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Abstract

The highly-connected nature of Industrial Control Systems (ICS) has signific-
antly increased the possibility of cybersecurity threats to these systems. Water-
fall company’s 2023 report showed 218 ICS security incidents, with 25% result-
ing in tangible consequences, including operational disruptions and equipment
damage. This data underscores the criticality of robust ICS security measures.
Given that ICS manage essential services, potential compromises could lead to
severe disruptions, impacting public health and safety and economic stability.
Network Intrusion Detection System (NIDS) are crucial for securing ICS, provid-
ing early threat detection, enhanced network visibility, and invaluable support
during incident response. Machine Learning (ML) significantly enhances NIDS
capabilities by analysing vast amounts of data to discern normal network beha-
viour and identify attack patterns. This enables ML-powered NIDS to adapt to
evolving threats and identify anomalies with greater accuracy than traditional
rule-based systems, all while reducing the occurrence of false positives.

This thesis investigates the potential of integrating both network traffic data
and physical process data in the training of ML-based network intrusion de-
tection model. It is hypothesised that this combined approach will yield a
more effective detection performance compared to models trained solely on net-
work traffic data. To enable the network intrusion detection model to function

solely on network traffic during runtime, the Learning Using Privilege Inform-



ation (LUPI) paradigm is adapted as a key element of the proposed Process In-
formed Network Intrusion Detection for Industrial Control Systems (PINIDS)
framework. The initial phase involves supervised training of a network intru-
sion detection model using both network traffic and process data. Subsequently,
the trained model can be deployed to detect potential intrusions by analysing
network data during runtime.

The effectiveness of PINIDS framework for intrusion detection is evaluated
using the SWaT dataset, focusing on brute force and unauthorised command
message attacks. Various machine learning techniques adopted to the LUPI
paradigm are investigated, including Knowledge Transfer (SVM+), Margin Trans-
fer, Transfer Learning, and Distillation. The findings demonstrate enhanced
precision and recall balance, leading to improved detection accuracy and re-
duced false positives and false negatives. Notably, SVM+ achieved a significant
21.47% improvement in F1-score and 49.19% in precision compared to classical
ML models, exhibiting consistent performance across experimental runs. While
Margin Transfer yielded a modest average improvement in F1-score and preci-
sion of 3.3%, it lacked robustness. Distillation proved highly effective, partic-
ularly for the DNN model, with a 12.23% F1-score improvement and substan-
tial precision enhancement. Both distilled Deep Neural Network (DNN) and
Convolutional Neural Network (CNN) models demonstrated robust perform-
ance. Although pre-trained and baseline CNN models performed comparably,
the former exhibited a 7.058% F1-score improvement, reduced detection time,
and greater stability. These results highlight the potential of transfer learning
techniques for enhancing intrusion detection systems.

While Deep Learning algorithms, such as CNN, generally outperform ML al-
gorithms like Support Vector Machines, our findings demonstrate that Ma-

chine Learning-based LUPI methods surpass Deep Neural Network-based LUPI



approaches in ICS application with limited training data. The feature-based
teaching method employed by SVM+ contributes to its superior performance
compared to Deep Neural Network models in this study, effectively leveraging

input variable influence for decision-making.
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Chapter 1

Introduction

ICS are integral to the function of modern society, facilitating critical infra-
structure operations that are often taken for granted. These systems underpin
essential services such as energy production and distribution, water treatment
and distribution, transportation system, and manufacturing processes. The re-
liable operation of ICS is crucial for maintaining safety and ensuring economic
productivity.

ICS are responsible for managing and controlling critical infrastructure opera-
tion that are fundamental to daily life. In the energy sector, ICS manage power
generation, transmission, and distribution networks. Water treatment and dis-
tribution systems rely on ICS for ensuring water quality and safety, while trans-
portation systems, including traffic control, railway signalling, and pipeline op-
erations, depend on ICS for safe and efficient operation. Manufacturing indus-
tries use ICS for process control and automation in production lines. These
systems maintain process control by regulating parameters such as temperat-
ure, pressure, and flow to ensure safe and efficient operations.

The economic impact of ICS is significant, as they enable efficient and optim-

ised operations. By automating tasks and processes, ICS enhance productivity
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and reduce the reliance on manual labour, leading to increased output. Fur-
thermore, ICS contribute to reduced cost by optimising resource, minimising
waste and improving overall operational efficiency. The impact of ICS on every
day life is profound, despite their often-unseen nature. The electricity supply
to homes and businesses is reliant on power plants and grids managed by ICS.
Access to clean water is ensured by water treatment facilities that depend on
ICS for their operations. Transportation and logistics networks rely heavily on
ICS for smooth and safe functioning. The manufacturing of essential goods,
from food production to automotive manufacturing, relies on ICS-controlled
processes.

A disruption to ICS can have cascading effects on society. For instance, a dis-
ruption to the ICS managing a city’s power grid could result in widespread
blackouts, impacting residential, commercial and industrial activities.

Despite their critical role in critical infrastructure, ICS often have inherent
vulnerabilities that make them attractive targets for cyberattacks. These vul-
nerabilities derive from various factors, including legacy systems, increasing
connectivity, difficulties in patching and updating, and physical security chal-
lenges. Many ICS operate on outdated operating systems with known vulnerab-
ilities that may no longer receive security updates. the increasing connectivity
between Information Technology (IT) and ICS networks has expanded the at-
tack surface for ICS. The traditional air gap that once separated these networks
is vanishing, providing potential avenues for attackers to traverse between IT
and ICS environment. Remote access, while fulfilling maintenance and mon-
itoring purposes, can introduce vulnerabilities if not accompanied with robust
security measures.

The operational Constrains of ICS pose significant challenges for patching and

updating. Additionally, the geographically distributed nature of ICS, with com-
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ponents located in remote areas, makes it difficult to secure every component
physically and exposes these systems to the risk of physical tampering, unau-
thorised access and potential disruption. Once the attackers exploit any of these
vulnerabilities and get inside the system, they could manipulate control com-
mands, causing equipment malfunctions, process disruptions or even physical
damage.

Two high-profile cyber incidents occurred in 2021. The Colonial Pipeline incid-
ent disturbed gasoline supply to the Southeastern United States (Blount 2021).
This was a ransomware attack, where criminals used malicious software to
block access to Colonial Pipeline’s IT in return of the ransom payment. In
response to the attack, the company halted operations to ensure the malware
did not spread to its Operational Technology (OT). The attacker used a legacy
Virtual Private Network (VPN) account which was inactive. Not only did this
account still had access to the network, but also it lacked Multi-Factor Authen-
tication control.

An attack on the Florida water supply increased the sodium hydroxide level
in the water system before detection (Addeen et al. 2021). Here, attacker at-
tempted to remotely access the plant’s control system and change the level of
sodium hydroxide level. To do so the adversary used the remote access software
deployed on a computer connected to plant’s control system and manipulated
the control system interface.

The cybersecurity of ICS presents unique challenges due to their inherent char-
acteristics and operational environments. These challenges include depend-
encies on legacy systems with outdated and often unpatchable operating sys-
tems and hardware, leading to exploitable vulnerabilities. Furthermore, the
use of specialised, proprietary protocols and systems within ICS hinders the

implementation of standard security tools and practices. Real-time operation
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constraints necessitate security measures with minimal latency, adding another
layer of complexity.

The ICS threat landscape is continuously evolving, with increasingly sophist-
icated attackers such as nation-states and organised criminal groups targeting
these systems to disrupt critical infrastructure or exfiltrate sensitive informa-
tion. Supply chain vulnerabilities represent another significant risk, as com-
promised hardware or software can introduce vulnerabilities into ICS environ-
ments. Additionally, malicious insiders or unintentional errors by personnel
with access to the ICS network pose a significant threat. The convergence of IT
and ICS networks expands the attack surface, introducing new entry points for
attacks. Traditional IT security tools may be inadequate for monitoring and se-
curing ICS environments, potentially leading to vulnerabilities and blind spots.
Whilst eliminating known weaknesses is a critical protective approach, it is also
essential to detect undesired activity across the industrial network before any
irreversible damage occurs.

As ML techniques enable the automation of anomaly detection and make it
more efficient, particularly when handling large datasets, researchers have been
examining the use of these methods for intrusion detection, primarily anomaly
detection in the constantly changing ICS domain. ML techniques can be di-
vided into supervised, semi-supervised and unsupervised; examples of each of
these techniques can be found in the works of Agrawal et al. (2018), K. Yau
et al. (2017) and W. Gao et al. (2010). While supervised learning relies on la-
belled data, a labour-intensive operation that requires domain knowledge, these
techniques are known for their high predictability. On the other hand, semi-
supervised and unsupervised methods use unlabelled data, however, these tech-
niques present lower predictive performance. The comparative analysis presen-

ted by Bernieri et al. (2019) suggested that supervised algorithms used for an-
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omaly detection in ICS outperform semi-supervised and unsupervised algorithms.
Research into cyber anomaly detection in ICS can be divided into two groups:
NIDS and Behavioural Anomaly Detection (BAD). Research on Supervised ML-
based NIDS has mainly focused on using industrial network traffic. For ex-
ample, using network traffic Maglaras and J. Jiang (2014) applied One-Class
Support Vector Machine (SVM) algorithm for identifying the attacks, Patel et
al. (2017) used a knowledge-based analysis method for detecting and classify-
ing the attacks and Schneider et al. (2018) used an auto-encoder neural network
to identify attacks.

However, Suaboot et al. (2020) argued the importance of data analysis on data
integration between the collectable data from multiple sources in ICS, and urged
for a more holistic perspective toward NIDS for ICS. When an attacker implants
a malicious message in a packet payload, altering no protocol structure or com-
munication pattern, ML-based NIDS developed using network traffic may not
be successful in identifying this abnormal behaviour. HadZiosmanovi¢ et al.
(2014) highlighted the importance of applying knowledge domain and process
behaviour in identifying cyber incidents. Studies focused on Supervised ML-
based BAD are mostly focused on using process data to learn ML algorithms.
Process data in ICS refers to real-time information collected from sensors and
actuators within industrial environments. This includes measurements of tem-
perature, flow rate, pressure, valve positions and pump statuses. These data
points represent the operational state of physical processes and can provide
valuable context for identifying abnormal or malicious behaviour in ICS en-
vironments. For example, Junejo and Goh (2016) used process data to train
supervised algorithms such as Decision Tree, Naive Bayes and Support vector
Machine for detecting attacks and identifying the type of attacks Agrawal et al.

(2018) used the rate of change in the process data to train an SVM algorithm
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1.1. MOTIVATION

for identifying abnormal behaviour in the system and Hink et al. (2014) de-
ployed different supervised algorithms such as SVM, Naive Bayes and Ran-
dom Forest for classifying natural and malicious power system disturbance in
a smart power grid.

This research combines elements from cyber security and industrial systems
with machine learning and aims to enhance NIDS for ICS through the com-
bination of cyber (network) and physical (process) data.This research addresses
the primary problem of traditional NIDS systems which rely solely on network
traffic because they cannot identify sophisticated or concealed attacks that oc-

cur during reconnaissance phases or multi-stage attacks.

1.1 Motivation

ICS interact with the physical environment. Therefore, studying the physical
properties of the process under control can provide valuable information about
the desired behaviour of the system and its input/output devices. Investigating
the process behaviour might be a useful approach to detect process anomalies.
However, identifying the source of these undesired behaviours will not be pos-
sible without investigating other aspects of the ICS, such as communication
between the elements and the process. All abnormal behaviour in the process
is not because of cyber-attacks, there are other reasons for a system’s unexpec-
ted behaviour, such as device or system failure e.g. inaccurate reading of a
sensor in a manufacturing plant can cause process deviation from normal beha-
viour, equally unpredicted environmental changes such as temperature fluctu-
ation and power surges can disrupt normal operation. Differentiating between
maintenance problems and cyber incidents will not be achieved through only

behaviour-based process analysis. Further valuable information can be derived
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1.1. MOTIVATION

from the industrial network communication in ICS. Such information would
lead to the design of a NIDS that can uncover cyber-attacks during the recon-
naissance period where the attacker is collecting intelligence and has not yet

manipulated the physical process.

1.1.1 The Research Gap that Motivates This Research

Supervised ML-based NIDS for ICS have been extensively researched, with a
primary focus on leveraging industrial network traffic while often overlooking
physical process data. These approaches often rely on network traffic alone,
overlooking the contextual insights embedded in physical process data. This
limitation enables attackers to execute process manipulation attacks which re-
main undetected because they do not modify protocol structures. These studies
contain two fundamental limitations because they assume uniform attack pat-
terns while disregarding the complex nature of multi-vector attacks. Suaboot
et al. (2020) supported the use of data from various sources in ICS and pro-
posed a holistic approach. This is crucial for detecting attacks targeting ICS as
an attacker could inject a malicious message within a network packet’s payload
without violating any protocol or communication pattern, rendering a NIDS
unable to detect it. Some researchers emphasised the importance of incorporat-
ing domain-knowledge and process context by modelling the physical processes
to effectively detect cyber-attacks in ICS (HadZiosmanovi¢ et al. 2014). How-
ever, generating an accurate model necessitates a comprehensive understand-
ing of the physical processes and algorithms involved. Other studies have con-
centrated on supervised ML-based anomaly detection solely utilising process
data. The supervised anomaly detection methods achieve acceptable even high
results on SWaT datasets when using process data yet they fail to perform well

when faced with multiple attacks and reconnaissance activities that requires
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1.1. MOTIVATION

focusing on Network traffic. This research addresses these limitations by pro-
posing a hybrid model that leverages process context to enhance NIDS accuracy
and reduce false positives. It is important to acknowledge that anomalies can
occur due to device or system failures unrelated to cyber-attacks. Therefore,
anomaly detection based solely on physical process data cannot differentiate
between a malfunctioning sensor and a cyber-attack. Furthermore, NIDS are
capable of identifying the reconnaissance phase of a cyber-attack, which typic-
ally occurs without impacting physical processes.

