (W/m2.K), overall heat loss coefficient; R2, Coefficient of determination; MAE, Mean Absolute Error; MSE, Mean Squared Error; 
RMSE, Root Mean Squared Error; NMBE, Normalised Mean Bias Error; CVRMSE, Coefficient of Variation of Root Mean Squared Error; RFE, Recursive Feature 
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BEM, Building energy management; PINN, Physics-informed neural network; PI-LSTM, Physics-informed long short-term memory; GridSearchCV, Grid search cross- 
validation; AFDD, Automated fault detection and diagnosis; EEPOM, Energy Efficiency Prediction and Optimisation Model; EN1434, European standard for heat 
meters; m3/hr, metre cube per hour.
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1. Introduction

The installation of heat pumps and their market penetration across 
European countries have been steadily increasing, driven by the need for 
sustainable energy solutions and decarbonisation efforts. Recently, 

approximately 25.5 million heat pumps were installed across 19 Euro
pean countries in residential, small office, and retail spaces, helping to 
avoid 21 billion cubic metres of gas importation, and saving about 45 
megatonnes of CO2 emissions per year in Europe [1]. The sharp rise in 
sales in countries such as Sweden and France underscores their potential 

Fig. 1. Schematic diagram of the case-study building (a) A2WHP system (b) The position of heat and electricity meters within the pipe network of the 
A2WHP system.
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to dominate the residential heating market. Life Cycle Assessment (LCA) 
studies on air source heat pumps (ASHPs) indicate significant environ
mental benefits, reducing heating-related emissions by 37 % in older 
dwellings and 54 % in new constructions across 18 European countries 
[2]. Heat pumps play a pivotal role in energy network decarbonisation, 
efficiently converting low-carbon or zero-carbon electricity into heat for 
space heating and domestic hot water supply. Unlike air conditioners, 
heat pumps can provide heating and cooling through a four-way diverter 
(reversing valve).

Heat pumps offer greater efficiency compared to alternative heating 
systems [3]. However, early field trials (e.g., Energy Trust, 2010; 2013) 
recorded lower-than-expected seasonal performance factors (SPF), pri
marily due to installation, commissioning, and control issues [4]. In 
contrast, more recent data indicate an average SPF for heat pumps across 
hybrid systems is clustered between 2.5 and 3.5, depending on system 
boundary definitions [5]. This performance gap has led researchers to 
explore the external factors influencing real-world efficiency, ques
tioning whether broader lessons can enhance heat pump performance. 
External environmental variables significantly impact heating systems, 
introducing uncertainties within building-integrated heat pump opera
tions [6]. Addressing these inefficiencies requires modelling, calibration 
frameworks, and parameter optimisation, which can enhance energy 
efficiency [7]. An integrated evaluation framework (IEF) combined field 
experiments, operational monitoring, and modelling to provide a robust 
tool for performance assessment and optimisation [8]. Energy and 
exergy analysis remain fundamental in identifying heat pump efficiency 
improvements through modelling and optimisation strategies [9]. 
Bridging the gap between predicted and real-world heat pump perfor
mance requires adopting IEF, enabling stakeholders to make informed 

decisions. Yu et al. [10] emphasise the importance of design-oriented 
modelling and uncertainty analysis in evaluating complex systems 
under varying conditions. System modelling approaches generally fall 
into analytical, empirical, and simulation-based methods [11]. Sub
ramanian et al. [12] categorised modelling contributions into two do
mains – modelling approach and field applications.

Recent developments in the use of Internet of Things (IoT) sensors in 
management systems, such as real-time monitoring, predictive control, 
and online fault detection and diagnosis (OFDD), have significantly 
enhanced operational efficiency and energy optimisation in buildings. 
IoT-enabled Heating, Ventilation, and Air Conditioning (HVAC) systems 
facilitate uninterrupted communication between devices, enabling real- 
time data exchange on operational performance and environmental 
conditions [13]. Rapid attention is shifting towards IoT integration in 
building HVAC systems, to allow real-time prediction and intervention, 
while strengthening adaptive and responsive control strategies [14,15]. 
Several authors have proposed different methods to integrate building 
performance evaluation with IoT. Gao and Shardt [16] proposed a 
learning-based and iterative IoT system for energy management in 
connected buildings, and validated the system through simulation using 
real-world building data. Deep reinforcement learning was utilised for 
HVAC control actions, and the iterative optimisation algorithm was 
employed to integrate physics-based and learning-based models. The 
proposed IoT-based system achieves zero-energy building management 
leveraging real-time energy efficiency optimisation, renewable energy 
integration, and adaptive control strategies. Yaïci et al. [15] leveraged 
an IoT-based system for monitoring and controlling heating and cooling 
in residential buildings, utilising two control strategies based on outside 
air temperature and time-oriented temperature. The first control strat
egy serves as a baseline strategy that is regulated based on external 
temperature variations, allowing the control system to alternate be
tween standby, active, and inactive modes. The second control strategy, 
referred to as the optimised baseline strategy after undergoing feedback 
and refinement, introduces a time-oriented method for temperature 
adaptation when the system is in heating or cooling mode. This 
approach relied on time-of-day-dependent thermal dynamics commonly 
observed in residential buildings. According to these authors, the IoT 
system reduced energy consumption by 21 % during heating scenarios. 
This is further validated in Abdelwahed et al. [17] and Corrà et al. [18]. 
Prioritising fault detection and diagnosis in heat pumps is crucial to safe 
plant operations, maintaining projected energy consumption, and sus
taining the set indoor thermal comfort. Chew & Yan [19] developed a 
three-layer diagnostic Bayesian network, integrating maintainability 
rules to improve intelligent and automated fault detection and diagnosis 
(IAFDD) for HVAC systems utilising data from IoT sensors.

Machine learning (ML) models, often referred to as “black-box” 
methods, exhibit high flexibility in handling dynamic systems but 
require modifications to their input for interpretability [20,21]. These 
models use historical data, statistical patterns, and similarity analysis to 
generate accurate predictions. ML algorithms are broadly classified into 
supervised and unsupervised learning, with empirical methodologies 
crucial in Air source heat pump (ASHP) performance prediction. Pre
diction models generally use single or ensemble learning approaches 
[22]. Standard algorithms include decision trees, support vector 
regression (SVR), artificial neural networks (ANN), random forest (RF), 
XGBoost, and Long Short-Term Memory (LSTM), all of which have 
demonstrated success in building performance prediction [23]. These 
models learn from historical performance data, gaining insights from 
interactions within the overall building system. LSTM, in particular, 
excels in handling time-series data, capturing long-term dependencies 
and complex temporal patterns [24].

The Coefficient of Performance (COP), as defined in Equation (1), is 
the standard metric for evaluating heat pump efficiency under steady- 
state conditions; however, it does not always accurately reflect real- 
world performance [25]. The COP of ASHP is highly influenced by 
ambient conditions, including temperature and humidity [26], but 

Table 1 
System-level Summary.

Component Characteristic
Heat pump type Air source: air-to- 

water (A2W)
The heat pump extracts heat 
from the ambient air

Heat pump capacity 6 kW The manufacturer’s datasheet 
capacity for the heat pump 
system

Refrigerant R32 Working fluid for the heat 
pump system

Design flow temperature 45 ◦C The temperature of water- 
glycol that is extracted from 
the heat pump condenser 
before entering indoor heat 
exchangers, such as radiators, 
underfloor pipe networks, and 
DHW tanks.

Manufacturer-defined 
outside design 
temperature.

− 2.2 ◦C The minimum temperature at 
which the heat pump system 
can operate efficiently, as 
specified by the 
manufacturer’s datasheet.

Building archetype Semi-detached Case study building
Building floor area 96 m2 The case study building floor 

area.
Data source Field 

measurement
Remotely transmitted data

Manufacturer model 
reference

Altherma 3 ​

Electricity meter class 1 with an 
accuracy of ± 1 
%

Measurement device 
specification

Heat meter class 2 with an 
accuracy of ± 2 
%

Measurement device 
specification

The combined uncertainty 
(COP, energy, flow)

~1–2 % Measurement device 
specification

Manufacturer-defined air 
source heat pump 
operating regime (source/ 
sink temperatures)

A2W35 Characterised by 2 ◦C outside 
source (air) temperature and a 
35 ◦C Water-glycol sink 
temperature
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non-weather-related factors also play a significant role [23]. Opera
tional monitoring and predictive modelling are essential for COP esti
mation, optimisation, energy savings assessment, and fault detection. 
Incorporating real-time data, advanced modelling, and uncertainty 
quantification helps align predicted and real-world performance out
comes [27]. Achieving accurate COP predictions within a 
multi-dimensional feature space requires optimal model selection and 
parameter tuning [28]. Advanced ML models have demonstrated strong 
potential for improving the prediction accuracy of heat pump COP, heat 
output, and power consumption, as well as facilitating system control 
optimisation [28–30]. 

