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Abstract

The highly-connected nature of Industrial Control Systems (ICS) has signific-

antly increased the possibility of cybersecurity threats to these systems. Water-

fall company’s 2023 report showed 218 ICS security incidents, with 25% result-

ing in tangible consequences, including operational disruptions and equipment

damage. This data underscores the criticality of robust ICS security measures.

Given that ICS manage essential services, potential compromises could lead to

severe disruptions, impacting public health and safety and economic stability.

Network Intrusion Detection System (NIDS) are crucial for securing ICS, provid-

ing early threat detection, enhanced network visibility, and invaluable support

during incident response. Machine Learning (ML) significantly enhances NIDS

capabilities by analysing vast amounts of data to discern normal network beha-

viour and identify attack patterns. This enables ML-powered NIDS to adapt to

evolving threats and identify anomalies with greater accuracy than traditional

rule-based systems, all while reducing the occurrence of false positives.

This thesis investigates the potential of integrating both network traffic data

and physical process data in the training of ML-based network intrusion de-

tection model. It is hypothesised that this combined approach will yield a

more effective detection performance compared to models trained solely on net-

work traffic data. To enable the network intrusion detection model to function

solely on network traffic during runtime, the Learning Using Privilege Inform-
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ation (LUPI) paradigm is adapted as a key element of the proposed Process In-

formed Network Intrusion Detection for Industrial Control Systems (PINIDS)

framework. The initial phase involves supervised training of a network intru-

sion detection model using both network traffic and process data. Subsequently,

the trained model can be deployed to detect potential intrusions by analysing

network data during runtime.

The effectiveness of PINIDS framework for intrusion detection is evaluated

using the SWaT dataset, focusing on brute force and unauthorised command

message attacks. Various machine learning techniques adopted to the LUPI

paradigm are investigated, including Knowledge Transfer (SVM+), Margin Trans-

fer, Transfer Learning, and Distillation. The findings demonstrate enhanced

precision and recall balance, leading to improved detection accuracy and re-

duced false positives and false negatives. Notably, SVM+ achieved a significant

21.47% improvement in F1-score and 49.19% in precision compared to classical

ML models, exhibiting consistent performance across experimental runs. While

Margin Transfer yielded a modest average improvement in F1-score and preci-

sion of 3.3%, it lacked robustness. Distillation proved highly effective, partic-

ularly for the DNN model, with a 12.23% F1-score improvement and substan-

tial precision enhancement. Both distilled Deep Neural Network (DNN) and

Convolutional Neural Network (CNN) models demonstrated robust perform-

ance. Although pre-trained and baseline CNN models performed comparably,

the former exhibited a 7.058% F1-score improvement, reduced detection time,

and greater stability. These results highlight the potential of transfer learning

techniques for enhancing intrusion detection systems.

While Deep Learning algorithms, such as CNN, generally outperform ML al-

gorithms like Support Vector Machines, our findings demonstrate that Ma-

chine Learning-based LUPI methods surpass Deep Neural Network-based LUPI
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approaches in ICS application with limited training data. The feature-based

teaching method employed by SVM+ contributes to its superior performance

compared to Deep Neural Network models in this study, effectively leveraging

input variable influence for decision-making.
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Chapter 1

Introduction

ICS are integral to the function of modern society, facilitating critical infra-

structure operations that are often taken for granted. These systems underpin

essential services such as energy production and distribution, water treatment

and distribution, transportation system, and manufacturing processes. The re-

liable operation of ICS is crucial for maintaining safety and ensuring economic

productivity.

ICS are responsible for managing and controlling critical infrastructure opera-

tion that are fundamental to daily life. In the energy sector, ICS manage power

generation, transmission, and distribution networks. Water treatment and dis-

tribution systems rely on ICS for ensuring water quality and safety, while trans-

portation systems, including traffic control, railway signalling, and pipeline op-

erations, depend on ICS for safe and efficient operation. Manufacturing indus-

tries use ICS for process control and automation in production lines. These

systems maintain process control by regulating parameters such as temperat-

ure, pressure, and flow to ensure safe and efficient operations.

The economic impact of ICS is significant, as they enable efficient and optim-

ised operations. By automating tasks and processes, ICS enhance productivity
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and reduce the reliance on manual labour, leading to increased output. Fur-

thermore, ICS contribute to reduced cost by optimising resource, minimising

waste and improving overall operational efficiency. The impact of ICS on every

day life is profound, despite their often-unseen nature. The electricity supply

to homes and businesses is reliant on power plants and grids managed by ICS.

Access to clean water is ensured by water treatment facilities that depend on

ICS for their operations. Transportation and logistics networks rely heavily on

ICS for smooth and safe functioning. The manufacturing of essential goods,

from food production to automotive manufacturing, relies on ICS-controlled

processes.

A disruption to ICS can have cascading effects on society. For instance, a dis-

ruption to the ICS managing a city’s power grid could result in widespread

blackouts, impacting residential, commercial and industrial activities.

Despite their critical role in critical infrastructure, ICS often have inherent

vulnerabilities that make them attractive targets for cyberattacks. These vul-

nerabilities derive from various factors, including legacy systems, increasing

connectivity, difficulties in patching and updating, and physical security chal-

lenges. Many ICS operate on outdated operating systems with known vulnerab-

ilities that may no longer receive security updates. the increasing connectivity

between Information Technology (IT) and ICS networks has expanded the at-

tack surface for ICS. The traditional air gap that once separated these networks

is vanishing, providing potential avenues for attackers to traverse between IT

and ICS environment. Remote access, while fulfilling maintenance and mon-

itoring purposes, can introduce vulnerabilities if not accompanied with robust

security measures.

The operational Constrains of ICS pose significant challenges for patching and

updating. Additionally, the geographically distributed nature of ICS, with com-
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ponents located in remote areas, makes it difficult to secure every component

physically and exposes these systems to the risk of physical tampering, unau-

thorised access and potential disruption. Once the attackers exploit any of these

vulnerabilities and get inside the system, they could manipulate control com-

mands, causing equipment malfunctions, process disruptions or even physical

damage.

Two high-profile cyber incidents occurred in 2021. The Colonial Pipeline incid-

ent disturbed gasoline supply to the Southeastern United States (Blount 2021).

This was a ransomware attack, where criminals used malicious software to

block access to Colonial Pipeline’s IT in return of the ransom payment. In

response to the attack, the company halted operations to ensure the malware

did not spread to its Operational Technology (OT). The attacker used a legacy

Virtual Private Network (VPN) account which was inactive. Not only did this

account still had access to the network, but also it lacked Multi-Factor Authen-

tication control.

An attack on the Florida water supply increased the sodium hydroxide level

in the water system before detection (Addeen et al. 2021). Here, attacker at-

tempted to remotely access the plant’s control system and change the level of

sodium hydroxide level. To do so the adversary used the remote access software

deployed on a computer connected to plant’s control system and manipulated

the control system interface.

The cybersecurity of ICS presents unique challenges due to their inherent char-

acteristics and operational environments. These challenges include depend-

encies on legacy systems with outdated and often unpatchable operating sys-

tems and hardware, leading to exploitable vulnerabilities. Furthermore, the

use of specialised, proprietary protocols and systems within ICS hinders the

implementation of standard security tools and practices. Real-time operation
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constraints necessitate security measures with minimal latency, adding another

layer of complexity.

The ICS threat landscape is continuously evolving, with increasingly sophist-

icated attackers such as nation-states and organised criminal groups targeting

these systems to disrupt critical infrastructure or exfiltrate sensitive informa-

tion. Supply chain vulnerabilities represent another significant risk, as com-

promised hardware or software can introduce vulnerabilities into ICS environ-

ments. Additionally, malicious insiders or unintentional errors by personnel

with access to the ICS network pose a significant threat. The convergence of IT

and ICS networks expands the attack surface, introducing new entry points for

attacks. Traditional IT security tools may be inadequate for monitoring and se-

curing ICS environments, potentially leading to vulnerabilities and blind spots.

Whilst eliminating known weaknesses is a critical protective approach, it is also

essential to detect undesired activity across the industrial network before any

irreversible damage occurs.

As ML techniques enable the automation of anomaly detection and make it

more efficient, particularly when handling large datasets, researchers have been

examining the use of these methods for intrusion detection, primarily anomaly

detection in the constantly changing ICS domain. ML techniques can be di-

vided into supervised, semi-supervised and unsupervised; examples of each of

these techniques can be found in the works of Agrawal et al. (2018), K. Yau

et al. (2017) and W. Gao et al. (2010). While supervised learning relies on la-

belled data, a labour-intensive operation that requires domain knowledge, these

techniques are known for their high predictability. On the other hand, semi-

supervised and unsupervised methods use unlabelled data, however, these tech-

niques present lower predictive performance. The comparative analysis presen-

ted by Bernieri et al. (2019) suggested that supervised algorithms used for an-
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omaly detection in ICS outperform semi-supervised and unsupervised algorithms.

Research into cyber anomaly detection in ICS can be divided into two groups:

NIDS and Behavioural Anomaly Detection (BAD). Research on Supervised ML-

based NIDS has mainly focused on using industrial network traffic. For ex-

ample, using network traffic Maglaras and J. Jiang (2014) applied One-Class

Support Vector Machine (SVM) algorithm for identifying the attacks, Patel et

al. (2017) used a knowledge-based analysis method for detecting and classify-

ing the attacks and Schneider et al. (2018) used an auto-encoder neural network

to identify attacks.

However, Suaboot et al. (2020) argued the importance of data analysis on data

integration between the collectable data from multiple sources in ICS, and urged

for a more holistic perspective toward NIDS for ICS. When an attacker implants

a malicious message in a packet payload, altering no protocol structure or com-

munication pattern, ML-based NIDS developed using network traffic may not

be successful in identifying this abnormal behaviour. Hadžiosmanović et al.

(2014) highlighted the importance of applying knowledge domain and process

behaviour in identifying cyber incidents. Studies focused on Supervised ML-

based BAD are mostly focused on using process data to learn ML algorithms.

Process data in ICS refers to real-time information collected from sensors and

actuators within industrial environments. This includes measurements of tem-

perature, flow rate, pressure, valve positions and pump statuses. These data

points represent the operational state of physical processes and can provide

valuable context for identifying abnormal or malicious behaviour in ICS en-

vironments. For example, Junejo and Goh (2016) used process data to train

supervised algorithms such as Decision Tree, Naive Bayes and Support vector

Machine for detecting attacks and identifying the type of attacks Agrawal et al.

(2018) used the rate of change in the process data to train an SVM algorithm
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for identifying abnormal behaviour in the system and Hink et al. (2014) de-

ployed different supervised algorithms such as SVM, Naive Bayes and Ran-

dom Forest for classifying natural and malicious power system disturbance in

a smart power grid.

This research combines elements from cyber security and industrial systems

with machine learning and aims to enhance NIDS for ICS through the com-

bination of cyber (network) and physical (process) data.This research addresses

the primary problem of traditional NIDS systems which rely solely on network

traffic because they cannot identify sophisticated or concealed attacks that oc-

cur during reconnaissance phases or multi-stage attacks.

1.1 Motivation

ICS interact with the physical environment. Therefore, studying the physical

properties of the process under control can provide valuable information about

the desired behaviour of the system and its input/output devices. Investigating

the process behaviour might be a useful approach to detect process anomalies.

However, identifying the source of these undesired behaviours will not be pos-

sible without investigating other aspects of the ICS, such as communication

between the elements and the process. All abnormal behaviour in the process

is not because of cyber-attacks, there are other reasons for a system’s unexpec-

ted behaviour, such as device or system failure e.g. inaccurate reading of a

sensor in a manufacturing plant can cause process deviation from normal beha-

viour, equally unpredicted environmental changes such as temperature fluctu-

ation and power surges can disrupt normal operation. Differentiating between

maintenance problems and cyber incidents will not be achieved through only

behaviour-based process analysis. Further valuable information can be derived
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from the industrial network communication in ICS. Such information would

lead to the design of a NIDS that can uncover cyber-attacks during the recon-

naissance period where the attacker is collecting intelligence and has not yet

manipulated the physical process.

1.1.1 The Research Gap that Motivates This Research

Supervised ML-based NIDS for ICS have been extensively researched, with a

primary focus on leveraging industrial network traffic while often overlooking

physical process data. These approaches often rely on network traffic alone,

overlooking the contextual insights embedded in physical process data. This

limitation enables attackers to execute process manipulation attacks which re-

main undetected because they do not modify protocol structures. These studies

contain two fundamental limitations because they assume uniform attack pat-

terns while disregarding the complex nature of multi-vector attacks. Suaboot

et al. (2020) supported the use of data from various sources in ICS and pro-

posed a holistic approach. This is crucial for detecting attacks targeting ICS as

an attacker could inject a malicious message within a network packet’s payload

without violating any protocol or communication pattern, rendering a NIDS

unable to detect it. Some researchers emphasised the importance of incorporat-

ing domain-knowledge and process context by modelling the physical processes

to effectively detect cyber-attacks in ICS (Hadžiosmanović et al. 2014). How-

ever, generating an accurate model necessitates a comprehensive understand-

ing of the physical processes and algorithms involved. Other studies have con-

centrated on supervised ML-based anomaly detection solely utilising process

data. The supervised anomaly detection methods achieve acceptable even high

results on SWaT datasets when using process data yet they fail to perform well

when faced with multiple attacks and reconnaissance activities that requires
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focusing on Network traffic. This research addresses these limitations by pro-

posing a hybrid model that leverages process context to enhance NIDS accuracy

and reduce false positives. It is important to acknowledge that anomalies can

occur due to device or system failures unrelated to cyber-attacks. Therefore,

anomaly detection based solely on physical process data cannot differentiate

between a malfunctioning sensor and a cyber-attack. Furthermore, NIDS are

capable of identifying the reconnaissance phase of a cyber-attack, which typic-

ally occurs without impacting physical processes.

This research investigates network traffic and process data integration and their

joint interpretation to detect complex cyber intrusions. An ML-based NIDS for

an ICS that is developed based on both network traffic and physical process data

may outperform the one trained and tested using network data alone. However,

because of the different data collection rates from network traffic and process

parameters, integrating these two data for the testing period seems to be im-

practical. First, the frequency of data collection from network traffic is higher

(e.g. in milliseconds) than the process data (e.g. in seconds/minutes), which

highly depends on the configuration and the nature of the process parameters.

Second, network data and process data are being stored in different locations

during the run-time. This research aims to address these needs, contributing

to research into leveraging the LUPI framework (Vapnik and Vashist 2009b;

Vapnik 2006) to detect cyber intrusion in an ICS network as an approach to

improve attack detection in the domain. This research intends for designing a

process-informed network intrusion detection framework for ICS, and explore

the extent to which this framework could aid in reducing the false positives in

detecting cyber attacks within industrial networks. The anticipated result of

this research is evidence of the role of process behaviour in improving network

intrusion detection as an approach to network security in ICS.
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1.2 Problem Statement and Research Aims

Even with recent progress—especially methods that use process data to spot

unusual behaviour—current research still struggles to detect complex or sim-

ultaneous attacks, especially when it relies only on network traffic. The aim of

this research project is to explore the potential for improvement in the perform-

ance of NIDS to detect cyber attacks by incorporating data from network traffic

and process data during training an ML based NIDS.

Although LUPI framework has been used in different domains of research, in-

cluding computer vision (Momeni et al. 2018; X. Yang et al. 2017; Xu et al.

2015), astronomy (Fouad, Tino et al. 2013; Fouad and Tiňo 2013; Fouad 2013),

and medical diagnosis (Shaikh et al. 2020; L. Shen et al. 2020), to our know-

ledge, the application of LUPI in NIDS for ICS has not been investigated before.

Given the successful implementation of the LUPI framework in cybersecurity,

as demonstrated by its effectiveness in detecting malicious botnet activities in

IT networks (Sapello et al. 2017), and its proven use case in anomaly detection

across security applications such as facial recognition, bot detection, and mal-

ware detection in IT networks (Celik et al. 2018), the LUPI framework holds

great potential in enhancing and complementing the existing NIDS for ICS net-

works.

In this research, we present an ML-based NIDS that integrates network and

process data during the training phase; the model uses network data during the

testing phase only. Our method is based on the LUPI framework (Vapnik and

Vashist 2009b; Vapnik 2006). LUPI is a supervised ML paradigm that allows

one to design a model by integrating additional informative features, known as

privileged information, during the training phase.

Our hypothesis is that the proposed approach would enhance the perform-

ance of intrusion detection compared to models using only network data for
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training. We have evaluated our proposed method of ML-based NIDS for ICS

through various ML techniques ( including Neural Network) in the Secure Wa-

ter Treatment (testbed) (SWaT) test-bed, which is an operational scaled-down

water treatment plant (Goh, Adepu, Junejo et al. 2016).

1.3 Research Objectives

The main objectives of this research are:

• Objective 1: Design an ML-based NIDS for ICS that trains with both pro-

cess and network data but runs at network level.

• Objective 2: Evaluate the practicality and benefit of the LUPI paradigm

in ICS using SVM+ (train: network+process; test: network-only).

• Objective 3: Compare traditional NIDS with LUPI-based models across

single-attack and multi-attack scenarios.

• Objective 4: Evaluate robust neural-network for knowledge transfer (e.g.

margin transfer, distillation, transfer learning) following LUPI framework,

under the same principles, train with both process and network data and

run with network data.

1.4 Contributions

There is a large body of work investigating ML-based anomaly detection for

ICS. However, to the best of our knowledge, we are the first to bring the im-

plementation of LUPI to ML-based NIDS in ICS domain (Pordelkhaki et al.

2021). This work provides a substantial contribution through the Process In-

formed Network Intrusion Detection (PINID) framework for NIDS. Proposed
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framework is designed with consideration of the cyber and physical character-

istics of ICS. PINID suggests the use of network traffic and data processing to

train a ML-based NIDS. During the run-time, however, the model would only

be provided with network traffic. By following the LUPI paradigm, we have not

foreclosed the knowledge that the process data would provide for learning a

robust ML-based NIDS for ICS. The proposed framework was evaluated using

the machine learning-based privileged information method (SVM+). We have

also examined this framework with robust Neural Network approaches, such as

Distillation and Transfer Learning. This proposed NIDS can identify multiple

types of attacks. This has been showed through rigorous evaluation performed

on a subset of attacks that represent all the attack types from the SWaT data-

base. The evaluation results show detection performance and False Positive (FP)

rate.

• Contribution 1: As identified by (Tsang et al. 2005; D. Yang et al. 2006;

Cheung et al. 2007; Valdes et al. 2009; Ponomarev et al. 2015; Yusheng et

al. 2017), process-level data provide crucial insights into the behaviour of

ICS components, which can be instrumental in identifying anomalies and

malicious activities. In this context, our research introduced the PINID

framework, a novel approach for NIDS in ICS that considers both cyber

and physical aspects. Unlike existing research that primarily relies on

network data for intrusion detection, the PINID framework leverages the

strengths of both network and process data to enhance the detection of

cyberattacks within an ICS. By incorporating process data alongside net-

work data, our framework enabled a more comprehensive and accurate

assessment of the ICS security posture. Following the principles of the

LUPI framework, we utilised network data for developing a NIDS for ICS,

aligning with established practices in the field. However, unlike many
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proposed techniques that disregard the valuable information embedded

within process data, our approach retained and leveraged this knowledge

to train a more robust and reliable ML-based NIDS for ICS.

• Contribution 2: To assess the effectiveness of the PINID framework, this

study examined a range of attacks that can compromise industrial pro-

cesses taking into account existing work conducted by MITRE (Alexander

et al. 2020) aligned with established hierarchical Purdue Model (Williams

1994) for ICS network. Focusing on brute force IO and unauthorised com-

mand message techniques, the evaluation involved attacks targeting both

single and multiple field devices (sensors or actuators) within one or more

stages of a water purification process. The evaluation utilised the SWaT

dataset (Aditya P Mathur et al. 2016a), which comprises ICS experiments

conducted in 2016 on a small-scale water treatment plant. This dataset,

containing 36 different attack types, provided a comprehensive repres-

entation of potential threats to a typical ICS. Among other challenges,

our evaluation also highlighted the critical role of labelling in supervised

learning environments and developed an approach to address limitations

in existing datasets in this respect.

• Contribution 3: Considering single attack scenario, we evaluated the per-

formance of PINID framework with common supervised machine learn-

ing algorithms (SVM, Logistic Regression (LR), Decision Tree (DT), Mul-

tilayer Perceptron (MLP), K-Nearest Neighbour (KNN)) using network

traffic data for training and testing. Specifically, the study compared the

performance of these algorithms with knowledge transfer technique, SVM+,

the SVM algorithm adapted Learning Using Privileged Information (LUPI),

where process information supplemented network traffic data. Addition-
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ally, the framework’s evaluation incorporated robust neural network meth-

ods in detection of a single attack. This framework validation included

evaluating margin transfer and distillation techniques alongside trans-

fer learning, utilizing a neural network structure. The outcomes of this

evaluation demonstrated that knowledge transfer outperforms other ML

algorithms in detecting single attack, however, the results from neural

network techniques demonstrate that margin transfer technique outper-

forms all ML techniques in detecting single attack and emerged as the

superior technique for single attack detection among other deployed ML

techniques. This contribution builds upon the existing body of research

including works of Schneider et al. (2018) and Goh, Adepu, Junejo et

al. (2016) by using traditional ML methods for intrusion detection from

either network or process data but not both in a combined setup.

• Contribution 4: Considering the complexity of multi-attack scenarios,

which introduce diverse attack characteristics, we evaluated the perform-

ance of the PINID framework. This evaluation employed common super-

vised ML algorithms, including SVM, LR, DT, MLP, KNN, using network

traffic data for both training and testing. Specifically, the study compared

the performance of these algorithms with a knowledge transfer technique,

SVM+, which is the SVM algorithm adapted for LUPI. In this adaptation,

process information was appended to network traffic data as auxiliary in-

formation. Beyond traditional machine learning methods, the framework

assessment also encompassed robust neural network approaches. This in-

volved evaluating margin transfer and distillation techniques, along with

transfer learning, all implemented within a neural network structure. The

findings indicate that utilising distillation techniques in conjunction with

LUPI proves more effective in identifying multiple attack types compared
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to other methods. This contribution extends the work of Suaboot et al.

(2020) and Hadžiosmanović et al. (2014) proposed holistic ICS security

models that could handle various attack modalities but did not assess ro-

bustness in scenarios involving multiple attacks.

1.5 Thesis Structure

The remainder of this thesis is organised as follows:

Chapter 2 — Background and related work

Chapter 3 — Materials and methodology

Chapter 4 — A framework for ML-based network intrusion detection in

ICS

Chapter 5 — Result and analysis

Chapter 6 — Discussion and finding evaluation

Chapter 7 — Conclusions and future work
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Chapter 2

Background and related work

2.1 Industrial Control Systems

The term ”Industrial Control Systems” refers to a collection of several auto-

mated control process systems. These systems can control industrial processes

through real-time data gathering and monitoring. These include industrial

systems like Programmable Logic Control (PLC), Distributed Control Sys-

tem (DCS), and Supervisory Control and Data Acquisition (SCADA) (Fan et

al. 2015). ICS are used in various automated industries like the food industry,

transportation industry, chemical and petrochemical industry, oil and gas in-

dustry, and critical infrastructures such as power plants and water treatment

plants (Nankya et al. 2023; Mesbah et al. 2019) and (S. Singh et al. 2020). The

significance of safety and security for these infrastructures has increased the

value of ICS safety and security. The overall operation of ICS depends on mul-

tiple crucial components, each with a significant role (Aykut et al. 2025). Some

common components found in ICS are:

• Sensors: These devices gather data from the physical environment. Vari-

ables such as temperature, pressure, and flow rate can be measured to
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offer real-time data to the control system.

• PLC: PLCs are compact computer devices that gather input from sensors

and decide based on pre-established logic.

• SCADA: The SCADA system acts as the central hub for monitoring and

controlling industrial processes. The collection of data from diverse devices

is displayed for operators and remote control functions are enabled.

• Human Machine Interface (HMI): HMIs refer to graphical user interfaces

that visually depict the system’s status and enable operators to interact

with the ICS. It is common for them to incorporate touchscreens, alarms,

and visualisation tools for data.

• Actuators: Commands from the control system are executed by actuators,

which perform physical actions. To regulate the industrial process, in-

structions are received and used to operate motors, valves, switches, and

other mechanisms.

• Communication Network: The exchange of data between different ICS

components is made possible by these networks. Real-time communica-

tion is guaranteed with the option of wired or wireless connections, en-

suring seamless system operation.

The architecture of a modern ICS mainly consists of three layers: an enter-

prise management layer, a supervisory layer, and a field layer. The enterprise

management layer mainly includes Management Information Systems (MIS),

Enterprise Resource Planning (ERP) systems, Manufacturing Execution Sys-

tems (MES) , and other application systems. This layer uses the network com-

munication technology to connect with the Internet, in order to realize the real-

time monitoring and management of industrial processes and furthermore as-
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sist enterprise-level intelligent decision-making. The supervisory layer con-

sists of process monitoring systems, historical and real-time databases, and a

series of operator and engineer stations. This layer is responsible for data ac-

quisition and transmission between the enterprise management layer and the

field layer, and controlling field devices based on specific control logics. The

field layer includes various types of sensors, actuators, transmitters, and In-

put/Output (I/O) devices. This layer is mainly responsible for the perception

of field information and the manipulation of field devices, and furthermore ex-

changing digital or analogue data between different field devices through the

field bus.