This research investigates network traffic and process data integration and their
joint interpretation to detect complex cyber intrusions. An ML-based NIDS for
an ICS that is developed based on both network traffic and physical process data
may outperform the one trained and tested using network data alone. However,
because of the different data collection rates from network traffic and process
parameters, integrating these two data for the testing period seems to be im-
practical. First, the frequency of data collection from network traffic is higher
(e.g. in milliseconds) than the process data (e.g. in seconds/minutes), which
highly depends on the configuration and the nature of the process parameters.
Second, network data and process data are being stored in different locations
during the run-time. This research aims to address these needs, contributing
to research into leveraging the LUPI framework (Vapnik and Vashist 2009b;
Vapnik 2006) to detect cyber intrusion in an ICS network as an approach to
improve attack detection in the domain. This research intends for designing a
process-informed network intrusion detection framework for ICS, and explore
the extent to which this framework could aid in reducing the false positives in
detecting cyber attacks within industrial networks. The anticipated result of
this research is evidence of the role of process behaviour in improving network

intrusion detection as an approach to network security in ICS.
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1.2 Problem Statement and Research Aims

Even with recent progress—especially methods that use process data to spot
unusual behaviour—current research still struggles to detect complex or sim-
ultaneous attacks, especially when it relies only on network traffic. The aim of
this research project is to explore the potential for improvement in the perform-
ance of NIDS to detect cyber attacks by incorporating data from network traffic
and process data during training an ML based NIDS.

Although LUPI framework has been used in different domains of research, in-
cluding computer vision (Momeni et al. 2018; X. Yang et al. 2017; Xu et al.
2015), astronomy (Fouad, Tino et al. 2013; Fouad and Tirno 2013; Fouad 2013),
and medical diagnosis (Shaikh et al. 2020; L. Shen et al. 2020), to our know-
ledge, the application of LUPI in NIDS for ICS has not been investigated before.
Given the successful implementation of the LUPI framework in cybersecurity,
as demonstrated by its effectiveness in detecting malicious botnet activities in
IT networks (Sapello et al. 2017), and its proven use case in anomaly detection
across security applications such as facial recognition, bot detection, and mal-
ware detection in IT networks (Celik et al. 2018), the LUPI framework holds
great potential in enhancing and complementing the existing NIDS for ICS net-
works.

In this research, we present an ML-based NIDS that integrates network and
process data during the training phase; the model uses network data during the
testing phase only. Our method is based on the LUPI framework (Vapnik and
Vashist 2009b; Vapnik 2006). LUPI is a supervised ML paradigm that allows
one to design a model by integrating additional informative features, known as
privileged information, during the training phase.

Our hypothesis is that the proposed approach would enhance the perform-

ance of intrusion detection compared to models using only network data for
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training. We have evaluated our proposed method of ML-based NIDS for ICS
through various ML techniques ( including Neural Network) in the Secure Wa-
ter Treatment (testbed) (SWaT) test-bed, which is an operational scaled-down

water treatment plant (Goh, Adepu, Junejo et al. 2016).

1.3 Research Objectives

The main objectives of this research are:

* Objective 1: Design an ML-based NIDS for ICS that trains with both pro-

cess and network data but runs at network level.

* Objective 2: Evaluate the practicality and benefit of the LUPI paradigm

in ICS using SVM+ (train: network+process; test: network-only).

* Objective 3: Compare traditional NIDS with LUPI-based models across

single-attack and multi-attack scenarios.

* Objective 4: Evaluate robust neural-network for knowledge transfer (e.g.
margin transfer, distillation, transfer learning) following LUPI framework,
under the same principles, train with both process and network data and

run with network data.

1.4 Contributions

There is a large body of work investigating ML-based anomaly detection for
ICS. However, to the best of our knowledge, we are the first to bring the im-
plementation of LUPI to ML-based NIDS in ICS domain (Pordelkhaki et al.
2021). This work provides a substantial contribution through the Process In-

formed Network Intrusion Detection (PINID) framework for NIDS. Proposed
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framework is designed with consideration of the cyber and physical character-
istics of ICS. PINID suggests the use of network traffic and data processing to
train a ML-based NIDS. During the run-time, however, the model would only
be provided with network traffic. By following the LUPI paradigm, we have not
foreclosed the knowledge that the process data would provide for learning a
robust ML-based NIDS for ICS. The proposed framework was evaluated using
the machine learning-based privileged information method (SVM+). We have
also examined this framework with robust Neural Network approaches, such as
Distillation and Transfer Learning. This proposed NIDS can identify multiple
types of attacks. This has been showed through rigorous evaluation performed
on a subset of attacks that represent all the attack types from the SWaT data-
base. The evaluation results show detection performance and False Positive (FP)

rate.

* Contribution 1: As identified by (Tsang et al. 2005; D. Yang et al. 2006;
Cheung et al. 2007; Valdes et al. 2009; Ponomarev et al. 2015; Yusheng et
al. 2017), process-level data provide crucial insights into the behaviour of
ICS components, which can be instrumental in identifying anomalies and
malicious activities. In this context, our research introduced the PINID
framework, a novel approach for NIDS in ICS that considers both cyber
and physical aspects. Unlike existing research that primarily relies on
network data for intrusion detection, the PINID framework leverages the
strengths of both network and process data to enhance the detection of
cyberattacks within an ICS. By incorporating process data alongside net-
work data, our framework enabled a more comprehensive and accurate
assessment of the ICS security posture. Following the principles of the
LUPI framework, we utilised network data for developing a NIDS for ICS,

aligning with established practices in the field. However, unlike many
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proposed techniques that disregard the valuable information embedded
within process data, our approach retained and leveraged this knowledge

to train a more robust and reliable ML-based NIDS for ICS.

* Contribution 2: To assess the effectiveness of the PINID framework, this
study examined a range of attacks that can compromise industrial pro-
cesses taking into account existing work conducted by MITRE (Alexander
etal. 2020) aligned with established hierarchical Purdue Model (Williams
1994) for ICS network. Focusing on brute force IO and unauthorised com-
mand message techniques, the evaluation involved attacks targeting both
single and multiple field devices (sensors or actuators) within one or more
stages of a water purification process. The evaluation utilised the SWaT
dataset (Aditya P Mathur et al. 2016a), which comprises ICS experiments
conducted in 2016 on a small-scale water treatment plant. This dataset,
containing 36 different attack types, provided a comprehensive repres-
entation of potential threats to a typical ICS. Among other challenges,
our evaluation also highlighted the critical role of labelling in supervised
learning environments and developed an approach to address limitations

in existing datasets in this respect.

* Contribution 3: Considering single attack scenario, we evaluated the per-
formance of PINID framework with common supervised machine learn-
ing algorithms (SVM, Logistic Regression (LR), Decision Tree (DT), Mul-
tilayer Perceptron (MLP), K-Nearest Neighbour (KNN)) using network
traffic data for training and testing. Specifically, the study compared the
performance of these algorithms with knowledge transfer technique, SVM+,
the SVM algorithm adapted Learning Using Privileged Information (LUPI),

where process information supplemented network traffic data. Addition-
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ally, the framework’s evaluation incorporated robust neural network meth-
ods in detection of a single attack. This framework validation included
evaluating margin transfer and distillation techniques alongside trans-
fer learning, utilizing a neural network structure. The outcomes of this
evaluation demonstrated that knowledge transfer outperforms other ML
algorithms in detecting single attack, however, the results from neural
network techniques demonstrate that margin transfer technique outper-
forms all ML techniques in detecting single attack and emerged as the
superior technique for single attack detection among other deployed ML
techniques. This contribution builds upon the existing body of research
including works of Schneider et al. (2018) and Goh, Adepu, Junejo et
al. (2016) by using traditional ML methods for intrusion detection from

either network or process data but not both in a combined setup.

* Contribution 4: Considering the complexity of multi-attack scenarios,
which introduce diverse attack characteristics, we evaluated the perform-
ance of the PINID framework. This evaluation employed common super-
vised ML algorithms, including SVM, LR, DT, MLP, KNN, using network
traffic data for both training and testing. Specifically, the study compared
the performance of these algorithms with a knowledge transfer technique,
SVM+, which is the SVM algorithm adapted for LUPI. In this adaptation,
process information was appended to network traffic data as auxiliary in-
formation. Beyond traditional machine learning methods, the framework
assessment also encompassed robust neural network approaches. This in-
volved evaluating margin transfer and distillation techniques, along with
transfer learning, all implemented within a neural network structure. The
findings indicate that utilising distillation techniques in conjunction with

LUPI proves more effective in identifying multiple attack types compared
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to other methods. This contribution extends the work of Suaboot et al.
(2020) and Hadziosmanovi¢ et al. (2014) proposed holistic ICS security
models that could handle various attack modalities but did not assess ro-

bustness in scenarios involving multiple attacks.

1.5 Thesis Structure

The remainder of this thesis is organised as follows:
Chapter 2 — Background and related work
Chapter 3 — Materials and methodology

Chapter 4 — A framework for ML-based network intrusion detection in

ICS
Chapter 5 — Result and analysis
Chapter 6 — Discussion and finding evaluation

Chapter 7 — Conclusions and future work
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Chapter 2

Background and related work

2.1 Industrial Control Systems

The term ”Industrial Control Systems” refers to a collection of several auto-
mated control process systems. These systems can control industrial processes
through real-time data gathering and monitoring. These include industrial
systems like Programmable Logic Control (PLC), Distributed Control Sys-
tem (DCS), and Supervisory Control and Data Acquisition (SCADA) (Fan et
al. 2015). ICS are used in various automated industries like the food industry,
transportation industry, chemical and petrochemical industry, oil and gas in-
dustry, and critical infrastructures such as power plants and water treatment
plants (Nankya et al. 2023; Mesbah et al. 2019) and (S. Singh et al. 2020). The
significance of safety and security for these infrastructures has increased the
value of ICS safety and security. The overall operation of ICS depends on mul-
tiple crucial components, each with a significant role (Aykut et al. 2025). Some

common components found in ICS are:

* Sensors: These devices gather data from the physical environment. Vari-

ables such as temperature, pressure, and flow rate can be measured to
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offer real-time data to the control system.

* PLC: PLCs are compact computer devices that gather input from sensors

and decide based on pre-established logic.

e SCADA: The SCADA system acts as the central hub for monitoring and
controlling industrial processes. The collection of data from diverse devices

is displayed for operators and remote control functions are enabled.

* Human Machine Interface (HMI): HMISs refer to graphical user interfaces
that visually depict the system’s status and enable operators to interact
with the ICS. It is common for them to incorporate touchscreens, alarms,

and visualisation tools for data.

* Actuators: Commands from the control system are executed by actuators,
which perform physical actions. To regulate the industrial process, in-
structions are received and used to operate motors, valves, switches, and

other mechanisms.

e Communication Network: The exchange of data between different ICS
components is made possible by these networks. Real-time communica-
tion is guaranteed with the option of wired or wireless connections, en-

suring seamless system operation.

The architecture of a modern ICS mainly consists of three layers: an enter-
prise management layer, a supervisory layer, and a field layer. The enterprise
management layer mainly includes Management Information Systems (MIS),
Enterprise Resource Planning (ERP) systems, Manufacturing Execution Sys-
tems (MES) , and other application systems. This layer uses the network com-
munication technology to connect with the Internet, in order to realize the real-

time monitoring and management of industrial processes and furthermore as-
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sist enterprise-level intelligent decision-making. The supervisory layer con-
sists of process monitoring systems, historical and real-time databases, and a
series of operator and engineer stations. This layer is responsible for data ac-
quisition and transmission between the enterprise management layer and the
field layer, and controlling field devices based on specific control logics. The
field layer includes various types of sensors, actuators, transmitters, and In-
put/Output (I/O) devices. This layer is mainly responsible for the perception
of field information and the manipulation of field devices, and furthermore ex-
changing digital or analogue data between different field devices through the
field bus.

ICS components leveraged ICS-specific protocols for communication over a
network, with most of the protocols being point-to-point or broadcast. Cur-
rently, numerous protocols are layered on Ethernet, Transmission Control Pro-
tocol (TCP), and User Datagram Protocol (UDP), and devices use Internet
Protocol (IP)-based networks (Bansal et al. 2024). Feedback control loops are
used in control systems to regulate output by detecting and using input from
the environment (Astrém et al. 2021). The monitoring and evaluation of the
physical process helps regulate it based on specific limits set by the user. ICS
often integrates extra safety-related logic to back their primary function. PLCs,
which directly govern physical processes, are generally created using a basic,
logic-oriented methodology. Controllers, with their intricate language, super-
vise PLCs to control multiple end units and connect with higher-level applica-
tions. Collection of such PLCs and supervisory controllers, besides peripheral

devices like the HMI, are frequently denoted as SCADA systems (Agha 2024).
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2.1.1 ICS Security

A comparative analysis reveals distinct security requirements for ICS compared
to traditional information systems. While the latter emphasises confidentiality,
integrity, and availability of sensitive data, ICS security historically prioritised
safety, mitigating risks associated with system failures that could impact human
life, physical assets, and production continuity(Stouffer et al. 2023). However,
the increasing interconnection of ICS with external networks, particularly the
internet, necessitates a paradigm shift. Modern ICS must now navigate the
complexities of balancing both safety and security imperatives (Ani et al. 2017).

Key security prerequisites for ICS in this evolving landscape include:

* The real-time functioning of each physical device can be compromised by

even the slightest deviation, leading to industrial disasters.

* The provision of security programs in ICS with multiple sensors and ac-
tuators presents a problem because of restricted computing and storage

resources.

 ICS must adhere to exact control algorithms to achieve specific produc-
tion objectives. The likelihood of causing severe accidents increases when

these algorithms fail.

* The continuous operation of all ICS equipment presents a formidable

obstacle to halting ICS operations for firmware or software updates.

* Connecting ICS to the internet, while offering benefits, significantly in-
creases their vulnerability. Originally designed for isolated networks, ICS
protocols face heightened risks in interconnected environments. This ex-

poses critical process data to unauthorised access, leaving organisations
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vulnerable to espionage, sabotage, and operational disruptions. The con-
venience of internet connectivity for ICS comes at the cost of an expanded

attack surface and increased cyber threats.