COP =
Heat Energy generated (QHP)

Input electrical energy (EHP)
(1) 

Existing studies have developed various ML models and optimisation 
algorithms for heat pump performance and hydronic modelling across 
different applications. Chesser et al. [23] applied ML algorithms to 
predict ASHP in situ performance, demonstrating that ensemble 
methods like RF outperform advanced statistical and single predictive 
algorithms. Tangwe and Simon [31] employed multiple linear regres
sion (MLR) to model the performance of ASHP water heaters based on 
flow and return water temperatures, water quantity, relative humidity, 
and ambient temperature. Cho et al. [28] employed TRNSYS 18 to 

model a residential ground source heat pump (GSHP) and trained ML 
models for GSHP COP prediction. Many studies predicting the coeffi
cient of performance (COP) of heat pumps rely on previously conducted 
field trials or simulated data from models. However, data sparsity across 
time and space can introduce confirmation and historical bias. More
over, the increasing adoption of residential heat pumps necessitates 
data-driven energy efficiency assessments using IoT-enabled energy 
meters to reduce costs and enhance power grid resilience [27,32].

This study employs an independent performance monitoring 
approach for real-time data collection and analysis, evaluating the 
effectiveness of eight ML algorithms – linear regression (LR), MLR, 
polynomial regression (PR), RF, SVR, XGBoost, ANN, and LSTM, in 
predicting COP for monitored air-to-water heat pumps (A2WHPs) in a 
residential building. These algorithms were selected based on the multi- 
dimensional nature of heat pump datasets and the non-linear in
teractions between features. The proposed Energy Efficiency Prediction 
and Optimisation Model (EEPOM) integrates prognostic methodologies 
to enhance model robustness and generalisability, given the complex 
relationships in ASHP performance data. The key contributions of this 
study are: 

Fig. 2. Sequential workflow diagram of this study.
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• Real-Time Data Collection – Unlike most studies, which rely on 
simulated or past field-trial data, this work deploys IoT-enabled en
ergy heat meters to collect fresh, real-world data.

• Comprehensive ML Analysis – This study evaluates a diverse set of 
state-of-the-art ML algorithms, including ensemble, kernel-based, 
and deep learning models, whereas many studies consider only a 
few. Furthermore, it incorporates an unsupervised learning approach 
for dimensionality reduction, complementing supervised feature se
lection for more reliable predictions.

• Performance Optimisation through GridsearchCV Hyperparameter 
Tuning – Assesses manual versus optimised hyperparameter config
urations to identify potential performance improvements across all 
ML models.

Therefore, this work is novel in its integration of IoT-based real-time 
monitoring, comprehensive machine learning evaluation, and model 
diagnostics to optimise residential A2WHPs performance and provide a 
scalable, field-tested approach for energy efficiency and smart heating 
system control.

2. Methodology

The methodology of this study consists of two phases, involving 
measurement and validation (M&V) processes that utilise experimental 
and data curation techniques. The first phase includes installing and 
commissioning an IoT-enabled energy monitoring device (heat meter) 
on operational A2WHPs (6 kW capacity, R32 refrigerant, and design 
flow and outside temperatures of 45 and – 2.2 ◦C, respectively) with a 

hot water tank (Mixergy MX012661, 180 L capacity with legionella 
target temperature of 55 ◦C and equipped with immersion heater of 3.0 
kW) to capture real-time performance data from a single-family semi- 
detarched dwelling (case study building) with a total floor area of 96 m2, 
located in the United Kingdom. The heat meter − Sontex-Superstatic- 
789, with a capacity of up to 7 kW, features a measurement accuracy 
of 1–2 %, Pt1000 Temperature Sensors, continuous flow rates of 2.5 m3/ 
hr, and is glycol tolerant. It is class 2 MID approved to EN1434, ensuring 
compliance with industry norms. Sensor networks were used to measure 
various parameters, including instantaneous indoor and ambient tem
peratures, heat energy input/output, flow temperatures, and the con
tributions of heat energy toward central heating and domestic hot water. 
The schematic diagram of the installed A2WHP and associated 
measuring system setup is shown in Fig. 1a. Fig. 1b. Specifically, the 
measurement devices used for data collection possess the following 
specifications: The Electricity meter is class 1 with an accuracy of ± 1 %, 
the Heat meter is of class 2 with an accuracy of ± 2 %, and the combined 
uncertainty (COP, energy, flow) is ~ 1–2 % [33]. Table 1 gives a sum
mary of System-level parameters in the study.

2.1. Air-to-water heat pump (A2WHP)

The A2WHP provides space heating (SH) and domestic hot water 
(DHW), and the monobloc outdoor unit (installed at the rear of the 
building to comply with MC regulation) is integrated with an indoor hot 
tank system to maximise heat recovery (Fig. 1). It incorporates three 
energy controls, a solar diverter, an immersion heater, and a heat 
exchanger, to manage the building’s dynamic load profile. The solar 
diverter supplies power to the immersion heater as needed and redirects 
excess energy to the grid. The secondary circuit, comprising 85 % water 
and 15 % glycol (Propylene), circulates fluid through radiators, under
floor heating systems, and the DHW tank. A 3-way Honeywell’s esbe’ 
valve is installed to enable the A2WHP unit to provide SH and DHW 
effectively. The monobloc A2WHP generates hot water with distinctive 
properties, which is then delivered to each secondary circuit unit 
through pipes and pumps. This study focuses on the thermal and hy
draulic behaviour of the system at the secondary circuit level, analysing 
water flow rates, heat capacity, and flow/return temperatures at 
different operating conditions. However, the thermodynamic behaviour 
of the refrigerated circuit (standalone A2WHP) is not considered here.

2.2. Challenges and mitigations in field-based monitoring

To achieve seamless and reliable data collection from the site, pri
oritising high monitoring quality is vital. One of the early challenges 
encountered was incorporating external environmental variables, such 
as ambient temperature, into the monitoring scheme, which proved to 
be challenging due to the extended period required for data integration. 
However, the Met Office weather data was successfully integrated with 
other operational features of the ASHP systems, facilitating the collec
tion of comprehensive data blocks. Furthermore, securing constant 
approval from the occupier of the case study site (test bed) for necessary 
interventions requires several days, which delays the proposed 
commencement of the data collection exercise. However, this was sub
sequently resolved through the coordinated efforts of the field moni
toring team and the site manager.

2.3. A2WHP monitoring, data acquisition and processing

The second phase of the study focused on data curation and prepa
ration. This included preprocessing, imputation of missing values using 
the K-nearest neighbour (KNN) method, normalisation, and dimen
sionality reduction through Principal Component Analysis (PCA). These 
steps were conducted using Python 3.11 (64-bit) in an Anaconda envi
ronment, with a system powered by a 2.10 GHz AMD Ryzen 5 PRO 
4650U processor. The overall research workflow is summarised in Fig. 2, 

Table 2 
Description of features of the trained dataset.

Features/Variables Notation Class Description

Timestamp (Hour) t Independent/ 
feature

Driving force for other 
variables

Flow temperature (0C) T_flowT Independent/ 
feature

Driving force for heat 
transfer in the hydronic 
distribution circuit

Return Temperature 
(0C)

T_returnT Independent/ 
feature

Used to calculate delta 
T (ΔT)

Volumetric Flowrate 
(m3/hr )

FR_flowrate Independent/ 
feature

Used to determine heat 
transfer capacity

Outside temperature 
(0C)

T_outsideT Independent/ 
feature

It affects efficiency and 
performance 
dynamically

Coefficient of 
performance

COP Dependent/ 
Target

Measure of heat pump 
efficiency (to be 
predicted and 
optimised)

Delta T (ΔT 0C) ΔT Derived Directly reflects 
performance 
efficiency.