ICS components leveraged ICS-specific protocols for communication over a

network, with most of the protocols being point-to-point or broadcast. Cur-

rently, numerous protocols are layered on Ethernet, Transmission Control Pro-

tocol (TCP), and User Datagram Protocol (UDP), and devices use Internet

Protocol (IP)-based networks (Bansal et al. 2024). Feedback control loops are

used in control systems to regulate output by detecting and using input from

the environment (Åström et al. 2021). The monitoring and evaluation of the

physical process helps regulate it based on specific limits set by the user. ICS

often integrates extra safety-related logic to back their primary function. PLCs,

which directly govern physical processes, are generally created using a basic,

logic-oriented methodology. Controllers, with their intricate language, super-

vise PLCs to control multiple end units and connect with higher-level applica-

tions. Collection of such PLCs and supervisory controllers, besides peripheral

devices like the HMI, are frequently denoted as SCADA systems (Agha 2024).
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Figure 2.1: ICS Network Architecture

38



2.1. INDUSTRIAL CONTROL SYSTEMS

2.1.1 ICS Security

A comparative analysis reveals distinct security requirements for ICS compared

to traditional information systems. While the latter emphasises confidentiality,

integrity, and availability of sensitive data, ICS security historically prioritised

safety, mitigating risks associated with system failures that could impact human

life, physical assets, and production continuity(Stouffer et al. 2023). However,

the increasing interconnection of ICS with external networks, particularly the

internet, necessitates a paradigm shift. Modern ICS must now navigate the

complexities of balancing both safety and security imperatives (Ani et al. 2017).

Key security prerequisites for ICS in this evolving landscape include:

• The real-time functioning of each physical device can be compromised by

even the slightest deviation, leading to industrial disasters.

• The provision of security programs in ICS with multiple sensors and ac-

tuators presents a problem because of restricted computing and storage

resources.

• ICS must adhere to exact control algorithms to achieve specific produc-

tion objectives. The likelihood of causing severe accidents increases when

these algorithms fail.

• The continuous operation of all ICS equipment presents a formidable

obstacle to halting ICS operations for firmware or software updates.

• Connecting ICS to the internet, while offering benefits, significantly in-

creases their vulnerability. Originally designed for isolated networks, ICS

protocols face heightened risks in interconnected environments. This ex-

poses critical process data to unauthorised access, leaving organisations
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vulnerable to espionage, sabotage, and operational disruptions. The con-

venience of internet connectivity for ICS comes at the cost of an expanded

attack surface and increased cyber threats.

Cyber attacks targeting ICS can be categorized into the standard CIA categor-

ies of Confidentiality, Integrity, and Availability. Even though ICS might be

prone to comparable CIA attacks as IT systems, the aftermath of these attacks

can potentially lead to catastrophic consequences, including jeopardizing per-

sonal and social safety and life (Stouffer et al. 2023; Zhou et al. 2020; Slowik

2019). For example in May 2021, critical infrastructure was targeted by cyber

attackers when the largest oil pipeline in the U.S. was breached. The threat

actors gained access to the corporate network by exploiting an exposed VPN

password and proceeded to steal 100 GB of data while also infecting the IT net-

work with ransomware. In order to prevent the ransomware from spreading

further, the pipeline was shut down for approximately one week, which im-

pacted airlines due to a shortage of jet fuel and created a sense of social panic

regarding a fuel scarcity(Tsvetanov et al. 2021). Also in March 2000, Maroochy

Water Services experienced a notorious cyber incident in which an ex-employee

hacked into the system and gained control of 150 sewage pumping stations,

resulting in the release of one million liters of untreated sewage into local wa-

terways (Slay et al. 2007). Furthermore, due to their utilization of sensors and

actuators to interact with the physical environment, ICS are vulnerable to a

particular class of cyber-attacks, in addition to the distinctive aftermath caused

by a cyber threat. One of the attack types specific to Cyber Physical Systems

and ICS is False Data Injection (FDI) attack (Chong et al. 2019).In the event of

an FDI attack, adversaries have the potential to exploit sensors and actuators

to impose changes in system behaviour that won’t affect the observed system

state, allowing the manipulation to go unnoticed. Despite the advanced secur-
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ity measures in public and enterprise IT networks, industrial networks pose

a challenge, requiring bespoke solutions adapted to the control environment.

Addressing security concerns in a continual real-time system demands a thor-

ough thorough understanding of network security, control theory, and phys-

ical processes. To respond to these challenges, standardisation bodies such as

(NIST, ISA/IEC and ENISA) have established guidelines and frameworks for

securing critical infrastructures. These include general IT security standards,

ICS-specific frameworks like IEC 62443, and sector-oriented recommendations

tailored to particular industrial domains (Islam 2025; Laan et al. 2025; Maurya

et al. 2024).

2.2 Intrusion Detection Systems in ICS

The process of intrusion detection revolves around the examination of events

occurring within computer systems or networks. The primary objective is to

identify potential incidents that have the potential to violate security policies,

acceptable use policies, or standard security practices. (Scarfone et al. 2007)

The classification of intrusion detection technologies typically hinges on iden-

tified events and the methodology utilised for recognising incidents. IDSs are

commonly categorised into network-based known as NIDS and Host-based In-

trusion Detection Systems (HIDS) based on their scope and their operation. The

fundamental approaches to incident detection encompass detection based on

signatures, anomalies, and specifications. Apart from monitoring and analys-

ing events, IDS usually logs information regarding the events, informs the ad-

ministrator of crucial events through warnings and alarms, and generates suit-

able reports. The past decade has seen a powerful surge in the research and

development of intrusion detection systems for SCADA networks. The rigor-
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ous demands of real-time operation and data integrity, combined with consist-

ent traffic patterns and a finite set of telecommunication protocols, mandate

the creation and deployment of intricate and dedicated intrusion detection sys-

tems. The significant attention given to the security of ICS by both academia

and industry can be linked to the emergence of Stuxnet when the importance

of intrusion detection technology in protecting the security of ICS has been

widely acknowledged (Maglaras and J. Jiang 2014). However, Intrusion de-

tection systems developed for conventional information systems often overlook

the unique characteristics of ICS, thereby limiting their efficacy in guaranteeing

ICS security. In his study, Mitchell et al. (2014) classified IDS for ICS into differ-

ent categories based on the detection techniques utilised and the data sources

they rely on. With detection techniques, IDS for ICS can be categorised into two

distinct groups, namely misuse-based and anomaly-based, focusing on differ-

ent approaches. Misuse-based IDSs operate by contrasting collected system in-

formation against established signatures within a misuse pattern database. This

method facilitates the identification and detection of previously documented

intrusions. A key strength of misuse-based IDSs lies in their capacity to attain

high detection rates for known attack vectors. Anomaly-based IDSs function

by contrasting a system’s current operational state with its established ”nor-

mal behaviour pattern.” When the discrepancy between these states surpasses a

predetermined threshold, an alert is generated. Although anomaly-based IDSs

possess the capability to detect a broad spectrum of previously unknown at-

tacks, they frequently encounter challenges related to a heightened rate of false

alarms. Besides that, Mitchell et al. (ibid.) have summarised a new subclass of

anomaly-based IDS, which is referred to as behaviour specification-based IDS.

By utilising industrial control protocols and system behaviour specifications,

these IDS can construct the normal behaviour model of a system. On the other
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hand, ICS IDS can be classified into two types, network-based and host-based,

based on various data sources. Network-based IDS systems rely on network ad-

apters to collect and analyse real-time data of network communication. By util-

ising various data analysis techniques, these systems can effectively detect and

identify global intrusion behaviours. However, it is important to note that this

method lacks the capability to precisely pinpoint the specific system or asset

that is being targeted. Host-based IDSs concentrate on monitoring documents,

processes, and data residing on a designated host to detect any intrusion at-

tempts directed at that specific asset. The taxonomy of conventional intrusion

detection systems (IDS) frequently overlooks the specific features of ICS and

their intricate linkages with the physical world, as these systems are primarily

designed for information systems. By taking into account both the detection

techniques and the unique characteristics of ICS, the field of ICS IDS can be

further categorised into three specific types: IDS based on protocol analysis,

IDS based on traffic mining, and IDS based on control process analysis. The

primary focus of the technologies in the first two categories is to detect and

analyse standard cyber attacks that are specifically targeted towards ICS. The

process of achieving this involves the thorough evaluation of industrial proto-

cols, as well as the careful analysis of traffic data that is generated within in-

dustrial control networks. The third category is specifically designed to detect

and mitigate semantic attacks that target control systems or physical processes

with the intent of causing harm to ICS.

By leveraging protocol analysis, the Intrusion Detection System (IDS) is able

to detect and identify malicious attacks within an industrial control network.

It achieves this by closely examining the transmission packets and assessing

their adherence to the specifications laid out by the industrial protocol. The

successful implementation of techniques in this category is highly dependent
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on the accurate definition of detection rules. In cases where rule definitions

lack precision, a heightened rate of false alarms may occur, potentially leading

to undesirable outcomes. Moreover, the process of parsing each transmission

packet is known to be time-consuming, adding further delays to the system’s

efficiency. The IDS take into account traffic mining techniques to address these

issues, albeit to a certain extent. The techniques within this particular category

aim to create non-linear connections between the patterns of network traffic

and the normal or abnormal behaviours exhibited by a system. Despite this, it

is important to note that both categories, which are based on traditional inform-

ation systems, fail to acknowledge the strong link between ICS and the physical

world. The existence of this oversight poses a significant threat, as it creates

multiple opportunities for attackers to exploit and manipulate industrial pro-

cess data. Moreover, they can deliberately tamper with the operating rules of

field devices, potentially causing severe and irreversible damage to the ICS. The

nature of these attacks is in line with protocol specifications, meaning that they

do not create any unusual network traffic. As a result, a new type of intrusion

detection system has emerged, known as control process analysis-based IDS,

which aims to detect and identify semantic attacks like the one described. In

the following section, our main objective is to delve into this taxonomy associ-

ated with ICS IDS and provide a comprehensive exploration of its components.

In the field of ICS, IDS are defined as systems, software applications, or a

combination of both that have the role of monitoring the behaviours of ICS.

These systems continuously gather and analyse all available data, including

sensor readings, network traffic, and system logs, to identify malicious activ-

ities or policy violations. The dataset, enriched with domain-specific know-

ledge encompassing protocol specifications, sensor measurements, host data,

system logs and network traffic , facilitates a comprehensive understanding
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of industrial control. Immediate notification of a system administrator is cru-

cial upon detection of any malicious activity. Subsequently, implementing re-

medial actions is essential to protect the ICS from potential damage or destruc-

tion. More recently Makris et al. (2025)studies Federated Intrusion Detection

Systems (FIDS). These systems perform distributed detection operation across

various ICS environments and maintain data privacy. This advocates continu-

ous development of IDS architecture, evolving from their original centralised

structure.

2.2.1 Protocol Analysis Based IDS

Within industrial control networks, protocol analysis-based IDSs leverage ad-

vanced protocol analysis techniques to detect anomalies. This technology iden-

tifies deviations in protocol formats or data packet statuses transmitted within

the network. Upon detection of such modifications, the system can subsequently

identify any abnormal behaviours exhibited by the ICS.

2.2.1.1 Security Analysis of Common Industrial Protocols

The security analysis of prevalent industrial protocols primarily focused on

the reliability and efficiency of ICS during their initial design phase. Due to

their relatively closed nature, traditional ICS often neglected the importance

of ensuring security for industrial communication protocols. Certain cyber

attacks have been observed to target and exploit vulnerabilities in commonly

used industrial protocols like MODBUS protocol (MODBUS), Distributed Net-

work Protocol 3 (DNP3), and Inter-Control Centre Communications Protocol

(ICCP)/ Telecontrol Application Service Element 2 (TASE.2). MODBUS, intro-

duced in 1979 by Modicon (Modbus 2004), an early and widely adopted bus

protocol in industrial sectors, employs a Master/Slave communication model.
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In this model, the Master initiates data exchange by transmitting a message to

the Slave to request information. However, due to the lack of encryption or

authentication mechanisms, MODBUS communication relies on original data,

making it susceptible to attacks. Parsing MODBUS addresses and function

codes exposes the protocol to potential data theft or manipulation by attackers,

introducing significant security vulnerabilities. During the 1990s, the Amer-

ican Electric Power Research Institute (EPRI) introduced the Inter-Control Centre

Communications Protocol (ICCP) to facilitate communication between control

centres within the power industry. ICCP allows bidirectional communication

between clients and servers but introduces security enhancements compared

to MODBUS, such as an access control bilateral table. However, security risks

persist due to the absence of data encryption and identity authentication mech-

anisms, making ICCP susceptible to various attacks. Distributed Network Pro-

tocol (DNP3), designed to facilitate communication between automation com-

ponents (Curtis 2005), provides enhanced reliability and incorporates features

like data reassembly, fragmentation, verification, priority and link control. How-

ever, despite these advantages, vulnerabilities have been identified in the DNP3

protocol. The protocol lacks authorisation or encryption mechanisms, makes it

susceptible to potential man-in-the-middle attacks. The preceding analysis un-

derscores that the limited emphasis on security during the design phase has

introduced a number of security risks within industrial communication pro-

tocols. As a result, a different approach to intrusion detection , grounded in

protocol analysis, has been introduced.

2.2.1.2 Public industrial communication protocol analysis based IDS

Apart from the various proprietary protocols, there is also a range of public

protocols available in the field of ICS, providing researchers with convenient
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access to analyse them. A protocol specification serves to define and outline the

accepted communication patterns and the message formats that are related to a

specific protocol. Therefore, it is feasible to create intrusion detection mechan-

isms by taking advantage of these protocol specifications. By implementing this

detection system, any behaviour that deviates from the specified protocol can be

effectively identified and detected. For instance, Cheung et al. (2007) proposed

an intrusion detection technique based on a protocol specification model. This

model defines acceptable values for various fields within a data packet and out-

lines valid relationships between these fields. Moreover, the technique estab-

lishes normal communication patterns while considering the specific security

requirements, data transmission directions, and transmission ports pertinent to

an ICS. Although the method is successful in detecting possible abnormal be-

haviours, one of its disadvantages is the increased false alarm rate, as it has the

tendency of misclassifying emerging normal behaviours as anomalies. Morris,

Vaughn et al. (2012) created a customised intrusion detection method specific-

ally designed for Modbus, using the Snort software (Roesch et al. 1999), which

is renowned for its capabilities in detecting intrusions. The use of Snort rules

allowed for the thorough examination of communication data within industrial

networks, resulting in the efficient detection of any unauthorised data. The ef-

fectiveness of this approach, however, is highly dependent on accurately defin-

ing Snort rules, as they directly impact the accuracy of detection. Researchers,

in their quest for agile development, have dedicated their efforts to refining and

enhancing traditional IDS to make them more compatible with ICS. Bro (Pax-

son 1999), which was developed by the University of Berkeley, is an IDS that

primarily focuses on capturing network packets through bypass monitoring. By

extracting relevant events from the packets, the system can employ a protocol

parser that can effectively analyse protocols across various network layers. As a
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result, the system could to identify any potential intrusions by analysing these

events using policy scripts. H. Lin, Slagell, Di Martino et al. (2013), specific-

ally, contributed to the progress of Bro by implementing a packet parser that

was specifically designed to handle industrial protocols, including DNP3. The

main function of this enhanced parser is to carefully examine the valid values

of different fields within a packet, thereby allowing the formulation of security

policies that are coherent with the protocol. In addition, the system has the

capability to parse multiple protocols that are used in ICS, which expands its

applicability beyond just DNP3.

2.2.1.3 Proprietary Industrial Communication Protocol Analysis Based IDS

The development of IDS techniques in specific industries involves the use of

certain proprietary industrial protocols, besides public protocols. Hong et al.

(2014) performed a thorough analysis of automatic systems within smart grid

substations. The purpose of the analysis was to detect any anomalies or mali-

cious behaviours present in the multi-cast messages. To achieve this, the IEC

61850 standards, which encompass the Generic Object Oriented Substation

Event (GOOSE) and Sampled Values (SV) were utilised. Leveraging propriet-

ary protocol specifications, this method has demonstrated efficacy in identify-

ing and detecting various malicious attacks, including Replay Attacks, Packet

Tampering, and Denial of Service (DoS) attacks. The preceding analysis sug-

gests that protocol analysis-based IDS systems predominantly employ misuse-

based intrusion detection techniques. However, the comprehensive analysis of

all packet contents during detection can hinder IDS efficiency. Consequently,

researchers propose combining misuse-based and anomaly-based techniques

to enhance intrusion detection mechanisms for ICS. Y. Yang et al. (2013) pro-

posed a method that initially employs misuse-based detection technology to
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compare observed system behaviour against intrusion patterns within a data-

base, enabling rapid identification of known attacks. Subsequently, anomaly-

based technology is utilized to scrutinize the remaining data for the detection of

unknown attacks. The experimental results have proven that these approaches

are highly effective in improving the accuracy and efficiency of ICS IDS de-

tection. In addition, the effectiveness of intrusion detection can be greatly en-

hanced by combining protocol analysis-based IDS with traffic analysis. The

improvement in intrusion detection accuracy can be achieved by transferring

the rules extracted from communication patterns outlined in the specifications

of protocols in ICS network traffic and specific business logics to the traffic

analysis module. Hadeli et al. (2009) presented an intrusion detection scheme

for power systems based on this approach. By extracting network traffic pat-

terns from predefined protocol specifications and formal system descriptions,

the scheme generates comprehensive traffic models encompassing both legit-

imate and illegitimate activities. For instance, the model flags anomalies in

two scenarios: when an Intelligent Electronic Device (IED) fails to transmit a

GOOSE control message is sent to a multicast address that doesn’t correspond

with the device’s Media Access Control (MAC) address. These extracted traffic

rules are then inputted into Snort and converted into Snort rules, enabling the

detection and reporting of any predicted but unobserved traffic. In their work,

Yusheng et al. (2017) introduced an innovative algorithm called Stereo Depth

Intrusion Detection System (SD-IDS) , designed for real-time deep inspection of

Modbus TCP traffic. The SD-IDS algorithm is composed of two primary com-

ponents, which are rule extraction and deep inspection. The rule extraction

module is primarily responsible for identifying and extracting semantic rela-

tionships between key fields within the Modbus TCP protocol. Conversely, the

deep inspection module leverages these extracted relationships, in conjunction
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with real-time traffic data, to perform effective anomaly or intrusion detection.

2.2.2 Traffic Mining Based IDS

Many intrusion detection systems (IDS) that rely on protocol analysis encounter

significant drawbacks, such as their limited ability to identify unknown attacks

and the extended time to analyse data packets. Researchers have been focusing

on the development of traffic mining-based intrusion detection techniques to

address these issues, albeit to some extent. One of the notable advantages of

this approach is the enhanced efficacy in identifying a broad range of unknown

attacks. One of the defining characteristics of ICS is that they have fixed oper-

ational objectives, meaning that their goals and objectives remain constant and

do not change. The stability of the ICS traffic is maintained by these charac-

teristics, resulting in a relatively stable flow under normal circumstances. The

significance of traffic data cannot be emphasised enough, as it serves as vital in-

formation that accurately reflects the security status of ICS. This opens up new

opportunities for the development and implementation of intrusion detection

technology based on traffic mining techniques. Traffic mining-based IDS sys-

tems gather data from various segments within ICS networks and employ data

mining techniques, including neural networks, decision trees, Bayesian classifi-

ers and other algorithms, to analyse the collected data. Alternatively, they may

utilise data analytic methods, such as statistical analysis, on the gathered data.

The primary objective is to identify and flag any anomalous behaviours within

industrial networks. In the study conducted by Yusheng et al. (2017) , a novel

approach for intrusion detection was introduced. This approach, which is fo-

cused on traffic mining, involves the extraction of several data elements includ-

ing the source and destination IP address, transport-layer protocol, source and

destination port, and the average time interval between adjacent packets. Us-
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ing data mining techniques then allow distinction between normal and abnor-

mal behaviours which supports the identification of various types of intrusions

such as Replay and Packet Tampering. In their study, Hou et al. (2012) intro-

duced a novel approach that focused on the utilisation of probabilistic Prin-

cipal Component Analysis (PCA) to identify abnormal network traffic patterns.

They identified that one of the main reasons for false alarms is the identification

of random burst traffic. Through the construction of a probabilistic Principal

Component Analysis (PCA) model for the traffic matrix, Hou et al. (ibid.) have

extensively analysed the influence of random burst traffic on PCA. An Iterative

Variational Bayesian algorithm was employed to estimate model parameters,

which were subsequently used to determine the distribution function of the

traffic matrix rank. Observed rank changes served as the primary metric for

detecting abnormal traffic within ICS. Experimental results demonstrated the

effectiveness of this method in mitigating the impact of random burst traffic

on intrusion detection. Artificial Neural Network (NN) are a powerful data

mining technique that simulates the cognitive processes of the human brain,

making them an effective tool for extracting valuable insights from data. In the

context of ICS, this technique is utilised to thoroughly analyse extensive data-

sets, resulting in the successful detection of intrusions that were previously

unknown. Neural Networks play a crucial role in traffic mining as they estab-

lish non-linear mapping relationships between various traffic features and the

security states of the system, whether it is normal or abnormal. This mapping is

achieved through rigorous model training. As a result, the data is classified by

these trained models, allowing for the effective identification of abnormal traffic

and malicious intrusions in ICS. Vollmer et al. (2009) conducted their work by

training a neural network model. During the training process, they extracted

various network traffic features, including packet size, Internet Control Mes-
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sage Protocol (ICMP) protocol ID, ICMP sequence number, ICMP code, ICMP

type, IP protocol ID, IP protocol option, and IP survival time. These features

were then used to construct input vectors for the model. Once the feature norm-

alisation process was completed, the error Backpropagation (BP) algorithm was

employed to train the neural network model. By extracting real-time network

traffic features during the detection phase, input vectors were formed. These

input vectors were then classified using the NN model, providing the capabil-

ity to detect attacks such as Denial of Service (DoS) and eavesdropping. In a

subsequent study, Linda, Vollmer et al. (2009) presented a novel feature vector

extraction technique based on a sliding window approach, enabling dynamic

and precise extraction of network features. The analysed features encompassed

the number of IP addresses within a packet sequence, the packet counts asso-

ciated with a single IP address, the average time interval between consecutive

data packets, window duration, data transmission speed, the count of observed

protocols within the window, and the total number of identification codes. Be-

sides this, the researchers employed a comprehensive method that effectively

combined the techniques of BP and Levenberg-Marquardt (LM) in order to

detect abnormal traffic, resulting in a satisfactory level of intrusion detection

accuracy.

Ashfaq et al. (2017) introduced a highly effective semi-supervised learning mech-

anism for Neural Networks (NN) that reduces the reliance on labelled data. The

initial step in the training process of this method involves establishing a fuzzy

classifier, which is implemented as a neural network model with randomly ini-

tialised weights. A small set of labelled data is used to train the fuzzy classifier.

Subsequently, the fuzzy classifier is employed to classify the unlabelled data,

yielding a membership vector as the final output. Each entry in the input vec-

tor represents the degree of belonging to a specific category. As a part of the
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model training phase, data that contains varying degrees of ambiguity is in-

corporated into the original training set. The fuzzy classifier is then retrained

using this mixed data.

The process of training a neural network model is time-consuming and requires

significant computing resources. In order to address this limitation, research-

ers proposed a fuzzy logic based approach (Linda, Manic, Vollmer and Wright

2011; Linda, Manic, Alves-Foss et al. 2011; Linda, Manic and Vollmer 2012).

The researchers in the study by Linda, Manic, Vollmer and Wright (2011) opted

to employ fuzzy rules for modelling the normal behaviour patterns exhibited

by ICS. By utilising an adjusted online nearest neighbour clustering algorithm,

it is possible to extract the fuzzy rules from the network packet sequence. Em-

bedded sensors can easily handle the computational demands of this learning

method, as it requires minimal computing resources. While performing the de-

tection process, the scheme utilises the outputs of multiple fuzzy rules to com-

pute the degree to which the input vectors align with normal behaviour pat-

terns, ultimately enabling the identification of intrusions. In order to enhance

the accuracy of intrusion detection, the researchers integrated TYPE-2 fuzzy lo-

gic into the model in their follow-up work(Linda, Manic, Alves-Foss et al. 2011).

The integration aimed to mitigate the detrimental impact of uncertainties on

overall system performance while enhancing the accuracy of network security

status monitoring by sensors. Linda, Manic, Alves-Foss et al. (ibid.) developed

a TYPE-2 fuzzy logic-based IDS to incorporate domain knowledge into spe-

cific industrial environments and network systems. The IDS aimed to establish

correlations between intrusion likelihood and network communication charac-

teristics. Experimental results indicated that the architecture enables adaptive

algorithm threshold adjustments to enhance the intrusion detection accuracy.

It is important to note that SVM was utilised by several researchers in intrusion
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detection for ICS. Through the application of kernel functions, linearly insep-

arable traffic data could be mapped into a higher-dimensional feature space.

Following that, they built a super-plane which was highly effective at distin-

guishing between behaviours that were normal and those that were abnormal.

In their study, Maglaras and J. Jiang (2014) introduced an intrusion detection

algorithm for ICS that utilises the One-Class Support Vector Machine (OCSVM)

technique. The exceptional aspect of this algorithm lies in its ability to be

trained offline, with no labelled training data or any prior knowledge of attack

categories, which makes it truly unique. This method can create traffic models

for multiple protocols, enabling the detection of various intrusion behaviours

targeting ICS systems. Some examples of such behaviours encompass Man-in-

the-Middle attacks as well as SYN Flood attacks. While the traditional SVM

approach can effectively classify normal and abnormal behaviours, it falls short

in accurately classifying the specific anomalies. Consequently, Luo (2013) de-

vised a method for intrusion detection that relies on multi-class SVM, in which

several SVM classifiers are integrated to accurately identify the category of an

intrusion. In their study, Javaid et al. (2016) introduced a novel deep learning

technique for effectively differentiating between normal and abnormal traffic

data. The initial stage of this process involves the utilisation of a sparse auto-

encoder, which is a method employed for unsupervised learning. The unsuper-

vised learning network is composed of three layers, namely the input layer, the

implicit feature layer, and the output layer. The output layer’s ability to accur-

ately reproduce the input data can be improved by making adjustments to the

network parameters. Subsequently, the training features and the labelled data

are employed in the training process to train the classifier, ultimately leading

to the successful completion of classification tasks.