Cyber attacks targeting ICS can be categorized into the standard CIA categor-
ies of Confidentiality, Integrity, and Availability. Even though ICS might be
prone to comparable CIA attacks as IT systems, the aftermath of these attacks
can potentially lead to catastrophic consequences, including jeopardizing per-
sonal and social safety and life (Stouffer et al. 2023; Zhou et al. 2020; Slowik
2019). For example in May 2021, critical infrastructure was targeted by cyber
attackers when the largest oil pipeline in the U.S. was breached. The threat
actors gained access to the corporate network by exploiting an exposed VPN
password and proceeded to steal 100 GB of data while also infecting the IT net-
work with ransomware. In order to prevent the ransomware from spreading
further, the pipeline was shut down for approximately one week, which im-
pacted airlines due to a shortage of jet fuel and created a sense of social panic
regarding a fuel scarcity(Tsvetanov et al. 2021). Also in March 2000, Maroochy
Water Services experienced a notorious cyber incident in which an ex-employee
hacked into the system and gained control of 150 sewage pumping stations,
resulting in the release of one million liters of untreated sewage into local wa-
terways (Slay et al. 2007). Furthermore, due to their utilization of sensors and
actuators to interact with the physical environment, ICS are vulnerable to a
particular class of cyber-attacks, in addition to the distinctive aftermath caused
by a cyber threat. One of the attack types specific to Cyber Physical Systems
and ICS is False Data Injection (FDI) attack (Chong et al. 2019).In the event of
an FDI attack, adversaries have the potential to exploit sensors and actuators
to impose changes in system behaviour that won'’t affect the observed system

state, allowing the manipulation to go unnoticed. Despite the advanced secur-
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ity measures in public and enterprise IT networks, industrial networks pose
a challenge, requiring bespoke solutions adapted to the control environment.
Addressing security concerns in a continual real-time system demands a thor-
ough thorough understanding of network security, control theory, and phys-
ical processes. To respond to these challenges, standardisation bodies such as
(NIST, ISA/IEC and ENISA) have established guidelines and frameworks for
securing critical infrastructures. These include general IT security standards,
ICS-specific frameworks like IEC 62443, and sector-oriented recommendations
tailored to particular industrial domains (Islam 2025; Laan et al. 2025; Maurya

et al. 2024).

2.2 Intrusion Detection Systems in ICS

The process of intrusion detection revolves around the examination of events
occurring within computer systems or networks. The primary objective is to
identify potential incidents that have the potential to violate security policies,
acceptable use policies, or standard security practices. (Scarfone et al. 2007)
The classification of intrusion detection technologies typically hinges on iden-
tified events and the methodology utilised for recognising incidents. IDSs are
commonly categorised into network-based known as NIDS and Host-based In-
trusion Detection Systems (HIDS) based on their scope and their operation. The
fundamental approaches to incident detection encompass detection based on
signatures, anomalies, and specifications. Apart from monitoring and analys-
ing events, IDS usually logs information regarding the events, informs the ad-
ministrator of crucial events through warnings and alarms, and generates suit-
able reports. The past decade has seen a powerful surge in the research and

development of intrusion detection systems for SCADA networks. The rigor-

41



2.2. INTRUSION DETECTION SYSTEMS IN ICS

ous demands of real-time operation and data integrity, combined with consist-
ent traffic patterns and a finite set of telecommunication protocols, mandate
the creation and deployment of intricate and dedicated intrusion detection sys-
tems. The significant attention given to the security of ICS by both academia
and industry can be linked to the emergence of Stuxnet when the importance
of intrusion detection technology in protecting the security of ICS has been
widely acknowledged (Maglaras and J. Jiang 2014). However, Intrusion de-
tection systems developed for conventional information systems often overlook
the unique characteristics of ICS, thereby limiting their efficacy in guaranteeing
ICS security. In his study, Mitchell et al. (2014) classified IDS for ICS into differ-
ent categories based on the detection techniques utilised and the data sources
they rely on. With detection techniques, IDS for ICS can be categorised into two
distinct groups, namely misuse-based and anomaly-based, focusing on differ-
ent approaches. Misuse-based IDSs operate by contrasting collected system in-
formation against established signatures within a misuse pattern database. This
method facilitates the identification and detection of previously documented
intrusions. A key strength of misuse-based IDSs lies in their capacity to attain
high detection rates for known attack vectors. Anomaly-based IDSs function
by contrasting a system’s current operational state with its established ”nor-
mal behaviour pattern.” When the discrepancy between these states surpasses a
predetermined threshold, an alert is generated. Although anomaly-based IDSs
possess the capability to detect a broad spectrum of previously unknown at-
tacks, they frequently encounter challenges related to a heightened rate of false
alarms. Besides that, Mitchell et al. (ibid.) have summarised a new subclass of
anomaly-based IDS, which is referred to as behaviour specification-based IDS.
By utilising industrial control protocols and system behaviour specifications,

these IDS can construct the normal behaviour model of a system. On the other
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hand, ICS IDS can be classified into two types, network-based and host-based,
based on various data sources. Network-based IDS systems rely on network ad-
apters to collect and analyse real-time data of network communication. By util-
ising various data analysis techniques, these systems can effectively detect and
identify global intrusion behaviours. However, it is important to note that this
method lacks the capability to precisely pinpoint the specific system or asset
that is being targeted. Host-based IDSs concentrate on monitoring documents,
processes, and data residing on a designated host to detect any intrusion at-
tempts directed at that specific asset. The taxonomy of conventional intrusion
detection systems (IDS) frequently overlooks the specific features of ICS and
their intricate linkages with the physical world, as these systems are primarily
designed for information systems. By taking into account both the detection
techniques and the unique characteristics of ICS, the field of ICS IDS can be
further categorised into three specific types: IDS based on protocol analysis,
IDS based on traffic mining, and IDS based on control process analysis. The
primary focus of the technologies in the first two categories is to detect and
analyse standard cyber attacks that are specifically targeted towards ICS. The
process of achieving this involves the thorough evaluation of industrial proto-
cols, as well as the careful analysis of traffic data that is generated within in-
dustrial control networks. The third category is specifically designed to detect
and mitigate semantic attacks that target control systems or physical processes
with the intent of causing harm to ICS.

By leveraging protocol analysis, the Intrusion Detection System (IDS) is able
to detect and identify malicious attacks within an industrial control network.
It achieves this by closely examining the transmission packets and assessing
their adherence to the specifications laid out by the industrial protocol. The

successful implementation of techniques in this category is highly dependent
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on the accurate definition of detection rules. In cases where rule definitions
lack precision, a heightened rate of false alarms may occur, potentially leading
to undesirable outcomes. Moreover, the process of parsing each transmission
packet is known to be time-consuming, adding further delays to the system’s
efficiency. The IDS take into account traffic mining techniques to address these
issues, albeit to a certain extent. The techniques within this particular category
aim to create non-linear connections between the patterns of network traffic
and the normal or abnormal behaviours exhibited by a system. Despite this, it
is important to note that both categories, which are based on traditional inform-
ation systems, fail to acknowledge the strong link between ICS and the physical
world. The existence of this oversight poses a significant threat, as it creates
multiple opportunities for attackers to exploit and manipulate industrial pro-
cess data. Moreover, they can deliberately tamper with the operating rules of
field devices, potentially causing severe and irreversible damage to the ICS. The
nature of these attacks is in line with protocol specifications, meaning that they
do not create any unusual network traffic. As a result, a new type of intrusion
detection system has emerged, known as control process analysis-based IDS,
which aims to detect and identify semantic attacks like the one described. In
the following section, our main objective is to delve into this taxonomy associ-
ated with ICS IDS and provide a comprehensive exploration of its components.
In the field of ICS, IDS are defined as systems, software applications, or a
combination of both that have the role of monitoring the behaviours of ICS.
These systems continuously gather and analyse all available data, including
sensor readings, network traffic, and system logs, to identify malicious activ-
ities or policy violations. The dataset, enriched with domain-specific know-
ledge encompassing protocol specifications, sensor measurements, host data,

system logs and network traffic , facilitates a comprehensive understanding
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of industrial control. Immediate notification of a system administrator is cru-
cial upon detection of any malicious activity. Subsequently, implementing re-
medial actions is essential to protect the ICS from potential damage or destruc-
tion. More recently Makris et al. (2025)studies Federated Intrusion Detection
Systems (FIDS). These systems perform distributed detection operation across
various ICS environments and maintain data privacy. This advocates continu-
ous development of IDS architecture, evolving from their original centralised

structure.

2.2.1 Protocol Analysis Based IDS

Within industrial control networks, protocol analysis-based IDSs leverage ad-
vanced protocol analysis techniques to detect anomalies. This technology iden-
tifies deviations in protocol formats or data packet statuses transmitted within
the network. Upon detection of such modifications, the system can subsequently

identify any abnormal behaviours exhibited by the ICS.

2.2.1.1 Security Analysis of Common Industrial Protocols

The security analysis of prevalent industrial protocols primarily focused on
the reliability and efficiency of ICS during their initial design phase. Due to
their relatively closed nature, traditional ICS often neglected the importance
of ensuring security for industrial communication protocols. Certain cyber
attacks have been observed to target and exploit vulnerabilities in commonly
used industrial protocols like MODBUS protocol (MODBUS), Distributed Net-
work Protocol 3 (DNP3), and Inter-Control Centre Communications Protocol
(ICCP)/ Telecontrol Application Service Element 2 (TASE.2). MODBUS, intro-
duced in 1979 by Modicon (Modbus 2004), an early and widely adopted bus

protocol in industrial sectors, employs a Master/Slave communication model.
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In this model, the Master initiates data exchange by transmitting a message to
the Slave to request information. However, due to the lack of encryption or
authentication mechanisms, MODBUS communication relies on original data,
making it susceptible to attacks. Parsing MODBUS addresses and function
codes exposes the protocol to potential data theft or manipulation by attackers,
introducing significant security vulnerabilities. During the 1990s, the Amer-
ican Electric Power Research Institute (EPRI) introduced the Inter-Control Centre
Communications Protocol (ICCP) to facilitate communication between control
centres within the power industry. ICCP allows bidirectional communication
between clients and servers but introduces security enhancements compared
to MODBUS, such as an access control bilateral table. However, security risks
persist due to the absence of data encryption and identity authentication mech-
anisms, making ICCP susceptible to various attacks. Distributed Network Pro-
tocol (DNP3), designed to facilitate communication between automation com-
ponents (Curtis 2005), provides enhanced reliability and incorporates features
like data reassembly, fragmentation, verification, priority and link control. How-
ever, despite these advantages, vulnerabilities have been identified in the DNP3
protocol. The protocol lacks authorisation or encryption mechanisms, makes it
susceptible to potential man-in-the-middle attacks. The preceding analysis un-
derscores that the limited emphasis on security during the design phase has
introduced a number of security risks within industrial communication pro-
tocols. As a result, a different approach to intrusion detection , grounded in

protocol analysis, has been introduced.

2.2.1.2 Public industrial communication protocol analysis based IDS

Apart from the various proprietary protocols, there is also a range of public

protocols available in the field of ICS, providing researchers with convenient
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access to analyse them. A protocol specification serves to define and outline the
accepted communication patterns and the message formats that are related to a
specific protocol. Therefore, it is feasible to create intrusion detection mechan-
isms by taking advantage of these protocol specifications. By implementing this
detection system, any behaviour that deviates from the specified protocol can be
effectively identified and detected. For instance, Cheung et al. (2007) proposed
an intrusion detection technique based on a protocol specification model. This
model defines acceptable values for various fields within a data packet and out-
lines valid relationships between these fields. Moreover, the technique estab-
lishes normal communication patterns while considering the specific security
requirements, data transmission directions, and transmission ports pertinent to
an ICS. Although the method is successful in detecting possible abnormal be-
haviours, one of its disadvantages is the increased false alarm rate, as it has the
tendency of misclassifying emerging normal behaviours as anomalies. Morris,
Vaughn et al. (2012) created a customised intrusion detection method specific-
ally designed for Modbus, using the Snort software (Roesch et al. 1999), which
is renowned for its capabilities in detecting intrusions. The use of Snort rules
allowed for the thorough examination of communication data within industrial
networks, resulting in the efficient detection of any unauthorised data. The ef-
fectiveness of this approach, however, is highly dependent on accurately defin-
ing Snort rules, as they directly impact the accuracy of detection. Researchers,
in their quest for agile development, have dedicated their efforts to refining and
enhancing traditional IDS to make them more compatible with ICS. Bro (Pax-
son 1999), which was developed by the University of Berkeley, is an IDS that
primarily focuses on capturing network packets through bypass monitoring. By
extracting relevant events from the packets, the system can employ a protocol

parser that can effectively analyse protocols across various network layers. As a
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result, the system could to identify any potential intrusions by analysing these
events using policy scripts. H. Lin, Slagell, Di Martino et al. (2013), specific-
ally, contributed to the progress of Bro by implementing a packet parser that
was specifically designed to handle industrial protocols, including DNP3. The
main function of this enhanced parser is to carefully examine the valid values
of different fields within a packet, thereby allowing the formulation of security
policies that are coherent with the protocol. In addition, the system has the
capability to parse multiple protocols that are used in ICS, which expands its

applicability beyond just DNP3.