Electricity consumed 
(kW)

P_elec Intermediate Input to COP/SPF 
calculation

Heat output (kW) Q_heat intermediate Input to COP/SPF (Also 
dynamically controlled 
to achieve the desired 
indoor temperature 
{DV})

Relative humidity Rhum Independent/ 
feature

It affects efficiency and 
performance 
dynamically

Usage profile (e.g. 
Temperature 
setpoint)

​ Independent/ 
feature

It affects efficiency and 
performance 
dynamically

Building features (e.g. 
heat loss or gain from 
wall, floor, roof, and 
furniture) (W/m2. K)

U_value Independent/ 
feature

Little impact on season 
efficiency of heat pump 
(Burns et al., 2021)

Indoor temperature 
(0C)

T_roomT Dependent/ 
Target

It affects efficiency and 
performance 
dynamically
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and an overview of the dataset features is provided in Table 2. The 
dataset consisted of 275 days of real-time data collected from the case 
study building between January 12, 2023, and September 1, 2024. Data 
collection was enabled through sensor-integrated heat meters from 
OpenEnergyMonitor [34], providing detailed readings on flow and re
turn temperatures, electric power consumption, heat output, flow rate, 
indoor and ambient temperatures, and corresponding hourly COP 
values. Measurements were initially recorded at 15-minute intervals and 
later aggregated to hourly resolution, resulting in a dataset of 6,600 
hours. In real-world scenarios, high-frequency data are often accompa
nied by noise and transient effects, particularly during compressor 
startup and ramp-down. This can temporarily raise or reduce COP values 
due to a lag between the electrical power consumed and heat delivery at 

these instances. Several studies have documented this phenomenon as 
transient cycles that skew performance metrics [35]. To minimise this 
temporal fluctuation and focus on steady-state trends, the dataset was 
aggregated to hourly intervals, as recommended in prior studies [23,
36]. This smoothing decreases signal noise and enhances model stabil
ity, which is essential for our targeted control-oriented modelling and 
MPC implementation. This is particularly crucial due to the factors 
related to heat pump cycling behaviour [37]. The dataset was split into 
training and test sets. K-fold cross-validation was performed on the 
training set alone to select and tune models, and the final model was 
evaluated on the test set. GridSearchCV was employed to enhance pre
diction accuracy for hyperparameter tuning. The predictive perfor
mance of each ML algorithm was assessed using actual vs. predicted 

Fig. 3. Time series profiles of key operational features from the heat pump system over a week, with subplots (a, c, e, g) showing the raw data before preprocessing 
and subplots (b, d, f, h) showing the data after preprocessing.
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outputs, error analysis, and R2 scores, both before and after tuning. This 
robust combination of real-time monitoring and advanced data-driven 
methods helped identify performance inefficiencies and optimise the 
A2WHP.

2.3.1. Data preprocessing
Data preprocessing is essential for preparing raw data for ML models, 

involving cleaning, organising, and standardising data to ensure it is 
suitable for modelling and to enhance model reliability. Due to varia
tions in data sources, collection techniques, and sensor accuracy, raw 
datasets often contain noise, missing values, and inconsistencies [38]. 
ML algorithms are susceptible to data quality, and preprocessing can 
directly influence their accuracy and predictive performance [39]. In 
this study, the ‘date’ feature was removed as it offered limited predictive 
value for some models. A quartile transformation technique was applied 
to normalise feature distribution, ensuring a rank-based adjustment 
[40]. This transformation redistributes modal values, enhancing data 
uniformity while reducing the impact of outliers (Zuang et al., 2020). 
Furthermore, this technique fosters model robustness, mitigating the 
influence of near-outliers and improving generalisation [41]. Fig. 3
displays the time series profiles of observed features, including power 
consumption, heat output, flow temperature, and outside temperature. 
Subplots (a, c, e, g) present the raw data before preprocessing, while 
subplots (b, d, f, h) show the data after preprocessing. The comparison 
demonstrates the effects of initial conditioning, which involved linear 
interpolation of missing values, smoothing, and outlier filtering on the 

time-series data [42,43].

2.3.2. Data normalisation and transmission
Data normalisation ensures data integrity by structuring and 

organising information, reducing redundancy (duplicate data), and 
minimising skewness in statistical analysis [44]. Given its role in 
improving feature distribution, normalisation is critical for ensuring ML 
models operate efficiently. Studies have demonstrated its importance in 
enhancing model performance and preventing feature dominance [45].

Regression models and other statistical approaches often assume 
homoscedasticity (constant variance in errors). However, violations of 
this assumption will lead to heteroscedasticity, where variance fluctu
ates across different predictor levels [46]. Detecting and addressing 
variance inconsistencies is crucial for ensuring reliable model pre
dictions [47]. Data transformation techniques are widely used to miti
gate heteroscedasticity [48]. This study applies quantile transformation, 
redistributing data based on principles of uniform or normal distribu
tion. This approach spreads out frequent observations, effectively 
reducing the influence of outliers and making it a robust preprocessing 
strategy. A quantile transformation was performed on the training 
dataset, ensuring that all features were scaled between 0 and 1. Fig. 4
depicts the original variable distributions, revealing a multimodal and 
skewed structure indicative of heteroscedasticity. After applying a 
quartile-based data transformation, Fig. 5 demonstrates a stabilised 
variance, approximating a normal distribution and improving model 
consistency.

Fig. 4. Dataset distributions before quantile transformation.
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2.3.3. Feature engineering
To account for seasonal variations in estimating COP, seasonal 

decomposition techniques were employed [49], [50], [51]. This process 
isolates seasonal components, allowing a deeper understanding of the 
relationship between key features independent of cyclical variations. 
Therefore, trend analysis of the target feature (COP), seasonal decom
position for heat output, and anomaly detection in daily electricity 
consumption were carried out. Furthermore, seasonal components were 
removed using STL (Seasonal-Trend Decomposition using Loess (Locally 
Estimated Scatterplot Smoothing)) to ensure data stationarity for further 
modelling. This technique enhances predictive accuracy by eliminating 
cyclical distortions.

2.3.4. Exploratory analysis of time series data
Effective system optimisation and energy-saving strategies require a 

comprehensive analysis of performance trends, efficiency metrics, and 
seasonal influences, particularly in high-dimensional energy systems. 
New features were derived from the key variables influencing residential 
A2WHP performance. Seasonal analysis, day-of-the-week analysis, 
temperature differences over time, patterns in energy consumption, and 
comparative analysis of evaluation metrics across seasons and day-of- 
the-week are visualised using techniques such as lines, bar charts, and 
box plots. Fig. 6 (a-f) shows the patterns that are derived from the sea
sonal decomposition of the time series data, including trend analysis of 
heat output, seasonal components, cumulative energy consumption, 
heat-to-electricity ratios, seasonal heat demand, and average energy 

usage patterns by day of the week. Fig. 6a illustrates the visible jump in 
daily aggregated heat demand in January, likely aligning with a rise in 
heat demand due to colder outdoor conditions. Following that period, 
the heat demand remains relatively stable, with mild fluctuations, 
through to November. The cumulative slope observed suggests the 
presence of temporal dependencies (the influence of historical and 
current states on future operations) in the operation of the heat pump 
system. Fig. 6b shows the seasonal component of heat output usage, 
highlighting the recurring variation in heat demand. For instance, the 
high peaks observed in January, March, July, and September indicate 
above-average seasonal heating demand during those periods. Mean
while, February, April, August, and October witness below-average 
seasonal demand. A large magnitude of fluctuation reflects season 
variation, mainly attributed to either weather, occupancy, or system 
efficiency. Fig. 6c reveals that there is a stable but cyclic heat-to- 
electricity ratio, alternating between 3.6 and 3.8 throughout the 
period. Based on the observed regular crests and troughs, we can iden
tify predictable seasonal and operational patterns, likely attributed to 
prevailing external temperature and usage profile. Fig. 6(d) presents the 
distribution of daily heat output across four seasonal periods, revealing 
an asymmetric distribution with a median range of 140,000–150,000 
kWh, highlighting variability across seasons [52,53]. However, winter 
and fall, characterised by consistent heating demand, exhibit higher 
variability in daily heat demand with a wider interquartile range. 
Overall, heat demand remains stable but elevated year-round, likely due 
to system configuration. Fig. 6e compares the average daily heat energy 

Fig. 5. Dataset distribution after quantile transformation.
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demand pattern to electrical consumption by day of the week. The plot 
shows consistent heat demand across the weekdays with a slight dip on 
Saturday, suggesting reduced occupancy [54]. Meanwhile, the electrical 
energy mirrors the heat energy profile, raising the possibility that the 
system maintains a consistent energy balance across the week. The 
embedded error bars reflect the natural variability in heat demand and 
energy consumption across the week. This observed spread conformed 
with the 1–2 % uncertainty range of the class 1 (electric meter) and class 
2 (heat meter) used for our measurements.