A unique algorithm was proposed by Aghdam et al. (2016) which selected net-
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work traffic features for intrusion detection using colony optimisation which

mimics the behaviour of ant colonies. By removing unnecessary or invalid fea-

tures, this algorithm significantly improves both the efficiency and accuracy

of intrusion detection. This algorithm distinguishes itself from traditional IDS

methods by detecting a larger number of attacks and minimising the computing

workload. Tsang et al. (2005) developed a carefully planned multi-agent archi-

tecture to address the intricate challenge of detecting and defending against

intrusions in extensive switching networks. The utilisation of the improved ant

colony clustering model, a highly effective biological heuristic learning model,

by the authors in this architecture improved the overall efficiency of the sys-

tem. Using a heuristic search technique in this model helps to generate clusters

that are approximately optimal using nearest neighbour, with a specific focus

solely on the normal data. The primary goal of this procedure is to identify

and extract clusters, which can be further converted into fuzzy rules. Each

cluster corresponds to a fuzzy rule in a one-to-one manner. Then, the test data

is processed through a series of fuzzy rules to gauge its similarity to regular

behaviour. Kiss, Béla Genge et al. (2014) organised and used the data gathered

from ICS in a timely manner in their study , where they suggested a unique

intrusion detection method that employs clustering algorithms to efficiently

detect possible attacks on ICS. The researchers, Caselli, Zambon, Petit et al.

(2015) and Caselli, Zambon and Kargl (2015), uncovered a crucial finding about

network traffic attacks in their study. More specifically, the researchers found

a new form of attack called sequence attacks that had not been known until

now. These attacks primarily revolve around the sending of incorrect messages

through industrial communication systems. The primary objective is to disrupt

the field devices intentionally, causing malfunctions and potentially impacting

the physical processes they regulate. The recommended strategy for identify-
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ing sequence attacks involves converting network traffic traces into event lists

that are organised chronologically. Next, the expected patterns of communica-

tion sequences are represented using a model called the Discrete Time Markov

Chain (DTMC). The last stage comprised analysing traffic data using the DTMC

model, which aided in detecting sequence attacks. As stated by Ferling et al.

(2018), the author believed that managing sequence-aware intrusion detection

models can be a complex task because of their large size, leading to the neces-

sity of time-consuming traffic analysis. As a result, they suggested a method

that includes building smaller traffic models. These models are created by mer-

ging multiple states in the DTMC model. The only distinction between the

merged states is the range of Information Object Address (IOA)s utilised in the

IEC-104 protocol. The use of smaller models is a key factor in achieving effect-

iveness in reducing complexity and maintaining detection accuracy for most

sequence attacks. The vulnerability of the Modbus TCP protocol to cyber at-

tacks, as explained by Marsden et al. (2018), is primarily because of the lack

of encryption and authentication. To address this issue, the authors proposed

a potential solution known as the Probability Risk Identification-based Intru-

sion Detection System (PRI-IDS). This system is specifically designed to detect

and identify replay attacks by effectively analysing Modbus TCP/IP network

traffic. The method involves assigning predefined risk values to traffic data as

the initial step. Afterward, certain time intervals of the data are stored in cache,

and risk values are calculated for those stored intervals. The system detects po-

tential replay attacks by identifying cached periods with risk values that differ

by over 1 standard deviation from the average value. The study conducted by

Dong et al. (2018) introduces an intrusion detection approach for industrial

networks, which relies on traffic feature maps. The extraction of salient traffic

characteristics leverages information entropy to generate traffic feature vectors.
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Subsequently, a multiple correlation analysis is performed on these vectors to

establish a comprehensive relationship map between the features. The Discrete

Cosine Transform (DCT) and Singular Value Decomposition (SVD) approaches

are then applied to create a database of perceptual hash digests for both nor-

mal and abnormal traffic feature maps. Finally, intrusion detection rules are

extracted from this database. This method effectively models the periodic pat-

terns observed in industrial network traffic, transforming textual traffic data

into valuable numerical information and providing innovative solutions for ICS

IDSs.

2.2.3 Process analysis based IDS

Process analysis-based IDSs leverage the information and unique characterist-

ics of ICS for intrusion detection, distinguishing them from IDSs designed for

conventional IT systems. This category encompasses techniques such as control

command analysis-based, process data analysis-based, and ICS physical model-

based IDS.

2.2.3.1 Command Analysis Based IDS

Within ICS, control commands constitute a critical element, along with other

essential components. In order to achieve their attack objectives, adversaries

have manipulated the control commands. One effective method for detecting

intrusion behaviours in ICS is to analyse control commands. Carcano, Fovino

et al. (2010) presented an innovative technology for IDS in their research. Their

approach involved creating a brand new language that was specifically de-

signed to describe and communicate accurately the power grids’ commands.

This study outlined the detection features employed by this innovative IDS
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technology. Subsequently, the approach utilized two distinct techniques for

Modbus packet analysis. The initial method involved using a single packet

signature-based approach, wherein the identification of unauthorised packets

sent by PLCs or Remote Terminal Unit (RTU)s was accomplished by analys-

ing the meaning of control commands. An alternative approach, known as the

state-based strategy, prioritised monitoring the states of ICS in order to detect

intrusions, as the system could be pushed into critical states by invalid con-

trol commands. Similarly, H. Lin, Slagell, Kalbarczyk et al. (2013) introduced

a methodology focused on distributed ICS for conducting semantic analysis on

control commands. By leveraging prior knowledge of network and physical in-

frastructure in power grids, this technique can expect the repercussions of con-

trol commands and thus unveil the intentions of potential attackers. Within

the semantic analysis framework, one crucial component is the analysis of net-

work packets from ICS using Bro, which allows for the extraction of control

commands. The initial observation from the proposed approach was that an at-

tacker can circumvent the conventional IDS and exert control over the system’s

critical state by merely opening three outgoing lines. Furthermore, the study

provided empirical support for the time saving and reliable intrusion detection

advantages obtained by conducting semantic analysis on control commands.

2.2.3.2 Process Data Analysis Based IDS

Intrusion detection systems (IDS) employing control process analysis leverage

the semantic information and unique characteristics of ICS for effective intru-

sion detection, differentiating them from IDS designed for traditional IT sys-

tems.

W. Gao et al. (2010) conducted research and categorised three types of attacks

that can be directed towards ICS: response injection, Denial of Service (DoS),

58



2.2. INTRUSION DETECTION SYSTEMS IN ICS

and command injection. These researchers suggested a method for monitor-

ing behaviour that uses a model of an artificial neural network and includes

information about the physical properties of the system being controlled. The

primary purpose of adopting this method is to ensure the accurate identific-

ation and effective mitigation of any potential response injection attacks. The

proposed approach clearly indicated that artificial neural network is a powerful

mechanism for detecting response injection attacks.

The study conducted by Carcano, Coletta et al. (2011) involved the utilisation

of different process variables to characterise the system state. To achieve their

objective , they have utilised a formal modelling language for their proposed

state based intrusion detection. Their novel intrusion detection technique, pre-

dicated based on the evaluation of the differences between the current system

state and critical system states. While the modelling language primarily used

for the Modbus protocol, it could be readily adapted to encompass other in-

dustrial protocols. The system provides a virtual representation of the phys-

ical system for the IDS, enabling comprehensive monitoring of both environ-

ments. Moreover, the language encompasses definitions of critical states, mul-

tiple danger levels for ICS, and methodologies for quantifying the disparities

between system states. During the detection process, the proximity between

the current state and critical states is computed to ascertain their relationship.

If the proximity exceeds a predetermined threshold, an alert is generated.

Through the analysis of the semantic elements of process variables, Hadžiosmanović

et al. (2014) discovered a method to identify intrusions in ICS.To accomplish

this task, they follow a three-step method, starting with the extraction of the

value of the current process variable from network traffic. Using these features

they designed a model that successfully detects control process-related intru-

sions. The authors showed their plans to strengthen their intrusion detection
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efforts by gathering more specific contextual information. One way to achieve

this is by delving into a broader array of structural protocols and system con-

figuration files.

In the study conducted by Krotofil et al. (2015), some argued strict adherence to

specific physical laws is required in order to maintain the values of industrial

process variables. The authors proposed an innovative method by running a

light attack mechanism on field device microcontrollers, enabling the manipu-

lation of process data. The attack mechanism extracted the noise characteristics

from the process value patterns of the field devices. Based on the captured noise

characteristics and the identified pattern, the attack mechanism can produce a

series of values that are deceptive yet appear credible, serving as a substitute

for the genuine process variable values. The authors have presented a cluster

entropy-based detection method. This method can effectively confirm the lo-

gical flow and progression of the value patterns linked to a relevant process

variable and identifies intrusion behaviour.

The research conducted by Kiss, Bela Genge et al. (2015) suggests employing

a Gaussian Mixture Model (GMM) to identify attacks targeting data trans-

mitted to PLCs. This scheme utilises the GMM to perform data clustering.

The Expectation-Maximisation (EM) algorithm is at the heart of the training

process, shaping its methodology. The most accurate classification for each

measurement is obtained only through a thorough examination and extensive

analysis. Observations that deviate from the typical clusters are identified as

outliers and evaluated accordingly. Abnormal clusters typically exhibit much

lower data densities compared to normal clusters. A soft-classification model

like the GMM can provide the confidence level of the association between each

measurement and a specific cluster. It can be deduced from the experimental

results that the GMM is more successful at identifying intrusions on ICS com-
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pared to traditional k-means clustering algorithms. Colbert et al. (2016) in-

troduced a method for detecting intrusions in ICS that specifically targets the

control process. In order to enhance the capabilities of the traditional ICS IDS,

two detection methods were proposed that specifically target control processes.

The main difference between this mechanism and traditional anomaly-based

IDS lies in its emphasis on the key role of the man in the loop to define the

process variables in an ICS. A positive aspect of having the operator is their

specialised knowledge of the nuances of ICS. The regular monitoring of critical

process variables guarantees the timely detection of any deviations beyond their

thresholds. When this event happens, an alarm sends a notification, promptly

alerting the relevant individuals to take the necessary actions. The authors pro-

posed a technique for identifying intrusions by analysing the process network

parameters, which are determined through collaboration between the network

engineer and the ICS operator. The existence of these parameters may imply

the absence of critical control elements or an exceptionally large amount of

traffic, both of which are not commonly found in typical industrial settings. Al-

though the critical process variables may indicate significant issues, it is crucial

to acknowledge that the process network parameters can still trigger alerts for

potential malicious system behaviours.

In their study, Moya et al. (2018) shed light on the emergence of Monitoring-

Control Attack (MCA) , a type of attack that is highly dangerous and poses a

significant risk to ICS. Fabricating sensor measurements plays a crucial role in

these attacks as they are utilised to manipulate control signals in a feedback

loop. MCAs are highly likely to occur because of their low cost and their ability

to cause considerable damage to ICS. It’s difficult to identify MCAs since they

often hide within normal sensor data. In this article, an extensive study was

conducted to devise a semantic analysis framework for intrusion detection sys-
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tems (IDS) in power grids. The main objective of the framework was to address

efficiently the risks associated with Monitoring-Control Attacks (MCAs). The

framework is made up of two modules, the Correlation Index Generator (CIG)

and the Correlation Knowledge Base (CKB), which work together at the same

time. The first one is mainly used for indexing related MCAs, while the second

one is regularly updated based on changes in attacks’ Correlation Indices (CI),

serving different functions. The framework has advanced features that enable

it to accurately identify and detect malicious cyber attacks (MCAs) and provide

immediate estimates of the possible impact of these attacks.

2.2.3.3 Physical Model Based IDS

A physical model can effectively represent the evolution of an industrial con-

trol system. Integrating a physical model with prediction mechanisms enables

accurate forecasting of expected system outputs (Patton 1995). Comparing ob-

served system outputs with expected values generates a residual series. Stat-

istical analysis of this residual series facilitates intrusion detection. Under nor-

mal operating conditions, system residuals typically approach zero. However,

during an attack, observed outputs deviate significantly from initial expecta-

tions. The behaviour of ICS was represented by Cárdenas et al. (2011) using

a state-space model that incorporates approximate linearity. The model sug-

gests that a system’s current state is a function of its previous states and control

inputs. Utilizing the constructed state-space model enables real-time predic-

tion of sensor measurements. Subsequently, observed sensor data is compared

against these predictions, and the resulting residuals are used to detect mali-

cious attacks targeting the ICS. The authors proposed two detection methods:

sequence-based and change-based detection. Sequence-based detection, draw-

ing from optimal stopping theory in sequence analysis, aims to rapidly identify
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anomalies by determining the minimum sequence required for detection. Con-

versely, change-based detection focuses on identifying potential changes with

uncertain timing by comparing residuals or accumulated residuals against a

predefined threshold to detect shifts from normal to anomalous states. Sridhar

et al. (2014) developed a model that aimed to enhance the security of smart

grids. This model integrated knowledge from power systems to create an in-

trusion detection and mitigation mechanism. By utilising this mechanism, the

model was able to identify various attacks, including data injection, by fore-

casting the generation load. Y. Liu et al. (2011) identified a novel data injection

attack targeting state estimation in power networks. This attack involves the

systematic injection of false data into the system, aiming to induce a system

crash. However, the attacker closely monitored the volume of the injected data

, maintaining it below the threshold and enabling them to evade the stateless

intrusion detection mechanism. This marks the initial stealthy attack against

ICS. Since then, there has been a rise in stealthy attacks across a range of indus-

trial control scenarios, for instance, chemical process control (Cárdenas et al.

2011) and industrial wastewater treatment (Amin et al. 2012).

The study by Urbina et al. (2016) concluded that current intrusion detection

technology lacks effective detection capability for stealthy attacks. This article

focuses on the authors’ research into reducing the consequences of stealthy at-

tacks. Although it may be difficult to detect these attacks, their effects can be

partially minimised by correctly configuring different detection methods and

metrics. Theoretical analysis and experimental validation have confirmed that

the detrimental effects of stealthy attacks can be mitigated by employing Urbina

et al. (ibid.) newly introduced metrics: ”the expected time interval between

false alarms and the maximum deviation a stealthy attack can cause”. These

metrics quantify the impact of stealthy attacks. Further research on stealthy
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attacks has focused on their execution within specific ICS systems (Kleinmann

et al. 2018) or the investigation of their consequences on more complex systems

(Kung et al. 2016). However, the urgency to identify stealthy attacks on ICS

continues to be a pressing concern for further investigation. In their study, Tian

et al. (2018) examined a more advanced scenario of false data injection (FDI)

attacks, specifically concentrating on the estimation of the state model in smart

grids. The researchers focused on determining if the adversary could identify

the implementation of Moving Target Defence (MTD) against FDI before ini-

tiating their attack. Their research presents and categorises this specific vari-

ant of FDI attacks. They developed a hidden MTD approach that successfully

makes itself undetectable to potential attackers, enhancing the stealthiness of

MTD even more. By employing a hidden MTD, adversaries can be tricked into

initiating ineffective attacks, ultimately increasing the probability of their be-

ing discovered. It was determined that the concealed MTD can manage the

power distribution of the entire grid, just like the conventional MTD. Myers et

al. (2017) highlighted that ICS typically enforce strict task execution order and

quantity, resulting in unique task flows for each control system. Consequently,

they proposed an ICS attack detection method based on process mining. This

method extracts a control process model for the ICS by monitoring and analys-

ing control device log files. Subsequently, it employs consistency detection to

identify abnormal system behaviour that deviates from the constructed process

model. Furthermore,Samara et al. (2024) pointed out that detecting malware

in IIoT-based ICS is becoming more and more dependant on deep learning, and

reinforced the need to integrate modern AI techniques into IDS research.
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2.3 ML Application in IDS in IDS

Machine learning techniques are widely employed in the development of cy-

bersecurity solutions for ICS. The main goal of these methods is to identify

network intrusions by analysing packet information from network traffic or de-

tecting anomalies in physical processes using data that represents the system’s

physical behaviour. The classification of machine learning and deep learning

techniques can be divided into four major categories: Supervised Learning, Un-

supervised Learning, Semi-Supervised Learning, and Reinforcement Learning.

The majority of the current literature on intrusion detection focuses on the ini-

tial two domains. The fundamental distinction between these approaches lies

in their utilisation of labelled training data. Unsupervised approaches exclus-

ively rely on the normal behaviour exhibited by the ICS, thereby eliminating the

need for labelled data.The implementation of this approach requires training

clustering algorithms (e.g. k-means, DBSCAN) with normal process behaviour

data e.g. stable Modbus traffic patterns and expected PLC command sequences.

Any anomaly that deviate from these cluster identify potential intrusions such

as false data injection and unauthorized PLC reprogramming. In supervised

methods, the training data contain both normal and abnormal (attack) beha-

viours. By employing semi-supervised techniques, one can make use of both

labelled and unlabelled data, taking into account the fact that labelled training

data is restricted, whereas unlabelled data is abundant and readily accessible.

The dynamic nature of cyber threats and the continuous advancements in ma-

chine learning techniques employed to enhance the security of ICS are worth

mentioning. Additionally, the ongoing efforts in research and development are

crucial in addressing the difficulties arising from the limited availability of la-

belled training data and in discovering new methodologies that can easily ad-

just to the dynamic nature of cyber threats in industrial settings.
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Every one of the approaches mentioned earlier has its own merits and limita-

tions. The use of unsupervised learning enables the detection of zero-day at-

tacks without the requirement for labelled training data, thereby eliminating

the reliance on attack data. One notable disadvantage is its inclination to gen-

erate a high number of false alarms ((Nader et al. 2014a; Nader et al. 2014b)).

Nevertheless, supervised learning algorithms offer greater reliability in detect-

ing attacks, albeit necessitating labelled data encompassing both normal and

attack instances. Regardless of this requirement, a supervised approach can ac-

curately detect additional instances of attacks with only a few examples. The

study conducted by Junejo and D. Yau (2016) demonstrated that supervised al-

gorithms outperformed other classifiers, exhibiting high precision and recall

rates while minimising false positives. Nevertheless, it is crucial to acknow-

ledge that these methods may not effectively identify zero-day attacks. Within

the field of IDS for ICS, there is a subset of techniques that has received as little

focus, including one-shot learning (D. Wu et al. 2012), (Krishnan et al. 2015)

and zero-shot learning (Romera-Paredes et al. 2015), (Socher et al. 2013). When

discussing machine learning, the concept of ”one-shot learning” describes a

scenario where the labelled training data includes just one instance of each at-

tack type. Zero-shot learning is particularly difficult due to the lack of labelled

training data that contains specific attack instances. Attacks that fall under

the category of zero-day attacks are those that are not available training data.

Hence, the effectiveness of this learning approach depends on its capacity to de-

tect zero-day attacks and leverage knowledge obtained from previous attacks.

This approach offers a practical technique for ICS that has the potential to yield

fewer incorrect detections when compared to unsupervised methods. Lever-

aging data from known attacks that can be safely simulated within a controlled

ICS environment it has the ability to identify zero-day attacks. Hence, zero-
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shot learning emerges as a promising strategy for intrusion detection systems

(IDS) in ICS, effectively fusing supervised and unsupervised methodologies to

accomplish favourable results.

2.3.1 Supervised ML Techniques

Supervised Learning employs labelled training data to construct predictive mod-

els. Each training instance consists of a feature vector, denoted as x, and a

corresponding class label, y. The goal of Supervised Learning algorithms is

to learn a function, f, that accurately maps input features to their respective

classes. Once trained, the model can predict labels for unseen test data. Super-

vised Learning techniques are broadly categorized into classification and re-

gression. Classification tasks involve discrete class variables, while regression

deals with continuous ones. IDS are often modelled as classification problems,

where the class variable represents the presence or absence of attacks. More

specifically, The supervised IDS methods in ICS environments use classifica-

tion techniques to identify normal network traffic or sensor data versus specific

attack types such as replay and command injection. One-Class Classifica-

tion (OCC) pertains to scenarios with only one class label. Traditional statist-

ical approaches, utilizing metrics like mean and standard deviation, have been

employed for behaviour-based IDS (Kwon et al. 2015) and (D. Yang et al. 2006).

However, these methods suffer from limitations in automation and scalability

due to their parametric nature. Defining statistical tests for complex systems

with numerous interdependent sensors and actuators is challenging and may

result in unacceptable false positives. In contrast, Machine Learning (ML) and

Deep Learning (DL) offer non-parametric alternatives that exhibit greater auto-

mation potential and technique diversity. ML approaches can be grouped into
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discriminative/conditional, generative, and tree-based methods, each with its

own strengths and weaknesses.

2.3.1.1 Discriminative/Conditional Approaches

• Support Vector Machines (SVMs): These linear, non-probabilistic bin-

ary classifiers project data points onto a higher-dimensional feature space

and construct a hyperplane to separate the two classes. SVMs are known

for their robustness in classification tasks, including IDS (Ahmad et al.

2014). In ICS,, SVM have been used to detect malicious manipulation of

sensor data and abnormal network traffic pattern, for example Agrawal

et al. (2018) trained SVM on process variable rates of change to identify

abnormal behaviour in industrial processes, while Hink et al. (2014) used

SVM to classify disturbances in smart power grids.

• Neural Networks (NNs): NNs excel in estimating functions with numer-

ous input variables. They consist of input, output, and hidden layers,

trained to learn non-linear decision boundaries for class separation. NNs

have found applications in IDS ((Al-Jarrah et al. 2015)). In ICS, NNs

are particularly effective at capturing the non-linear relationship between

sensor readings and control states. Vollmer et al. (2009) showed that NNs

trained on Modbus network traffic features could identify stealthy attacks

in power system ICS, while more recent works apply NNs to SCADA data

streams for detecting anomalies in chemical and water plants Raman et al.

(2020), Abdelaty et al. (2021) and Boateng et al. (2022)

• Instance-based Learning: These algorithms classify new instances based

on their distance to existing instances in the training dataset. They are
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considered lazy learning algorithms and have been applied to IDS (Palácios

et al. 2013; Muda et al. 2011; Kumar et al. 2013). In ICS, K NEAREST

Neighbour (K-NN) has been used for process level datasets (Goh, Adepu,

Tan et al. 2017), where abnormal sensor values and control commands

could be effectively identified by comparing them with historical normal

states. This makes instance-based methods suitable for ICS datasets that

display recurring operational patterns.

• Multinomial LR: Similar to linear regression but assumes a Bernoulli dis-

tribution for the dependent variable. LR uses the logistic function for

prediction, generating probabilities to quantify relationships between de-

pendent and independent variables. While LR can benefit from larger

feature sets, its efficacy in IDS remains limited (Tsai et al. 2009). In ICS,

logistic regression has been employed for binary classification of attack

vs. normal behaviour in SCADA traffic. Although its performance is often

outperformed by tree-based or deep learning methods, its interpretability

provides value in critical infrastructure contexts where transparency of

decision-making is important for operators (Hindy et al. 2018; Dev et al.

2024).

2.3.1.2 Decision Tree-Based Approaches

Decision tree algorithms are characterized by their interpretability, represent-

ing decision rules as IF-ELSE structures. They construct a tree-like hierarchy,

with internal nodes representing tests on features, branches representing test

outcomes, and leaves denoting class labels. In ICS, Decision Tree have been

used to detect malicious commands and process deviations by learning decision

rules from SCADA datasets. For example, Junejo and D. Yau (2016) used De-

cision Tree to classify cyberattacks targeting process sensors, demonstrating its
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ability to capture attack patterns specific to industrial processes.

• Random Forest (RF): An ensemble learning technique that builds mul-

tiple decision trees using random subsets of features, improving robust-

ness against over-fitting (Breiman 2001). RF models have been widely

adopted in ICS due to their robustness against noisy sensor and traffic

data. Hink et al. (2014) demonstrated that RFs effectively distinguish

between natural disturbances and cyberattacks in power grid ICS, high-

lighting their suitability for mixed physical and network-level data.

• Applications in IDS: Decision tree algorithms have shown success in network-

level IDS ( (Sahu et al. 2015; Hasan et al. 2014)). Ensemble methods like

AdaBoost and XGBoost have also been employed for intrusion detection

in IoT networks (Moustafa et al. 2018), in ICS security, ensemble methods

such as AdaBoost and XGBoost have been shown to outperform single

classifiers by combining weak learners across diverse SCADA datasets.

For instance, Kravchik et al. (2018) applied boosting-based ensembles on

process data, achieving high accuracy in detecting cyber attacks.

2.3.1.3 Generative Approaches

Generative approaches predict class membership based on the probabilities of

an object belonging to a particular class.

• Bayesian Networks (BayesNet) and Naive Bayes (NB): These Bayesian

classifiers are commonly used in IDS (Koc et al. 2012; Xiao et al. 2014).

NB assumes attribute independence given the class value, making it scal-

able for high-dimensional data. BayesNets, represented as directed acyc-
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lic graphs, capture dependencies between variables and are more suitable

when attributes exhibit interdependencies (Friedman et al. 1997).

• Applications: Bayesian networks have been used with Radio Tomographic

Imaging (RTI) for anomaly detection (Q. Lin et al. 2018). In ICS security,

Bayesian Networks have been used to model probabilistic dependencies

between process variables, SCADA commands, and potential intrusion

events. For instance, Q. Zhang et al. (2017) proposed a fuzzy probabil-

ity Bayesian Network for dynamic cybersecurity risk assessment in ICS,

demonstrating its effectiveness in reasoning about uncertainties inherent

in both cyber and physical process data. Naive Bayes has been employed

alongside other algorithms to enhance virtual machine security (Kumara

et al. 2018).In ICS, Naive Bayes has been used for process anomaly de-

tection by learning probability distributions of sensor data. For example,

Junejo and D. Yau (2016) applied NB on ICS dataset to classify process at-

tacks, demonstrating that lightweight generative models can still achieve

effective detection in resource-constrained industrial environments.

Building upon these methods, V et al. (2025) evaluated ML approaches for cy-

berattack mitigation in ICS and found that supervised classifiers remain effect-

ive but struggle with generalisation across evolving attack types.

2.3.1.4 Deep Learning Based Supervised Learning Approaches

Deep learning, an extension of ML, enables Neural Networks (NNs) to auto-

matically learn complex feature representations from data. This learning tech-

niques has been studied in the anomaly and intrusion detection in ICS (Illy et
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al. 2022; Prasanna et al. 2023; Nie et al. 2024).