2.2.1.3 Proprietary Industrial Communication Protocol Analysis Based IDS

The development of IDS techniques in specific industries involves the use of
certain proprietary industrial protocols, besides public protocols. Hong et al.
(2014) performed a thorough analysis of automatic systems within smart grid
substations. The purpose of the analysis was to detect any anomalies or mali-
cious behaviours present in the multi-cast messages. To achieve this, the IEC
61850 standards, which encompass the Generic Object Oriented Substation
Event (GOOSE) and Sampled Values (SV) were utilised. Leveraging propriet-
ary protocol specifications, this method has demonstrated efficacy in identify-
ing and detecting various malicious attacks, including Replay Attacks, Packet
Tampering, and Denial of Service (DoS) attacks. The preceding analysis sug-
gests that protocol analysis-based IDS systems predominantly employ misuse-
based intrusion detection techniques. However, the comprehensive analysis of
all packet contents during detection can hinder IDS efficiency. Consequently,
researchers propose combining misuse-based and anomaly-based techniques
to enhance intrusion detection mechanisms for ICS. Y. Yang et al. (2013) pro-

posed a method that initially employs misuse-based detection technology to
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compare observed system behaviour against intrusion patterns within a data-
base, enabling rapid identification of known attacks. Subsequently, anomaly-
based technology is utilized to scrutinize the remaining data for the detection of
unknown attacks. The experimental results have proven that these approaches
are highly effective in improving the accuracy and efficiency of ICS IDS de-
tection. In addition, the effectiveness of intrusion detection can be greatly en-
hanced by combining protocol analysis-based IDS with traffic analysis. The
improvement in intrusion detection accuracy can be achieved by transferring
the rules extracted from communication patterns outlined in the specifications
of protocols in ICS network traffic and specific business logics to the traffic
analysis module. Hadeli et al. (2009) presented an intrusion detection scheme
for power systems based on this approach. By extracting network traffic pat-
terns from predefined protocol specifications and formal system descriptions,
the scheme generates comprehensive traffic models encompassing both legit-
imate and illegitimate activities. For instance, the model flags anomalies in
two scenarios: when an Intelligent Electronic Device (IED) fails to transmit a
GOOSE control message is sent to a multicast address that doesn’t correspond
with the device’s Media Access Control (MAC) address. These extracted traffic
rules are then inputted into Snort and converted into Snort rules, enabling the
detection and reporting of any predicted but unobserved traffic. In their work,
Yusheng et al. (2017) introduced an innovative algorithm called Stereo Depth
Intrusion Detection System (SD-IDS) , designed for real-time deep inspection of
Modbus TCP traffic. The SD-IDS algorithm is composed of two primary com-
ponents, which are rule extraction and deep inspection. The rule extraction
module is primarily responsible for identifying and extracting semantic rela-
tionships between key fields within the Modbus TCP protocol. Conversely, the

deep inspection module leverages these extracted relationships, in conjunction
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with real-time traffic data, to perform effective anomaly or intrusion detection.

2.2.2 Traffic Mining Based IDS

Many intrusion detection systems (IDS) that rely on protocol analysis encounter
significant drawbacks, such as their limited ability to identify unknown attacks
and the extended time to analyse data packets. Researchers have been focusing
on the development of traffic mining-based intrusion detection techniques to
address these issues, albeit to some extent. One of the notable advantages of
this approach is the enhanced efficacy in identifying a broad range of unknown
attacks. One of the defining characteristics of ICS is that they have fixed oper-
ational objectives, meaning that their goals and objectives remain constant and
do not change. The stability of the ICS traffic is maintained by these charac-
teristics, resulting in a relatively stable flow under normal circumstances. The
significance of traffic data cannot be emphasised enough, as it serves as vital in-
formation that accurately reflects the security status of ICS. This opens up new
opportunities for the development and implementation of intrusion detection
technology based on traffic mining techniques. Traffic mining-based IDS sys-
tems gather data from various segments within ICS networks and employ data
mining techniques, including neural networks, decision trees, Bayesian classifi-
ers and other algorithms, to analyse the collected data. Alternatively, they may
utilise data analytic methods, such as statistical analysis, on the gathered data.
The primary objective is to identify and flag any anomalous behaviours within
industrial networks. In the study conducted by Yusheng et al. (2017) , a novel
approach for intrusion detection was introduced. This approach, which is fo-
cused on traffic mining, involves the extraction of several data elements includ-
ing the source and destination IP address, transport-layer protocol, source and

destination port, and the average time interval between adjacent packets. Us-
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ing data mining techniques then allow distinction between normal and abnor-
mal behaviours which supports the identification of various types of intrusions
such as Replay and Packet Tampering. In their study, Hou et al. (2012) intro-
duced a novel approach that focused on the utilisation of probabilistic Prin-
cipal Component Analysis (PCA) to identify abnormal network traffic patterns.
They identified that one of the main reasons for false alarms is the identification
of random burst traffic. Through the construction of a probabilistic Principal
Component Analysis (PCA) model for the traffic matrix, Hou et al. (ibid.) have
extensively analysed the influence of random burst traffic on PCA. An Iterative
Variational Bayesian algorithm was employed to estimate model parameters,
which were subsequently used to determine the distribution function of the
traffic matrix rank. Observed rank changes served as the primary metric for
detecting abnormal traffic within ICS. Experimental results demonstrated the
effectiveness of this method in mitigating the impact of random burst traffic
on intrusion detection. Artificial Neural Network (NN) are a powerful data
mining technique that simulates the cognitive processes of the human brain,
making them an effective tool for extracting valuable insights from data. In the
context of ICS, this technique is utilised to thoroughly analyse extensive data-
sets, resulting in the successful detection of intrusions that were previously
unknown. Neural Networks play a crucial role in traffic mining as they estab-
lish non-linear mapping relationships between various traffic features and the
security states of the system, whether it is normal or abnormal. This mapping is
achieved through rigorous model training. As a result, the data is classified by
these trained models, allowing for the effective identification of abnormal traffic
and malicious intrusions in ICS. Vollmer et al. (2009) conducted their work by
training a neural network model. During the training process, they extracted

various network traffic features, including packet size, Internet Control Mes-
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sage Protocol (ICMP) protocol ID, ICMP sequence number, ICMP code, ICMP
type, IP protocol ID, IP protocol option, and IP survival time. These features
were then used to construct input vectors for the model. Once the feature norm-
alisation process was completed, the error Backpropagation (BP) algorithm was
employed to train the neural network model. By extracting real-time network
traffic features during the detection phase, input vectors were formed. These
input vectors were then classified using the NN model, providing the capabil-
ity to detect attacks such as Denial of Service (DoS) and eavesdropping. In a
subsequent study, Linda, Vollmer et al. (2009) presented a novel feature vector
extraction technique based on a sliding window approach, enabling dynamic
and precise extraction of network features. The analysed features encompassed
the number of IP addresses within a packet sequence, the packet counts asso-
ciated with a single IP address, the average time interval between consecutive
data packets, window duration, data transmission speed, the count of observed
protocols within the window, and the total number of identification codes. Be-
sides this, the researchers employed a comprehensive method that effectively
combined the techniques of BP and Levenberg-Marquardt (LM) in order to
detect abnormal traffic, resulting in a satisfactory level of intrusion detection
accuracy.

Ashfaqetal. (2017) introduced a highly effective semi-supervised learning mech-
anism for Neural Networks (NN) that reduces the reliance on labelled data. The
initial step in the training process of this method involves establishing a fuzzy
classifier, which is implemented as a neural network model with randomly ini-
tialised weights. A small set of labelled data is used to train the fuzzy classifier.
Subsequently, the fuzzy classifier is employed to classify the unlabelled data,
yielding a membership vector as the final output. Each entry in the input vec-

tor represents the degree of belonging to a specific category. As a part of the
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model training phase, data that contains varying degrees of ambiguity is in-
corporated into the original training set. The fuzzy classifier is then retrained
using this mixed data.

The process of training a neural network model is time-consuming and requires
significant computing resources. In order to address this limitation, research-
ers proposed a fuzzy logic based approach (Linda, Manic, Vollmer and Wright
2011; Linda, Manic, Alves-Foss et al. 2011; Linda, Manic and Vollmer 2012).
The researchers in the study by Linda, Manic, Vollmer and Wright (2011) opted
to employ fuzzy rules for modelling the normal behaviour patterns exhibited
by ICS. By utilising an adjusted online nearest neighbour clustering algorithm,
it is possible to extract the fuzzy rules from the network packet sequence. Em-
bedded sensors can easily handle the computational demands of this learning
method, as it requires minimal computing resources. While performing the de-
tection process, the scheme utilises the outputs of multiple fuzzy rules to com-
pute the degree to which the input vectors align with normal behaviour pat-
terns, ultimately enabling the identification of intrusions. In order to enhance
the accuracy of intrusion detection, the researchers integrated TYPE-2 fuzzy lo-
gic into the model in their follow-up work(Linda, Manic, Alves-Foss et al. 2011).
The integration aimed to mitigate the detrimental impact of uncertainties on
overall system performance while enhancing the accuracy of network security
status monitoring by sensors. Linda, Manic, Alves-Foss et al. (ibid.) developed
a TYPE-2 fuzzy logic-based IDS to incorporate domain knowledge into spe-
cific industrial environments and network systems. The IDS aimed to establish
correlations between intrusion likelihood and network communication charac-
teristics. Experimental results indicated that the architecture enables adaptive
algorithm threshold adjustments to enhance the intrusion detection accuracy.

It is important to note that SVM was utilised by several researchers in intrusion
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detection for ICS. Through the application of kernel functions, linearly insep-
arable traffic data could be mapped into a higher-dimensional feature space.
Following that, they built a super-plane which was highly effective at distin-
guishing between behaviours that were normal and those that were abnormal.
In their study, Maglaras and J. Jiang (2014) introduced an intrusion detection
algorithm for ICS that utilises the One-Class Support Vector Machine (OCSVM)
technique. The exceptional aspect of this algorithm lies in its ability to be
trained offline, with no labelled training data or any prior knowledge of attack
categories, which makes it truly unique. This method can create traffic models
for multiple protocols, enabling the detection of various intrusion behaviours
targeting ICS systems. Some examples of such behaviours encompass Man-in-
the-Middle attacks as well as SYN Flood attacks. While the traditional SVM
approach can effectively classify normal and abnormal behaviours, it falls short
in accurately classifying the specific anomalies. Consequently, Luo (2013) de-
vised a method for intrusion detection that relies on multi-class SVM, in which
several SVM classifiers are integrated to accurately identify the category of an
intrusion. In their study, Javaid et al. (2016) introduced a novel deep learning
technique for effectively differentiating between normal and abnormal traffic
data. The initial stage of this process involves the utilisation of a sparse auto-
encoder, which is a method employed for unsupervised learning. The unsuper-
vised learning network is composed of three layers, namely the input layer, the
implicit feature layer, and the output layer. The output layer’s ability to accur-
ately reproduce the input data can be improved by making adjustments to the
network parameters. Subsequently, the training features and the labelled data
are employed in the training process to train the classifier, ultimately leading
to the successful completion of classification tasks.

A unique algorithm was proposed by Aghdam et al. (2016) which selected net-
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work traffic features for intrusion detection using colony optimisation which
mimics the behaviour of ant colonies. By removing unnecessary or invalid fea-
tures, this algorithm significantly improves both the efficiency and accuracy
of intrusion detection. This algorithm distinguishes itself from traditional IDS
methods by detecting a larger number of attacks and minimising the computing
workload. Tsang et al. (2005) developed a carefully planned multi-agent archi-
tecture to address the intricate challenge of detecting and defending against
intrusions in extensive switching networks. The utilisation of the improved ant
colony clustering model, a highly effective biological heuristic learning model,
by the authors in this architecture improved the overall efficiency of the sys-
tem. Using a heuristic search technique in this model helps to generate clusters
that are approximately optimal using nearest neighbour, with a specific focus
solely on the normal data. The primary goal of this procedure is to identify
and extract clusters, which can be further converted into fuzzy rules. Each
cluster corresponds to a fuzzy rule in a one-to-one manner. Then, the test data
is processed through a series of fuzzy rules to gauge its similarity to regular
behaviour. Kiss, Béla Genge et al. (2014) organised and used the data gathered
from ICS in a timely manner in their study , where they suggested a unique
intrusion detection method that employs clustering algorithms to efficiently
detect possible attacks on ICS. The researchers, Caselli, Zambon, Petit et al.
(2015) and Caselli, Zambon and Kargl (2015), uncovered a crucial finding about
network traffic attacks in their study. More specifically, the researchers found
a new form of attack called sequence attacks that had not been known until
now. These attacks primarily revolve around the sending of incorrect messages
through industrial communication systems. The primary objective is to disrupt
the field devices intentionally, causing malfunctions and potentially impacting

the physical processes they regulate. The recommended strategy for identify-
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ing sequence attacks involves converting network traffic traces into event lists
that are organised chronologically. Next, the expected patterns of communica-
tion sequences are represented using a model called the Discrete Time Markov
Chain (DTMC). The last stage comprised analysing traffic data using the DTMC
model, which aided in detecting sequence attacks. As stated by Ferling et al.
(2018), the author believed that managing sequence-aware intrusion detection
models can be a complex task because of their large size, leading to the neces-
sity of time-consuming traffic analysis. As a result, they suggested a method
that includes building smaller traffic models. These models are created by mer-
ging multiple states in the DTMC model. The only distinction between the
merged states is the range of Information Object Address (IOA)s utilised in the
IEC-104 protocol. The use of smaller models is a key factor in achieving effect-
iveness in reducing complexity and maintaining detection accuracy for most
sequence attacks. The vulnerability of the Modbus TCP protocol to cyber at-
tacks, as explained by Marsden et al. (2018), is primarily because of the lack
of encryption and authentication. To address this issue, the authors proposed
a potential solution known as the Probability Risk Identification-based Intru-
sion Detection System (PRI-IDS). This system is specifically designed to detect
and identify replay attacks by effectively analysing Modbus TCP/IP network
traffic. The method involves assigning predefined risk values to traffic data as
the initial step. Afterward, certain time intervals of the data are stored in cache,
and risk values are calculated for those stored intervals. The system detects po-
tential replay attacks by identifying cached periods with risk values that differ
by over 1 standard deviation from the average value. The study conducted by
Dong et al. (2018) introduces an intrusion detection approach for industrial
networks, which relies on traffic feature maps. The extraction of salient traffic

characteristics leverages information entropy to generate traffic feature vectors.
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Subsequently, a multiple correlation analysis is performed on these vectors to
establish a comprehensive relationship map between the features. The Discrete
Cosine Transform (DCT) and Singular Value Decomposition (SVD) approaches
are then applied to create a database of perceptual hash digests for both nor-
mal and abnormal traffic feature maps. Finally, intrusion detection rules are
extracted from this database. This method effectively models the periodic pat-
terns observed in industrial network traffic, transforming textual traffic data
into valuable numerical information and providing innovative solutions for ICS

IDSs.

2.2.3 Process analysis based IDS

Process analysis-based IDSs leverage the information and unique characterist-
ics of ICS for intrusion detection, distinguishing them from IDSs designed for
conventional IT systems. This category encompasses techniques such as control
command analysis-based, process data analysis-based, and ICS physical model-

based IDS.