2.4. Machine-learning-based models

It has been established that no single ML model excels across all 
problem domains, as performance varies by application [55,56]). For 
instance, decision trees provide interpretability for smaller datasets, 
while neural networks capture complex patterns in high-dimensional 
data [55]. This study uses SVR, RF, LSTM, PR, and XGBoost based on 
their effectiveness in handling complex datasets and their proven 
effectiveness across various predictive tasks [57–59]. After identifying 
the model, its hyperparameters are systematically tuned to enhance the 
prediction effectiveness of the model on the given dataset, avoid 

Fig. 6. Characteristics of the time-dependent sequential dataset, (a) Trend analysis of heat output, (b) season component of heat output, (c) Heat to electricity ratio 
over time, (d) Heat output for four typical UK seasons, (e) Average daily energy usage pattern by day of the week.
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overfitting and enhance the model’s generalisability [,60,61]. Various 
techniques were employed, including exploratory data analysis, statis
tical tests, feature engineering, and visualisation methods to assess the 
non-linearity within the case study dataset. Fig. 7(a) presents a 
three-dimensional (3D) scatter plot to provide an intuitive insight into 
variable relationships through clusters, trends, and outliers [62,63]. 
However, scatter plots are limited by noise and data sparsity, restricting 
their ability to capture complex interactions between variables fully. To 
address these limitations, Fig. 7(b) introduces a 3D surface plot, which 
provides smooth approximations of local topology, effectively high
lighting non-linear relationships and intricate feature interactions in the 
dataset [64], [65]. These visualisations collectively confirm that the 
dataset has high dimensionality and complexity, necessitating advanced 
modelling approaches. Furthermore, the high variability in the 
measured COP over time, as shown in the 3D plot, suggests fluctuations 
beyond ambient and secondary circuit flow temperatures, implying 
multiple underlying factors influencing system performance [66].

Following the characterisation of the dataset as dynamic and highly 
dimensional, the following five ML algorithms, including RF [67], SVR 
[68], XGBoost [69], LSTM [70], and ANN were selected for predictions 
based on their ability to model the inherent non-linearity observed be
tween the features in the dataset and target variables. These algorithms’ 
hyperparameters are fine-tuned before retraining on the training dataset 
and the unseen case study A2WHP dataset (i.e., test dataset). A grid 
search was employed, given the limited and discrete characteristics of 
the hyperparameter space for the selected ML and the simplicity of the 
parameter architecture. This systematic exploration approach examines 
all possible hyperparameter combinations within a specified grid to 

optimise model performance [71], [72]. Table 3 presents various ML 
algorithms and their effectiveness according to the characteristics of the 
dataset, which are used as model suitability criteria in the proposed ML 
models.

2.4.1. Random forest (RF)
The RF is an advanced ensemble learning approach widely used for 

classification, regression, and non-standard processes, such as clus
tering, ranking, feature selection, and outlier detection [73]. By 
combining multiple decision trees, RF enhances prediction accuracy and 
mitigates overfitting. This method effectively captures complex patterns 
and reduces errors associated with individual tree models. RF is 
particularly well-suited for high-dimensional datasets, making it appli
cable across diverse domains [74]. It employs bootstrap aggregation 
(bagging), where individual decision trees are trained on random sub
sets of the dataset, and the mean prediction from all trees determines the 
final output in regression tasks [73]. This aggregation process controls 
errors, improves model robustness, and enhances predictive reliability 
[67]. Additionally, due to its tree-based framework, RF excels in 
modelling non-linear relationships and capturing complex variable 
interactions.

2.4.2. Support vector regression (SVR)
The SVR is a supervised learning algorithm based on support vector 

machine (SVM) principles. It predicts continuous values by mapping 
data into a high-dimensional feature space and identifying a best-fitting 
function within a defined tolerance margin (ε). This approach allows 
controlled error tolerance, making SVR particularly effective in 

Fig. 6. (continued).
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modelling non-linear interactions among variables. Fig. 8 shows the 
structure of SVR.

where f(x) represents predicted values for input x, k(xi, x) denotes 
the kernel function defining the shared features between training sam
ples xi and the input x. The support coefficients a*

i represent the non-zero 
weights of data points outside the ε tube influencing model predictions. 
yi denotes the target outputs in the training data and b* represents the 
bias term, ensuring the model accurately fits the data while keeping the 
deviation within ε boundaries. SVR uses loss functions that show that 
data points within the ε tolerance limits do not affect the error, while 
those outside the margin influence the prediction error. Mathematically, 
Equation (2) shows the ε–Intensive loss function is expressed as: 

Lε(y1, f(x) ) =
{

O, |f |y1 − f(xi) ≤ ε
|y1 − f(xi) | − ε, otherwise (2) 

2.4.3. Long short-term memory (LSTM)
The LSTM is a specialised recurrent neural network (RNN) archi

tecture that retains past inputs using memory cells and a gating mech
anism. These features enable effective handling of sequential data, 
making LSTM well-suited for time series predictions [75]. Unlike con
ventional RNNs, LSTM mitigates vanishing and exploding gradient 

issues through its gated memory structure. By preserving long-term 
dependencies, LSTM captures complex temporal patterns in time series 
data, including trends, seasonality, cyclic fluctuations, and residual 
(random) noise [76,77]. Fig. 9 shows the LSTM architecture, depicting 
the flow of information and memory control through its gating 
mechanism.

2.4.4. Artificial neural network (ANN)
The ANN regressor is a deep learning model designed to predict 

labelled outcomes by learning patterns and feature interactions within a 
dataset rather than relying on explicitly programmed rules. Inspired by 
the processing system of the human brain, ANNs generalise from 
training data to accurately predict unseen inputs [78]. The primary 
benefits of ANNs include their ability to model non-linear relationships, 
fast runtime, and robust performance under varying conditions. ANNs 
optimise learning through backpropagation and gradient descent, 
adjusting internal parameters to minimise prediction error [79]. The 
ANN architecture is shown in Fig. 10.

(a) 

(b)  

Fig. 7. Three-dimensional (3D) representation of heat pump field data (a) 
Scatter plot, (b) The surface plot showing the non-linear interaction of features 
of the dataset.

Table 3 
Features of machine learning algorithms for this study.

S/ 
N

Machine learning 
algorithms

Characteristics of the dataset as suitability criteria for 
the ML models

1 SVR Effective for small datasets with non-linear patterns 
[68]. Small-to-moderate datasets, linear or slightly 
non-linear relationships, high-dimensional data, and 
noisy datasets.

2 XGBoost Handles non-linear relationships, is robust to outliers, 
and performs well on structured data [69]. Tabular 
datasets, large datasets, non-linear relationships, 
imbalanced data, need for computational efficiency.

3 MLR Baseline model and easy to interpret
4 RF Captures non-linear interactions and reduces 

overfitting [67]. Large datasets, non-linear 
relationships, mixed data types, outliers, feature 
importance insights.

5 PR Model non-linear relationships. Simple datasets with 
clear polynomial trends, low-dimensional data, and 
small datasets.

6 LSTM Handles complex and high-dimensional relationships 
and addresses vanishing gradients with gating 
mechanisms. [70]. Sequential or time-series data, 
long-term dependencies, large datasets, and non- 
stationary data.

Fig. 8. Structure of support vector regression.
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2.5. Evaluation metrics

Evaluating the predictive performance of machine learning models is 
critical to ensuring their robustness and reliability. This study employed 
a multi-metric evaluation approach, recognising that no single metric 
can fully capture the complexity of model behaviour. Six metrics are 
used, including Mean Absolute Error (MAE), Mean Squared Error (MSE), 
Root MSE (RMSE), Coefficient of Variation of RMSE (CVRMSE), Nor
malised Mean Bias Error (NMBE) and R-squared (R2). Each metric pro
vides insight into model accuracy, variance, and bias [80]. As shown in 
Equations (3)–(8), these error-based metrics form the foundation for 
assessing the goodness-of-fit and generalisability of the models across 
different scenarios. Following an initial screening of the eight ML 
models, five top-performing algorithms were selected based on these 
metrics for further analysis. In the context of measurement and verifi
cation (M&V), combining multiple metrics enhances interpretability 
and ensures a more nuanced understanding of predictive capability. 
Residual patterns and quantitative error scores provide a comprehensive 
basis for comparing model performance and identifying potential 
limitations. 

R2 =
Σn

i=1(Yi − Ŷ i)
2

∑n
i=1(Yi − Y)2 (3) 

Fig. 9. Schematic diagram of LSTM network.