• Convolutional Neural Networks (CNNs): Highly effective in visual im-

age analysis, CNNs address over-fitting issues associated with fully con-

nected networks like MLP. They leverage hierarchical patterns in data to

learn complex patterns from simpler ones. CNNs have been used for clas-

sifying PLC programs using PMU data (Stockman et al. 2019), keystroke

detection using mobile phone sensor data (Giallanza et al. 2019), anom-

aly detection using thermal imaging (Amrouch et al. 2017), and. In ICS,

CNNs have been employed to analyse time-series data and raw SCADA

signals. Kravchik et al. (2018) demonstrated that CNNs could detect mul-

tivariate anomalies in the SWaT water treatment testbed, outperforming

classical ML methods in identifying stealthy cyber-physical attacks.

• Recurrent Neural Networks (RNN)s): Designed for sequential data, RNNs

possess edges that traverse time steps, enabling them to capture temporal

dependencies. They have been used for vehicle cybersecurity (Loukas et

al. 2017) and speech recognition (Fernández et al. 2007) and detecting

distributed Denial of Services Attacks in IoT-enabled ICS (Varghese et al.

2024). Long Short Term Memory (LSTM), a specialized RNN, has shown

promise in intrusion detection, fault management, and anomaly detection

in various applications (Zizzo et al. 2019; Ieracitano et al. 2020; Ariharan

et al. 2019; Y.-Q. Li et al. 2020; Hussain et al. 2024). In ICS anomaly

detection, RNNs and particularly LSTMs are well-suited for modelling

sequential process data and control signals Inoue et al. (2017) applied

LSTMs on the ICS dataset, showing that they effectively capture temporal

dependencies in sensor readings to detect cyberattacks on water treatment

processes.
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• Autoencoder: Supervised Autoencoders are often trained with labelled

normal and attack samples, where the reconstruction error is used as a

discriminative feature to classify inputs as benign or malicious. This al-

lows autoencoders to capture complex feature representations of ICS data

streams, improving the detection accuracy of known attack types. Au-

toencoders have been widely adopted for ICS intrusion detection due to

their ability to learn compact representations of normal operation. Gau-

thama Raman et al. (2020) applied deep autoencoders to SCADA data

from a water treatment plant, successfully identifying anomalies linked

to cyberattacks.

2.3.2 Unsupervised ML Techniques

This section explores various unsupervised machine learning techniques and

their applications in anomaly detection, particularly within the context of ICS

and cybersecurity.

2.3.2.1 Centroid-Based Clustering

This technique revolves around central vectors, not necessarily belonging to the

dataset, that define cluster centres. Data points are assigned to clusters based on

their proximity to these centres. K-means, a popular centroid-based algorithm,

requires predefining the number of clusters (k). Several studies highlight its

applications:

• K-means and variants: These methods, are widely used in ICS intru-

sion detection because of their efficiency in grouping process and net-
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work data without requiring labelled datasets. These approaches are well-

suited for SCADA and ICS datasets, where distinct operational states can

be clustered to identify abnormal behaviour. For example, Bhattachar-

jee et al. (2018) applied K-means clustering to detect compromised smart

meters in Advanced Metering Infrastructure (AMI), while Demertzis et

al. (2020) used fuzzy C-means to develop a resilient intrusion detection

system for critical infrastructures. Similarly, Alves et al. (2018) com-

bined K-means with Local Outlier Factor (LOF) to enhance PLC security in

ICS environments. In wireless ICS contexts, W. Liu et al. (2014) demon-

strated how K-means applied to channel state information could distin-

guish between legitimate and malicious users. These studies highlight

the adaptability of centroid-based clustering to ICS-specific anomaly de-

tection challenges. furthermore, Ruslan et al. (2025) extended clustering-

based strategies to review AI-driven clustering protocols for IoT and IIoT

environments which showed their potential for unsupervised anomaly de-

tection in ICS where labelled data is scarce.

2.3.2.2 Distribution-Based Clustering

This statistical technique groups objects based on their underlying probability

distributions, making it suitable for modelling uncertainty in complex data-

sets. However, it is prone to over-fitting if model complexity is not carefully

managed.

• Gaussian Mixture Models: In ICS, GMMs have been applied to capture

the probabilistic behaviour of process and SCADA data. For instance,

Kiss, Bela Genge et al. (2015) applied GMMs to PLC sensor data to de-

tect stealthy cyberattacks, while Y. Zhang et al. (2011) demonstrated their

effectiveness in identifying false data injection in smart grid networks.
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These studies highlight GMMs as powerful tools for anomaly detection in

ICS, outperforming traditional k-means clustering in scenarios involving

subtle attacks.

2.3.2.3 Density-Based Clustering

This approach focuses on separating regions of high data density from sparser

areas, aiding in noise reduction and decision boundary establishment, making

it effective for anomaly detection in noisy environments.

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN):

In ICS, DBSCAN and its variants have been widely used to detect cy-

berattacks in SCADA and smart grid systems. For example, Almalawi,

Fahad et al. (2016) applied DBSCAN to detect intrusions in SCADA sys-

tems, showing superior accuracy compared to k-means. Similarly, Otoum

et al. (2017) proposed an enhanced DBSCAN to mitigate false negatives in

smart grid intrusion detection, while Sharma et al. (2023) combined PCA

and DBSCAN to identify false data injection attacks in power grid ICS.

Moreover, Çelik et al. (2011) utilised DBSCAN, for anomaly detection on

temperature data and Abid et al. (2017) proposed use of DBSCAN Out-

lier Detection (DBSCAN-OD), a DBSCAN variant, for outlier detection in

noisy environments. These works underscore DBSCAN’s utility in distin-

guishing between normal operations and malicious activity in industrial

environments.

75



2.3. ML APPLICATION IN IDS IN IDS

2.3.2.4 Hierarchical Clustering

Also known as connectivity-based clustering, this method establishes a hier-

archical structure of clusters. It encompasses two primary categories, Agglom-

erative Clustering or bottom-up or Divisive Clustering or top-down, making

it suitable for datasets where hierarchical structures exists.

• In ICS security, hierarchical clustering has been applied to group anom-

alies in both network traffic and process data. For example, Ghaeini et

al. (2016) introduced HAMIDS, a hierarchical intrusion detection system

for ICS, where distributed anomaly detectors are structured in a layered

fashion. Similarly, Bukharev et al. (2022) applied hierarchical cluster ana-

lysis to ICS data exposed to cyberattacks, enabling detection of abnor-

mal states in operator stations and SCADA traffic. Ren et al. (2018) fur-

ther demonstrated a multi-level approach (EDMAND) for anomaly detec-

tion in SCADA networks, using hierarchical grouping of anomalies across

communication layers.

2.3.2.5 Association Rule Mining (ARM)

ARM uncovers relationships within datasets by identifying frequent patterns

and correlations between features. This characteristic makes it suitable for un-

covering hidden relationships in operational data.It has been applied in IDS for

detecting frequent attack patterns and invariants in both IT and ICS contexts

• ARM: In ICS, ARM has been used to reveal critical states and invariants

that help distinguish normal and anomalous process behaviour. For ex-

ample, Khalili et al. (2015) applied the Apriori algorithm to identify crit-

ical system states, incorporating expert knowledge to improve intrusion

detection. Pal et al. (2017) explored ARM for generating invariants in
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a water treatment plant (SWaT), with subsequent extensions by Umer et

al. (2017) and Umer et al. (2020) and Mujeeb Ahmed et al. (2021) us-

ing FP-Growth for more scalable invariant mining in real-world ICS. Re-

cent research further strengthens the role of ARM in ICS intrusion detec-

tion. Mehmood et al. (2024) applied ARM in the generation of synthetic

cyber-physical attack samples to improve IDS training, while Samiah et

al. (2025)combined ARM with decision tree methods to extract process

invariants for anomaly detection in ICS. Together, these works highlight

ARM’s evolving role as both a foundational and modern approach for un-

covering structured, interpretable knowledge in ICS security.

2.3.2.6 Deep Learning Based Unsupervised Learning Approaches

Unsupervised deep learning techniques such as autoencoders, Generative Ad-

versarial Network (GAN)s, and Deep Belief Networks (DBN)s learn data rep-

resentations without requiring labelled training data. This makes them highly

attractive for ICS intrusion detection, where labelled attack datasets are scarce.

These methods can capture complex temporal and spatial correlations in both

network traffic and process data, enabling the identification of subtle and pre-

viously unseen cyberattacks.

• Autoencoder-Based Deep Clustering: Autoencoders are widely used for

representation learning, compressing input data into a lower-dimensional

latent space that preserves essential features. This latent space is then

clustered to identify anomalies or hidden patterns. Several frameworks

extend this principle: Deep Embedding Network (DEN) jointly optimizes

reconstruction and clustering objectives; Deep Clustering Network (DCN)

integrates k-means with deep representation learning, Deep Embedded

Regularised Clustering (DEPICT) improves stability through regulariza-
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tion and Deep Continuous Clustering (DCC) applies convolutional au-

toencoders to image-like data structures. These approaches have proven

effective in extracting robust embeddings for anomaly detection tasks. In

ICS contexts, autoencoder-based clustering has been applied to both pro-

cess data and SCADA traffic. Inoue et al. (2017) demonstrated stacked

autoencoders on the SWaT water treatment testbed for detecting false

data injection attacks. More recent work such as Aslam et al. (2024) re-

fined autoencoder-based anomaly detection for SCADA networks, redu-

cing false alarms, while Ruan et al. (2023) highlighted the utility of vari-

ational autoencoderss in smart grid cybersecurity. Collectively, these works

show that autoencoder-based clustering methods (DEN, DCN, DEPICT,

DCC) can be effectively adapted to ICS data, enabling unsupervised de-

tection of attacks and operational anomalies.

• GAN-Based Deep Clustering: GANs were originally proposed for data

generation, with a generator and discriminator competing to model com-

plex distributions. More recently, GANs have been adapted for deep clus-

tering, where the latent features learned by the discriminator can be par-

titioned into meaningful clusters. This makes GAN-based clustering at-

tractive for ICS intrusion detection, where labelled attack data is scarce

and operational data is high-dimensional.

In ICS, Perales Gómez et al. (2020) proposed MADICS, a GAN-driven

anomaly detection methodology that combined clustering analysis with

GAN representations to uncover hidden structures in ICS datasets. Bedeuro

Kim et al. (2023) evaluated MAD-GAN on widely used testbeds such as

SWaT and WADI, showing how GAN-based clustering separates normal

operational states from abnormal attack-induced states. Building on this,

J.-R. Jiang et al. (2022) applied GAN-based clustering to SCADA network
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traffic, successfully distinguishing between normal and attack flows without

prior labels. More recent frameworks, such as W. Shen et al. (2024) with

CluSAD, integrated self-supervised learning and GANs for SCADA-based

industrial IoT, reinforcing the effectiveness of GAN latent feature cluster-

ing in identifying anomalies across heterogeneous ICS data sources.

Collectively, these studies highlight GAN-based clustering as a promising

unsupervised learning approach for ICS anomaly detection, leveraging

adversarially trained latent spaces to improve detection of stealthy attacks

in SCADA and smart grid environments.

2.3.3 Semi-Supervised Learning

Semi-supervised learning combines limited labelled data with a larger pool of

unlabelled data, offering a middle ground between supervised and unsuper-

vised approaches. This is particularly relevant for intrusion detection in ICS,

where obtaining labelled attack data is costly, and in many cases impractical,

due to operational and security constraints. Early studies demonstrated the

feasibility of applying semi-supervised methods in intrusion detection, laying

the groundwork for their adoption for example Maglaras, J. Jiang and Cruz

(2014) introduced a distributed IDS composed of a cluster of OCSVM mod-

els that can precisely discern the origin and timing of an attack. Each model

was trained on a network traffic segment divided by packet source. Simil-

arly Huda, Abawajy et al. (2019) created a semi-supervised malware detection

model, utilizing data derived from both static and dynamic malware features.

They showed that this model outperforms its supervised equivalent in identi-

fying new malware.

Recent contributions highlight growing importance of Semi-Supervised Learn-

ing for ICS anomaly detection. Joshi et al. (2020) applied a semi-supervised
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approach to SCADA attack detection in a gas pipeline system, successfully com-

bining scarce labelled data with abundant normal traffic. Qi et al. (2021) intro-

duced a deep representation learning framework for smart grids, using semi-

supervised anomaly detection to capture cyberattacks in SCADA data streams.

Similarly, Loo et al. (2023) presented a semi-supervised detection method for

water storage ICS, confirming its capability against cyber-physical attacks.

Beyond single ICS domains, new frameworks extend to cross-domain and fed-

erated semi-supervised learning. Chen et al. (2022) developed a cross-domain

semi-supervised model to handle imbalanced ICS traffic, improving detection

generalisation. Aouedi et al. (2022) designed a federated semi-supervised learn-

ing architecture for industrial IoT and SCADA, reducing reliance on centralised

datasets. perales2023interpretable further advanced this by introducing an

interpretable semi-supervised anomaly detection framework, enabling trans-

parent decision-making in industrial contexts.

These works demonstrate that semi-supervised learning reduces reliance on

fully labelled datasets while enhancing resilience against evolving attacks in

ICS and SCADA environments.

2.3.4 Reinforcement Learning (RL)

Reinforcement Learning (RL), distinct from other machine learning techniques,

centres on an agent learning through interaction with an environment. The core

components of an RL system are the agent, the environment, and the reward

signal. The agent takes actions within the environment and receives rewards,

either positive or negative, based on the outcomes of those actions. This reward-

driven feedback loop drives the agent’s learning process. Unlike other machine

learning paradigms, RL does not necessitate a pre-existing dataset for training.

Several prominent RL algorithms include:
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1. Temporal Difference Learning (TD Learning): A model-free algorithm

that utilizes bootstrapping to train a model based on the current estimate

of the value function. TD learning samples experiences from the environ-

ment and updates its estimates accordingly (Barto et al. 1997). Qiao et al.

(2024) has studied the integration of advantage actor-critic reinforcement

learning with a long short-term memory network in improving security of

traffic signal control against last vehicle attack.

2. State-Action-Reward-State-Action (SARSA): An on-policy algorithm that

learns a policy by interacting with the environment and updating its es-

timates based on the rewards received for taking specific actions in spe-

cific states.

3. Q-Learning: A model-free algorithm that enables an agent to learn an

optimal policy for maximizing rewards. Q-learning does not require a

model of the environment and can handle stochastic transitions and re-

wards. Sangoleye et al. (2024) studied the application of various RL mod-

els including Q-Network for network intrusion detection in ICS.

RL has demonstrated its utility in various security applications. Barto et al.

(1997) employed RL for intrusion detection in a simulated Wireless Sensor

Network (WSN), showcasing its superior performance compared to adaptive

machine learning-based IDS. Kurt et al. (2018) proposed a model-free RL ap-

proach for anomaly detection in smart grids, addressing the Partially Observ-

able Markov Decision Process (POMDP) problem. In the context of Cyber-

Physical System (CPS) security, Feng et al. (2017) formulated the defence prob-

lem as a two-player zero-sum game, leveraging deep RL to optimize an actor-

critic neural network architecture. Similarly, Panfili et al. (2018) modelled the

attack problem as a multi-agent general-sum game, employing RL to determine
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optimal prevention actions and associated costs. J. Yan et al. (2016) investigated

Q-learning for vulnerability assessment in smart grids, focusing on sequen-

tial topological attacks. Their findings, based on simulations of IEEE 5-bus,

RTS-79, and IEEE 300-bus systems, highlighted the potential of Q-learning to

identify vulnerabilities. RL has also proven valuable for anomaly detection in

Unmanned Aerial Vehicle (UAV)s. Lu et al. (2017) utilised RL to detect anomal-

ous motor behaviour in UAVs by monitoring motor temperature using sensors

and a Raspberry Pi-based processing unit.

2.3.5 Recent Advances: Digital Twins, Preventive Maintenance,

and IDS

Industrial informatics research shows Digital Twin technology functions as an

integrated system which enhances operational resilience and cybersecurity pro-

tection for ICS. A digital twin creates an instant virtual model of physical op-

erations which allows predictive analysis for system performance under typical

and unusual operating states.

The adoption of Digital Twins continues to grow because they enhance both cy-

bersecurity system capabilities and their ability to detect intrusions. A. Singh

(2024) analysed the main obstacles to secure Digital Twins implementation in

ICS systems and showed how cloud integration and physical-virtual system

data exchange operations lead to security risks. The authors Oyedotun et al.

(2025) demonstrated through their research how Digital Twins-based model-

ling identifies system anomalies in SCADA and DCS systems through virtual

system activity to intrusion behaviour connections. Larsson et al. (2025) built

upon this research by implementing homomorphic encryption for Digital Twins

environments which protects industrial automation data during processing.
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These studies highlight the emerging consensus that Digital Twin can enhance

the detection and mitigation of cyber-attacks by embedding security monitor-

ing within virtual replicas of physical assets.

Digital Twins function as a solution for industrial operations to perform pre-

dictive and preventive maintenance tasks. Qin et al. (2026) conducted a thor-

ough evaluation of robot Digital Twins which proved their ability to identify

component failures before they happen and perform maintenance tasks at peak

operational efficiency. Anbalagan et al. (2025) presented a lightweight CNC

digital process twin system which combined IIoT with OPC UA for real-time

equipment monitoring to enable early fault detection and preventive mainten-

ance. Urrea (2025) positions Digital Twins as part of Industry 5.0 framework

which requires predictive maintenance and cybersecurity to build sustainable

and resilient robotics systems.

The majority of current studies focus on cybersecurity and preventive mainten-

ance independently yet researchers now show growing interest in their com-

bined approach. Digital twins enables real-time process data access which

helps predicting equipment failures and tracking system operational perform-

ance. Yet, while process data captures what is happening within the system, it

does not reveal who is initiating the action or how it is being executed.Network

traffic provides better contextual attribution because it functions as the intent

channel which reveals both external system interactions and attempted intru-

sions. Process data serves as an essential requirement for detecting abnormal

states and operational reliability but it does not provide the detailed informa-

tion which network-level insights deliver. Integrating both sources — process

state information and network traffic — is thus critical for achieving real-time

detection of cyber threats and for developing holistic ICS security solutions.
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2.3.6 Learning Using Privileged Information (LUPI)

The LUPI paradigm (Vapnik and Vashist 2009b) enables ML models to use

training-specific auxiliary knowledge for better generalization. The LUPI paradigm

has been used in cybersecurity for botnet detection (Sapello et al. 2017), mal-

ware classification (Shaikh et al. 2020), and anomaly detection (Celik et al.

2018). However, its adoption in ICS remains minimal. The main limitations

of this approach are its dependence on well-structured privileged information

and the difficulty of aligning different data modalities during training. This re-

search extends the LUPI approach by investigating the use of process data as

privileged information to enhance IDS performance for ICS.

2.4 Summary

In this chapter I delved into the world of ICS, their security challenges and dif-

ferent type of intrusion detection Systems applicable to ICS domain. I have also

reviewed the existing literature on the application of Machine Learning in ICS

Intrusion Detection Systems identifying their limitations and research gap.

ICS are vital to critical infrastructure, managing processes in in sectors like

power, transportation, and manufacturing. Unlike traditional IT systems, ICS

prioritize real-time operation and data integrity, relying on specific control al-

gorithms and communication protocols. This reliance on precise functioning

and interconnectedness makes ICS vulnerable to cyberattacks, potentially lead-

ing to physical damage and safety risks. IDS are crucial for identifying ma-

licious activities within ICS. Traditional IDS, often used in IT environments,

struggle to address the unique challenges posed by ICS. These challenges in-

clude:
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• Real-time operation: Continuous monitoring without disrupting critical

processes.

• Limited resources: Constraints in computing power and storage capacity.

• Unique protocols: Reliance on specialized communication protocols.

• Semantic attacks: Exploiting control systems and physical processes without

triggering traditional security alerts.

Machine Learning (ML) for ICS IDS offers promising solutions for addressing

these challenges. While the key applications of ML in ICS IDS can be summar-

ised in Protocol Analysis (detecting deviations from expected communication

patterns defined by industrial protocols like MODBUS, DNP3, and ICCP) (e.g.

(Yusheng et al. 2017; Y. Yang et al. 2013; Hong et al. 2014; Curtis 2005) ), Traffic

Mining (identifying abnormal traffic patterns within ICS networks using tech-

niques like clustering, association rule mining, and neural networks (e,g, (Hou

et al. 2012; Linda, Vollmer et al. 2009; Ashfaq et al. 2017; Javaid et al. 2016;

Ferling et al. 2018; Dong et al. 2018)) and Control Process Analysis (analysing

the behaviour of control systems and physical processes to detect anomalies, in-

cluding response injection attacks and stealthy attacks that manipulate sensor

data (e.g. (Carcano, Coletta et al. 2011; Hadžiosmanović et al. 2014; Colbert

et al. 2016; Moya et al. 2018; Urbina et al. 2016; Kleinmann et al. 2018; Tian

et al. 2018)), the efficacy of different ML techniques is investigated in enhancing

intrusion detection and overall security posture of ICS: Supervised Learning:

Utilises labelled data of both normal and malicious behaviour to train mod-

els for accurate attack detection (e.g. (Kwon et al. 2015; Ahmad et al. 2014;

Al-Jarrah et al. 2015; Moustafa et al. 2018; Kumara et al. 2018; Stockman et

al. 2019; Ieracitano et al. 2020; Ariharan et al. 2019)). However, it requires
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comprehensive attack datasets, which can be limited, and may not effectively

identify unknown attacks. Unsupervised Learning: Relies on identifying an-

omalies in normal ICS behaviour, eliminating the need for labelled attack data

and enabling the detection of zero-day attacks (e.g. (Bhattacharjee et al. 2018;

Umer et al. 2020; Mujeeb Ahmed et al. 2021; Shinde et al. 2018) ). However, it

can lead to a higher rate of false alarms. Semi-Supervised Learning: Combines

labelled and unlabelled data, leveraging the strengths of both supervised and

unsupervised learning (e.g.

(Huda, Abawajy et al. 2019; Huda, Miah et al. 2017). This approach shows

promise in addressing the limitations of using solely labelled or unlabelled

data. Reinforcement Learning: Focuses on an agent learning through inter-

action with the ICS environment, making decisions based on rewards and pen-

alties(Kurt et al. 2018; Panfili et al. 2018; Lu et al. 2017) ). Multiple new ap-

proaches have emerged through recent advancements. Notably, digital twin

technology is emerging as a platform for both cybersecurity monitoring and

preventive maintenance in ICS. A. Singh (2024) along with Oyedotun et al.

(2025) and Larsson et al. (2025) showed that Digital Twins enable the integ-

ration of security analytics within virtual process replicas. In parallel, Qin et

al. (2026) and Anbalagan et al. (2025) and Urrea (2025) demonstrated the ef-

fectiveness of Digital Twins for predictive maintenance and operational resili-

ence. The two research paths function separately but show that digital twins

achieve operational reliability and cybersecurity monitoring through shared

process data integration.

Scientists conduct individual studies about cybersecurity and preventive main-

tenance but research on their combined approach is becoming more popular.

Users can predict physical system failures and track process conditions through

the shared real-time process data access provided by digital twins. Yet, while
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process data captures what is happening within the system, it does not reveal

who is initiating the action or how it is being executed.Network traffic en-

ables better contextual attribution because it serves as the intent channel which

shows both external interactions and attempted intrusions. Process data con-

tinues to play a vital role in detecting abnormal states and maintaining oper-

ational reliability yet network-level information provides more comprehensive

explanations about activities within the network. Integrating both sources —

process state information and network traffic — is thus critical for detection of

cyber threats and for developing holistic ICS security solutions.

The three research gaps identified in the existing body of research looking at

IDS for ICS include:

• Most IDS approaches for ICS still rely predominantly on network traffic

data, with limited integration of process-level insights.

• The problem of detecting and differentiating multi-attack scenarios re-

mains unexplored, even though such attacks reflect realistic adversarial

behaviours.

• The application of digital twins as emerging paradigms exists independ-

ently for predictive maintenance and cybersecurity but researchers have

not shown their combined use for developing complete intrusion detec-

tion systems.

The research aims to reduce these knowledge gaps through its proposed

framework which uses LUPI and process information to improve detection ac-

curacy by integrating network and process data. The framework enables ICS

cybersecurity advantages because it addresses various attack scenarios by us-

ing process state knowledge which align with current industry standards. Fig-

ure 2.2 gives a clear, visual overview of IDS approaches for ICS, summarising
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the literature discussed in this chapter.
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Chapter 3

Materials and methodology

3.1 Dataset selection

We required a dataset on an experimental ICS that follows a hierarchical (Purdue-

style) network segmentation, and that captures both network traffic and histor-

ian (process) data under the same operating conditions during attacks. Because

our framework is supervised, we also require reliable labels. We deliberately

avoid fully simulated or synthetic datasets. They are useful for benchmarks,

but they often miss real-world timing, device behaviour, and messy protocol

behaviour—making models look better than they really are and hurting gener-

alisability.(Conti et al. 2021; Cordero et al. 2019; Dehlaghi-Ghadim et al. 2023).

Among public datasets, SWaT stands out: it gives both historian CSVs and raw

PCAPs captured on a real water-treatment testbed, with attacks run while both

data type were recorded and labelled which meets all our criteria (iTrust, SUTD

2016; Aditya P. Mathur et al. 2016b).

Table 3.1 summarises prominent ICS datasets against our criteria. Only SWaT

fully meets our present needs; others are noted as Partial (e.g. process-only or

network-only) or Not suitable (simulated).
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The comparison in Table 3.1 motivates our choice of the SWaT testbed. It is

the only public option that meets all four requirements—collection on a phys-

ical ICS with Purdue-style segmentation, synchronised historian and network

captures under the same attack conditions, and reliable labels—so it enables

us to train and validate a supervised, process-informed NIDS under realistic

constraints. We therefore use SWaT to evaluate the proposed framework’s abil-

ity to improve NIDS performance in an ICS setting by integrating process and

network data during training and assessing effectiveness on held-out sequences,

while keeping the deployment-time detector network-only. (iTrust, SUTD 2016;

Aditya P. Mathur et al. 2016b)

3.2 SWaT Test bed and data

The Secure Water Treatment (SWaT) test bed , owned by the Singapore Uni-

versity of Technology (Goh, Adepu, Junejo et al. 2016), is a diminutive water

treatment plant comprising six process stages which can effectively deliver 5

gal/minutes of double-filtered water. The SWaT network architecture depicted

in Figure 3.1 exhibits a distributed control system structure in which a redund-

ant pair of programmable logic controller (PLC) manages the operation of each

stage of the process.