2.2.3.1 Command Analysis Based IDS

Within ICS, control commands constitute a critical element, along with other
essential components. In order to achieve their attack objectives, adversaries
have manipulated the control commands. One effective method for detecting
intrusion behaviours in ICS is to analyse control commands. Carcano, Fovino
et al. (2010) presented an innovative technology for IDS in their research. Their
approach involved creating a brand new language that was specifically de-
signed to describe and communicate accurately the power grids’ commands.

This study outlined the detection features employed by this innovative IDS
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technology. Subsequently, the approach utilized two distinct techniques for
Modbus packet analysis. The initial method involved using a single packet
signature-based approach, wherein the identification of unauthorised packets
sent by PLCs or Remote Terminal Unit (RTU)s was accomplished by analys-
ing the meaning of control commands. An alternative approach, known as the
state-based strategy, prioritised monitoring the states of ICS in order to detect
intrusions, as the system could be pushed into critical states by invalid con-
trol commands. Similarly, H. Lin, Slagell, Kalbarczyk et al. (2013) introduced
a methodology focused on distributed ICS for conducting semantic analysis on
control commands. By leveraging prior knowledge of network and physical in-
frastructure in power grids, this technique can expect the repercussions of con-
trol commands and thus unveil the intentions of potential attackers. Within
the semantic analysis framework, one crucial component is the analysis of net-
work packets from ICS using Bro, which allows for the extraction of control
commands. The initial observation from the proposed approach was that an at-
tacker can circumvent the conventional IDS and exert control over the system’s
critical state by merely opening three outgoing lines. Furthermore, the study
provided empirical support for the time saving and reliable intrusion detection

advantages obtained by conducting semantic analysis on control commands.

2.2.3.2 Process Data Analysis Based IDS

Intrusion detection systems (IDS) employing control process analysis leverage
the semantic information and unique characteristics of ICS for effective intru-
sion detection, differentiating them from IDS designed for traditional IT sys-
tems.

W. Gao et al. (2010) conducted research and categorised three types of attacks

that can be directed towards ICS: response injection, Denial of Service (DoS),
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and command injection. These researchers suggested a method for monitor-
ing behaviour that uses a model of an artificial neural network and includes
information about the physical properties of the system being controlled. The
primary purpose of adopting this method is to ensure the accurate identific-
ation and effective mitigation of any potential response injection attacks. The
proposed approach clearly indicated that artificial neural network is a powerful
mechanism for detecting response injection attacks.

The study conducted by Carcano, Coletta et al. (2011) involved the utilisation
of different process variables to characterise the system state. To achieve their
objective , they have utilised a formal modelling language for their proposed
state based intrusion detection. Their novel intrusion detection technique, pre-
dicated based on the evaluation of the differences between the current system
state and critical system states. While the modelling language primarily used
for the Modbus protocol, it could be readily adapted to encompass other in-
dustrial protocols. The system provides a virtual representation of the phys-
ical system for the IDS, enabling comprehensive monitoring of both environ-
ments. Moreover, the language encompasses definitions of critical states, mul-
tiple danger levels for ICS, and methodologies for quantifying the disparities
between system states. During the detection process, the proximity between
the current state and critical states is computed to ascertain their relationship.
If the proximity exceeds a predetermined threshold, an alert is generated.
Through the analysis of the semantic elements of process variables, HadZiosmanovié¢
et al. (2014) discovered a method to identify intrusions in ICS.To accomplish
this task, they follow a three-step method, starting with the extraction of the
value of the current process variable from network traffic. Using these features
they designed a model that successfully detects control process-related intru-

sions. The authors showed their plans to strengthen their intrusion detection
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efforts by gathering more specific contextual information. One way to achieve
this is by delving into a broader array of structural protocols and system con-
figuration files.

In the study conducted by Krotofil et al. (2015), some argued strict adherence to
specific physical laws is required in order to maintain the values of industrial
process variables. The authors proposed an innovative method by running a
light attack mechanism on field device microcontrollers, enabling the manipu-
lation of process data. The attack mechanism extracted the noise characteristics
from the process value patterns of the field devices. Based on the captured noise
characteristics and the identified pattern, the attack mechanism can produce a
series of values that are deceptive yet appear credible, serving as a substitute
for the genuine process variable values. The authors have presented a cluster
entropy-based detection method. This method can effectively confirm the lo-
gical flow and progression of the value patterns linked to a relevant process
variable and identifies intrusion behaviour.

The research conducted by Kiss, Bela Genge et al. (2015) suggests employing
a Gaussian Mixture Model (GMM) to identify attacks targeting data trans-
mitted to PLCs. This scheme utilises the GMM to perform data clustering.
The Expectation-Maximisation (EM) algorithm is at the heart of the training
process, shaping its methodology. The most accurate classification for each
measurement is obtained only through a thorough examination and extensive
analysis. Observations that deviate from the typical clusters are identified as
outliers and evaluated accordingly. Abnormal clusters typically exhibit much
lower data densities compared to normal clusters. A soft-classification model
like the GMM can provide the confidence level of the association between each
measurement and a specific cluster. It can be deduced from the experimental

results that the GMM is more successful at identifying intrusions on ICS com-
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pared to traditional k-means clustering algorithms. Colbert et al. (2016) in-
troduced a method for detecting intrusions in ICS that specifically targets the
control process. In order to enhance the capabilities of the traditional ICS IDS,
two detection methods were proposed that specifically target control processes.
The main difference between this mechanism and traditional anomaly-based
IDS lies in its emphasis on the key role of the man in the loop to define the
process variables in an ICS. A positive aspect of having the operator is their
specialised knowledge of the nuances of ICS. The regular monitoring of critical
process variables guarantees the timely detection of any deviations beyond their
thresholds. When this event happens, an alarm sends a notification, promptly
alerting the relevant individuals to take the necessary actions. The authors pro-
posed a technique for identifying intrusions by analysing the process network
parameters, which are determined through collaboration between the network
engineer and the ICS operator. The existence of these parameters may imply
the absence of critical control elements or an exceptionally large amount of
traffic, both of which are not commonly found in typical industrial settings. Al-
though the critical process variables may indicate significant issues, it is crucial
to acknowledge that the process network parameters can still trigger alerts for
potential malicious system behaviours.

In their study, Moya et al. (2018) shed light on the emergence of Monitoring-
Control Attack (MCA) , a type of attack that is highly dangerous and poses a
significant risk to ICS. Fabricating sensor measurements plays a crucial role in
these attacks as they are utilised to manipulate control signals in a feedback
loop. MCAss are highly likely to occur because of their low cost and their ability
to cause considerable damage to ICS. It’s difficult to identify MCAs since they
often hide within normal sensor data. In this article, an extensive study was

conducted to devise a semantic analysis framework for intrusion detection sys-
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tems (IDS) in power grids. The main objective of the framework was to address
efficiently the risks associated with Monitoring-Control Attacks (MCAs). The
framework is made up of two modules, the Correlation Index Generator (CIG)
and the Correlation Knowledge Base (CKB), which work together at the same
time. The first one is mainly used for indexing related MCAs, while the second
one is regularly updated based on changes in attacks’ Correlation Indices (CI),
serving different functions. The framework has advanced features that enable
it to accurately identify and detect malicious cyber attacks (MCAs) and provide

immediate estimates of the possible impact of these attacks.

2.2.3.3 Physical Model Based IDS

A physical model can effectively represent the evolution of an industrial con-
trol system. Integrating a physical model with prediction mechanisms enables
accurate forecasting of expected system outputs (Patton 1995). Comparing ob-
served system outputs with expected values generates a residual series. Stat-
istical analysis of this residual series facilitates intrusion detection. Under nor-
mal operating conditions, system residuals typically approach zero. However,
during an attack, observed outputs deviate significantly from initial expecta-
tions. The behaviour of ICS was represented by Cardenas et al. (2011) using
a state-space model that incorporates approximate linearity. The model sug-
gests that a system’s current state is a function of its previous states and control
inputs. Utilizing the constructed state-space model enables real-time predic-
tion of sensor measurements. Subsequently, observed sensor data is compared
against these predictions, and the resulting residuals are used to detect mali-
cious attacks targeting the ICS. The authors proposed two detection methods:
sequence-based and change-based detection. Sequence-based detection, draw-

ing from optimal stopping theory in sequence analysis, aims to rapidly identify
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anomalies by determining the minimum sequence required for detection. Con-
versely, change-based detection focuses on identifying potential changes with
uncertain timing by comparing residuals or accumulated residuals against a
predefined threshold to detect shifts from normal to anomalous states. Sridhar
et al. (2014) developed a model that aimed to enhance the security of smart
grids. This model integrated knowledge from power systems to create an in-
trusion detection and mitigation mechanism. By utilising this mechanism, the
model was able to identify various attacks, including data injection, by fore-
casting the generation load. Y. Liu et al. (2011) identified a novel data injection
attack targeting state estimation in power networks. This attack involves the
systematic injection of false data into the system, aiming to induce a system
crash. However, the attacker closely monitored the volume of the injected data
, maintaining it below the threshold and enabling them to evade the stateless
intrusion detection mechanism. This marks the initial stealthy attack against
ICS. Since then, there has been a rise in stealthy attacks across a range of indus-
trial control scenarios, for instance, chemical process control (Cardenas et al.
2011) and industrial wastewater treatment (Amin et al. 2012).

The study by Urbina et al. (2016) concluded that current intrusion detection
technology lacks effective detection capability for stealthy attacks. This article
focuses on the authors’ research into reducing the consequences of stealthy at-
tacks. Although it may be difficult to detect these attacks, their effects can be
partially minimised by correctly configuring different detection methods and
metrics. Theoretical analysis and experimental validation have confirmed that
the detrimental effects of stealthy attacks can be mitigated by employing Urbina
et al. (ibid.) newly introduced metrics: ”“the expected time interval between
false alarms and the maximum deviation a stealthy attack can cause”. These

metrics quantify the impact of stealthy attacks. Further research on stealthy
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attacks has focused on their execution within specific ICS systems (Kleinmann
et al. 2018) or the investigation of their consequences on more complex systems
(Kung et al. 2016). However, the urgency to identify stealthy attacks on ICS
continues to be a pressing concern for further investigation. In their study, Tian
et al. (2018) examined a more advanced scenario of false data injection (FDI)
attacks, specifically concentrating on the estimation of the state model in smart
grids. The researchers focused on determining if the adversary could identify
the implementation of Moving Target Defence (MTD) against FDI before ini-
tiating their attack. Their research presents and categorises this specific vari-
ant of FDI attacks. They developed a hidden MTD approach that successfully
makes itself undetectable to potential attackers, enhancing the stealthiness of
MTD even more. By employing a hidden MTD, adversaries can be tricked into
initiating ineffective attacks, ultimately increasing the probability of their be-
ing discovered. It was determined that the concealed MTD can manage the
power distribution of the entire grid, just like the conventional MTD. Myers et
al. (2017) highlighted that ICS typically enforce strict task execution order and
quantity, resulting in unique task flows for each control system. Consequently,
they proposed an ICS attack detection method based on process mining. This
method extracts a control process model for the ICS by monitoring and analys-
ing control device log files. Subsequently, it employs consistency detection to
identify abnormal system behaviour that deviates from the constructed process
model. Furthermore,Samara et al. (2024) pointed out that detecting malware
in IToT-based ICS is becoming more and more dependant on deep learning, and

reinforced the need to integrate modern AI techniques into IDS research.
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2.3 ML Application in IDS in IDS

Machine learning techniques are widely employed in the development of cy-
bersecurity solutions for ICS. The main goal of these methods is to identify
network intrusions by analysing packet information from network traffic or de-
tecting anomalies in physical processes using data that represents the system’s
physical behaviour. The classification of machine learning and deep learning
techniques can be divided into four major categories: Supervised Learning, Un-
supervised Learning, Semi-Supervised Learning, and Reinforcement Learning.
The majority of the current literature on intrusion detection focuses on the ini-
tial two domains. The fundamental distinction between these approaches lies
in their utilisation of labelled training data. Unsupervised approaches exclus-
ively rely on the normal behaviour exhibited by the ICS, thereby eliminating the
need for labelled data.The implementation of this approach requires training
clustering algorithms (e.g. k-means, DBSCAN) with normal process behaviour
data e.g. stable Modbus traffic patterns and expected PLC command sequences.
Any anomaly that deviate from these cluster identify potential intrusions such
as false data injection and unauthorized PLC reprogramming. In supervised
methods, the training data contain both normal and abnormal (attack) beha-
viours. By employing semi-supervised techniques, one can make use of both
labelled and unlabelled data, taking into account the fact that labelled training
data is restricted, whereas unlabelled data is abundant and readily accessible.
The dynamic nature of cyber threats and the continuous advancements in ma-
chine learning techniques employed to enhance the security of ICS are worth
mentioning. Additionally, the ongoing efforts in research and development are
crucial in addressing the difficulties arising from the limited availability of la-
belled training data and in discovering new methodologies that can easily ad-

just to the dynamic nature of cyber threats in industrial settings.
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Every one of the approaches mentioned earlier has its own merits and limita-
tions. The use of unsupervised learning enables the detection of zero-day at-
tacks without the requirement for labelled training data, thereby eliminating
the reliance on attack data. One notable disadvantage is its inclination to gen-
erate a high number of false alarms ((Nader et al. 2014a; Nader et al. 2014b)).
Nevertheless, supervised learning algorithms offer greater reliability in detect-
ing attacks, albeit necessitating labelled data encompassing both normal and
attack instances. Regardless of this requirement, a supervised approach can ac-
curately detect additional instances of attacks with only a few examples. The
study conducted by Junejo and D. Yau (2016) demonstrated that supervised al-
gorithms outperformed other classifiers, exhibiting high precision and recall
rates while minimising false positives. Nevertheless, it is crucial to acknow-
ledge that these methods may not effectively identify zero-day attacks. Within
the field of IDS for ICS, there is a subset of techniques that has received as little
focus, including one-shot learning (D. Wu et al. 2012), (Krishnan et al. 2015)
and zero-shot learning (Romera-Paredes et al. 2015), (Socher et al. 2013). When
discussing machine learning, the concept of “"one-shot learning” describes a
scenario where the labelled training data includes just one instance of each at-
tack type. Zero-shot learning is particularly difficult due to the lack of labelled
training data that contains specific attack instances. Attacks that fall under
the category of zero-day attacks are those that are not available training data.
Hence, the effectiveness of this learning approach depends on its capacity to de-
tect zero-day attacks and leverage knowledge obtained from previous attacks.
This approach offers a practical technique for ICS that has the potential to yield
fewer incorrect detections when compared to unsupervised methods. Lever-
aging data from known attacks that can be safely simulated within a controlled

ICS environment it has the ability to identify zero-day attacks. Hence, zero-
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shot learning emerges as a promising strategy for intrusion detection systems
(IDS) in ICS, effectively fusing supervised and unsupervised methodologies to

accomplish favourable results.