Fig. 10. Schematic Diagram of Artificial Neural Network Architecture.

Table 4 
The hyperparameter tuning architecture for the ML algorithms.

Algorithm Hyperparameters combinations 
evaluated

unique 
combinations

Total 
fits 
(5- 
fold 
CV)

ANN hidden_layer; 
number of units; 
activation functions 
(‘relu’, ‘tanh’); 
optimiser (‘adam’, 
‘rmsprop’)

2*3*2*2 = 24; 
each 5 times → 
120

24 120

LSTM hidden_layer; 
number of units; 
activation functions 
(‘relu’, ‘tanh’); 
optimiser (‘adam’, 
‘rmsprop’)

2*3*2*2 = 24; 
each 5 times → 
120

24 120

RF max_depth; 
n_estimator

3*2 = 6; each 5 
times → 30

6 30

XGBoost max_depth; 
n_estimator

3*2 = 6; each 5 
times → 30

6 30

SVR C’; ’gamma’; 
’kernel’

4*4*3 = 48; 
each 5 times → 
240

48 240
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MAE =
1
n
∑n

i=1
|Yi − Ŷ i| (4) 

MSE =
1
n
∑n

i=1
(Yi − Ŷ i)

2 (5) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σn
i=1(Yi − Ŷ i)

2

n

√

(6) 

CVRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σn
i=1(Yi − Ŷ i)

2

n

Y
× 100%

√
√
√
√

(7) 

NMBE =
1
n
∑n

i=1(Yi − Ŷ i)

Y
X100% (8) 

Where Yi is the observed value of the heat demand in the building, Ŷ i is 
the predicted value, Y is the mean of measured values, and n represents 
the number of data points.

2.6. Hyperparameter tuning

Optimising hyperparameter for ML algorithms involves balancing 
computational efficiency and accuracy. Various methods, including 
traditional and metaheuristic approaches, have been explored to ach
ieve this balance. The choice of method can significantly impact the 
model’s performance, as different techniques offer unique advantages in 
terms of convergence speed, flexibility, and robustness. There are four 
key characteristics of design parameter space, including dimensions, 
bounds, and size, and the goal is to identify the optimal combination of 

parameters for maximising the heat pump operational performance 
factor (Hourly COP). The following are the model-specific and sequen
tial steps to perform a grid search for hyperparameter tuning. The grid 
search cross-validation method was implemented using GridSearchCV in 
the scikit-learn Pythonic library to perform an exhaustive search over 
the specified hyperparameter combinations for individual ML models 
[81]. Table 4 shows the optimal parameter search space, resulting in 
optimal hyperparameter values.

Input: Machine learning model fML, Training dataset .DGenerate: A set of candidate 
hyperparameters .H = {θ1,⋯, θn}Partition: Split D into k-fold cross-validation 
subsets .

{ (
Dtrain,1,Dval,1, },⋯,

{ (
Dtrain,k,Dval,k,

}
For each hyperparameter 

configuration θ1 in H: For each fold Dtrain,j,Dval,j,: Train fML using Dtrain,j, with 
.θi Compute error .Ei,j = Error

(
fMLtrainedonDtrain,jvalidatedonDval,j

)
Compute 

the average error for θi: .Ei =

(
1
k

)

Σ(fromj = 1tok)Ei,jSelect optimal 

hyperparameters:.θ* = argmin(overθi inH)Output: θ*, fML trained with .θ*

Input: Machine learning model \(f_{ML} \), Training dataset \ (D \).Generate: A set of 
candidates hyperparameters \ (H = \ {\theta_1, \dots, \theta_n\} \).Partition: Split 
\ (D \) into \ (k \)-fold cross-validation subsets \(\{(D_{train,1}, D_{val,1}), \dots, 
(D_{train, k}, D_{val, k}) \} \).for each hyperparameter configuration \ (\theta_i \in 
H \): for each fold \ ((D_{train, j}, D_{val, j}) \)

Train \(f_{ML} \) using \ (D_{train, j} \) with \ (\theta_i \).

Compute error \ (E_{i, j} = Error(f_{ML} \text {trained on} D_{train, j}, \text 
{validated on} D_{val, j}) \)

Fig. 11. Daily aggregated SPF variability and outside temperature.

Table 5 
Descriptive statistics for A2WHP operational periods.

Count Mean std min 0.25 0.50 0.75 max

P_elec (kW) 3520.00 441.38 398.34 10.70 232.61 333.66 480.04 3000.02
Q_heat (kW) 3520.00 1630.74 1140.25 3.19 948.90 1456.95 1944.25 8013.73
T_flowT (◦C) 3520.00 28.67 6.54 10.03 25.34 28.08 30.66 55.78
T_returnT (◦C) 3520.00 26.53 5.29 12.97 24.63 25.85 27.24 50.73
FR_flowrate (m3/hr) 3520.00 10.35 5.00 0.00 6.96 9.00 14.77 24.94
T_roomT (◦C) 3520.00 20.28 1.50 6.43 19.97 20.66 21.04 25.10
T_outsideT (◦C) 3520.00 8.73 4.78 − 6.18 5.74 9.12 11.39 29.89
Hourly_COP 3520.00 3.86 1.04 0.10 3.33 4.11 4.58 5.99
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Compute average error for \ (\theta_i \): \ (E_i = \frac{1}{k} \sum_{j = 1}^k E_{i, j} \) 
Select optimal hyperparameters: \ (\theta^* = \text{argmin}_{\theta_i \in H} E_i \). 
Output: \ (\theta^* \), \(f_{ML} \text {trained with} \theta^* \).

2.7. Season performance factor (SPF)

The SPF is the COP over time, often called the season coefficient of 
performance, and is defined in Equation (9). It is the main metric that 
heat pump manufacturers use while following regulatory specifications 
(e.g., MCS regulation for heat pump specifications). Fig. 11 shows the 
variation of daily aggregated SPF and outside temperature in this study. 

SPF =
Total Seasonal Heating Output

Total Seasonal Electric Energy Input
=

QHp + QAux

EHP + Eaux + Efan/wp + Efrost

(9) 

Where QHp is the heat generated by the heat pump, QAux is the heat 
generated by the auxiliary heater, EHP is the electrical energy consumed 
by the heat pump, Eaux is the electrical energy consumed by the auxiliary 
heater, Efan/wp is the electrical energy consumed by the fan or water 
pump, Efrost is the electrical energy consumed due to the defrosting 
operation

3. Results and analysis

The evaluation of various ML algorithms based on goodness of fit, 
error analysis, and hyperparameter optimisation has been 

Fig. 12. Principal Component Analysis (a) Biplot (b) Variable loading plot.
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systematically conducted using a real-world dataset from a monitored 
residential heat pump. The primary objective of this prediction is to 
compare the accuracy of ML algorithms in predicting heat pump effi
ciency in domestic settings by identifying the best-performing ML 
model, which can be utilised in a subsequent study and integrated into 
smart controls. This can be applied within adaptive control frameworks 
such as model predictive control (MPC) to enhance energy efficiency 
and thermal comfort in residential buildings.

3.1. Data descriptive statistics

Table 5 presents summary statistics that provide a quantitative 
snapshot of the characteristics of the dataset when the system was in 
active operation. It shows that the mean P-elec and Q_heat are 441.38 
kW and 1630.74 kW, respectively. The average T_flowT for the case 
study when the system is operational is 28.67 ◦C. The maximum T_flowT 
is 55.78 ◦C, attributed to water heating and legionella prevention mode. 

The mean hourly T_outsideT is 8.73 ◦C when the A2WHP is in operation, 
whereas the minimum T_outsideT is − 6.18 ◦C. In summary, the data 
demonstrate that the mean Hourly_COP during the operational period is 
3.86, while the maximum Hourly_COP is 5.99 for the A2WHP active 
period. As part of the data diagnostic, Quick anomaly detection, such as 
a data acquisition (DAQ) error, idle periods, or performance drift, was 
spotted at a glance from the summary statistics before filtering the 
dataset of operational periods.

3.2. Principal component analysis (PCA)

RHPs often generate large volumes of high-dimensional, noisy data 
that require advanced processing and dimensionality reduction for 
efficient supervised learning [82]. Given the RHPs’ complexity, incor
porating unsupervised learning techniques such as PCA for dimension 
reduction is a justified approach to enhance predictive performance and 
reduce model complexity. PCA is a powerful dimensionality reduction 

Fig. 13. Linear relationship assumed by the PCA.
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tool that eliminates redundancy by transforming the original feature 
space into a smaller set of principal components while preserving as 
much of the data’s variance as possible [83]. This approach mitigates 
the effects of multicollinearity and overfitting, which are common issues 
in high-dimensional datasets, thereby contributing to the development 
of more robust and interpretable models. As shown in Fig. 13, this study 
used PCA and feature selection techniques to ensure alignment with the 
research objective and optimise model performance.