Figure 3.1: Overview of SWaT Network Architecture, adapted from (Goh, Ad-

epu, Junejo et al. 2016)
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Data: Although SWaT was collected in 2015, it remains one of the few public

datasets offering aligned process and network streams. We acknowledge limita-

tions (legacy protocols, a fixed set of scripted attacks), but the dataset supports

reproducible baselines and comparison with contemporary work (Al-Dhaheri

et al. 2022). A variety of datasets are available to be accessed from the SWaT

test-bed upon request. this research was conducted utilising the SWaT A1& A2-

Dec 2015 datasets. The datasets include the recordings of the network traffic

and the physical status of 51 field instruments during 11 consecutive days of

continuous operation. Over the initial week of operation, data was collected

from standard activities, while the last four days incorporated data from 41 at-

tacks. According to Goh, Adepu, Junejo et al. (2016), by exploiting the Level 1

communication link presented in Figure3.1 attacks were initiated and the data

in the application layer of the communication packets were maliciously manip-

ulated before being injected back to the PLCs. Each of the field instrument’s

physical features were monitored and recorded as process data in the Historian

server at set spans of one second. Network data was taken from Level 1 shown

in Figure3.1 with a much greater frequency. It has been suggested that network

data only contains data that is beneficial for intrusion detection (ibid.). All pro-

cess and network data that is acquired is marked with timestamp, allowing the

database provider to pinpoint any data created during an attack.

After integrating the network and historian streams, the dataset used in this

study contains 495,000 records (network–process pairs). We use a 70/30 train/test

split, yielding 346,500 training and 148,500 test records; process data are used

as privileged information during training only, while the IDS model use net-

work data at runtime. (see section 3.4).
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3.2.1 Network Data Collection

The SWaT dataset comprises of network information that was obtained via

the interaction of the Supervisory Control and Data Acquisition (SCADA) and

PLCs. Network traffic was logged at a high rate of milliseconds. The data-

set includes 19 selected features that are deemed to be of worth for intrusion

detection. These features are Date, Time, Origin, Type, Interface Name, Inter-

face Direction, Source IP, Destination IP, Protocol, Proxy Source IP, Application

Name, Modbus Function Code, Modbus Function Description, Modbus Transaction

ID, SCADA Tag, Modbus Value(the payload of the Modbus protocol consists of mul-

tiple registers), Service/Destination Port, Source Port.

For our experimentation, we have incorporated the request and response of the

same transaction into a single record, taking into account the transaction ID.

Initially, when examining the Modbus payload, we transferred the hex-encoded

binary numbers into floating point values and obtained values that were repres-

entative to the SCADA tag obtainable within the dataset. In this context, it was

the beginning value of the Modbus value field. Table 3.2 presents a record of

the Network data used in this study.

Time: 10:37:20 Label: Attack

Modbus Function Code = 76 Modbus Transaction ID = 37889 Request NumberofElements = 1
Modbus Value = 848.12866 service = 44818 s port = 52544
orig 192.168.1.48 = 1 type log = 1 i/f name eth1 = 1
i/f dir outbound = 1 src 192.168.1.10 = 0 src 192.168.1.20 = 0
src 192.168.1.30 = 1 src 192.168.1.60 = 0 dst 192.168.1.10 = 0
dst 192.168.1.20 = 0 dst 192.168.1.30 = 0 dst 192.168.1.40 = 1
proto tcp = 1 appi name CIP read tag service = 1 proxy src ip 192.168.1.10 = 0
proxy src ip 192.168.1.20 = 0 proxy src ip 192.168.1.30 = 1 proxy src ip 192.168.1.60 = 0
Modbus Response Function 1 = 1 Modbus Request Function 1 = 1 SCADA Tag HMI AIT202 = 0
SCADA Tag HMI FIT201 = 0 SCADA Tag HMI LIT101 = 0 SCADA Tag HMI LIT301 = 0
SCADA Tag HMI LIT401 = 1

Note. Underscored field names are shown verbatim from the dataset header. Binary flags (0/1) indicate presence
for the corresponding source/destination or proxy field; ports are in integer form.

Table 3.2: Example SWaT network record (compact three-column view).
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3.2.2 Historian Data Collection

The SWaT dataset comes with two versions of process data from the normal

operation of the plant presented by (Goh, Adepu, Junejo et al. 2016). In the first

version, data recording started at the draining stage of the storage tank which

took 30 minutes. This stage is part of the maintenance process and is out of the

normal operation phase. Therefore a second version was presented by removing

the first 30 minutes of the recorded data. in our experiments, we have used

the latter version which includes data from 51 field instruments. In Industrial

plants, generally, process data are reported periodically to the Historian server

at a fixed rate which is dependant on the characteristics and configuration of the

process parameters. In SWaT, dataset process data are reported to the Historian

server every second. Table 3.3 present a sample record from Historian data.

Time: 10:37:20 Label: Attack

FIT101 2.484707 LIT101 863.9532 MV101 2 P101 2

P102 1 AIT201 262.3366 AIT202 8.394835 AIT203 330.2999

FIT201 2.456541 MV201 2 P201 1 P202 1

P203 2 P204 1 P205 2 P206 1

DPIT301 19.75799 FIT301 2.20645 LIT301 810.5294 MV301 1

MV302 2 MV303 1 MV304 1 P301 1

P302 2 AIT401 148.808 AIT402 155.0884 FIT401 1.717874

LIT401 848.3209 P401 1 P402 2 P403 1

P404 1 UV401 2 AIT501 7.873815 AIT502 144.2194

AIT503 261.7278 AIT504 12.15073 FIT501 1.724686 FIT502 1.254259

FIT503 0.7352687 FIT504 0.306761 P501 2 P502 1

PIT501 250.4646 PIT502 1.69801 PIT503 189.1182 FIT601 0.000128152

P601 1 P602 1 P603 1

Note. Tags follow SWaT naming (e.g. LIT=Level Indicator Transmitter, FIT=Flow Indicator Transmitter,

AIT=Analyser Indicator Transmitter, P= Pump state, MV= Motorized Valve, UV= Ultraviolet unit). Actuator

states are integer-coded (e.g. 1/2).

Table 3.3: Example SWaT process record (one timestamp).
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3.2.3 Attack Types in SWaT

The SWaT dataset includes 41 attack scenarios, 5 of which are attacks with no

physical impacts. Since the focus of this research is on attacks aiming at im-

pairing process control, we have excluded these attacks from the dataset. The

remaining 36 attacks have been categorised into 4 groups based on the location

of the the attack point in the process stage and the number of compromised

elements in each attack:

Single Stage Single Point(SSSP): Attacks targeting one point in a single stage

or sub-process.

Single Stage Multi-Point (SSMP): Attacks targeting two or more attack points

in a single stage or sub-process.

Multi-Stage Single Point (MSSP): Attacks targeting one point in multiple stages

or sub-processes.

Multi-Stage Multi-Point (MSMP): Attacks targeting two or more points in mul-

tiple stages or sub-processes.

In this dataset Attacks have also been listed based on their physical impact in

the physical process.

Attack with physical change: In these attacks actuators have been comprom-

ised. Therefore, it changed the physical state of the actuator and the pro-

cess.

Attack without physical change: In theses attacks the readings of the sensors

has been altered. Therefore, the attack had no physical impact on the

process.
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3.3 Justification of Attacks

We treat an attack scenario as a clearly bounded period where an attacker

changes actuator/sensor states or the control logic. In line with Impair Pro-

cess Control (TA0106), we focus on Brute Force I/O (T0806) and Unauthorised

Command Message (T0855) (MITRE Corporation 2025h; MITRE Corporation

2025a; MITRE Corporation 2025n).

Why multi-attack in ICS is not just data mining

ICS are cyber–physical systems: a CIP/Modbus request only matters in terms of

what it should do to the plant (actuators and sensors). If we judge packets one

by one (no sequence model), a multi-attack campaign can still look like normal

traffic unless we read each command against plant physics, engineering limits,

and interlocks (Stouffer et al. 2023). This breaks two common data-mining as-

sumptions: (i) rows are independent and identically distributed (i.i.d.), and (ii)

features and labels are purely cyber with no physical meaning (Murphy 2022;

Holdbrook et al. 2024). In ICS, a command has a physical effect; “normal”

is constrained by control logic and safety functions; and many attacks try to

change the process itself rather than just the packet statistics (MITRE Corpora-

tion 2025h).

How this approach differs

We developed a NIDS, but we train it to be process-aware. During training,

each network record is aligned with its matching historian record and used as

privileged information. This teaches the model what a legitimate command

should do to the plant. At test time, we used network features only.

We also encode per-record semantics (function code, target tag, requested
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value/limits). The detector then flags command records whose implied process

effect is inconsistent with normal operation—without needing long sequence

models.

Our scenarios focus on Impair Process Control (TA0106), especially Brute

Force I/O (T0806) and Unauthorised Command Message (T0855). These often

look legitimate at the packet level unless judged against process expectations

(Stouffer et al. 2023; MITRE Corporation 2025a; MITRE Corporation 2025n).

Selected attack scenarios: coverage and scale

We chose five attack scenarios to cover both what is changed and how it is

carried out. They span the four common shapes—single-source/single-point

(SSSP), single-source/multi-point (SSMP), multi-source/single-point (MSSP),

and multi-source/multi-point (MSMP)—so the model sees everything from a

simple one-actuator manipulations to a coordinated, multi-actuator move. This

is deliberate: under Impair Process Control (TA0106), small command tweaks

can cause outsized physical effects (MITRE Corporation 2025h). We focus on

two technique families: Brute Force I/O (T0806), where an attacker keeps push-

ing an I/O point toward a target state, and Unauthorised Command Message

(T0855), where out-of-policy commands are sent to actuators or controllers

(MITRE Corporation 2025a; MITRE Corporation 2025n).

To vary difficulty, SSSP cases (e.g. forcing a single valve or pump) expose

clear actuator–sensor mismatches; SSMP and MSSP add cross-unit interactions;

MSMP brings timing and coordination, where short command sequences mat-

ter as much as individual packets. Because SWaT records synchronised network

and historian data for each attack, we can train with process data as privileged

information but keep the runtime detection network-only—matching real de-

ployment constraints (iTrust, SUTD 2016; Aditya P. Mathur et al. 2016b). For
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scale, Table 3.4 lists the approximate number of merged network transactions

per scenario; we also include one “no physical change” case to check that the

detector ignores command traffic with no process impact. Overall, this set bal-

ances topology and effect and directly targets the two technique families at the

heart of our study. The selected attacks are summarised in Table 3.4, and their

record counts appear in Table 3.5.

Attack # Attack
Type

Attack
Point

Actual
Change

Description

1 SSSP MV-101 Yes Open MV-101
21 SSMP LIT-101,

MV-101
Yes Keep MV-101 open;

force LIT-101=700
26 MSSP P-101,

LIT-301
Yes Start P-101; force LIT-

301=801
30 MSMP LIT-101,

P-101,
MV-201

Yes Start P-101; open MV-
101; force LIT-301=700

36 SSSP LIT-101 No Force LIT-101 below
low limit

Table 3.4: Subset of attacks used and their scale (approximate merged network
records)

Table 3.5 presents the raw per-attack availability (merged network–process

pools) with the modelling sample we actually used (equal per-attack, equal Nor-

mal), evidencing sparsity and uneven scenario lengths in the source while keep-

ing like-for-like comparison in modelling.
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Attack #
Available

pool
Share of

attack pool
Sampled for
modelling

Sampling
fraction

Train
(70%)

Test
(30%)

1 98,185 17.4% 49,500 50.4% 34,650 14,850
21 56,824 10.1% 49,500 87.1% 34,650 14,850
26 188,325 33.4% 49,500 26.3% 34,650 14,850
30 133,970 23.8% 49,500 36.9% 34,650 14,850
36 85,860 15.2% 49,500 57.7% 34,650 14,850

Totals (attacks) 100% 247,500 — 173,250 74,250

. “Available pool” = merged network–historian records per scenario before sampling (sum = 563,164 across the five
attacks). “Sampled for modelling” uses an equal per-scenario sample n = 49,500; Normal was sampled to an equal

total (247,500).

Table 3.5: Raw per-attack availability vs. modelling sample (network–process
pairs).

3.4 Data pre-processing

We prepare the data so features are on the same scale, labels are reliable, and

class imbalance doesn’t overwhelm training. The steps below match the pipeline

we used in our experiments.

3.4.0.1 Normalisation (numeric features).

We standardise all numeric features (process and network) to have mean 0 and

variance 1. This puts everything on a common scale, so no single feature dom-

inates just because of its units (Murphy 2022).

3.4.0.2 Encoding (categorical fields).

We encode small categorical fields in the network data (e.g. protocol family,

function code) using one-hot indicators. It’s a simple, transparent choice that

works well when there are only a few possible values (ibid.).
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3.4.0.3 Train/test split.

The network dataset is randomly split into 70% for training and 30% for test-

ing. The process (historian) records aligned with the training network samples

are used as Privileged Information (PI) during training; at test time the network

features were used only.

3.4.0.4 Class distribution (modelling dataset) and sampling design

To avoid bias from unequal scenario lengths, we sampled the same number of

records per attack scenario and an equal total from Normal, yielding a bal-

anced modelling dataset of 495,000 records (Attack 247,500; Normal 247,500).

With a 70/30 split, train and test contain 173,250 vs. 74,250 records per class,

respectively.

Table 3.6: Class distribution in the modelling dataset (N = 495,000) and 70/30

split.

Totals 70/30 split

Class Count % Train (70%) Test (30%)

Normal 247,500 50.00% 173,250 74,250

Attack 247,500 50.00% 173,250 74,250

As a stress test, we applied SMOTE only to the training split of the mod-

elling dataset; since the modelling set is already 50/50, SMOTE did not alter

class totals but perturbed the decision boundary slightly (Chawla et al. 2002).

Evaluation used the unmodified test split.
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3.4.0.5 Feature ranking (RFE with Decision Tree).

To understand which variables help most, we apply recursive feature elimina-

tion (RFE) with a Decision Tree base learner on the integrated dataset (process +

network) (Guyon et al. 2002). In our runs, process variables (e.g. tank level and

flow sensors) ranked higher than packet-only fields for the intrusion-detection

task on SWaT. We therefore use process data as PI during training to teach a

network-only detector at deployment.

3.4.0.6 Label alignment

Two practical label issues arise in SWaT. First, some process records are marked

as “attack” even when the physical behaviour does not yet (or no longer) reflect

an attack—i.e., the label boundary leads or lags the observable change (also

noted in prior work) (Bernieri et al. 2019). Second, network labels appear to

be inherited from process timestamps, introducing small timing mismatches

between streams.

To avoid relabelling the dataset while reducing edge effects, we use a con-

servative boundary filter: for each labelled attack window, we discard a short

guard band at the beginning and end of the window when training and evaluat-

ing. This removes the slices where misalignment is most likely, without altering

the original labels. Figures 3.2 and 3.3 illustrate typical cases: in Attack 36, the

level sensor (LIT101) begins changing slightly before the indicated start, and

returns to baseline before the indicated end; in Attack 1, the actuator (MV101)

flips state earlier than the annotated boundary. These patterns match known

“stealthy” behaviours in ICS, where small command sequences can create pro-

cess impact with subtle network traces(Cárdenas et al. 2011).
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Figure 3.2: Misalignment between indicated attack endpoints (red) and process
change (blue) for Attacks 3 and 36 in SWaT.

Figure 3.3: Misalignment between indicated endpoints (red) and process
change (blue) for Attack 1 in SWaT.
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3.5 Evaluation metrics

We used four evaluation measures to report the predictive performance of the

proposed intrusion detection methods. This includes:

• Classification accuracy, measures all of the correctly identified cases,

T P + TN
T P +FP + TN +FN,

(3.1)

where T P , FP , FN and TN denote true positives, false positives, false

negatives and true negatives, respectively

• Precision, the ratio of correctly predicted positive records to the total pre-

dicted positive records,
T P

T P +FP
(3.2)

• Recall, the ratio of correctly predicted positive records to all data records

in a class,
T P

T P +FN
(3.3)

• The F1-score, it conveys the balance between precision and recall.

2× (Recall × P recision)
(Recall + P recision)

(3.4)

3.6 Machine Learning Algorithms Used

3.6.1 Learning Using Privileged Information

Supervised classical ML algorithms aim to learn the distribution pattern of

labelled training data presented in n number of training pairs (xi , yi), where

104



3.6. MACHINE LEARNING ALGORITHMS USED

i = 1, ...,n, xi ∈ X, and yi ∈ {+1,−1}. During training, a mapping function

f : X −→ +1,−1 is formulated that can map an input instance (xi) to a pre-

dicted output (yi) with the lowest error possible. In classical supervised learn-

ing problems, the same data features are used for both training and testing (run-

time). In some pattern recognition problems, there may be additional helpful

information about the training samples that will not be available during the

testing phase. Such data would often be discarded by classical ML algorithms

since models have been trained based on training input features only. Recently,

there has been a trend in designing ML models that incorporate this additional

information (referred to as ”privileged information”), alongside the main the

training samples. The framework of Learning Using Privileged Information

(LUPI) was originally proposed by Vapnik and Vashist (Vapnik and Vashist

2009b; Vapnik 2006) in the context of the Support Vector Machine (SVM) clas-

sifier, where a triplet of training data is provided (xi ,xi∗, yi), i = 1, ...,n, xi ∈ X,

x∗i ∈ X
∗, and yi ∈ {+1,−1}. Similar to classical ML, the goal is to find a function

f : X −→ +1,−1 that can predict labels with the lowest error possible. The idea

is that the privileged information might improve the learning process and help

the ML model converge to a better decision boundary in the input space.

3.6.2 Knowledge Transfer

SVM (Cortes et al. 1995), is a popular supervised learning algorithm for solv-

ing non-linear classification problems. The aim is construct a non-linear hy-

perplane with maximum margin that separates two classes (in the case of bin-

ary classification). The SVM allows the decision margin to make some viola-

tions known as slack variables (ξi). The task here is to find a decision function

f (x) = sgn[⟨w,x⟩ + b], where w ∈ X, b ∈ R and they are obtained by solving the
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following optimization problem

min
w,b,ξi

1
2
||w||22 +γ

n∑
i=1

ξi (3.5)

under the constraints,

∀ 1 ≤ i ≤ n, [yi⟨w,xi⟩+ b] ≥ 1− ξi , ξi ≥ 0, (3.6)

where γ ≥ 0 is a hyper-parameter that controls the trade-off between margin

maximization and margin violation. If the slacks ξi are all equal to zero then

we call the set of given examples separable, otherwise they are non-separable.

In SVM+ (Vapnik and Vashist 2009b; Vapnik 2006; Fouad 2013), which is based

on LUPI, the additional information xi
∗ ∈ X∗ will be available during training

but not at the test stage. Unlike SVM which uses a correcting slack variable ξi ,

the SVM+ uses a slack function ξi = [⟨w∗,x∗i ⟩ + b∗], where w∗ ∈ X∗, b∗ ∈ R and

they are obtained by solving the following optimization problem:

min
w,w∗

1
2
||w||22 +

ρ

2
||w∗||22 +γ

n∑
i=1

[⟨w∗,x∗i ⟩+ b∗] (3.7)

under the constraints,

∀ 1 ≤ i ≤ n, [yi⟨w,xi⟩+ b] ≥ 1− [yi⟨w∗,x∗i ⟩+ b∗],

[⟨w∗,x∗i ⟩+ b∗] ≥ 0
(3.8)

In SVM+, correcting functions control the slack variables based on the priv-

ileged information. The objective function of SVM+ contains two hyper-parameters

γ,ρ > 0. The ρ is a non-negative parameter that reflects the imposition of

smoothness in the slack model.
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3.6.3 Margin Transfer

Margin Transfer SVM is another implementation of Learning Using Privileged

Information (LUPI) proposed in (Sharmanska et al. 2013). It focused on trans-

ferring knowledge about the learning problem to improve the predictive solu-

tion. Similar to SVM+, the aim of Margin Transfer SVM is to distinguish the

easy and hard examples. For a Classification problem, Sharmanska et al. (ibid.)

suggested to train an ordinary SVM using privileged information X∗ and use

the achieved prediction function f ∗ (x∗) = ⟨w∗,x∗⟩ to calculate the margin dis-

tance of the training samples to the classifying hyperplane in the same space

ρi := yif
∗
(
x∗i
)
. This computed margin can be transferred to an ordinary SVM

on Original space instead of exploiting a constant margin of 1. for solving the

optimisation problem in the standard space.

minimize
w∈Rd ,ξi∈R

1
2
∥w∥2 +C

N∑
i=1

ξi

subject to, for all i = 1, . . . ,N

yi ⟨w,xi⟩ ≥ ρi − ξi and ξi ≥ 0

In this approach not only the performance of Margin Transfer SVM has been

validated in the privileged space and enhance the training of a classifier in the

original space, it also can identify the easy and hard examples both in privileged

space and original space. In contract, SVM+ differentiate the easy and difficult

examples by learning the the slack function within privileged space. As stated

in ξi =
〈
w∗,x∗i

〉
+ b∗ the label information is not involved in formulating slack

function, therefore, SVM+ performance is not validated in privileged space.
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3.6.4 Distillation

The idea of distilling knowledge has been proposed By(Hinton et al. 2015). It

has been developed based on the fact that almost any machine learning al-

gorithm’s performance can be improved in an ensemble structure by training

many different models on the data and then averaging their prediction, or by

using larger datasets. However, such improvement comes with computational

cost and complexity. The distillation technique proposes a methodology to ex-

tract and compress class knowledge (hard label) and the probability vector of

each class (soft label) to a smaller model. Distillation is used to transfer know-

ledge from a complex Neural Network model to a smaller one while saving

accuracy while reducing the computational cost considerably. For an N-class

classification task with data as

{(xi , yi)}ni=1 ,xi ∈R
d , yi ∈ ∆c

where ∆c is an N-dimensional probability vector, the aim would be to learn the

following function in which Ft is a function from R
d to R

c.

ft = argmin
f ∈Ft

1
n

n∑
i=1

ℓ (yi ,σ (f (xi))) +Ω(∥f ∥) (3.9)

Here σ is a Softmax function that operates from R
c to ∆c and Ω is an increasing

function that works on regularization.

σ (z)k =
ezk∑c
j=1 e

zj
(3.10)
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Cross entropy loss will be measured by function ℓ for all 1 ≤ k ≤ c:

ℓ(y, ŷ) = −
c∑

k=1

yk log ŷk (3.11)

In order to distill the previously learnt ft in to fs, (Hinton et al. 2015) proposed

following optimization problem to be solved:

fs = arg
f ∈Fs

min
1
n

n∑
i=1

[(1−λ)ℓ (yi ,σ (f (xi))) +λℓ (si ,σ (f (xi)))] (3.12)

where si is the soft labels obtained from ft on the training data

si = σ (ft (xi) /T ) ∈ ∆c (3.13)

The temperature parameter T > 0, control the softness in the prediction of the

class probability from ft. The imitation parameter λ ∈ [0,1] balance the import-

ance of the soft predicted label si and the true hard predicted label yi . Sugges-

ted in Eq.3.13. increasing the temperature will result in predicting softer class

probability which will identify label dependencies. By using the proposed dis-

tillation method, fs ∈ Fs will be used that is simpler than ft therefore, resulting

in faster prediction during run-time. (Lopez-Paz et al. 2015) merged Hinton’s

distillation technique with Vapnik’s Privileged information and proposed gen-

eralised distillation. With a data such as
{(
xi ,x

⋆
i , yi

)}n
i=1

, the knowledge is ex-

tracted by a teacher model learned ft ∈ Ft on privileged information that is a

pair of
{(
x⋆i , yi

)}n
i=1

using Eq.3.9. This knowledge is then compressed through

computing teacher soft labels using Eq.3.13. for x⋆i and T > 0. To pass this to

the student model, the student should learn fs ∈ Fs on the input-output pairs of

{(xi , yi)}ni=1 and {(xi , si)}ni=1 using Eq.3.12. and λ ∈ [0,1]. This approach decreases

the computational complexity by following Hinton’s distillation method and
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improves the accuracy of the classification over the standard dataset by incor-

porating Vapnik’s privileged information. Generalised distillation can be re-

duced to Hinton’s distillation if x⋆i = xi for all 1 ≤ i ≤ n.

3.6.5 Transfer Learning

Transfer learning is developed based on the fact that humans use their learnt

knowledge from one task or problem to solve other problems (Pan et al. 2009).

Such motivation suggests retraining a previously learnt model for solving a new

task. Classical ML algorithms use labelled or unlabeled data for learning a spe-

cific task from scratch and aim to predict future data for that specified task dur-

ing run-time (Yin et al. 2006; Baralis et al. 2007). However, transfer learning is

a technique that transfers knowledge from a learnt task to improve generaliza-

tion in a target task especially when the available data for the target task does

not provide enough information for developing a high-quality model.

Suppose a classification task in domain D, D = {X , P (X)}, that includes a la-

bel space Y and a predictive function f (·). Training data that consisting of

pairs {xi , yi}, where xi ∈ X and yi ∈ Y would be used to learn the predictive

function f (·) such that f (x) predicts the corresponding label of an unseen in-

stance x. This function, f (x) can be presented as P (y | x). Suppose there is

a source domain DS , and its data is denoted as DS =
{(
xS1

, yS1

)
, . . . ,

(
xSns , ySns

)}
,

where xS1
∈ XS is the feature instance and ySi ∈ YS is the corresponding class

label. Similarly consider a target domain, DT , data of each is denoted as DT ={(
xT1

, yT1

)
, . . . ,

(
xTnT , yTnT

)}
, where the input xT1

is in XT and yTi ∈ YT is the cor-

responding output.

One definition for Transfer Learning presented in the work of (Pan et al. 2009)

suggests that for a source domain DS and corresponding learning task TS , as

well as a target domain DT and corresponding learning task TT , transfer learn-
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ing’s objective is to utilize the knowledge available in DS and TS , where DS ,

DT , or TS , TT and improve the learning performance of the target predictive

function fT (·) in DT .