2.3.1 Supervised ML Techniques

Supervised Learning employs labelled training data to construct predictive mod-
els. Each training instance consists of a feature vector, denoted as x, and a
corresponding class label, y. The goal of Supervised Learning algorithms is
to learn a function, f, that accurately maps input features to their respective
classes. Once trained, the model can predict labels for unseen test data. Super-
vised Learning techniques are broadly categorized into classification and re-
gression. Classification tasks involve discrete class variables, while regression
deals with continuous ones. IDS are often modelled as classification problems,
where the class variable represents the presence or absence of attacks. More
specifically, The supervised IDS methods in ICS environments use classifica-
tion techniques to identify normal network traffic or sensor data versus specific
attack types such as replay and command injection. = One-Class Classifica-
tion (OCC) pertains to scenarios with only one class label. Traditional statist-
ical approaches, utilizing metrics like mean and standard deviation, have been
employed for behaviour-based IDS (Kwon et al. 2015) and (D. Yang et al. 2006).
However, these methods suffer from limitations in automation and scalability
due to their parametric nature. Defining statistical tests for complex systems
with numerous interdependent sensors and actuators is challenging and may
result in unacceptable false positives. In contrast, Machine Learning (ML) and
Deep Learning (DL) offer non-parametric alternatives that exhibit greater auto-

mation potential and technique diversity. ML approaches can be grouped into
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discriminative/conditional, generative, and tree-based methods, each with its

own strengths and weaknesses.

2.3.1.1 Discriminative/Conditional Approaches

* Support Vector Machines (SVMs): These linear, non-probabilistic bin-
ary classifiers project data points onto a higher-dimensional feature space
and construct a hyperplane to separate the two classes. SVMs are known
for their robustness in classification tasks, including IDS (Ahmad et al.
2014). In ICS,, SVM have been used to detect malicious manipulation of
sensor data and abnormal network traffic pattern, for example Agrawal
et al. (2018) trained SVM on process variable rates of change to identify
abnormal behaviour in industrial processes, while Hink et al. (2014) used

SVM to classify disturbances in smart power grids.

* Neural Networks (NNs): NNs excel in estimating functions with numer-
ous input variables. They consist of input, output, and hidden layers,
trained to learn non-linear decision boundaries for class separation. NNs
have found applications in IDS ((Al-Jarrah et al. 2015)). In ICS, NNs
are particularly effective at capturing the non-linear relationship between
sensor readings and control states. Vollmer et al. (2009) showed that NNs
trained on Modbus network traffic features could identify stealthy attacks
in power system ICS, while more recent works apply NNs to SCADA data
streams for detecting anomalies in chemical and water plants Raman et al.

(2020), Abdelaty et al. (2021) and Boateng et al. (2022)

 Instance-based Learning: These algorithms classify new instances based

on their distance to existing instances in the training dataset. They are
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considered lazy learning algorithms and have been applied to IDS (Palécios
et al. 2013; Muda et al. 2011; Kumar et al. 2013). In ICS, K NEAREST
Neighbour (K-NN) has been used for process level datasets (Goh, Adepu,
Tan et al. 2017), where abnormal sensor values and control commands
could be effectively identified by comparing them with historical normal
states. This makes instance-based methods suitable for ICS datasets that

display recurring operational patterns.

* Multinomial LR: Similar to linear regression but assumes a Bernoulli dis-
tribution for the dependent variable. LR uses the logistic function for
prediction, generating probabilities to quantify relationships between de-
pendent and independent variables. While LR can benefit from larger
feature sets, its efficacy in IDS remains limited (Tsai et al. 2009). In ICS,
logistic regression has been employed for binary classification of attack
vs. normal behaviour in SCADA traffic. Although its performance is often
outperformed by tree-based or deep learning methods, its interpretability
provides value in critical infrastructure contexts where transparency of
decision-making is important for operators (Hindy et al. 2018; Dev et al.

2024).

2.3.1.2 Decision Tree-Based Approaches

Decision tree algorithms are characterized by their interpretability, represent-
ing decision rules as IF-ELSE structures. They construct a tree-like hierarchy,
with internal nodes representing tests on features, branches representing test
outcomes, and leaves denoting class labels. In ICS, Decision Tree have been
used to detect malicious commands and process deviations by learning decision
rules from SCADA datasets. For example, Junejo and D. Yau (2016) used De-

cision Tree to classify cyberattacks targeting process sensors, demonstrating its
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ability to capture attack patterns specific to industrial processes.

* Random Forest (RF): An ensemble learning technique that builds mul-
tiple decision trees using random subsets of features, improving robust-
ness against over-fitting (Breiman 2001). RF models have been widely
adopted in ICS due to their robustness against noisy sensor and traffic
data. Hink et al. (2014) demonstrated that RFs effectively distinguish
between natural disturbances and cyberattacks in power grid ICS, high-

lighting their suitability for mixed physical and network-level data.

* Applications in IDS: Decision tree algorithms have shown success in network-
level IDS ( (Sahu et al. 2015; Hasan et al. 2014)). Ensemble methods like
AdaBoost and XGBoost have also been employed for intrusion detection
in IoT networks (Moustafa et al. 2018), in ICS security, ensemble methods
such as AdaBoost and XGBoost have been shown to outperform single
classifiers by combining weak learners across diverse SCADA datasets.
For instance, Kravchik et al. (2018) applied boosting-based ensembles on

process data, achieving high accuracy in detecting cyber attacks.

2.3.1.3 Generative Approaches

Generative approaches predict class membership based on the probabilities of

an object belonging to a particular class.

* Bayesian Networks (BayesNet) and Naive Bayes (NB): These Bayesian
classifiers are commonly used in IDS (Koc et al. 2012; Xiao et al. 2014).
NB assumes attribute independence given the class value, making it scal-

able for high-dimensional data. BayesNets, represented as directed acyc-
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lic graphs, capture dependencies between variables and are more suitable

when attributes exhibit interdependencies (Friedman et al. 1997).

* Applications: Bayesian networks have been used with Radio Tomographic
Imaging (RTI) for anomaly detection (Q. Lin et al. 2018). In ICS security,
Bayesian Networks have been used to model probabilistic dependencies
between process variables, SCADA commands, and potential intrusion
events. For instance, Q. Zhang et al. (2017) proposed a fuzzy probabil-
ity Bayesian Network for dynamic cybersecurity risk assessment in ICS,
demonstrating its effectiveness in reasoning about uncertainties inherent
in both cyber and physical process data. Naive Bayes has been employed
alongside other algorithms to enhance virtual machine security (Kumara
et al. 2018).In ICS, Naive Bayes has been used for process anomaly de-
tection by learning probability distributions of sensor data. For example,
Junejo and D. Yau (2016) applied NB on ICS dataset to classify process at-
tacks, demonstrating that lightweight generative models can still achieve

effective detection in resource-constrained industrial environments.

Building upon these methods, V et al. (2025) evaluated ML approaches for cy-
berattack mitigation in ICS and found that supervised classifiers remain effect-

ive but struggle with generalisation across evolving attack types.

2.3.1.4 Deep Learning Based Supervised Learning Approaches

Deep learning, an extension of ML, enables Neural Networks (NNs) to auto-
matically learn complex feature representations from data. This learning tech-

niques has been studied in the anomaly and intrusion detection in ICS (Illy et
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al. 2022; Prasanna et al. 2023; Nie et al. 2024).

* Convolutional Neural Networks (CNNs): Highly effective in visual im-
age analysis, CNNs address over-fitting issues associated with fully con-
nected networks like MLP. They leverage hierarchical patterns in data to
learn complex patterns from simpler ones. CNNs have been used for clas-
sifying PLC programs using PMU data (Stockman et al. 2019), keystroke
detection using mobile phone sensor data (Giallanza et al. 2019), anom-
aly detection using thermal imaging (Amrouch et al. 2017), and. In ICS,
CNNs have been employed to analyse time-series data and raw SCADA
signals. Kravchik et al. (2018) demonstrated that CNNs could detect mul-
tivariate anomalies in the SWaT water treatment testbed, outperforming

classical ML methods in identifying stealthy cyber-physical attacks.

* Recurrent Neural Networks (RNN)s): Designed for sequential data, RNNs
possess edges that traverse time steps, enabling them to capture temporal
dependencies. They have been used for vehicle cybersecurity (Loukas et
al. 2017) and speech recognition (Ferndndez et al. 2007) and detecting
distributed Denial of Services Attacks in IoT-enabled ICS (Varghese et al.
2024). Long Short Term Memory (LSTM), a specialized RNN, has shown
promise in intrusion detection, fault management, and anomaly detection
in various applications (Zizzo et al. 2019; Ieracitano et al. 2020; Ariharan
et al. 2019; Y.-Q. Li et al. 2020; Hussain et al. 2024). In ICS anomaly
detection, RNNs and particularly LSTMs are well-suited for modelling
sequential process data and control signals Inoue et al. (2017) applied
LSTMs on the ICS dataset, showing that they effectively capture temporal
dependencies in sensor readings to detect cyberattacks on water treatment

processes.
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* Autoencoder: Supervised Autoencoders are often trained with labelled
normal and attack samples, where the reconstruction error is used as a
discriminative feature to classify inputs as benign or malicious. This al-
lows autoencoders to capture complex feature representations of ICS data
streams, improving the detection accuracy of known attack types. Au-
toencoders have been widely adopted for ICS intrusion detection due to
their ability to learn compact representations of normal operation. Gau-
thama Raman et al. (2020) applied deep autoencoders to SCADA data
from a water treatment plant, successfully identifying anomalies linked

to cyberattacks.

2.3.2 Unsupervised ML Techniques

This section explores various unsupervised machine learning techniques and
their applications in anomaly detection, particularly within the context of ICS

and cybersecurity.

2.3.2.1 Centroid-Based Clustering

This technique revolves around central vectors, not necessarily belonging to the
dataset, that define cluster centres. Data points are assigned to clusters based on
their proximity to these centres. K-means, a popular centroid-based algorithm,
requires predefining the number of clusters (k). Several studies highlight its

applications:

* K-means and variants: These methods, are widely used in ICS intru-

sion detection because of their efficiency in grouping process and net-
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work data without requiring labelled datasets. These approaches are well-
suited for SCADA and ICS datasets, where distinct operational states can
be clustered to identify abnormal behaviour. For example, Bhattachar-
jee et al. (2018) applied K-means clustering to detect compromised smart
meters in Advanced Metering Infrastructure (AMI), while Demertzis et
al. (2020) used fuzzy C-means to develop a resilient intrusion detection
system for critical infrastructures. Similarly, Alves et al. (2018) com-
bined K-means with Local Outlier Factor (LOF) to enhance PLC security in
ICS environments. In wireless ICS contexts, W. Liu et al. (2014) demon-
strated how K-means applied to channel state information could distin-
guish between legitimate and malicious users. These studies highlight
the adaptability of centroid-based clustering to ICS-specific anomaly de-
tection challenges. furthermore, Ruslan et al. (2025) extended clustering-
based strategies to review Al-driven clustering protocols for IoT and IloT
environments which showed their potential for unsupervised anomaly de-

tection in ICS where labelled data is scarce.

2.3.2.2 Distribution-Based Clustering

This statistical technique groups objects based on their underlying probability
distributions, making it suitable for modelling uncertainty in complex data-
sets. However, it is prone to over-fitting if model complexity is not carefully

managed.

* Gaussian Mixture Models: In ICS, GMMs have been applied to capture
the probabilistic behaviour of process and SCADA data. For instance,
Kiss, Bela Genge et al. (2015) applied GMMs to PLC sensor data to de-
tect stealthy cyberattacks, while Y. Zhang et al. (2011) demonstrated their

effectiveness in identifying false data injection in smart grid networks.
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These studies highlight GMMSs as powerful tools for anomaly detection in
ICS, outperforming traditional k-means clustering in scenarios involving

subtle attacks.

2.3.2.3 Density-Based Clustering

This approach focuses on separating regions of high data density from sparser
areas, aiding in noise reduction and decision boundary establishment, making

it effective for anomaly detection in noisy environments.

* Density-Based Spatial Clustering of Applications with Noise (DBSCAN):
In ICS, DBSCAN and its variants have been widely used to detect cy-
berattacks in SCADA and smart grid systems. For example, Almalawi,
Fahad et al. (2016) applied DBSCAN to detect intrusions in SCADA sys-
tems, showing superior accuracy compared to k-means. Similarly, Otoum
etal. (2017) proposed an enhanced DBSCAN to mitigate false negatives in
smart grid intrusion detection, while Sharma et al. (2023) combined PCA
and DBSCAN to identify false data injection attacks in power grid ICS.
Moreover, Celik et al. (2011) utilised DBSCAN, for anomaly detection on
temperature data and Abid et al. (2017) proposed use of DBSCAN Out-
lier Detection (DBSCAN-OD), a DBSCAN variant, for outlier detection in
noisy environments. These works underscore DBSCAN’s utility in distin-
guishing between normal operations and malicious activity in industrial

environments.
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2.3.2.4 Hierarchical Clustering

Also known as connectivity-based clustering, this method establishes a hier-
archical structure of clusters. It encompasses two primary categories, Agglom-
erative Clustering or bottom-up or Divisive Clustering or top-down, making

it suitable for datasets where hierarchical structures exists.

 In ICS security, hierarchical clustering has been applied to group anom-
alies in both network traffic and process data. For example, Ghaeini et
al. (2016) introduced HAMIDS, a hierarchical intrusion detection system
for ICS, where distributed anomaly detectors are structured in a layered
fashion. Similarly, Bukharev et al. (2022) applied hierarchical cluster ana-
lysis to ICS data exposed to cyberattacks, enabling detection of abnor-
mal states in operator stations and SCADA traffic. Ren et al. (2018) fur-
ther demonstrated a multi-level approach (EDMAND) for anomaly detec-
tion in SCADA networks, using hierarchical grouping of anomalies across

communication layers.