Fig. 12a presents the PCA biplot, which graphically shows both the 
scores (observations) and loadings (variable contributions) for the 
principal components, providing insights into the relationships between 
variables and observations [84]. For example, the arrow indicates that 
electrical power and heat energy contribute more significantly to PCA2, 
while the flow rate and outside temperature dominate PCA1. The angles 
between vectors in the biplot also reveal correlations among variables. 
For instance, flow and return temperatures are closely aligned, indi
cating a strong positive correlation, just like the electricity and heat 
output, which are given multivariate insights. Fig. 12b shows the vari
able loading plot, highlighting the magnitude and direction of each 
variable’s contribution to the principal components. This plot helps 
identify the most influential features in explaining the data structure 
[85]. Although PCA is effective for capturing linear relationships, it may 
not adequately represent non-linear patterns within the data, as further 
described by the pair plot in Fig. 13, which shows complex and non- 
monotonic interactions among several variables.

3.3. Feature selection

Feature selection is critical in high-dimensional datasets, as it sys
tematically identifies and retains the most informative variables while 
eliminating redundant or less relevant ones [69]. These techniques 
complement dimensionality reduction methods such as PCA, helping to 

improve model efficiency, reduce overfitting, and enhance interpret
ability. Feature selection methods are generally classified into super
vised and unsupervised techniques. Under the supervised category, 
commonly used techniques include filter, wrapper, and embedded 
methods. In this study, four tools were applied, which include 
correlation-based filtering (i.e., correlation heatmap), univariate feature 
selection using mutual information regression (MIR), recursive feature 
elimination (RFE), and RF. The correlation analysis represents the linear 
relationships between variables using Pearson coefficients, where + 1 
indicates a strong positive correlation, 0 is no correlation, and − 1 is a 
strong negative correlation. It enables rapid identification of key feature 
interactions for model development. The heatmap uses colour gradients 
to help identify the strength and direction of these relationships across 
multiple variables. The MIR is a filter-based univariate method that 
excels at identifying linear and non-linear relationships between fea
tures and the target variable. It helps eliminate duplicated, redundant, 
and weakly informative features but does not address multicollinearity, 
which involves interdependencies among variables [86]. In contrast, 
RFE is a wrapper method that recursively eliminates less important 
features and provides an optimal subset for training. While RFE often 
yields higher predictive accuracy, it is computationally intensive 
[87,88]. The RF serves as an embedded feature selection method, 
combining the strengths of filter and wrapper approaches. It leverages 
multiple decision trees to rank features based on their importance, 
providing a balance of speed, accuracy, and the ability to handle feature 
interactions [89]. RF’s built-in feature importance metric provides 
robust insights and improves model generalisability and resilience to 
overfitting.

Figs. 14-18 display the feature selection results obtained from 
applying four methods to the dataset, including correlation-based se
lection, MIR scores, features ranked via RFE, and importance rankings 
derived from RF. Fig. 14 shows the correlation analysis heatmap. The 

Fig. 14. Feature selection with a heatmap of correlation.
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analysis revealed several significant positive relationships among key 
variables in the dataset. Notably, a strong positive correlation exists 
between “heat_kwh” and “elec_kwh”, suggesting that increases in heat 
output are closely aligned with rises in electrical energy consumption 
over time, reflecting a consistent relationship between heat generation 
and power usage. Similarly, “heat_kw” correlates strongly with both 
“elec” and “ch + dhw”, indicating that higher heat demand, whether for 
central heating (CH) or domestic hot water (DHW), is met with 
increased electricity usage, underscoring the energy-intensive nature of 
combined heating loads. The correlation between “volumetric flow rate” 
and “Hourly_COP” suggests that higher flow rates are associated with 
better heat pump performance, reflecting their proportional influence 
on system efficiency. Additionally, the relationship between “dhw” and 
“elec” highlights the dependency of DHW on electricity consumption. As 

seen in the heatmap, these correlations uncover essential patterns and 
interdependencies between heat output and electricity-related vari
ables, offering valuable insights for further modelling and system opti
misation. The pair plot in Fig. 15 complements this analysis by showing 
relationships among variables through a matrix of scatter plots. Each 
diagonal element presents a density plot of variable distributions, while 
off-diagonal plots show pairwise relationships. The plot reveals that only 
the outside temperature follows a normal distribution and maintains a 
monotonic relationship with the target variable (Hourly_COP). In 
contrast, other variables exhibit non-linear and multivariate in
teractions, implying that multiple factors influence residential heat 
pumps (RHPs) in their performance. Also, the diagonal plots provide 
insight into the central tendency and dispersion of each variable, which 
reinforces the high dimensionality and non-linearity of the dataset and 

Fig. 15. Pair plot of independent variable and dependent variable (Hourly_COP).
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highlights the need for advanced modelling techniques to capture these 
dynamics effectively.

Fig. 16 shows insights that affirm that MIR effectively captures 
complex dependencies that are not evident through linear correlation 
alone [16,90]. The univariate ranking method positions all variables as 
equally important, implying that it is less sensitive to the interactions 
between variables. Although it provides insights, it does not fully 
explore the multi-dimensional interaction of the features in the dataset. 
Fig. 17 shows the ranking of input variables based on their predictive 
relevance, with flow rate, electric power consumption, and combined 
heating and hot water demand (CH + DHW) identified as the most 
influential features. Variables such as return temperature and timestamp 
(date) were found to contribute minimally and were excluded. Despite 
the low linear correlations observed in the heatmap (cf. Fig. 14), high 
mutual information scores for flow rate, electricity consumption (Elec), 
and combined heating demand (CH + DHW) in Fig. 18 reveal underlying 
non-linear relationships with the target variable, Hourly COP. These 
three features consistently emerge as the most influential across all 

selection methods, making them prime candidates for inclusion in the 
model. The RF method also highlighted flow and return temperatures as 
important predictors, reflecting non-linear interactions not captured by 
linear filters or univariate methods. While MIR did not prioritise the 
outside temperature, its selection by supervised methods, such as RFE 
and RF, suggests a monotonic relationship with Hourly_COP. Overall, RF 
demonstrated superior feature selection performance among the four 
methods, likely due to its integrated selection mechanism [69,91,92].

3.4. Regression-Based model fitting

To identify the most suitable ML model for Residential heat pumps 
(RHPs), eight ML algorithms were initially trained on the dataset to 
mitigate bias and improve the robustness of performance predictions. 
Hyperparameter tuning using grid search and K-fold cross-validation 
was performed to optimise model performance. This combined data- 
and algorithm-focused strategy ensured fair and reliable model com
parison. Table 6 shows the baseline model performance before 

Fig. 16. Feature selection with the univariate method.

Fig. 17. Feature selection with the recursive feature elimination (RFE) method.
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optimisation across the evaluation metrics. The baseline performance of 
all the models across the key performance indicators (KPIs) is generally 
low and likely due to their inability to capture the non-linear relation
ships within the dataset, as illustrated in the 3D surface plot (cf. Fig. 7b). 
Additionally, this highlights potential issues such as overfitting or model 
sensitivity to data quality [93,94]. However, among the evaluated 
models, the tree-based algorithms (RF and XGBoost) relatively out
performed others within the acceptable measurement device uncer
tainty bound. They achieved the highest R2 (0.917 and 0.920) and 
lowest RMSE (0.449 and 0.441). Neural-based models (ANN, LSTM) 
offer comparable performance but with marginally higher error metrics. 
The kernel-based algorithm (SVR) also exhibits competitive perfor
mance metrics, with the error metrics slightly above measurement de
vice resolution. The baseline model performance derived via default 
tuning was subsequently used to establish initial performance bench
marks, which were later optimised using the refinement pipeline. To 
develop ML models that are statistically coherent with the acceptable 
measurement device’s threshold. For example, the ideal NMBE should 
fall within the measurement uncertainty range of ± 2 and ± 10 %, while 