Two approaches for implementing transfer learning were suggested by (Good-

fellow et al. 2017) as follow:

• Weight Initialization This method relies on the information derived from

the first task data for training a model on the target task. In this approach,

the weights from the learnt model will be used as the initial weights for

training the target model therefore, in this process transfer learning can

be considered as a weight initialization strategy.

• Feature Extraction When the weights from the learnt model cannot be ad-

apted to the target task, transfer learning can be used as a feature extrac-

tion strategy. In this approach, new layers after previously trained layers

of a neural network will retrain with target data.

In general, when features of one task correspond to the fundamental factors in

another task, transfer learning can be of use to reduce training time that leads

to a likely faster or a superior solution due to lower generalisation error.

3.7 Summary

This chapter details the evaluation of a proposed framework designed to en-

hance the performance of NIDS within ICS environments. The evaluation lever-

ages the Secure Water Treatment (SWaT) test-bed, a scaled-down water treat-

ment plant, and its associated datasets to assess the framework’s efficacy.

First SWaT test-bed is introduced, outlining its hierarchical architecture and

operational capabilities. The specific datasets used in the evaluation is then
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discussed, highlighting the inclusion of both network and process data collec-

ted during normal operations and simulated attack scenarios.

A taxonomy of attack types present in the SWaT dataset is provided, categor-

izing attacks based on their target location and impact on the physical pro-

cess. The rationale behind selecting specific attack scenarios for evaluating the

framework is also explained, emphasizing the focus on attacks that aim to dis-

rupt process control.

This chapter then delves into the data pre-processing steps undertaken to pre-

pare the datasets for analysis. These steps include data normalization, handling

of categorical variables and addressing class imbalance as well as the use of pro-

cess data as ”privileged information” during the training phase of the machine

learning models.

Furthermore, the chapter identifies and discusses inconsistencies discovered in

the labelling of attack data within the SWaT dataset. These inconsistencies,

related to both process and network data labelling, are addressed through a fil-

tering approach to ensure the accuracy of the evaluation results.

Finally, the chapter provides a comprehensive overview of the machine learn-

ing algorithms employed in the study. Techniques such as Learning Using Priv-

ileged Information (LUPI), Knowledge Transfer, Margin Transfer, Distillation,

and Transfer Learning are discussed, outlining their theoretical foundations

and practical applications in the context of intrusion detection.

In summary, this chapter establishes the experimental setup for evaluating the

proposed NIDS framework, encompassing the test-bed, datasets, attack scen-

arios, data pre-processing techniques, and machine learning algorithms em-

ployed. It ensures a robust and reliable evaluation of the framework’s ability to

enhance intrusion detection capabilities in ICS environments.
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Chapter 4

A framework for ML-based network

intrusion detection in ICS

4.1 Generic Overview of an ICS Network Structure

The main difference between ICS and traditional information systems is the

close relationship with the physical world. We refer to the ICS architecture de-

scribed in chapter 2 (Figure 2.1). In this chapter, we collect network traffic at L2

and historian data at L3, which is where PINID learns correlations.This chapter

motivates and specifies the Process-Informed NIDS (PINID). We focus on at-

tacks that impair process control, especially Brute Force I/O, (T0806), (MITRE

Corporation 2025a) and Unauthorized Command Message, (T0855), (MITRE

Corporation 2025n), because they alter the physical process with subtle net-

work traces. Figure 4.1 presents the landscape of MITRE ATT&CK for ICS and

highlights where PINID aims to help.
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4.2. ICS ATTACK SURFACE

4.2 ICS Attack Surface

According to a study conducted by researchers and professionals in the cyber

security field, 12 adversarial tactics have been identified for attacking ICS (Al-

exander et al. 2020). Today an active area of research in the cybersecurity do-

main involves the integration of ML into the field of ICS for intrusion detection

and anomaly detection purposes. Researchers are actively exploring and ex-

perimenting with different ML techniques to improve the security of ICS. Their

proposed methods target diverse tactics that attackers use to reach their desired

goal. These adversarial tactics and the incentive of the adversaries are:

1. Initial Access (TA0108): The adversary’s primary goal is to infiltrate the

ICS environment, aiming for initial access (MITRE Corporation 2025j).

2. Execution (TA0104): The adversary’s goal during execution is to run code

or manipulate system functions, parameters, and data without authorisa-

tion (MITRE Corporation 2025f).

3. Persistence (TA0110): The adversary’s primary objective is to persistently

maintain their presence in the ICS environment, in order to continue their

malicious activities (MITRE Corporation 2025l).

4. Privilege escalation (TA0111): The adversary’s objective includes gaining

higher-level permissions, which is known as privilege escalation (MITRE

Corporation 2025m).

5. Evasion (TA0103): The adversary is employing tactics to bypass and elude

the existing security defences (MITRE Corporation 2025e).

6. Discovery (TA0102): The adversary is actively searching for information

in order to assess and identify potential targets within the industrial net-

work (MITRE Corporation 2025d).
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7. Lateral Movement (TA0109): The adversary is actively attempting to nav-

igate and infiltrate the ICS environment (MITRE Corporation 2025k).

8. Collection (TA0100): The adversary’s primary objective is to obtain valu-

able data and acquire comprehensive domain knowledge related to the

ICS environment, which will serve as crucial information to advance their

goal (MITRE Corporation 2025b).

9. Command and Control (TA0101): The adversary’s objective is to establish

communication with compromised systems, controllers, and platforms

that have access to the ICS environment, with the intention of gaining

control over them (MITRE Corporation 2025c).

10. Inhibit Response Function (TA0107): The main objective of the adversary

is to hinder the proper functioning of the safety, protection, quality assur-

ance, and operator intervention functions in responding effectively to any

failure, hazard, or unsafe state (MITRE Corporation 2025i).

11. Impair Process Control (TA0106): The adversary is attempting to engage

in activities that involve manipulating, disabling, or damaging physical

control processes (MITRE Corporation 2025h).

12. Impact (TA0105): The adversary’s goal is to manipulate, interrupt, or even

go as far as destroying the ICS systems, the valuable data they hold, and

the environment in which they operate (MITRE Corporation 2025g).

By thoroughly studying literature on the detection of ICS cyberattacks and ana-

lysing notable and recent cyberattacks on ICS systems,such as the Stuxnet cy-

ber attack on Iran’s nuclear facilities in 2010 (Langner 2011), the cyber attack

on the Ukrainian power grid in 2015 (Case 2016), and the recent cyber attack
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on the Colonial Pipeline in the USA(Hobbs 2021), we have identified a pat-

tern wherein attackers consistently opt for Impair Process Control techniques.

Impairing Process Control refers to the various techniques used by malicious

actors to disrupt the control logic of systems and cause detrimental outcomes

for the processes being controlled within the targeted environment. The po-

tential targets for manipulation could include procedures or parameters that

have an active impact on the physical environment. These techniques are not

limited to prevention or manipulation of reporting elements and control logic,

they can also involve various other approaches. When an adversary modifies

the functionality of a process, it is important to note that they might obfuscate

the results as well, and these outcomes often provide clear evidence of their in-

fluence on a product or the surrounding environment. The safety of operators

and downstream users is at risk because of the direct physical control exerted

by these techniques, and this can lead to the activation of response mechanisms,

such as a safety shutdown. To successfully control processes and cause impact,

adversaries utilise techniques to inhibit such mechanisms. This research is ex-

ploring the efficacy of supervised ML techniques in augmenting the detection of

cyber-attacks where attackers attempt to manipulate, interrupt, or destroy ICS

( Impair Process Control). We prioritise two Impair Process Control techniques:

Brute Force I/O (T0806)—repetitively changing I/O point values to manipulate

a process—and Unauthorized Command Message (T0855)—issuing commands

outside intended bounds. Both can produce faint network signals yet meaning-

ful process effects.

4.2.1 Brute Force IO

In the enterprise network, the tactic known as brute force is employed to gain

unauthorized access to a system. This involves repeatedly guessing login cre-
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dentials until the correct combination is identified. This tactic is often used in

conjunction with other attack methods, such as phishing or social engineering,

to obtain login credentials or other sensitive information. In Industrial Con-

trol Systems (ICS), the tactics employed by adversaries involves repeatedly or

sequentially altering I/O point values, thus allowing them to execute specific

actions. By repetitively altering either a range of I/O point values or a single

point value, brute force I/O is used to manipulate a process function. The ap-

proach chosen will vary depending on the objectives of the adversary and their

level of knowledge about the target environment. When attempting to brute

force a range of point values, the adversary may inadvertently cause an impact,

without having a specific target in mind. On the other hand, if the focus is solely

on one point, it is possible for the adversary to cause instability in the corres-

ponding process function. The reason brute force IO attacks can be so harmful

in ICS environments is that they give attackers the ability to gain control of cru-

cial systems, which can then result in physical damage or significant disruption

to operations. As an illustration, let us consider a scenario where an attacker

successfully infiltrates the control system of a power plant or water treatment

facility. In such a situation, the potential consequences could range from trig-

gering a widespread blackout to deliberately contaminating the water supply.

In order to enhance security against brute force IO attacks in ICS environments,

organizations should consider implementing robust password policies and in-

corporating multi-factor authentication. These measures can significantly in-

crease the difficulty for attackers to guess or obtain login credentials. Further-

more, organizations need to stay vigilant by consistently monitoring their sys-

tems for any potential signs of suspicious activity. This involves being alerted

to repeated login attempts coming from the same IP address and being mind-

ful of any unusual login patterns that might indicate a security breach. In ICS
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environments, there are several security measures that can be implemented to

prevent brute force IO attacks. These include network segmentation, which di-

vides the network into smaller sections, as well as the use of intrusion detection

and prevention systems. Regular security assessments and audits should also

be conducted to ensure the effectiveness of these measures. Implementing a

proactive security strategy empowers organizations to minimize the risk of suc-

cessful brute force IO attacks, thereby safeguarding their critical systems and

operations.

4.2.2 Unauthorised Command Message

In ICS, the unauthorised command message tactic is employed by attackers who

try to send or execute commands that are not allowed within the ICS environ-

ment. The main objective of this tactic is to manipulate or disrupt the control

system’s normal operation. Attackers may try to send unauthorised commands

to gain control over devices like programmable logic controllers (PLCs) or re-

mote terminal units (RTUs). The intention behind these commands is to change

process parameters, adjust control logic, or potentially disrupt the function-

ing of critical infrastructure. Attackers could exploit this technique through

range of methods, such as taking advantage of vulnerabilities present in the

ICS network, compromising user accounts that have higher privileges, or em-

ploying social engineering tactics to gain control over the control system. The

consequences of unauthorised command messages in ICS can be severe, ran-

ging from operational disruptions to safety hazards and even potential phys-

ical damage. To illustrate the consequences, imagine an attacker gaining un-

authorised access and using it to send commands that manipulate the flow of a

pipeline, alter temperature settings in a chemical plant, or disrupt power distri-

119



4.3. PROCESS INFORMED NETWORK INTRUSION DETECTION
FRAMEWORK (PINID)

bution in a grid. In order to reduce the risk of unauthorised command message

attacks in ICS, it is recommended to implement effective security measures.

One of the key measures to ensure security is network segmentation, which in-

volves isolating critical control systems. Besides that, implementing strong ac-

cess controls that include multi-factor authentication can enhance the security

measures. In order to identify any potential vulnerabilities, regular security as-

sessments and audits should be conducted. A system of continuous monitoring

would enable identifying and investigating any suspicious activities or anom-

alies within the ICS environment. In addition, implementing user awareness

training and establishing strict change management processes can be effective

measures to prevent the execution of unauthorised commands within the ICS

infrastructure. A proactive measure in safeguarding the industrial network ,

is to implement intrusion detection and prevention systems, which detect and

prevent unauthorised access or malicious activities.

In the event of a Brute Force attack and Unauthorised Command Message and

alteration of the system, an irregular pattern will be created in the usual flow

of network traffic and data held in the Historian. These surprising coincidences

that are detectable in both databases concurrently could be seen as an indicator

of potential breach. Thus, this can be employed to recognise and uncover both

of these classifications of attack on an ICS system.

4.3 Process Informed Network Intrusion Detection

Framework (PINID)

In order for external attackers to manipulate the process, they must gain ac-

cess to the organisation through an enterprise network. By utilising their un-

derstanding of the organisational infrastructure, industrial devices and equip-
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ment, communication systems, as well as the employees and staff, they can de-

tect weaknesses and vulnerabilities within the organisation. By leveraging this

information, they would possess the capability to direct their efforts towards

a systems or users within the enterprise network, gaining illicit access to their

system. This can be achieved through the execution of targeted attacks, such

as phishing attacks, ultimately resulting in the establishment of a command-

and-control connection that remains undetected. Their ability to remain silent

within the network enables them to gather additional information on systems

and user credentials. This information can then escalate privileges and gain ac-

cess to critical systems leaving no significant trace. By exploiting identified vul-

nerabilities in critical systems, they can effectively disturb the process and ma-

nipulating operators’ HMI view. The current methods for detecting adversarial

attempts to impair process control tactics are limited to process BAD and Net-

work Intrusion Detection (NID).

The application of an anomaly detection approach in the ICS environment, with

a specific emphasis on process behaviour, has been proposed by a team of re-

searchers. The suggested strategies encompass a combination of supervised and

unsupervised machine learning techniques, including one-class, binary, and

multi-class categorization (Maglaras and J. Jiang 2014; Suaboot et al. 2020) as

well as time-series prediction (D. Li et al. 2019). The activation of an alert

will be triggered by any deviation from the expected behaviour in these meth-

ods. However, given the potential for cyber incidents to alter system behaviour,

besides system failures or equipment malfunctions, a comprehensive investig-

ation is needed to determine the origin of each detected anomaly and obtain an

accurate assessment of the security state. It is important to mention that the

technique of focusing on Process behaviour presents a greater challenge in de-

tecting cyber-attacks during the initial stages of reconnaissance, as the attacker
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is still in the process of gathering information and has not yet caused signific-

ant changes to the process behaviour. Various research groups have explored

the analysis of ICS network traffic to detect network intrusion, operating under

the assumption that any external cyber incident would eventually penetrate the

ICS environment through the network. The researchers utilised parallel Ma-

chine Learning techniques, incorporating the supervised approaches noted by

Valdes et al. (2009) and the unsupervised methods as described by Almalawi,

Yu et al. (2014). The drawback of this approach lies in its ability to detect in-

ternal attacks and those that can bypass established security measures without

affecting the network’s status, such as stealthy attacks. As stated by Cárdenas

et al. (2011), attacks of this nature have been found to have limited influence

on the manipulation of sensor data, persisting over an extended period and

posing a risk of significant damage. If this minor modification is introduced

into the control loop, it has the potential to manifest in the behaviour of the

process. Given that the network status remains unaltered, the immediate visib-

ility of the impact on network traffic may be limited. By categorising all device

malfunctions or failures as behaviour anomalies, the first method is likely to de-

tect cyber incidents. However, the second technique is incapable of identifying

attacks that have successfully eluded security countermeasures, even if their

effect on the system is negligible. The design of our proposed framework, illus-

trated in Figure 4.2, is aimed at enhancing the detection capabilities of NIDS

specifically against attacks targeting ICS Process Control. This framework is

structured to align with the hierarchical network of ICS networks, taking into

account the distribution of components across different levels as defined by

the Purdue model Williams 1994. For our purposes, we focus on levels 0-3 of

the Purdue model, encompassing ICS components, while excluding Enterprise

levels dedicated to IT and business functions.
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PINID follows LUPI paradigm: during training, we expose the model to pro-

cess data aligned to network features; at runtime, the model uses network fea-

tures only. LUPI has been shown to improve generalisation when rich valuable

data are available at training time (S. Yan et al. 2023; Z. Gao et al. 2024; S. Yang

et al. 2022; X. Li et al. 2020).

Data collection for the development of our supervised Machine Learning (ML)-

based NIDS is conducted at level 2, the supervisory level. This level provides

access to network traffic exchanged between servers and control systems, as well

as operator stations situated at level 3. Simultaneously, process data is acquired

from the historian server at level 3. Despite simultaneous data collection, vari-

ations in data capturing frequencies from the network and storage rates within

the historian server, as elaborated in section 1.2, necessitate a label alignment

process. This process ensures accurate correlation between network traffic and

corresponding process data based on attack occurrence time, facilitating effect-

ive manual labelling. The aligned datasets are then integrated into a unified

database using common entities as linking points. Both network and process

features from this integrated dataset serve as inputs for training the ML-based

NIDS. However, it’s important to note that during the validation phase and real-

time operation, the trained model relies solely on network features for attack

detection. This approach ensures the practicality and efficiency of the NIDS in

real-world deployments. As illustrated in Figure 4.3, this framework comprises

four distinct stages.

The first phase, known as Collection and Analysis , starts by gathering net-

work traffic and process data from the industrial setup (1.1). Network traffic is

to be obtained from the supervisory network, while the process data should be

acquired from the historian server. To ensure the accuracy of the labels, a thor-

ough analysis of these datasets is necessary, focusing specifically on detecting
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Figure 4.3: PINID Process Flow Diagram
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any anomalous patterns(1.2). The patterns that have been identified should be

compared with both the attack specification and the normal state. Given that

this framework is focused on supervised network intrusion detection, the accur-

acy of the labels holds significant importance and has the potential to impact

the predicted outcome. It is imperative that the verification of dataset labelling

is performed by a process specialist who has a thorough understanding of the

specific process for which the NID is being designed (1.3). Integrating the two

datasets should occur by considering the timestamp from each dataset(1.4). The

next stage encompasses the pre-processing of data to prepare it for the training

and testing of a machine learning algorithm. The conversion of categorical data

to numerical format is essential for network traffic data. In addition, the nor-

malisation of all numerical data ensures that the machine learning algorithm’s

prediction is influenced equally by each feature. The imbalanced distribution

of the data classes must be addressed at this stage through implementing data

sampling techniques. Finally, the data should be divided into two sections,

namely training and validation (70%), and testing (30%). In the third stage, the

training of the supervised machine learning based intrusion detection sys-

tem (IDS) model will take place. To proceed with this phase of the process, it

will be necessary to utilise the testing and validation segment of the integrated

data ( which includes network and process features ). This segment will be di-

vided into a training set (70%) to train the algorithm and a validation set (30%)

to validate the optimised model. To attain the highest level of performance for

the model, it is imperative to fine-tune the algorithm parameters through an

optimisation process (3.2). The ML based NID model will be fully operational

in the test environment after the successful completion of this stage. The fourth

and ultimate phase of this framework NID model in the runtime involves the

model’s execution in the test environment. Given that this model is specifically
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designed for network intrusion detection, only the network features will be re-

ceived during runtime. Consequently, only the network features from the test

partition of the data prepared during stage 2 of the framework will be utilised

by ML based NID for attack detection. It is important to note that, during the

training phase, the model was trained on both network and process features.

4.4 Summary

This chapter provides an analysis of ICS security, focusing on the limitations

of existing anomaly detection methods and proposing a novel framework for

enhanced intrusion detection. The chapter begins by differentiating ICS from

traditional information systems, highlighting the direct link between ICS and

physical processes and the resulting security implications as well as the hier-

archical architecture of ICS, which although efficient, it extend the ICS attack

surface.// This chapter then delves into the vulnerabilities of ICS, outlining

twelve adversarial tactics and emphasizing the prevalence of Impair Process

Control techniques. Brute Force IO and Unauthorized Command Message at-

tacks are explained in detail, illustrating their mechanisms and potential con-

sequences. Existing security measures and their limitations are also discussed.//

The chapter analyses current ICS security research, particularly Process BAD

and NIDS. BAD’s reliance on detecting significant deviations from normal

behaviour is deemed insufficient for identifying subtle manipulations, while

NIDS focus on network traffic analysis is seen as susceptible to stealthy attacks.

To address these limitations, we propose PINID framework. PINID integrates

network and process data during the training phase of its machine learning-

based intrusion detection system, enabling it to discern subtle correlations between

network activities and process behaviour. This approach enhances PINID’s
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ability to detect attacks that might evade traditional methods.// The chapter

concludes by outlining the training process of PINID’s supervised machine

learning-based IDS model and emphasizing the framework’s unique use of pro-

cess data as ”privileged information” during training. This approach enables

PINID to develop a more comprehensive understanding of the relationship

between network traffic and process behaviour, bolstering its accuracy and effi-

ciency in detecting real-world attacks.
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Chapter 5

Result and analysis

5.1 Experiments and Findings

This research has proposed a new framework for ML-Based NIDS in ICS. In

distinction to other proposed methodologies in this research domain, which

primarily focus on either network traffic data or process data in an ICS envir-

onment, the objective of this research was to take into account the principal

characteristics of ICS in controlling a physical process through a highly con-

nected network architecture. Therefore, the two data types (network traffic and

process data ) were employed in the training process for the development of a

ML-based NIDS model. However, to conform to the expected operational defin-

ition of a NIDS, during the runtime, the model is solely exposed to the network

traffic . The core structure of the proposed framework is built upon the Ma-

chine Learning concept known as Learning Using Privilege Information (LUPI).

Validation of the framework was conducted by applying various techniques

that were specifically adjusted for LUPI. This chapter will begin with a brief

summary of the testbed and datasets employed in this research (for a detailed

explanation, please refer to section 5.1.1). Following that, it will present the
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design, implementation, and analysis of the results of each experiment. Lastly,

the chapter will be brought to a close with a concise summary that will present

the key findings.

5.1.1 Brief summary of the Testbed

The SWaT test bed, is a small water treatment plant with six process stages,

delivering 5gal/min of double-filtered water. Each stage of the process in the

SWaT architecture is managed by a redundant pair of PLCs. The data collected

from this testbed consists of network traffic and historian data. SWaT network

dataset consists of network traffic captured from SCADA and PLCs interaction.

it includes 19 selected features in the dataset for intrusion detection (for the

detail list of the features please refer to section 3.2) each logged at a high rate of

milliseconds. SWAT Historian dataset includes readings from 51 field instru-

ments recorded every second. The SWaT datasets includes 36 attack scenarios

with physical impacts on the process which are categorised into 4 groups based

on the location of the attack point in the process stage and the number of com-

promised elements in each attack as Single Stage Single Point (SSSP), Single Stage

Multi-Point (SSMP), Multi-Stage Single Point (MSSP) and Multi-Stage Multi-Point

(MSMP). This chapter’s experiments considered a selection of attacks on actu-

ators and sensors from these 4 categories.

5.1.2 Data subset used for each experiment

As outlined in sections 3.2–3.5, our modelling dataset has N=495,000 merged

network–process pairs with a 50:50 class balance by design (equal per-attack

sampling and an equal number from Normal). For the single-attack scenario,

the most we can use is the per-attack draw (n = 49,500 Attack + 49,500 Normal
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= 99,000 records). For the multi-attack studies, we can use the full set (495,000

records).

Neural networks usually benefit from more data and train more stably with

larger subsets, so we give them the maximum possible in each scenario to steady

optimisation and reduce run-to-run variance (Kaplan et al. 2020). By contrast,

SVM+ adds constraints and variables for the privileged features, which raises

memory and computational cost versus a standard SVM; we therefore use a

smaller but balanced subset to keep training feasible without changing how we

evaluate (Vapnik and Vashist 2009a; Lapin et al. 2014).

To keep comparisons fair while respecting compute limits, we follow three

simple rules:

(i) all subsets are balanced (Attack:Normal = 1:1) and stratified; (ii) Neural

Network runs use the largest available subset in each scenario (same size across

repeats to stabilise training); (iii) SVM+ (LUPI) uses a smaller subset due to

higher training cost with privileged features.

This explains the different record counts across techniques. The evaluation

protocol itself is unchanged (see section 3.5; 70/30 split; network-only at test).

Experiment Total records Class ratio

Neural Network (Distillation) 49,500 1:1
Neural Network (Transfer Learning) 49,500 1:1
Neural Network (Margin Transfer) 49,500 1:1
SVM+ (LUPI) 9,424 1:1

Table 5.1: Data subsets used in the single-attack scenario (example: Attack 36).
All subsets are balanced (Attack:Normal = 1:1).
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Experiment Total records Class ratio

Neural Network (Distillation) 99,200 1:1
Neural Network (Transfer Learning) 99,2000 1:1
Neural Network (Margin Transfer) 99,200 1:1
SVM+ (LUPI) 9,424 1:1

Table 5.2: Data subsets used in the multi-attack scenario (five attacks). All sub-
sets are balanced (Attack:Normal = 1:1).

5.2 Impact of label alignment on baseline classifi-

ers

this section presents the performance of common classifiers before vs. after

applying the label boundary filter described in section 3.4.0.6. The goal is to

quantify how small start/end timestamp misalignments (Figures 3.2–3.3) affect

detection performance.

In this sanity check, all models use network-only features for both training

and testing, keep the same 70/30 split, and follow the metrics in section 3.5.

The “post-alignment” step only trims short guard-bands at the start and end

of labelled attacks; we do not change any labels. We therefore observed fewer

false positives near those boundaries and a lift in precision, with recall changing

little if at all.