2.3.2.5 Association Rule Mining (ARM)

ARM uncovers relationships within datasets by identifying frequent patterns
and correlations between features. This characteristic makes it suitable for un-
covering hidden relationships in operational data.It has been applied in IDS for

detecting frequent attack patterns and invariants in both IT and ICS contexts

e ARM: In ICS, ARM has been used to reveal critical states and invariants
that help distinguish normal and anomalous process behaviour. For ex-
ample, Khalili et al. (2015) applied the Apriori algorithm to identify crit-
ical system states, incorporating expert knowledge to improve intrusion

detection. Pal et al. (2017) explored ARM for generating invariants in
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a water treatment plant (SWaT), with subsequent extensions by Umer et
al. (2017) and Umer et al. (2020) and Mujeeb Ahmed et al. (2021) us-
ing FP-Growth for more scalable invariant mining in real-world ICS. Re-
cent research further strengthens the role of ARM in ICS intrusion detec-
tion. Mehmood et al. (2024) applied ARM in the generation of synthetic
cyber-physical attack samples to improve IDS training, while Samiah et
al. (2025)combined ARM with decision tree methods to extract process
invariants for anomaly detection in ICS. Together, these works highlight
ARM’s evolving role as both a foundational and modern approach for un-

covering structured, interpretable knowledge in ICS security.

2.3.2.6 Deep Learning Based Unsupervised Learning Approaches

Unsupervised deep learning techniques such as autoencoders, Generative Ad-
versarial Network (GAN)s, and Deep Belief Networks (DBN)s learn data rep-
resentations without requiring labelled training data. This makes them highly
attractive for ICS intrusion detection, where labelled attack datasets are scarce.
These methods can capture complex temporal and spatial correlations in both
network traffic and process data, enabling the identification of subtle and pre-

viously unseen cyberattacks.

* Autoencoder-Based Deep Clustering: Autoencoders are widely used for
representation learning, compressing input data into a lower-dimensional
latent space that preserves essential features. This latent space is then
clustered to identify anomalies or hidden patterns. Several frameworks
extend this principle: Deep Embedding Network (DEN) jointly optimizes
reconstruction and clustering objectives; Deep Clustering Network (DCN)
integrates k-means with deep representation learning, Deep Embedded

Regularised Clustering (DEPICT) improves stability through regulariza-
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tion and Deep Continuous Clustering (DCC) applies convolutional au-
toencoders to image-like data structures. These approaches have proven
effective in extracting robust embeddings for anomaly detection tasks. In
ICS contexts, autoencoder-based clustering has been applied to both pro-
cess data and SCADA traffic. Inoue et al. (2017) demonstrated stacked
autoencoders on the SWaT water treatment testbed for detecting false
data injection attacks. More recent work such as Aslam et al. (2024) re-
fined autoencoder-based anomaly detection for SCADA networks, redu-
cing false alarms, while Ruan et al. (2023) highlighted the utility of vari-
ational autoencoderss in smart grid cybersecurity. Collectively, these works
show that autoencoder-based clustering methods (DEN, DCN, DEPICT,
DCC) can be effectively adapted to ICS data, enabling unsupervised de-

tection of attacks and operational anomalies.

* GAN-Based Deep Clustering: GANs were originally proposed for data
generation, with a generator and discriminator competing to model com-
plex distributions. More recently, GANs have been adapted for deep clus-
tering, where the latent features learned by the discriminator can be par-
titioned into meaningful clusters. This makes GAN-based clustering at-
tractive for ICS intrusion detection, where labelled attack data is scarce
and operational data is high-dimensional.

In ICS, Perales Gémez et al. (2020) proposed MADICS, a GAN-driven
anomaly detection methodology that combined clustering analysis with
GAN representations to uncover hidden structures in ICS datasets. Bedeuro
Kim et al. (2023) evaluated MAD-GAN on widely used testbeds such as
SWaT and WADI, showing how GAN-based clustering separates normal
operational states from abnormal attack-induced states. Building on this,

J.-R. Jiang et al. (2022) applied GAN-based clustering to SCADA network
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traffic, successfully distinguishing between normal and attack flows without
prior labels. More recent frameworks, such as W. Shen et al. (2024) with
CluSAD, integrated self-supervised learning and GANs for SCADA-based
industrial IoT, reinforcing the effectiveness of GAN latent feature cluster-
ing in identifying anomalies across heterogeneous ICS data sources.
Collectively, these studies highlight GAN-based clustering as a promising
unsupervised learning approach for ICS anomaly detection, leveraging
adversarially trained latent spaces to improve detection of stealthy attacks

in SCADA and smart grid environments.

2.3.3 Semi-Supervised Learning

Semi-supervised learning combines limited labelled data with a larger pool of
unlabelled data, offering a middle ground between supervised and unsuper-
vised approaches. This is particularly relevant for intrusion detection in ICS,
where obtaining labelled attack data is costly, and in many cases impractical,
due to operational and security constraints. Early studies demonstrated the
feasibility of applying semi-supervised methods in intrusion detection, laying
the groundwork for their adoption for example Maglaras, J. Jiang and Cruz
(2014) introduced a distributed IDS composed of a cluster of OCSVM mod-
els that can precisely discern the origin and timing of an attack. Each model
was trained on a network traffic segment divided by packet source. Simil-
arly Huda, Abawajy et al. (2019) created a semi-supervised malware detection
model, utilizing data derived from both static and dynamic malware features.
They showed that this model outperforms its supervised equivalent in identi-
fying new malware.

Recent contributions highlight growing importance of Semi-Supervised Learn-

ing for ICS anomaly detection. Joshi et al. (2020) applied a semi-supervised
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approach to SCADA attack detection in a gas pipeline system, successfully com-
bining scarce labelled data with abundant normal traffic. Qi et al. (2021) intro-
duced a deep representation learning framework for smart grids, using semi-
supervised anomaly detection to capture cyberattacks in SCADA data streams.
Similarly, Loo et al. (2023) presented a semi-supervised detection method for
water storage ICS, confirming its capability against cyber-physical attacks.
Beyond single ICS domains, new frameworks extend to cross-domain and fed-
erated semi-supervised learning. Chen et al. (2022) developed a cross-domain
semi-supervised model to handle imbalanced ICS traffic, improving detection
generalisation. Aouedi et al. (2022) designed a federated semi-supervised learn-
ing architecture for industrial IoT and SCADA, reducing reliance on centralised
datasets. perales2023interpretable further advanced this by introducing an
interpretable semi-supervised anomaly detection framework, enabling trans-
parent decision-making in industrial contexts.

These works demonstrate that semi-supervised learning reduces reliance on
fully labelled datasets while enhancing resilience against evolving attacks in

ICS and SCADA environments.

2.3.4 Reinforcement Learning (RL)

Reinforcement Learning (RL), distinct from other machine learning techniques,
centres on an agent learning through interaction with an environment. The core
components of an RL system are the agent, the environment, and the reward
signal. The agent takes actions within the environment and receives rewards,
either positive or negative, based on the outcomes of those actions. This reward-
driven feedback loop drives the agent’s learning process. Unlike other machine
learning paradigms, RL does not necessitate a pre-existing dataset for training.

Several prominent RL algorithms include:
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1. Temporal Difference Learning (TD Learning): A model-free algorithm
that utilizes bootstrapping to train a model based on the current estimate
of the value function. TD learning samples experiences from the environ-
ment and updates its estimates accordingly (Barto et al. 1997). Qiao et al.
(2024) has studied the integration of advantage actor-critic reinforcement
learning with a long short-term memory network in improving security of

traffic signal control against last vehicle attack.

2. State-Action-Reward-State-Action (SARSA): An on-policy algorithm that
learns a policy by interacting with the environment and updating its es-
timates based on the rewards received for taking specific actions in spe-

cific states.

3. Q-Learning: A model-free algorithm that enables an agent to learn an
optimal policy for maximizing rewards. Q-learning does not require a
model of the environment and can handle stochastic transitions and re-
wards. Sangoleye et al. (2024) studied the application of various RL mod-

els including Q-Network for network intrusion detection in ICS.

RL has demonstrated its utility in various security applications. Barto et al.
(1997) employed RL for intrusion detection in a simulated Wireless Sensor
Network (WSN), showcasing its superior performance compared to adaptive
machine learning-based IDS. Kurt et al. (2018) proposed a model-free RL ap-
proach for anomaly detection in smart grids, addressing the Partially Observ-
able Markov Decision Process (POMDP) problem. In the context of Cyber-
Physical System (CPS) security, Feng et al. (2017) formulated the defence prob-
lem as a two-player zero-sum game, leveraging deep RL to optimize an actor-
critic neural network architecture. Similarly, Panfili et al. (2018) modelled the

attack problem as a multi-agent general-sum game, employing RL to determine
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optimal prevention actions and associated costs. J. Yan et al. (2016) investigated
Q-learning for vulnerability assessment in smart grids, focusing on sequen-
tial topological attacks. Their findings, based on simulations of IEEE 5-bus,
RTS-79, and IEEE 300-bus systems, highlighted the potential of Q-learning to
identify vulnerabilities. RL has also proven valuable for anomaly detection in
Unmanned Aerial Vehicle (UAV)s. Lu et al. (2017) utilised RL to detect anomal-
ous motor behaviour in UAVs by monitoring motor temperature using sensors

and a Raspberry Pi-based processing unit.

2.3.5 Recent Advances: Digital Twins, Preventive Maintenance,

and IDS

Industrial informatics research shows Digital Twin technology functions as an
integrated system which enhances operational resilience and cybersecurity pro-
tection for ICS. A digital twin creates an instant virtual model of physical op-
erations which allows predictive analysis for system performance under typical
and unusual operating states.

The adoption of Digital Twins continues to grow because they enhance both cy-
bersecurity system capabilities and their ability to detect intrusions. A. Singh
(2024) analysed the main obstacles to secure Digital Twins implementation in
ICS systems and showed how cloud integration and physical-virtual system
data exchange operations lead to security risks. The authors Oyedotun et al.
(2025) demonstrated through their research how Digital Twins-based model-
ling identifies system anomalies in SCADA and DCS systems through virtual
system activity to intrusion behaviour connections. Larsson et al. (2025) built
upon this research by implementing homomorphic encryption for Digital Twins

environments which protects industrial automation data during processing.
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These studies highlight the emerging consensus that Digital Twin can enhance
the detection and mitigation of cyber-attacks by embedding security monitor-
ing within virtual replicas of physical assets.

Digital Twins function as a solution for industrial operations to perform pre-
dictive and preventive maintenance tasks. Qin et al. (2026) conducted a thor-
ough evaluation of robot Digital Twins which proved their ability to identify
component failures before they happen and perform maintenance tasks at peak
operational efficiency. Anbalagan et al. (2025) presented a lightweight CNC
digital process twin system which combined IIoT with OPC UA for real-time
equipment monitoring to enable early fault detection and preventive mainten-
ance. Urrea (2025) positions Digital Twins as part of Industry 5.0 framework
which requires predictive maintenance and cybersecurity to build sustainable
and resilient robotics systems.

The majority of current studies focus on cybersecurity and preventive mainten-
ance independently yet researchers now show growing interest in their com-
bined approach. Digital twins enables real-time process data access which
helps predicting equipment failures and tracking system operational perform-
ance. Yet, while process data captures what is happening within the system, it
does not reveal who is initiating the action or how it is being executed.Network
traffic provides better contextual attribution because it functions as the intent
channel which reveals both external system interactions and attempted intru-
sions. Process data serves as an essential requirement for detecting abnormal
states and operational reliability but it does not provide the detailed informa-
tion which network-level insights deliver. Integrating both sources — process
state information and network traffic — is thus critical for achieving real-time

detection of cyber threats and for developing holistic ICS security solutions.
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2.3.6 Learning Using Privileged Information (LUPI)

The LUPI paradigm (Vapnik and Vashist 2009b) enables ML models to use
training-specific auxiliary knowledge for better generalization. The LUPI paradigm
has been used in cybersecurity for botnet detection (Sapello et al. 2017), mal-
ware classification (Shaikh et al. 2020), and anomaly detection (Celik et al.
2018). However, its adoption in ICS remains minimal. The main limitations
of this approach are its dependence on well-structured privileged information
and the difficulty of aligning different data modalities during training. This re-
search extends the LUPI approach by investigating the use of process data as

privileged information to enhance IDS performance for ICS.

2.4 Summary

In this chapter I delved into the world of ICS, their security challenges and dif-
ferent type of intrusion detection Systems applicable to ICS domain. I have also
reviewed the existing literature on the application of Machine Learning in ICS
Intrusion Detection Systems identifying their limitations and research gap.

ICS are vital to critical infrastructure, managing processes in in sectors like
power, transportation, and manufacturing. Unlike traditional IT systems, ICS
prioritize real-time operation and data integrity, relying on specific control al-
gorithms and communication protocols. This reliance on precise functioning
and interconnectedness makes ICS vulnerable to cyberattacks, potentially lead-
ing to physical damage and safety risks. IDS are crucial for identifying ma-
licious activities within ICS. Traditional IDS, often used in IT environments,
struggle to address the unique challenges posed by ICS. These challenges in-

clude:
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* Real-time operation: Continuous monitoring without disrupting critical

processes.
* Limited resources: Constraints in computing power and storage capacity.
» Unique protocols: Reliance on specialized communication protocols.

* Semantic attacks: Exploiting control systems and physical processes without

triggering traditional security alerts.