ASHRAE guidelines 14 recommend a CVRMSE of less than 30 % for 
energy, temperature, and flow measurements [95]. It is then essential to 
implement a rigorous optimisation pipeline involving k-fold cross- 
validation, residual diagnostics, feature scaling, and grid-search hyper
parameter tuning. Revilla-León et al. [96] emphasised the importance of 
comprehensive evaluation criteria and model selection strategies in 
developing a robust ML model for a complex system like a heat pump. 
Table 7 presents the summary of refined model performance after 
optimisation. Following the model tuning, LSTM emerged as the best- 
performing predictor with an R2 of 0.998 and an RMSE of 0.088, out
performing other model architectures across all error metrics. XGBoost 
demonstrated significant generalisation with minimal bias (NMBE −
0.022 %) and lowest CVRMSE (1.287 %). All models demonstrate sub
stantial improvements, such as NMBE values falling within ± 2 %, 
which satisfies both the measurement device uncertainty bound and the 
ASHRAE guideline 14 conservative threshold for hourly data across all 
models. However, the ANN algorithm yielded NMBE of − 2.652 %, 
which slightly above the tighter ± 2 % measurement device threshold, it 
satisfy the broader ± 10 % accuracy bounds recommended by ASHRAE 
guidelines 14 [95]. Meanwhile, SVR with a CVRMSE of 12.250 %, which 
marginally exceeds the ASHRAE guideline 14 conservative threshold 
(±10 %), remains well within the acceptable standard of ≤ 30 % for 
hourly resolution datasets. LSTM, ANN, RF, XGBoost, and ensemble al
gorithms achieve R2 values above 0.99, aligning with DOE/FEMP best 
practice for hourly predictive modelling in building performance eval
uation [97]. Overall, these metrics confirm that the optimised models 
are statistically coherent with the measurement device’s resolution, 
aligning with ASHRAE guidelines 14 and 140, and adhere to DOE/FEMP 
best practice for predictive modelling of hourly resolution data in 
building applications, making them deployment-ready. Details of the 
measurement device’s uncertainty bounds are presented in Table 1.

Fig. 19 compares the predicted and actual outcomes for each model. 
The linear regression (baseline) model, based on the aggregated dai
ly_cop dataset, shows a significant deviation from the observed values. 
XGBoost exhibits near-perfect alignment with field data, followed by RF, 
while SVR, LR, and MLR significantly underperform. Fig. 20 illustrates 
the five shortlisted models selected for further evaluation based on their 
initial performance, as assessed using a mix of evaluation metrics under 
the default parameter configuration.

Fig. 18. Feature selection with random forest, including feature importance ranking (RF) method.

Table 6 
Baseline model performance before optimisation.

ML Algorithm R2 MAE MSE RMSE NMBE (%) CVRMSE (%)

LR 0.681 0.759 0.774 0.880 6.191 38.049
RF 0.917 0.276 0.202 0.449 3.845 19.435
XGBoost 0.920 0.296 0.194 0.441 − 0.867 19.070
PR 0.798 0.554 0.491 0.701 7.105 30.296
MLR 0.681 0.759 0.774 0.880 6.191 38.050
ANN 0.875 0.401 0.304 0.551 7.266 23.840
LSTM 0.900 0.358 0.243 0.493 6.640 21.323
SVR 0.806 0.464 0.470 0.685 12.505 29.643

Table 7 
Refined model performance after optimisation.

ML Algorithm R2 MAE MSE RMSE NMBE (%) CVRMSE (%)

LSTM 0.998 0.046 0.008 0.088 1.460 4.170
XGBoost 0.996 0.063 0.017 0.131 − 0.022 1.287
RF 0.994 0.069 0.025 0.159 0.025 7.544
ANN 0.997 0.071 0.011 0.107 − 2.652 5.073
SVR 0.985 0.113 0.067 0.259 0.303 12.250
Ensemble 0.992 0.097 0.035 0.188 0.443 8.920
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3.5. Hourly COP prediction before hyperparameter tuning

In the predictions from different algorithms, the ideal fit line is a 
visual benchmark to compare how closely the model’s predictions 
match the actual output. The reference line signifies optimal model 
performance and visually interprets the model prediction. As shown in 
Fig. 21 (a – e), the strengths and weaknesses of each algorithm can be 
understood from the data distribution around the ideal line under 
manual hyperparameter settings, despite the default internal optimisa
tion attributes of certain ML models, such as XGBoost and LSTM, which 
are typically defined in popular frameworks like TensorFlow Keras. 
However, these default settings do not usually provide optimal perfor
mance, requiring further tuning approaches [98]. XGBoost, RF, and 
ANN predictions reasonably align with the ideal fit line under the 
standard hyperparameters. The near-accurate performance of these 

algorithms necessitates further hyperparameter optimisation to enhance 
predictive performance. The conceptual model of heat pump perfor
mance that has been computationally implemented requires verification 
and validation [99]. This assessment is partly supported by expressing 
the model in a plotted form after it has been automatically implemented 
on a computer. The five subplots in Fig. 21 represent the ML results of 
the target feature (Hourly_COP) on the training set for SVR, XGBoost, 
RF, ANN, and LSTM before the hyperparameter training. XGBoost, ANN 
and RF model predictions show moderate alignment with the field data 
as opposed to SVR and LSTM.

3.6. Residual analysis

The residual plots are employed to evaluate the presence of sys
tematic error patterns, with ideally unbiased predictions appearing 

Fig. 19. Comparison of ML algorithm predictions to field data.

Fig. 20. Proportion of model performance across six evaluation metrics before hyperparameter optimisation.
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randomly distributed around zero. As defined in Equation (10), the re
sidual should demonstrate no visible trends or patterns and instead be 
symmetrically distributed about the zero axis. The presence of system
atic patterns indicates model deficiencies that require improvements, 
such as the inclusion of higher-order terms, data transformation, or 

hyperparameter tuning, to fit the underlying relationship better. To 
assess how effectively models capture underlying data patterns and to 
affirm the absence of bias, residual analysis, as illustrated in Fig. 22, 
compares model performance under manually configured and optimised 
hyperparameters. 

Fig. 21. ML model prediction before hyperparameter tuning vs. actual observations (a) SVR (b) XGBoost (c) RF (d) ANN (e) LSTM.
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Residuals(ei) = Actual(Yi) − Predicted(Ŷ i) (10) 

3.7. Model performance under hyperparameter optimisation

Fig. 23 shows the performance of each model after the parameter 
tuning on the test dataset. The plot describes the percentage distribu
tions of evaluation metrics for the models. LSTM performs better over 
other models across all the metrics, followed by ANN. This is likely due 

to the ability of the LSTM model to handle long-term dependencies in 
sequential data effectively. Additionally, nuances like underprediction 
that are not as apparent in the conventional error metrics, such as MAE, 
MSE, and RMSE, are revealed by NMBE and CVRMSE. The LSTM and 
ANN models exhibiting negative NMBEs are likely due to the algorithms 
predicting lower values than the actual target values, as observed by 
O’Neill and Costello [100]. It is worth noting that R2 is referred to in this 
study as a relative model comparison tool rather than treated as an 

Fig. 22. Residual before the model optimisation (a) SVR (b) XGBoost (c) RF (d) ANN (e) LSTM.
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Fig. 23. Analysis of error metrics and coefficient of determination for different algorithms featuring NMBE and CVRMSE.

Fig. 24. ANN-based model performance after hyperparameter tuning. (a) Predictions vs Actual (b) Residuals vs actual values (c) Residual Histogram-KDE plot (d) 
Residual vs predicted values. Best Hyperparameters: {‘activation’: ‘tanh’, ‘hidden_layers’: 2, ‘optimiser’: ‘adam’, ‘units’: 32} and Test Set Evaluation Metrics – 
MAE = 0.071, MSE = 0.011, RMSE = 0.107, R2 = 0.998, NMBE = -2.652%, and CVRMSE) = 5.073%.
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absolute performance measure because of the non-linear characteristics 
of the datasets.