132



5.2. IMPACT OF LABEL ALIGNMENT ON BASELINE CLASSIFIERS

Classifier Accuracy Precision Recall F1-score

KNN 65.057%

(±2.580%)

66.214%

(±1.723%)

66.717%

(±0.858%)

63.972%

(±0.663%)

LR 59.770%

(±2.666%)

64.594%

(±1.817%)

61.602%

(±1.435%)

60.089%

(±2.305%)

DT 84.215%

(±1.686%)

61.570%

(±2.259%)

63.238%

(±1.990%)

60.888%

(±2.226%)

MLP 59.847%

(±3.726%)

60.754%

(±9.690%)

59.378%

(±4.821%)

53.219%

(±3.269%)

CNN 60.327%

(±4.249%)

66.084%

(±6.244%)

61.382%

(±3.637%)

58.033%

(±5.693%)

SVM 60.690%

(±1.202%)

66.696%

(±3.681%)

60.688%

(±2.284%)

60.062%

(±3.019%)

Table 5.3: NIDS Performances Using Network Traffic Before Applying the Label

Alignment Method. The mean values of Accuracy, Precision, Recall and F1-

score, along with standard deviations (±) across 5 training/test re-sampling is

reported.
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Classifier Accuracy Precision Recall F1-score

KNN 65.779%

(±2.164%)

65.151%

(±2.242%)

65.666%

(±2.826%)

64.492%

(±2.308%)

LR 60.913%

(±1.282%)

61.790%

(±2.020%)

62.610%

(±2.153%)

61.107%

(±1.312%)

DT 84.639%

(±1.963%)

62.269%

(±2.429%)

61.814%

(±1.847%)

64.193%

(±1.501%)

MLP 65.095%

(±2.324%)

62.548%

(±7.562%)

66.192%

(±1.054%)

62.060%

(±2.969%)

CNN 61.714%

(±2.470%)

63.828%

(±2.811%)

61.726%

(±1.849%)

60.269%

(±2.473%)

SVM 62.890%

(±2.186%)

62.698%

(±2.986%)

63.598%

(±2.299%)

61.088%

(±2.721%)

Table 5.4: NIDS Performances Using Network Traffic After Applying the Label

Alignment Method. The mean values of Accuracy, Precision, Recall and F1-

score, along with standard deviations (±) across 5 training/test re-sampling is

reported.

Subsequent sections report single- and multi-attack results under the same

evaluation protocol; where privileged information is used (e.g. SVM+), it is

during the train-time only, with network-only features at test.

5.3 Single attack scenario results

We evaluate models on a single attack (36) to isolate per-scenario behaviour

under TA0106 (Impair Process Control). We use the balanced data subset (At-

tack:Normal = 1:1) exact record counts for each experiment is listed in Table 5.1.
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5.3.1 Knowledge Transfer (SVM+)

This experiment follows the protocol in Section 5.1.2 an Table 5.1 with label

alignment per section 3.4.0.6. Dataset scale and per-experiment subset sizes

are summarised at the start of this chapter.

In this experiment, we applied supervised ML models to identify one type

of attack (Attack 36) using network data of the SWaT testbed. We particu-

larly evaluated the performance of six classical and popular ML models includ-

ing, K-Nearest Neighbour (K-NN), Logistic Regression (LR), Decision Tree (DT),

Multilayer Perceptron (MLP), one-dimension Convolutional Neural Network

(CNN), and Support Vector Machine (SVM) (Géron 2019). (Hyper-)parameters

of all classification algorithms were tuned via 5-fold cross-validation on the

training set. we then trained the SVM+ (LUPI) model, discussed in section

3.6.2, to identify Attack 36 using the integrated training set. this model was

tested using the network data only. For fair comparisons, the experiments were

run five times for each classifier and we reported the average results over five

runs. All experiments were run using Python (scikit-learn libraries) and Jupy-

ter hosted on Google’s Colab platform. SVM+ trains with network features as

standard inputs and aligned historian records as privileged inputs; at test time,

it uses network data only. The evaluation protocol, metrics, and subset policy

follow section 5.1.2 and section 3.5; label alignment follows section 3.4.0.6.

5.3.1.1 Findings and Analysis

Results obtained from SVM+ algorithm was compared against the six classical

ML models, which were trained and tested on network traffic only, without

considering the impact of the process data. As reported in table 5.5, on av-

erage, the accuracy, precision, Recall and F1-scores results obtained by SVM+

algorithm outperform the results obtained by all classical ML algorithms by
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Classifier Accuracy Precision Recall F1-score

KNN 65.779%
(±2.164%)

65.151%
(±2.242%)

65.666%
(±2.826%)

64.492%
(±2.308%)

LR 60.913%
(±1.282%)

61.790%
(±2.020%)

62.610%
(±2.153%)

61.107%
(±1.312%)

DT 84.639%
(±1.963%)

62.269%
(±2.429%)

61.814%
(±1.847%)

64.193%
(±1.501%)

MLP 65.095%
(±2.324%)

62.548%
(±7.562%)

66.192%
(±1.054%)

62.060%
(±2.969%)

CNN 61.714%
(±2.470%)

63.828%
(±2.811%)

61.726%
(±1.849%)

60.269%
(±2.473%)

SVM 62.890%
(±2.186%)

62.698%
(±2.986%)

63.598%
(±2.299%)

61.088%
(±2.721%)

SVM+LUP I 74.2534%
(±1.022%)

77.251%
(±0.849%)

74.1692%
(±1.173%)

73.4782%
(±1.375%)

Table 5.5: Single-attack results for SVM+ (LUPI). Mean±sd over 5 repeats; train
features: network+process (privileged); test features: network-only; evaluation
protocol section 5.1.2; metrics section 3.5; label alignment per section 3.4.0.6.

12.49%, 22.57%, 16.71%, and 19.45%, respectively. It is important to highlight

that, the accuracy obtained by SVM+ outperforms all baseline ML algorithms

except for the DT classifier.

5.3.2 Margin Transfer

This experiment follows the protocol in Section 5.1.2 an Table 5.1 with label

alignment per section 3.4.0.6. Dataset scale and per-experiment subset sizes

are summarised at the start of this chapter.

This experiment was completed by teaching a Neural Network model through

a gradient descent optimisation process. The Margin Transfer method was em-

ployed to alter the learning rate of the examples used for training this NN

structure. Two Neural Network models, one with one hidden layer and the

other with two hidden layers, were created and trained with the ReLU activa-
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tion function. To begin, the NN models were trained using network data, while

the learning parameters from the back-propagation of each layer of the network

were recorded. The same course of action was repeated with process data as PI

and the learning parameters were retained in the same manner. To assess our

hypothesis, we have tested the NN models with a data set made up entirely of

network data, using only the learning parameters from network data. We meas-

ured the performance metrics from the models which had taken learning para-

meters from PI data against the same experiment dataset. Table 5.6 displays a

comparison where NN is for a neural network trained with network data and

NNP I is a neural network trained with network data with learning parameters

obtained from the neural network trained with process data as PI.

Classifier Accuracy Precision Recall F1-score

NN (1HL)bline 47.70%
(±0.052%)

88.10%
(±0.044%)

42.30%
(±0.047%)

57.10%
(±0.051%)

NN (1HL)P I 80.70%
(±0.078%)

83.80%
(±0.016%)

94.80%
(±0.105%)

88.70%
(±0.054%)

NN (2HL)P I 82.50%
(±0.0003%)

82.50%
(±0.003%)

100%
(±0.00%)

90.40%
(±0.002%)

Table 5.6: Single-attack results for Margin Transfer-Based NIDS. Mean±sd over
5 repeats; train features: network+process (privileged); test features: network-
only; evaluation protocol section 5.1.2 5.1; metrics section 3.5; label alignment
per section 3.4.0.6.

5.3.2.1 Findings and Analysis

During the learning phase, the NN model with Margin Transfer denoted here as

NNP T , has been trained using the network data. In addition, this model incor-

porates the difficulty of the sample information into the learning process. The

NN model without Margin Transfer, denoted here as NNbline, has been trained

using the network data only without incorporating the difficulty of the sample
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information. The detection performances of both NN models were assessed us-

ing our evaluation measures and reported in Table 5.6. For fair comparisons, we

ran this experiment five times for each NN model and we reported the average

results over the 5 runs.

The experimental results show that the NN (2HL)P T method, which incor-

porates the process data in the learning phase, provides superior performance

over the baseline NN model (NNbaseline) across Accuracy, Recall and F1-score .

On average, the results obtained from Margin Transfer method with NN (1HL)P T

outperform the baseline model on Accuracy, Recall and F1-score by 42.18%,

57.70% and 35.63% while the NN (2HL)P T outperform the baseline model on

Accuracy, Recall and F1-score by 40.89%, 55.38% and 36.84%. Obtained results

display the superiority of the Margin Transfer method in PINID framework.

5.3.3 Distillation

This experiment follows the protocol in Section 5.1.2 an Table 5.1 with label

alignment per section 3.4.0.6. Dataset scale and per-experiment subset sizes

are summarised at the start of this chapter.

This experiment focuses on examining the effectiveness of the distillation ap-

proach for detection of a single attack (explained in section 3.6.4) by distilling

the information from privileged process data into a NN model during the learn-

ing phase of NIDS.

First a teacher model was trained using the privileged process samples.

Then the performance of two similarly structured Deep Neural Network (DNN)

models, known as student was studied. These models included two hidden

layers and a Softmax layer for each class and were trained by network data.

However, the DNN −StudentD model was informed by teacher model’s under-

standing of the process data, while the DNN −StudentS model was trained just
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using the network data. The DNN models comprised an input layer with 1000

neurons, besides the two hidden layers with 50 and 10 neurons, respectively,

with the ReLU activation function while the Adam optimizer, with a learning

rate of 0.001 was used (selected via grid search). Batch size and epoch are re-

spectively selected as 1000 and 10 during optimisation. Since we are using the

Softmax for the calculation of the loss function, as discussed in section 3.6.4,

we fed the non-normalised probabilities from the last layer of the neural net-

work to the loss function while applying Adam optimizer Kingma et al. 2014.

A similar experiment was performed using the CNN model. Like the previous

experiment, teacher and student models were structured similarly comprising

two 1 Dimensional Convolution layers with the ReLu function, followed by a

1 Dimensional MaxPooling layer, a flattened layer. The standard CNN student

model was trained with network data only, denoted here as CNN − StudentS .

The CNN teacher model was trained with process data, and the learnt pattern

was then distilled to the student model CNN − StudentD , as trained with net-

work data.

For a fair comparison, we run the training and testing of each of the DNN and

CNN models five times and we reported the average testing results over 5 runs

in Table 5.7.

5.3.3.1 Findings and Analysis

The result obtained from distilled DNN model and distilled CNN model out-

perform their baseline models with a considerable improvement in the accur-

acy, precision, and F1-score while the average results obtained by DNN struc-

tured distillation model for accuracy, precision and F1-score outperform the

DNN baseline model by 47.24%, 52.60% and 26.39% respectively. CNN struc-

tured distillation model outperforms its baseline model for accuracy, precision
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Classifier Accuracy Precision Recall F1-score

DNN −
StudentS

42.68%
(±0.0037%)

46.90%
(±0.002%)

72.98%
(±0.002%)

57.10%
(±0.002%)

DNN −
StudentD

80.89%
(±0.0438%)

98.95%
(±0.0102%)

62.37%
(±0.0835%)

76.21%
(±0.0704%)

CNN −
StudentS

33.51%
(±0.018%)

65.45%
(±0.026%)

82.49%
(±0.012%)

72.98%
(±0.021%)

CNN −
StudentD

81.76%
(±0.026%)

98.68%
(±0.008%)

64.40%
(±0.026%)

77.77%
(±0.042%)

Table 5.7: Single-attack results for Distilation-Based NIDS. Mean±sd over 5
repeats; train features: network+process (privileged); test features: network-
only; evaluation protocol section 5.1.2 5.1; metrics section 3.5; label alignment
per section 3.4.0.6.

and F1-score on average by 59.01%, 33.67% and 6.16% respectively. As dis-

played in Table 5.7 distilled CNN model outperforms distilled DNN model

slightly in the number of True Positive and True Negative predictions of the

model and accuracy and F1-score. However, comparing the accuracy, precision

and F1-score of the distilled models with their recall score, distillation may not

be successful in reducing the number of False Negatives.

5.3.4 Transfer Learning

This experiment follows the protocol in Section 5.1.2 an Table 5.1 with label

alignment per section 3.4.0.6. Dataset scale and per-experiment subset sizes

are summarised at the start of this chapter.

The experiment was designed to use the feature extraction capability of trans-

fer learning. To do so a Convolution Neural Network (CNN) model was created

including two-Dimensional Convolution layers, a max pooling layer followed

by a Deep Neural Network (DNN) with an input layer with 1000 neurons, be-

sides the two hidden layers with 100 and 10 neurons, and the ReLU activation

function. The grid search optimisation algorithm was used to was optimise the
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model and the filter and kernel size of the convolution layers were set at 5,

while an Adam optimizer was used with a 0.001 learning rate. The batch and

epoch were set at 1000 and 100 respectively. The CNN model was first trained

on the previously selected dataset (comprising both process and network fea-

tures). After the initial training step, the Convolution layers were frozen and

the DNN part of the model was re-trained with network data only. This pre-

trained CNN model, denoted here as CNNP retrained, was then tested on the

network data only. The performance of this this model was compared against

a similarly structured CNN model that was trained and tested using network

data only, denoted here as CNNBaseline. For the fair performance comparison

between these two models, the training and testing of each of the pre-trained

DNN and DNN models were ran five times and the average testing results over

5 runs were reported in Table 5.8.

Classifier Accuracy Precision Recall F1-score
CNNBaseline 54.934%

(±0.068%)
46.412%
(±0.293%)

42.415%
(±0.126%)

42.415%
(±0.126%)

CNNP retrained 50.443%
(±0.009%)

35.113%
(±0.221%)

50.443%
(±0.009%)

34.281%
(±0.021%)

Table 5.8: Single-attack results for Transfer Learning-Based NIDS. Mean±sd
over 5 repeats; train features: network+process (privileged); test features:
network-only; evaluation protocol section 5.1.2 5.1; metrics section 3.5; label
alignment per section 3.4.0.6.

5.3.4.1 Findings and Analysis

The experimental results show that the Pre-trained CNN and baseline CNN

models exhibit almost similar behaviour regarding the accuracy, recall and pre-

cision and they were not successful in performing the single attack detection

task. However, Pre-trained CNN provides slightly better Recall score perform-

ance over the baseline CNN model (trained using network data only).
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As presented in Table5.8 although it seems the two models behave almost

similarly, the lower standard deviation calculated for the average results of the

transferred model suggest that this practice resulted in a slightly more robust

model( pre-trained).

5.4 Key findings from Single attack scenario

These experiments presented alternative ML-based NIDS that use the LUPI

framework. Unlike classical ML algorithms for anomaly detection which rely

upon only one source of data for learning, these ML-based NIDS incorporates

process data as privileged information during the training phase. This allows

for a more accurate and robust ML-based NIDS than is possible using classic

methods, while requiring similar computational resources at run-time because

the testing phase only involves one source of data, namely, the network traffic.

5.5 Single attack Scenario : Summary

This chapter presents an empirical evaluation of PINID framework through em-

ploying LUPI paradigm to enhance the performance of ML-based NIDS in ICS.

The study leverages the SWaT testbed and its datasets, focusing on single attack

detection scenarios.

Initially, a feature selection analysis using the DT algorithm highlighted the su-

perior predictive power of process features compared to network features for

intrusion detection. This finding justified the use of process data as privileged

information during the training phase of LUPI-based NIDS models.

This chapter then presents a series of experiments evaluating different LUPI

implementations:
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• Knowledge Transfer: SVM+ model, trained with both network and pro-

cess data, outperformed six classical ML models trained solely on network

data, demonstrating significant improvements across all evaluation met-

rics.

• Margin Transfer: Neural Network models incorporating process data-

derived learning parameters through margin transfer exhibited superior

performance compared to baseline models, highlighting the effectiveness

of knowledge transfer from process data.

• Distillation: Distilling knowledge from a process data-trained teacher

model to network data-trained student models (both DNN and CNN ar-

chitectures) significantly enhanced detection accuracy, precision, and F1-

score.

• Transfer Learning: While both pre-trained (using process data) and baseline

CNN models showed comparable performance, the pre-trained model ex-

hibited slightly better recall and lower standard deviation, suggesting en-

hanced robustness.

This section introduces a novel approach to developing robust and accurate

Machine Learning (ML)-based Network Intrusion Detection Systems (NIDS) for

Industrial Control Systems (ICS) by integrating industrial network traffic and

physical process data during the training phase of a supervised learning frame-

work. While the trained model utilizes only network traffic during operation,

the incorporation of process data as privileged information during training sig-

nificantly enhances its detection capabilities, leading to improved accuracy and

robustness compared to traditional methods relying solely on network data.
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5.6 Multi attack scenario results

We train a single classifier over multiple attacks spanning SSSP/SSMP/MSSP/MSMP

topologies to test cross-scenario generalisation. Unless noted otherwise, we use

the balanced modelling dataset the subset sizes presented in Table 5.2.

5.6.1 Knowledge Transfer Experiment

According to the findings presented in subsection5.3.1 and in (Pordelkhaki et

al. 2021), the initial experiment on knowledge transfer shows that the SVM+

(LUPI) algorithm, trained on both network and process features, outperforms

baseline ML models trained exclusively on network features. The classification

process in this experiment was restricted to the detection of a single type of

attack from the SWaT dataset, specifically Attack 36. This experiment expands

upon the previously suggested work by examining numerous attacks from the

SWaT dataset (outlined in section 3.3 ). This experiment follows the protocol in

Section 5.1.2 an Table 5.2 with label alignment per section 3.4.0.6. Dataset scale

and per-experiment subset sizes are summarised at the start of this chapter.

The training dataset, which includes network and process features, was utilised

to train the SVM+ (LUPI) algorithm. Subsequently, the test dataset, compris-

ing solely of network features, was employed to evaluate its performance. The

efficacy of the SVM+ (LUPI) algorithm has been analysed by comparing its res-

ults with those of the five baseline ML models. These models were trained ex-

clusively on network data and did not incorporate the privileged process data

during training. This assessment specifically focused on analysing the perform-

ance of K-Nearest Neighbour (K-NN), Logistic Regression (LR), Decision Tree

(DT), Multilayer Perceptron (MLP), and Support Vector Machine (SVM) (Géron

2019). Previous researchers have extensively utilised these algorithms to tackle
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comparable intrusion detection issues (Goh, Adepu, Tan et al. 2017; Junejo and

Goh 2016; Bernieri et al. 2019). The parameters of these models have been

optimised through a comprehensive and randomised parameter searches and

were tuned through a 5-fold cross-validation on the training set. In order to es-

tablish a fair basis for comparing algorithm performance during runtime, each

algorithm was executed five times and the average results from these runs were

recorded. Unlike the SVM+ (LUPI) algorithm, which considers process features,

these models have solely relied on network data for training and testing.

Classifier Accuracy Precision Recall F1-score

KNN 75.586%
(±0.582%)

75.254%
(±0.742%)

75.244%
(±0.372%)

74.528%
(±0.398%)

LR 55.980%
(±0.619%)

56.219%
(±0.515%)

56.204%
(±1.079%)

55.663%
(±0.671%)

DT 86.477%
(±0.500%)

56.457%
(±0.620%)

55.216%
(±0.497%)

56.246%
(±0.327%)

MLP 63.830%
(±0.758%)

65.482%
(±3.230%)

64.384%
(±3.965%)

64.087%
(±1.618%)

SVM 62.767%
(±0.430%)

63.708%
(±0.387%)

63.079%
(±0.305%)

62.219%
(±0.837%)

SVM+LUP I 69.217%
(±0.018%)

93.530%
(±0.0101%)

62.807%
(±0.0232%)

75.132%
(±0.0178%)

Table 5.9: Multi-attack results for SVM+ (LUPI). Mean±sd over 5 repeats; train
features: network+process (privileged); test features: network-only; evaluation
protocol section 5.1.2; metrics section 3.5; label alignment per section 3.4.0.6.

Findings and Analysis

The findings, presented in Table 5.9, indicate that the SVM+ (LUPI) algorithm

consistently outperforms other conventional ML algorithms in terms of preci-

sion and F1-score, with improvements of 49.19% and 21.47% respectively on

average. It should be emphasised that the precision attained by SVM+ in this
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experiment far exceeds that of other conventional ML algorithms, underscoring

the superiority of the SVM+ algorithm in accurately predicting attack records.

Furthermore, the standard deviation of the results achieved from multiple it-

erations of the SVM+ algorithm, when compared to other Machine Learning

algorithms utilised in this experiment, exhibited negligible changes and re-

mained within the range of ±0.01. This serves as evidence of the robust per-

formance of this model across 5 runs.

5.6.2 Margin Transfer Experiment

As outlined in Section 3.6.3, the Margin Transfer approach introduces a novel

technique for integrating privileged information into the Neural Network (NN)

models. This is achieved by utilising the learning rate of the privileged information-

trained model to train a model with the original data. To accomplish this, the

steps outlined in previous studies by (Momeni et al. 2018) and (Sharmanska

et al. 2013) were used. The findings of the feature importance analysis (as dis-

cussed in section 3.6.3) indicate that process data exhibits stronger predictive

power when compared to network data. Utilising this finding, the process data

was used for training a simple linear classifier with Softmax activation func-

tion (Bridle 1989) in the output layer, allowing for the computation of class

probabilities. The probabilities obtained from the Softmax function acted as an

identifier for the difficulty of the samples; The higher the probability, the easier

the example is. The weights obtained from this neural network model were

subsequently utilised to train a two-layer neural network with Rectified Linear

Unit (ReLU) activation function (Fukushima 1975) and Softmax function in the

output layer, using network data. This experiment follows the protocol in Sec-

tion 5.1.2 an Table 5.2 with label alignment per section 3.4.0.6. Dataset scale

and per-experiment subset sizes are summarised at the start of this chapter.
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The neural network model referred to as NNMT has been trained utilising the

network features of the training dataset. Additionally, this model integrates

the weights derived from a process feature-trained model as an indicator of

sample difficult. The NNbaseline model was trained using only the network

data incorporating no difficulty measures. The detection capabilities of both

neural network models we assessed using the evaluation measures, which are

displayed in the Table 5.10. In order to establish a fair comparison, the testing

phase was performed five times for each neural network model, and the average

findings from these five iterations were documented.

Classifier Accuracy Precision Recall F1-score

NNbaseline 50.100%
(±0.400%)

50.0%
(±0.500%)

50.00%
(±0.500%)

49.600%
(±0.002%)

NNMT 53.100%
(±3.400%)

53.100%
(±3.800%)

53.500%
(±4.200%)

52.300%
(±3.300%)

Table 5.10: Multi-attack results for Margin Transfer based NIDS. Mean±sd over
5 repeats; train features: network+process (privileged); test features: network-
only; evaluation protocol section 5.1.2; metrics section 3.5; label alignment per
section 3.4.0.6.

Findings and Analysis

The experimental results indicate that the NNMT method, which integrates the

difficulty measures during the learning phase, outperforms the baseline NN

model (NNbaseline) in all evaluation metrics.

5.6.3 Distillation Experiment

The objective of this experiment is to examine the efficacy of the distillation

approach (as discussed in section 3.6.4) in the integration of privileged pro-

cess data during the learning phase of NIDS for detection of multiple attacks.
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This experiment follows the protocol in Section 5.1.2 an Table 5.2 with label

alignment per section 3.4.0.6. Dataset scale and per-experiment subset sizes

are summarised at the start of this chapter.

Our initial step involved training a teacher model through the use of privileged

process samples. Following that, an analysis was conducted on the performance

of two Deep Neural Network (DNN) models, known as student models, which

shared a similar structure. The DNN models comprised an input layer with

1000 neurons, in addition to the two hidden layers with 50 and 10 neurons, re-

spectively, with the ReLU activation function and a softmax layer for each class.

The Adam optimizer (Kingma et al. 2014) was employed and its learning rate

was set to 0.001 using a grid search. Furthermore, the batch size was determ-

ined as 1000 and the number of epochs as 10 utilising the grid search technique

. Given that the Softmax was employed for calculating the loss function, as

stated in section 3.6.4, we passed the non-normalised probabilities from the

neural network’s last layer to the loss function. This was accomplished by con-

figuring the loss function with the from-logits option set to True. Both student

models were trained with network data, however, the knowledge gained by the

teacher model from process data was distilled into the DNN − StudentD while

the other DNN student model, denoted here as DNN −StudentS , is trained us-

ing the network data only. A similar experiment was conducted using Convolu-

tion Neural Networks (CNN) model (LeCun et al. 1998), which proved superior

performance in similar cyber security detection tasks. Similar to the previous

experiment, teacher and student models were structured similarly comprising

two 1 Dimensional Convolution layers with the ReLu function, followed by a 1

Dimensional MaxPooling layer, a flattened layer. The training of a CNN-based

teacher model was conducted using process data and a CNN model named

CNN − StudentS was trained using only network data. In addition, during the
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training process, the second student model, denoted as CNN − StudentD , ac-

quired the learning pattern from the teacher model by utilizing network data.

For a fair comparison, we run the training and testing of each of the DNN and

CNN models five times and we reported the average testing results over 5 runs

in Table 5.11.

Classifier Accuracy Precision Recall F1-score

DNN −
StudentS

45.03%
(±0.027%)

44.84%
(±0.008%)

70.86%
(±0.004%)

54.92%
(±0.007%)

DNN −
StudentD

71.65%
(±0.023%)

94.76%
(±0.003%)

45.82%
(±0.047%)

61.64%
(±0.042%)

CNN −
StudentS

45.66%
(±0.034%)

46.62%
(±0.036%)

70.84%
(±0.017%)

56.18%
(±0.029%)

CNN −
StudentD

70.52%
(±0.008%)

93.14%
(±0.019%)

44.32%
(±0.009%)

60.06%
(±0.011%)

Table 5.11: Multi-attack results for Distillation-Based NIDS. Mean±sd over 5
repeats; train features: network+process (privileged); test features: network-
only; evaluation protocol section 5.1.2; metrics section 3.5; label alignment per
section 3.4.0.6.

Findings and Analysis

The experimental results shown in in Table 5.11 demonstrate that the F1-score

performance of the DNN-StudentD and CNN-StudentD models, trained using

the distillation approach with the privileged process data, surpasses that of the

baseline DNN-StudentS and CNN-StudentS models, which are trained solely

using network data. Nevertheless, it was observed that the DNN-StudentD and

CNN-StudentD models employing the distillation method exhibited lower re-

call outcomes in comparison to the DNN and CNN models respectively. This

result might suggest that these models were not successful in reducing the num-

ber of False Negatives.
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5.6.4 Transfer Learning Experiment

This experiment investigated the utilisation of the Transfer Learning approach

(as elaborated in section 3.6.5) for integrating privileged process data during

the learning phase of NIDS to detect multiple attacks. This experiment fol-

lows the protocol in Section 5.1.2 an Table 5.2 with label alignment per section

3.4.0.6. Dataset scale and per-experiment subset sizes are summarised at the

start of this chapter.

The experiment was planned with consideration of the feature extraction ap-

plication of transfer learning. The implementation involved the utilisation of a

Convolution Neural Network (CNN) model comprising two-Dimensional Con-

volution layers and a max pooling layer. Subsequently, a Deep Neural Network

(DNN) was employed, consisting of an input layer with 1000 neurons, as well

as two hidden layers consisting of 100 and 10 neurons respectively, all activ-

ated by the ReLU activation function. The model was optimized using a grid

search optimisation algorithm. The convolution layers were configured with a

filter and kernel size of 5. The Adam optimizer was employed, with a learning

rate of 0.001. The batch size and epoch count were set to 1000 and 100, re-

spectively. The CNN model was initially trained on the privilege process data

features extracted from the training dataset, which comprised both process and

network features. Following the training process, the Convolution layers were

frozen and the DNN part of the model was re-trained with network data only.

Pre-trained CNN model, denoted here as pre − trained − CNN , was tested on

the network data only. The performance of this pre-trained model was com-

pared against a similarly structured CNN model , denoted here as CNN , that

was trained and tested using network data only. In order to ensure a fair com-

parison, we conducted five rounds of testing for each of the pre-trained DNN

and DNN models. The average testing results over these five runs are presented
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in Table 5.12.

Classifier Accuracy Precision Recall F1-score

CNN 64.500%
(±7.900%)

65.200%
(±20.500%)

64.500%
(±7.600%)

59.500%
(±13.600%)

CNNP retrained 64.400%
(±0.600%)

65.700%
(±1.200%)

64.400%
(±0.700%)

63.700%
(±1.600%)

Table 5.12: Multi-attack results for Transfer Learning based NIDS. Mean±sd
over 5 repeats; train features: network+process (privileged); test features:
network-only; evaluation protocol section 5.1.2; metrics section 3.5; label align-
ment per section 3.4.0.6.

Findings and Analysis

The experimental results show that the Pre-trained CNN and baseline CNN

models exhibit almost similar behaviour regarding the accuracy, recall and pre-

cision. As presented in Table5.12 although it seems the two models behave

almost similarly, the transferred model is performing better with reference to

F1-score obtained Reported average results also suggest that the transferred

model performance is more stable in each run due to the lower standard devi-

ation calculated for the average results.

5.7 Key findings from multi-attack scenario

This research aimed to consider the key characteristics of ICS and its highly

connected network architecture in proposing a new framework for ML-based

network intrusion detection in ICS. This requires using both network traffic

and process data to train the ML-based NID model however, the model would

solely analyse network traffic during runtime. The framework is based on the

Machine Learning concept known as LUPI. The validation of this framework
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was conducted through the use of tailored techniques involving LUPI concept,

which included Knowledge transfer, Margin transfer, Distillation, and Trans-

fer Learning. The key findings and observations derived from the conducted

experiments are:

• Despite the superior capabilities of deep learning algorithms, such as CNN,

compared to ML algorithms, such as SVM, our research reveals that LUPI

using ML methods (as presented in Table. 5.9) achieves better results than

the investigated LUPI utilising DNN-based methods. This could poten-

tially be attributed to the limited size of the training data utilised in our

ICS application.

• The SVM+ employs a future-oriented teaching approach, which is the

rationale behind its superior performance compared to the DNN-based

models employed in this study. The reason for this is the influence that

each input variable has on the decision made by the model.

• Despite the high performance of LUPI utilising ML methods like SVM+,

it falls short in terms of scalability with large datasets. Conversely, CNN

and DNN-based models excel in their ability to scale with such datasets.

As a matter of fact, the greater the amount of training data provided to

the DNN-based models, the greater the accuracy of their predictions.

• Although the LUPI - based models did not consistently outperform their

counterpart models in some experiments, the overall performance of the

LUPI - based model demonstrated robustness and stability across all ex-

periments. This was evident from the generation of lower standard devi-

ation across all performance metrics compared to their counterpart mod-

els.
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5.8 Multi-attack scenario : Summary

This section presents a comprehensive evaluation of proposed PINID frame-

work for developing ML-based NIDS specifically designed for ICS. This frame-

work distinguishes itself by incorporating both network traffic data and process

data during the training phase, while relying solely on network traffic data dur-

ing operation, aligning with the practical constraints of real-world NIDS de-

ployments.

The framework leverages the concept of Learning Using Privileged Information

(LUPI), which allows ML models to learn from additional information during

training that is not available during testing. The SWaT testbed, a scaled-down

water treatment plant, and its associated datasets, comprising network traffic

and process data from various attack scenarios, were utilized to evaluate the

framework’s efficacy.

Four distinct ML techniques adapted to LUPI paradigm and were implemented

and rigorously evaluated: Knowledge Transfer, Margin Transfer, Distillation,

and Transfer Learning. Each technique was assessed based on its ability to en-

hance the performance of the NIDS model in detecting multiple attack scen-

arios. The experimental results yielded several key findings. Firstly, despite the

advancements in deep learning, LUPI implementations using traditional ML

algorithms, particularly the SVM+ algorithm, outperformed those using Deep

Neural Networks (DNNs) in this study. This observation is attributed to the lim-

ited size of the training data, suggesting that DNNs may require larger datasets

to generalize effectively in this context.

Secondly, the SVM+ algorithm demonstrated superior performance compared

to other LUPI techniques, attributed to its ”future-oriented teaching approach.”

This approach emphasizes the influence of each input variable on the model’s

decision-making process, contributing to its enhanced accuracy.
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Thirdly, while SVM+ excels in accuracy, it faces scalability challenges with large

datasets. Conversely, DNN-based models exhibit superior scalability, achieving

higher accuracy as the size of the training data increases.

Finally, despite not consistently outperforming their counterparts in every ex-

periment, LUPI-based models consistently demonstrated robustness and stabil-

ity across all experiments. This is evidenced by the lower standard deviations

observed across all performance metrics compared to their non-LUPI counter-

parts.

This chapter provides compelling evidence for the potential of the proposed

LUPI-based framework in enhancing the accuracy and robustness of NIDS in

ICS environments. The study highlights the importance of considering both

network traffic and process data during training to develop more effective and

reliable intrusion detection systems for critical infrastructure. However, fur-

ther research is encouraged to address the scalability challenges associated with

certain LUPI techniques and to explore the impact of larger datasets on the per-

formance of DNN-based LUPI models.

5.9 Implications of this research for ICS security

Our results reinforce a practical pattern for defenders: Train models to be

process-aware, but run them where teams already have control—on the net-

work. In OT/ICS, this lines up with guidance to prioritise visibility and seg-

mentation at Purdue Levels 1–3, where most commands and telemetry flow

and where passive monitoring carries the least production risk (Stouffer et al.

2023). For environments that can’t host heavy analytics on controllers or his-

torians, a NIDS that was trained to understand expected process effects is a

low-friction way to catch command misuse earlier(e.g. Impair Process Control,
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TA0106) (MITRE Corporation 2025h).

A second implication concerns alert quality and operator trust. Adding

short guard-bands around attack boundaries (our label-alignment step) reli-

ably cut false positives from timing variances, lifting precision without hurting

recall. In practice, this mirrors how security/control-room teams already use

alarm times and correlation windows to filter noise while keeping time-critical

events. Building this alignment into model evaluation—and later into alarm

logic—helps ensure new analytics don’t add noise to safety-critical workflows

that already dealing with process, maintenance, and cyber alarms (Stouffer et

al. 2023).

Third, the approach complements—not replaces—defence-in-depth. IEC/ISA

62443 stresses basics like asset inventory, segmentation, allow-listing, and se-

cure remote access. A NIDS that understands command semantics (function

code, target tag, requested values/limits) can sit alongside these controls to

catch threats that slip past coarse policy—supporting earlier detection of ab-

normal command intent and faster containment (International Society of Auto-

mation (ISA) 2025).

Finally, before enabling blocking or automated responses, models should be

validated in a staging environment that mirrors the historian/network align-

ment assumptions in the training stage of PINID framework. Tune thresholds

to the environment’s real base rates and track precision, recall, and balanced

accuracy to avoid optimism from training-time class balance.
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Chapter 6

Discussion and finding evaluation

The findings of this research have been organized and presented in Chapter

5. This chapter is specifically devoted to evaluating the hypotheses outlined

in Section 1.2, based on the findings presented in earlier chapters. this will

include the analysis of the findings regarding the application of ML techniques

used in this research. The assessment of the study’s design and the presentation

of limitations and potential strategies for improving future research designs

are discussed in Section 6.2. this section also includes the assessment of the

findings in in light of the identified limitations and the feedback received from

peers and domain experts.

6.1 Hypotheses and the Performance Assessment

This section reflects on the results presented in Chapter 5 and Chapter 6 of

this study in the context of the research Hypotheses, presented in 1.2, assessing

whether this our hypothesis was proved true by the results obtained.
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Hypothesis: Incorporating process information along the network traffic

during training of a supervised ML-based NIDS following proposed PINID

framework improve the performance of the ML-based NIDS in detecting con-

trol attacks in ICS network when tested on the network traffic only.

6.1.1 Single Attack Scenario

To evaluate our hypothesis we have used the data available from SWaT testbed

and designed an experiment as a proof of concept to assess the effectiveness of

the proposed framework focusing on detecting a single attack in the SWaT ICS

network (attack 30). To do so an SVM model (denoted as SVM+) was trained

following LUPI framework with a data set consist network traffic and process

information. Accuracy, Precision, Recall and F1 score has been used as per-

formance metrics to compare the performance of this model with classic ML

algorithms which were trained and tested using network traffic only. The ini-

tial result obtained from this experiment suggested that on average, the accur-

acy, precision, Recall and F1-scores obtained by SVM+ outperform the results

obtained by other classical ML algorithms used in this experiment. Although

the accuracy obtained by SVM+ outperforms all baseline ML algorithms, it was

slightly lower that the accuracy obtained by DT classifier as presented in Table

5.5. However SVM+ presented bettre performance in compare to DT Classi-

fier with respect to precision, recall and F1 score. Additionally, SVM+ demon-

strated the lowest standard deviations in all four performance metrics across

five run of training/test in compare to other classifiers, which was interpreted

as reliability and robustness metric of this model.

To assess the proposed framework further, a NN technique known as Margin

Transfer was used to train a model following the proposed framework (denoted

as NN (1HL)P I ). The performance of this model was then compared against
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similar model which was solely trained and tested on network traffic. as presen-

ted in Table 5.6, this model outperformed similar model that was trained and

tested following a classic classification methodology. BY improving the struc-

ture of the NN (1HL)P I model from a NN model with one hidden layer to a

NN model with two hidden layer, denoted as NN (2HL)P I , the obtained results

outperform the initial model as well as the results obtained by SVM+ model

with lower standard deviation across all the performance metrics over five run

of train and test. focusing on NN techniques, we have adapted the Distillation

technique to the proposed PINID framework and created a DNN and a CNN

student model , known as distilled student models. While training with Net-

work traffic, these distilled student models received the distilled information

from similarly constructed teacher models (DNN and CNN) that were trained

on process data. These models were then tested using network traffic and their

performance was compared with similarly structured student models which

were trained and tested on network traffic. As presented in Table 5.7 the dis-

tilled student models outperform the similarly structured student models with

distilled CNN student model outperform the distilled DNN student model on

all performance metrics except for the precision.

Transfer learning technique was also explored following PINID framework.

We created trained a CNN model including DNN layers. The CNN model was

first trained using process data. Following the initial training, the CNN layers

of the model were frozen and the DNN layers of the model were re-trained

using network traffic. The final model was then tested using network traffic.

The performance of this model was compared with a baseline model that was

similarly structured CNN model which was trained and tested on network data.

Both model performed equally poor in identifying selected attack. We believe

for the pre-trained model to be able to perform at its possible best it should be
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initially trained with considerably large dataset. In this experiment the the size

of the process data used for initial training was limited to the existing dataset.

Based on the findings from the performance of SVM+ , Margin Transfer and

Distillation technique following the proposed framework in identifying a single

, we can accept the hypothesis. However, the performance of the proposed

framework needs further evaluation to access the generalisation of the pro-

posed framework. Therefore, similar experiments were performed on a data-

set including a subset of attacks as presented in Table 3.4 and discussed in 3.3

the selected dataset included 5 attacks which as a representative of the 4 attack

types considered in development of the SWaT dataset.

6.1.2 Multiple Attack Scenario

The performance of SVM+ in detecting a various attack types in compare to the

other classic classifiers was shown in Table 5.9. Obtained results demonstrate

that the SVM+ outperform all the conventional classifiers in terms of Precision

and F1-score. The precision score attained by SVM+ algorithm exceeded that of

other classic ML algorithms by far. This demonstrate the superiority of SVM+ in

predicting attack records. Additionally, similar to the previous experience with

the SVM+ algorithm, the negligible standard deviation in the results obtained

from SVM+ performance metrics over five train and test run in compare to the

other algorithm is an evidence to the reliability and robustness of this model.

In a similar experience the margin transfer technique was examined in de-

tecting of a set of different attacks following proposed framework. The results

of this experiment which is shown in Table 5.10 present slight improvement

in performance metrics in compare to a similar model which was trained and

tested on network traffic.

Same experiment was setup to evaluate the performance of distillation tech-
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nique in detection of multiple attack type. The findings from this experiment

which was presented in Table 5.11 demonstrate that the DNN distilled student

and the CNN distilled student outperform the standard student in accurately

identifying the attacks over all metrics except for the recall. It is important

to highlight That the performance of both distilled student in detecting the

attacks with respect to Precision score exceeded the standard counterpart mod-

els. The DNN distilled student average performance outperform SVM+ model

in identifying multiple attack types.

Transfer learning technique was reassessed with respect to the identifying

multiple attacks following PINID framework. Pre-trained and baseline models

were created using the multi-attack database. findings from this experiment

is demonstrated in Table 5.12. The performance of these model is slightly im-

proved when compared to the similar experiment with single attack database,

which cam be due to the larger dataset used for training. Although the results

obtained from pre-trained and baseline models demonstrated similar perform-

ance in detecting different type of attacks, the pre-trained model demonstrate

considerably lower standard deviation across all performance metrics over five

run of train and test. this is an evidence to the robustness of the model yet

the performance with respect to accuracy, precision, recall and F1-score needs

further improvement.

The performance of the ML-based NIDS that were trained following the pro-

posed PINID framework when compared to the ML-based NIDS that were train

and tested on network traffic, present improvement specially with respect to the

accurate identification of attack records is evident in the high precision score at-

tained by these model except for the transfer learning approach. Furthermore,

all the models trained following PINID framework demonstrated lower stand-

ard deviation across all performance metrics over five train and test run which
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is another evidence of the improved performance of these models. A practical

path for asset owners is to train with process data (historian snapshots as priv-

ileged data) but deploy a NID. This keeps change-control light while improving

sensitivity to command misuse (e.g. unauthorised writes) which can look nor-

mal at packet level unless judged against expected process effects. In short, the

NID runs on the network where the SOC already has visibility, but it has been

trained to understand what a legitimate command should do to the plant.

6.2 Study Design: Limitations and Lessons Learned

There were a number of limitations in this research design, which will be ex-

plored in this section, based on which we suggest approaches for designing

future studies in this space to overcome the shortcomings of this study.

6.2.1 Research Structure and Process

It is worth noting that there are potential limitations to consider in this study.

The model’s training features are carefully chosen by considering common in-

stances identified in studies, and guidance provided by the test bed and data set

provider. In this research, all the features from both the SWaT process and net-

work datasets were utilised. As a possible outcome, these experiments could

have led to the development of models that were both heavier and slower in

nature.

Throughout the development and evaluation process of the framework, we

placed special emphasis on analysing the Brute Force IO and Unauthorised

Command Message adversarial techniques. The potential impact of this could

extend to the framework’s ability to effectively identify and address various ad-

versarial techniques that specifically target ICS.
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6.2.2 Study Setup

We ensured that the research setup was as realistic as possible with respect to

the test-bed and dataset used. This has limited this study to the SWaT dataset

which was collected from a small scale yet operational water treatment plant

with a distributed control systems use and data flow alignment to the Perdue

model. This limited the evaluation of the proposed framework to the SWaT

dataset.

6.2.3 Data quality.

Using the boundary guard-bands (section 5.2) improved Precision with almost

no change in Recall. This tells us that small timing shifts at the start and end of

attacks were boosting false positives, a data quality issue. To address this, we

didn’t change any labels; we trimmed short slices at the boundaries to reduce

the mismatch between labels and behaviour (section 3.4.0.6). That said, very

slow, stealthy attacks could still sit partly inside the guard-band. This should

be confirm this with cleaner, more precise ground-truth data.

6.2.4 Generalisability.

In single-attack tests, the models fit each scenario very well. In the multi-attack

setting, the model’s accuracy decreased a little as per-scenario but performed

better with respect to generalising across scenarios within SWaT’s SSSP/ SSMP/

MSSP/ MSMP topologies (section 3.2.3). This shows the approach works on

SWaT, but this still need to be check how well it transfers to other plants with

different processes, safety interlocks, and class balances.
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6.2.5 Legacy dataset.

All our experiments used SWaT, a water-treatment ICS with its own control

loops and safety interlocks. In the multi-attack runs, training one model across

SSSP/ SSMP/ MSSP/ MSMP improved generalisation across scenarios within

SWaT, but we have not tested this in other settings (e.g. power, chemicals), so we

cannot claim it generalises there yet. The approach works best when command

details (function code, tag, requested limits) map cleanly to well-constrained

plant physics. That holds in SWaT and likely in many regulated processes, but

it still needs checking elsewhere. To mitigate this, we focused on stage-agnostic

command misuse (e.g. write/force actions); nevertheless, independent valida-

tion on additional testbeds remains necessary.
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Chapter 7

Conclusions and future work

7.1 The Big Picture

We have presented the Process Informed Network Intrusion Detection frame-

work for ICS, an ML-Based NIDS which breaks new ground i.e. unlike other

proposed approaches in this research domain that are focused on data cap-

tured from networks or processes in an ICS environment, the proposed frame-

work focuses on the main characteristics of ICS in controlling a physical pro-

cess through a high network architecture. We achieve this by utilising valu-

able process-level information during the training phase of the ML-Based NIDS,

however, utilising network traffic alone during the run-time. We evaluated this

framework leveraging LUPI paradigm through Transfer Learning, SVM+ and

Distillation techniques and utilising SWaT dataset for detecting Brute Force and

Unauthorised Command Message attacks aiming to Impair Process Control.

Our first experiment on Knowledge Transfer demonstrates SVM+ trained on in-

tegrated data via the LUPI framework, outperforms baseline models trained on

network features on F1-score and precision metrics. Our experiment on Margin

transfer suggests when the learning difficulty – obtained from a model trained
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with privileged information – is transferred to a neural network model dur-

ing the training process with the network data, all performance metrics present

slight improvement in comparison with the similar neural network trained with

network data only. Our experiment on distilling knowledge from a teacher

model trained with process data – as privileged information – to a student

model while training with network data outperforms a student model trained

with network data only.

7.1.1 Re-stating research objectives

Objective 1 : Develop an ML-based NIDS for ICS that incorporates process and

network data. (Achieved.)

We designed PINID framework in which process data is used as privileged in-

formation for training an ML-based NIDs while the deployed detector is run-

ning on network daya only. Across the single- and multi-attack scenarios, the

framework delivered strong Precision/Recall and F1 under the common pro-

tocol (see the results tables in sections 5.3 and 5.6).

Objective 2: Evaluate the practicality of LUPI in ICS. (Achieved.)

SVM+ trained with network + process features (privileged) and tested network-

only outperformed network-only baselines in the single-attack series, and the

advantage persisted in the multi-attack scenarios (sections 5.3 and 5.6). This

shows LUPI is practical: it improves accuracy while keeping runtime simple

(network-only).

Objective 3: Compare traditional NIDS vs LUPI-based NIDS on single and

multi attacks. (Achieved.)

LUPI-based models performed better than the standard baselines throughout.

In single-attack tests, they showed the biggest improvements for each scenario.

In multi-attack tests, a single model lost a little per-scenario accuracy but gen-
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eralised better across different scenarios within SWaT (sections 5.3 and 5.6).

Objective 4: Evaluate robust neural-network knowledge transfer following

LUPI. (Achieved.)

Distillation, margin transfer and Transfer learning were evaluated and Dis-

tillation (teacher trained with process context; student trained network-only)

presented a considerable improvement over their network-only counterparts

and were most stable when trained on the larger, consistent subsets (5.3 and

5.6).

7.2 Summary of Contribution

Even though there is already a substantial body of research on ML-based anom-

aly detection for the SWaT test-bed, it is important to highlight that this study

is the first to utilise LUPI for ML-based network intrusion detection systems in

the ICS domain. The major contributions of this research can be outlined:

• This research introduces PINID, a novel Network Intrusion Detection Sys-

tem (NIDS) framework specifically designed for ICS environments. PINID

distinguishes itself by considering both cyber and physical aspects of the

system, offering a more comprehensive approach to security. While ex-

isting research primarily focuses on network data for intrusion detection,

PINID leverages the combined strengths of both network and process data

to enhance the detection of cyberattacks within an ICS. This integration

enables a more holistic and accurate assessment of the ICS security pos-

ture. In line with established practices, this research utilises network data

for developing an ICS-specific NIDS, adhering to the principles of the

LUPI framework. However, unlike many proposed techniques that dis-

regard the valuable information embedded within process data, this ap-
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proach retains and leverages this knowledge. This results in a more robust

and reliable Machine Learning (ML)-based NIDS specifically tailored for

ICS environments.

• The PINID framework’s effectiveness was rigorously evaluated against

a range of attacks targeting industrial processes, including brute force

IO and unauthorised command messages, aligned with MITRE ATT&CK

for ICS and considered hierarchical network architecture of the Purdue

Model. The evaluation used the SWaT dataset, which comprises ICS ex-

periments on a small-scale water treatment plant and represents 36 dif-

ferent attack types, to assess attacks on single and multiple field devices

within a simulated water purification process. The study also highlighted

the importance of data labelling for supervised learning in ICS security

and proposed an approach to address limitations in existing datasets.

• In a single attack scenario, the PINID framework’s performance was eval-

uated using common supervised machine learning algorithms: SVM, LR,

DT, MLP, KNN. Network traffic data was used for both training and

testing phases.The study compared the performance of these algorithms

against a knowledge transfer technique, SVM+, an adaptation of the SVM

algorithm incorporating Learning Using Privileged Information (LUPI).

In this approach, process information supplemented network traffic data,

enhancing the algorithm’s learning capabilities. Furthermore, the frame-

work’s evaluation included robust neural network methods for single at-

tack detection. This validation encompassed assessing margin transfer

and distillation techniques alongside transfer learning.

• Given the complexity of multi-attack scenarios and their diverse char-

acteristics, the PINID framework’s performance was rigorously assessed
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in this context. Common supervised machine learning (ML) algorithms,

including SVM, LR, DT, MLP, and KNN, were employed, utilising net-

work traffic data for both training and testing phases. The study spe-

cifically compared these algorithms’ performance against SVM+, a know-

ledge transfer technique. which adapts the SVM algorithm by incorporat-

ing Learning Using Privileged Information (LUPI), appending process in-

formation to network traffic data as supplementary information. Beyond

traditional ML methods, the framework evaluation encompassed robust

neural network approaches. This included assessing margin transfer and

distillation techniques, in addition to transfer learning, all implemented

within a neural network structure.

Originality: We believe this is the first time Learning Using Privileged In-

formation has been applied to a NIDS in ICS. In short: we train with pro-

cess context, but we run the model using network data only in runtime. This

mix—process-aware learning with a light, low-friction deployment—drives the

improvements reported in sections 5.3 and 5.6.

Practical implications: Two points carry straight into operations. First,

adding short guard-bands at attack boundaries (our label-alignment step) cut

false positives without hurting recall (section 5.1.2). Second, training with pro-

cess context improved precision on command misuse (e.g. unauthorised writes)

while keeping the live system network-only (sections 5.3 and 5.6). Together,

these changes mean earlier and more trustworthy alerts for security teams.

7.3 Future Work

This research highlights a framework that can potentially enhance NIDS per-

formance in ICS and other Cyber-Physical Systems like the Internet of Things
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(IoT). Future improvements could involve:

• Various ICS datasets : The evaluation of this framework can leverage ICS

datasets derived from diverse industrial environments, employing a hier-

archical network architecture. This approach enables the validation of the

framework’s efficacy across a spectrum of process types, including con-

tinuous, discrete, and batch processes, each characterized by distinct pro-

cess data characteristics. Furthermore, this methodology facilitates a com-

prehensive assessment of the proposed framework’s resilience against a

variety of cyberattacks targeting different industrial and proprietary com-

munication protocols.

• Feature selection: The integration of optimised feature selection methodo-

logies into this framework, specifically within the context of ICS network

intrusion detection, presents a significant area for further investigation.

A comprehensive assessment of such integration could encompass its im-

pact on multiple facets of the NIDS, including but not limited to; perform-

ance enhancements, improvements in generalisation capabilities, and the

implications for computational cost and overall scalability.

• Control Data : The integration of auxiliary data from ICS, including but

not limited to alarm and event logs, and control set-point values, consti-

tutes a promising area of research in the context of NIDS enhancement.

The rationale for this proposition emerge from the capacity of such data

to provide a comprehensive insight of the normal operational state within

the ICS environment.

• Integrating Adversarial knowledge: While the present framework demon-

strates efficacy in detecting a variety of attack vectors, further research is

needed to explore the integration of adversarial knowledge. Specifically,
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incorporating information about adversarial Tactics, Techniques, and Pro-

cedures (TTPs), such as Indicators of Compromise (IOC)s and privilege

escalation methods, presents a valuable opportunity to rigorously assess

and potentially improve the framework’s overall performance.

• Diverse neural network architecture and optimisation: With the advance-

ments in artificial intelligence and the various configurations of neural

network structures, future research in this field could explore the imple-

mentation of alternative neural network architectures, building upon the

techniques employed in this study.

• Unsupervised learning: Given the challenge of obtaining labelled datasets

from industrial environments, evaluating the performance accuracy of the

proposed framework can be done using an unsupervised approach in ICS

network intrusion detection.
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