3.8. Model diagnostics and residual analysis following hyperparameter 
optimisation

Figs. 24 to 28 show model diagnostic plots, which comprise 
frequently used plots in regression. These include predicted vs. actual, 
residual vs. actual values, residual vs. predicted values, and error dis
tribution (Histogram/KDE) for each figure. These plots reflect the 
models’ prediction performance and residual patterns, particularly on 
the unseen data, showing bias, variance, and the capacity of the models 
to generalise. In all cases, the coefficient of determination (R2) is 
interpreted as a relative comparison tool among the models, but not as a 
measure of goodness of fit. The best hyperparameters influencing the 
performance of each model consist of discrete and categorical values. 
For instance, the best hyperparameters for the ANN model are: 

{‘activation’: ‘tanh’, ‘hidden_layers’: 2, ‘optimiser’: ‘adam’, ‘units’: 32} 
while the resulting error metrics are evaluated as – MAE = 0.043, MSE =
0.009, RMSE = 0.093, R2 = 0.998, NMBE = -2.652%, and CVRMSE) =
5.073%. The best Hyperparameters and the test set evaluation metric 
values are captioned in the figures corresponding to each model. ANN 
and LSTM prediction models exhibit high accuracy (R2 = 0.998 and 
0.999), as reflected in their prediction vs. actual plots in Figs. 24 and 25, 
respectively. The two residual plots in Fig. 25 indicate that the errors 
cluster into two distinct regions of the input space, accounting for the 
bimodal distribution observed in the histogram-KDE of the LSTM pre
sented in the plot. The three ensemble algorithms, RF (Fig. 26), XGBoost 
(Fig. 27), and SVR (Fig. 28), perform reasonably well but require further 
tuning to match the performance of the deep-learning algorithms (ANN 
and LSTM).

Fig. 25. LSTM-based model performance following hyperparameter tuning. (a) Predictions vs Actual (b) Residuals vs actual values (c) Residual Histogram-KDE plot 
(d) Residual vs predicted values. Best Hyperparameters: {‘activation’: ‘tanh’, ‘hidden_layers’: 1, ‘lstm_units’: 150, ‘optimiser’: ‘adam’} 
and Test Set Evaluation Metrics: MAE = 0.046, MSE = 0.008, RMSE = 0.088, R2 = 0.998, NMBE = 1.46% and CVRMSE) = 4.170%.
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Fig. 26. RF-based model performance after hyperparameter tuning. (a) Predictions vs Actual (b) Residuals vs actual values (c) Residual Histogram-KDE plot (d) 
Residual vs predicted values. Best Hyperparameters: {’max_depth’: 10, ’n_estimators’: 100} and Test Set Evaluation Metrics - MAE = 0.069, 

MSE = 0.025, RMSE = 0.159, R
2 
= 0.994, NMBE = 0.025% and CVRMSE = 7.544%.
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3.9. Effect of hyperparameter tuning on model performance

Fig. 29 (a to f) shows the relative improvement in model perfor
mance resulting from hyperparameter optimisation within their archi
tecture, as evidenced by the percentage increase in R2 and the reduction 
in error metric values. The percentage improvement from optimising the 
model’s hyperparameters using GridsearchCV and k-fold validation was 
estimated. Comparing R2 and error metrics obtained before and after ML 
parameter optimisation allows an explicit comparison between the 
models and reveals the best performers. Percentage improvements in 
model performance are as follows: ANN recorded 22 % improvement in 
R2, 22 % reduction in MAE, 21 % reduction in MSE, 22 % reduction in 
RMSE, 23 % reduction in CVRMSE, and 24 % reduction in NMBE; LSTM 
recorded 21 % improvement in R2, 22 % reduction in MAE, 21 % 
reduction in MSE, 23 % reduction in RMSE, 19 % reduction in CVRMSE, 
and 20 % reduction in NMBE; XGBoost recorded 13 % improvement in 
R2, 19 % reduction in MAE, 20 % reduction in MSE, 19 % reduction in 
RMSE, 19 % reduction in CVRMSE, and 20 % reduction in NMBE; RF 
recorded 13 % improvement in R2, 18 % reduction in MAE, 19 % 
reduction in MSE, 17 % reduction in RMSE, 18 % reduction in CVRMSE, 
and 18 % reduction in NMBE; SVR recorded 31 % improvement in R2, 
19 % reduction in MAE, 19 % reduction in MSE, 19 % reduction in 
RMSE, 17 % reduction in CVRMSE, and 18 % reduction in NMBE. ANN 

and LSTM consistently demonstrate improved error reduction and a 
higher coefficient of determination (R2) across all evaluation metrics, 
establishing them as the best ML models for COP prediction based on the 
primary method adopted in this study. The XGBoost, RF, and SVR 
perform relatively well, and their performance can be further improved 
to match ANN and LSTM.

While prior studies have explored predictive modelling for heat 
pump systems using data-driven and application of ML methods, such as 
[23] and [101], this study advances the field by integrating real-time 
experimental data and uncertainty-aware KPIs to assess ML models. 
Unlike previous approaches that relied on existing datasets, employed 
single baseline models, and empirical tuning, our framework demon
strates statistically coherent performance across regimes and improved 
interpretability.

Table 7 summarises optimised key performance indicator (KPI) re
sults obtained through the systematic optimisation pipeline, bench
marked against the existing standards. All evaluated MLs’ performance 
not only aligns with the uncertainty limit of IoT equipment but also 
conforms to ASHRAE guideline 14. These metrics underscore the novelty 
and practical relevance of our method, particularly in the context of real- 
time system operation and control.

Fig. 27. XGBoost-based model performance after hyperparameter tuning. (a) Predictions vs Actual (b) Residuals vs actual values (c) Residual Histogram-KDE plot (d) 
Residual vs predicted values. Best Hyperparameters: {’max_depth’: 10, ’n_estimators’: 100} and Test Set Evaluation Metrics – MAE = 0.063, 

MSE = 0.017, RMSE = 0.131, R2 = 0.996, NMBE = -0.022%, and CVRMSE =1.287%.
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Fig. 28. SVR-based model performance after hyperparameter tuning. (a) Predictions vs Actual (b) Residuals vs actual values (c) Residual Histogram-KDE plot (d) 
Residual vs predicted values. Fitting five folds for each of the 48 candidates, totalling 240 fits. Best Hyperparameters: {‘C’: 100, ‘gamma’: ‘scale’, 
‘kernel’: ‘rbf’} and Test Set Evaluation Metrics: MAE = 0.113, MSE = 0.067, RMSE = 0.259, R2 = 0.985, NMBE = 0.303%, and CVRMSE 

= 12.250%.
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4. Conclusions

This study presented a comprehensive data-driven methodology for 
evaluating and optimising the operational performance of residential 
air-to-water heat pumps (A2WHPs) using real-time IoT-enabled moni
toring and machine learning. By combining field-based experiments 
with advanced analytics, the study bridges the gap between theoretical 
modelling and actual system behaviour under dynamic residential 
conditions. Eight ML models were rigorously evaluated using structured 
preprocessing, principal component analysis, and hyperparameter tun
ing via GridSearchCV and k-fold cross-validation. Among these, artificial 
neural networks (ANN) and long short-term memory networks (LSTM) 

consistently achieved superior prediction of coefficient of performance 
(COP), achieving an accuracy of R2 values of 0.998 and 0.999, respec
tively, and minimal error across all evaluation metrics, including MAE, 
MSE, RMSE, CVRMSE and NMBE. Including diagnostic tools such as 
residual histograms and KDE plots added interpretability to model 
outputs, helping to detect prediction bias and assess generalisation 
across unseen data. Beyond predictive accuracy, the findings emphasise 
the value of integrating ML techniques with real-time sensor data to 
inform fault detection, energy optimisation, and performance di
agnostics in residential heating systems. This approach provides a 
replicable and scalable solution for smart building management, sup
porting broader energy transition goals by enhancing system-level 

Fig. 29. Model performance improvement after hyperparameter tuning (a) R2,(b) MAE, (c) MSE, (d) RMSE, (e) CVRMSE, (f) NMBE.
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efficiency and mitigating operational uncertainty. The methodology in 
this study can be extended to diverse housing typologies, varied climatic 
zones, and other low-carbon heating technologies.

Future research should investigate the integration of this approach 
with reinforcement learning for adaptive control and real-time optimi
sation, enabling intelligent, autonomous residential energy systems 
aligned with smart grid and decarbonisation goals. Incorporating 
physics-based models into A2WHP performance predictions may 
enhance model generalisability. Although the machine learning models 
in this study performed well within the training horizon, their extrap
olation to unseen seasonal conditions remains constrained, a common 
challenge with purely data-driven models. Ongoing further work will 
compare the performance of these ML models against deep learning 
architectures, including Physics-informed long short-term memory (PI- 
LSTM) and Physics-informed neural network (PINN), to address this 
limitation. This benchmarking will support the selection of models best 
suited for energy optimisation, control, and fault detection and diag
nosis (FDD) in residential settings. Ultimately, this work will contribute 
to building a robust, scalable framework for energy-efficient and ther
mally comfortable homes, with potential for integration in building 
energy management (BEM) systems.
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