Machine Learning (ML) for ICS IDS offers promising solutions for addressing
these challenges. While the key applications of ML in ICS IDS can be summar-
ised in Protocol Analysis (detecting deviations from expected communication
patterns defined by industrial protocols like MODBUS, DNP3, and ICCP) (e.g.
(Yusheng et al. 2017; Y. Yang et al. 2013; Hong et al. 2014; Curtis 2005) ), Traffic
Mining (identifying abnormal traffic patterns within ICS networks using tech-
niques like clustering, association rule mining, and neural networks (e,g, (Hou
et al. 2012; Linda, Vollmer et al. 2009; Ashfaq et al. 2017; Javaid et al. 2016;
Ferling et al. 2018; Dong et al. 2018)) and Control Process Analysis (analysing
the behaviour of control systems and physical processes to detect anomalies, in-
cluding response injection attacks and stealthy attacks that manipulate sensor
data (e.g. (Carcano, Coletta et al. 2011; HadZiosmanovi¢ et al. 2014; Colbert
et al. 2016; Moya et al. 2018; Urbina et al. 2016; Kleinmann et al. 2018; Tian
et al. 2018)), the efficacy of different ML techniques is investigated in enhancing
intrusion detection and overall security posture of ICS: Supervised Learning:
Utilises labelled data of both normal and malicious behaviour to train mod-
els for accurate attack detection (e.g. (Kwon et al. 2015; Ahmad et al. 2014;
Al-Jarrah et al. 2015; Moustafa et al. 2018; Kumara et al. 2018; Stockman et

al. 2019; leracitano et al. 2020; Ariharan et al. 2019)). However, it requires
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comprehensive attack datasets, which can be limited, and may not effectively
identify unknown attacks. Unsupervised Learning: Relies on identifying an-
omalies in normal ICS behaviour, eliminating the need for labelled attack data
and enabling the detection of zero-day attacks (e.g. (Bhattacharjee et al. 2018;
Umer et al. 2020; Mujeeb Ahmed et al. 2021; Shinde et al. 2018) ). However, it
can lead to a higher rate of false alarms. Semi-Supervised Learning: Combines
labelled and unlabelled data, leveraging the strengths of both supervised and
unsupervised learning (e.g.

(Huda, Abawajy et al. 2019; Huda, Miah et al. 2017). This approach shows
promise in addressing the limitations of using solely labelled or unlabelled
data. Reinforcement Learning: Focuses on an agent learning through inter-
action with the ICS environment, making decisions based on rewards and pen-
alties(Kurt et al. 2018; Panfili et al. 2018; Lu et al. 2017) ). Multiple new ap-
proaches have emerged through recent advancements. Notably, digital twin
technology is emerging as a platform for both cybersecurity monitoring and
preventive maintenance in ICS. A. Singh (2024) along with Oyedotun et al.
(2025) and Larsson et al. (2025) showed that Digital Twins enable the integ-
ration of security analytics within virtual process replicas. In parallel, Qin et
al. (2026) and Anbalagan et al. (2025) and Urrea (2025) demonstrated the ef-
fectiveness of Digital Twins for predictive maintenance and operational resili-
ence. The two research paths function separately but show that digital twins
achieve operational reliability and cybersecurity monitoring through shared
process data integration.

Scientists conduct individual studies about cybersecurity and preventive main-
tenance but research on their combined approach is becoming more popular.
Users can predict physical system failures and track process conditions through

the shared real-time process data access provided by digital twins. Yet, while
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process data captures what is happening within the system, it does not reveal
who is initiating the action or how it is being executed.Network traffic en-
ables better contextual attribution because it serves as the intent channel which
shows both external interactions and attempted intrusions. Process data con-
tinues to play a vital role in detecting abnormal states and maintaining oper-
ational reliability yet network-level information provides more comprehensive
explanations about activities within the network. Integrating both sources —
process state information and network traffic — is thus critical for detection of
cyber threats and for developing holistic ICS security solutions.

The three research gaps identified in the existing body of research looking at
IDS for ICS include:

* Most IDS approaches for ICS still rely predominantly on network traffic

data, with limited integration of process-level insights.

* The problem of detecting and differentiating multi-attack scenarios re-
mains unexplored, even though such attacks reflect realistic adversarial

behaviours.

* The application of digital twins as emerging paradigms exists independ-
ently for predictive maintenance and cybersecurity but researchers have
not shown their combined use for developing complete intrusion detec-

tion systems.

The research aims to reduce these knowledge gaps through its proposed
framework which uses LUPI and process information to improve detection ac-
curacy by integrating network and process data. The framework enables ICS
cybersecurity advantages because it addresses various attack scenarios by us-
ing process state knowledge which align with current industry standards. Fig-

ure 2.2 gives a clear, visual overview of IDS approaches for ICS, summarising
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the literature discussed in this chapter.
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Chapter 3

Materials and methodology

3.1 Dataset selection

We required a dataset on an experimental ICS that follows a hierarchical (Purdue-
style) network segmentation, and that captures both network traffic and histor-
ian (process) data under the same operating conditions during attacks. Because
our framework is supervised, we also require reliable labels. We deliberately
avoid fully simulated or synthetic datasets. They are useful for benchmarks,
but they often miss real-world timing, device behaviour, and messy protocol
behaviour—making models look better than they really are and hurting gener-
alisability.(Conti et al. 2021; Cordero et al. 2019; Dehlaghi-Ghadim et al. 2023).
Among public datasets, SWaT stands out: it gives both historian CSVs and raw
PCAPs captured on a real water-treatment testbed, with attacks run while both
data type were recorded and labelled which meets all our criteria (iTrust, SUTD
2016; Aditya P. Mathur et al. 2016b).

Table 3.1 summarises prominent ICS datasets against our criteria. Only SWaT
fully meets our present needs; others are noted as Partial (e.g. process-only or

network-only) or Not suitable (simulated).
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3.2. SWAT TEST BED AND DATA

The comparison in Table 3.1 motivates our choice of the SWaT testbed. It is
the only public option that meets all four requirements—collection on a phys-
ical ICS with Purdue-style segmentation, synchronised historian and network
captures under the same attack conditions, and reliable labels—so it enables
us to train and validate a supervised, process-informed NIDS under realistic
constraints. We therefore use SWaT to evaluate the proposed framework’s abil-
ity to improve NIDS performance in an ICS setting by integrating process and
network data during training and assessing effectiveness on held-out sequences,
while keeping the deployment-time detector network-only. (iTrust, SUTD 2016;
Aditya P. Mathur et al. 2016b)

3.2 SWaT Test bed and data

The Secure Water Treatment (SWaT) test bed , owned by the Singapore Uni-
versity of Technology (Goh, Adepu, Junejo et al. 2016), is a diminutive water
treatment plant comprising six process stages which can effectively deliver 5
gal/minutes of double-filtered water. The SWaT network architecture depicted
in Figure 3.1 exhibits a distributed control system structure in which a redund-
ant pair of programmable logic controller (PLC) manages the operation of each

stage of the process.

| SCADA, HMI, Engineering Workstation, Historian |

Level 1 i

' ' '

Pn - Control Program

| P2 - Control Program

| P1 - Control Program

Level 0 1 Level 0 i eee levelD i

i v 1 v t '

Sensors Actuators Sensors Actuators Sensors Actuators

Figure 3.1: Overview of SWaT Network Architecture, adapted from (Goh, Ad-
epu, Junejo et al. 2016)
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3.2. SWAT TEST BED AND DATA

Data: Although SWaT was collected in 2015, it remains one of the few public
datasets offering aligned process and network streams. We acknowledge limita-
tions (legacy protocols, a fixed set of scripted attacks), but the dataset supports
reproducible baselines and comparison with contemporary work (Al-Dhaheri
et al. 2022). A variety of datasets are available to be accessed from the SWaT
test-bed upon request. this research was conducted utilising the SWaT A1& A2-
Dec 2015 datasets. The datasets include the recordings of the network traffic
and the physical status of 51 field instruments during 11 consecutive days of
continuous operation. Over the initial week of operation, data was collected
from standard activities, while the last four days incorporated data from 41 at-
tacks. According to Goh, Adepu, Junejo et al. (2016), by exploiting the Level 1
communication link presented in Figure3.1 attacks were initiated and the data
in the application layer of the communication packets were maliciously manip-
ulated before being injected back to the PLCs. Each of the field instrument’s
physical features were monitored and recorded as process data in the Historian
server at set spans of one second. Network data was taken from Level 1 shown
in Figure3.1 with a much greater frequency. It has been suggested that network
data only contains data that is beneficial for intrusion detection (ibid.). All pro-
cess and network data that is acquired is marked with timestamp, allowing the
database provider to pinpoint any data created during an attack.

After integrating the network and historian streams, the dataset used in this
study contains 495,000 records (network—process pairs). We use a 70/30 train/test
split, yielding 346,500 training and 148,500 test records; process data are used
as privileged information during training only, while the IDS model use net-

work data at runtime. (see section 3.4).
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3.2. SWAT TEST BED AND DATA

3.2.1 Network Data Collection

The SWaT dataset comprises of network information that was obtained via
the interaction of the Supervisory Control and Data Acquisition (SCADA) and
PLCs. Network traffic was logged at a high rate of milliseconds. The data-
set includes 19 selected features that are deemed to be of worth for intrusion
detection. These features are Date, Time, Origin, Type, Interface Name, Inter-
face Direction, Source IP, Destination IP, Protocol, Proxy Source IP, Application
Name, Modbus Function Code, Modbus Function Description, Modbus Transaction
ID, SCADA Tag, Modbus Value(the payload of the Modbus protocol consists of mul-
tiple registers), Service/Destination Port, Source Port.

For our experimentation, we have incorporated the request and response of the
same transaction into a single record, taking into account the transaction ID.
Initially, when examining the Modbus payload, we transferred the hex-encoded
binary numbers into floating point values and obtained values that were repres-
entative to the SCADA tag obtainable within the dataset. In this context, it was
the beginning value of the Modbus value field. Table 3.2 presents a record of

the Network data used in this study.

Time: 10:37:20 Label: Attack

Modbus_Function_Code =76 Modbus_Transaction_ID = 37889 Request_NumberofElements =1
Modbus_Value = 848.12866 service = 44818 s_port =52544
orig-192.168.1.48 =1 type_-log=1 i/f_name_ethl=1
i/f_dir_outbound =1 src_192.168.1.10=0 src.192.168.1.20=0
src-192.168.1.30=1 src-192.168.1.60=0 dst_192.168.1.10=0
dst-192.168.1.20=0 dst_192.168.1.30=0 dst_-192.168.1.40=1
proto_tcp =1 appi-name_CIP_read_tag_service =1 proxy_src.ip-192.168.1.10=0
proxy_src_ip-192.168.1.20=10 proxy_src_ip-192.168.1.30=1 proxy_src-ip-192.168.1.60=10
Modbus_Response_Function_1=1 Modbus_Request_Function_.1=1 SCADA_Tag -HMI_AIT202 =0
SCADA_Tag HMI_FIT201 =10 SCADA_Tag HMI_LIT101=0 SCADA_Tag HMI_LIT301=10

SCADA_Tag_HMI_LIT401=1

Note. Underscored field names are shown verbatim from the dataset header. Binary flags (0/1) indicate presence
for the corresponding source/destination or proxy field; ports are in integer form.

Table 3.2: Example SWaT network record (compact three-column view).
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3.2.2 Historian Data Collection

The SWaT dataset comes with two versions of process data from the normal
operation of the plant presented by (Goh, Adepu, Junejo et al. 2016). In the first
version, data recording started at the draining stage of the storage tank which
took 30 minutes. This stage is part of the maintenance process and is out of the
normal operation phase. Therefore a second version was presented by removing
the first 30 minutes of the recorded data. in our experiments, we have used
the latter version which includes data from 51 field instruments. In Industrial
plants, generally, process data are reported periodically to the Historian server
at a fixed rate which is dependant on the characteristics and configuration of the
process parameters. In SWaT, dataset process data are reported to the Historian

server every second. Table 3.3 present a sample record from Historian data.

Time: 10:37:20 Label: Attack

FIT101 2.484707 LIT101 863.9532 MV101 2 Pl101 2
P102 1 AIT201 262.3366 AIT202 8.394835 AIT203 330.2999
FIT201 2.456541 MV201 2 P201 1 P202 1
P203 2 P204 1 P205 2 P206 1
DPIT301 19.75799 FIT301 2.20645 LIT301 810.5294 MV301 1
MV302 2 MV303 1 MV304 1 P301 1
P302 2 AIT401 148.808 AIT402 155.0884 FIT401 1.717874
LIT401 848.3209 P401 1 P402 2 P403 1
P404 1 UV401 2 AIT501 7.873815 AIT502 144.2194
AIT503 261.7278 AIT504 12.15073 FIT501 1.724686 FIT502 1.254259
FIT503 0.7352687 FIT504 0.306761 P501 2 P502 1
PIT501 250.4646 PIT502 1.69801 PIT503 189.1182 FIT601 0.000128152
P601 1 P602 1 P603 1

Note. Tags follow SWaT naming (e.g. LIT=Level Indicator Transmitter, FIT=Flow Indicator Transmitter,
AIT=Analyser Indicator Transmitter, P= Pump state, MV= Motorized Valve, UV= Ultraviolet unit). Actuator

states are integer-coded (e.g. 1/2).

Table 3.3: Example SWaT process record (one timestamp).
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3.2.3 Attack Types in SWaT

The SWaT dataset includes 41 attack scenarios, 5 of which are attacks with no
physical impacts. Since the focus of this research is on attacks aiming at im-
pairing process control, we have excluded these attacks from the dataset. The
remaining 36 attacks have been categorised into 4 groups based on the location
of the the attack point in the process stage and the number of compromised

elements in each attack:

Single Stage Single Point(SSSP): Attacks targeting one point in a single stage

or sub-process.

Single Stage Multi-Point (SSMP): Attacks targeting two or more attack points

in a single stage or sub-process.

Multi-Stage Single Point (MSSP): Attacks targeting one point in multiple stages

or sub-processes.

Multi-Stage Multi-Point (MSMP): Attacks targeting two or more points in mul-

tiple stages or sub-processes.

In this dataset Attacks have also been listed based on their physical impact in

the physical process.

Attack with physical change: In these attacks actuators have been comprom-
ised. Therefore, it changed the physical state of the actuator and the pro-

Cess.

Attack without physical change: In theses attacks the readings of the sensors
has been altered. Therefore, the attack had no physical impact on the

process.
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3.3 Justification of Attacks

We treat an attack scenario as a clearly bounded period where an attacker
changes actuator/sensor states or the control logic. In line with Impair Pro-
cess Control (TA0106), we focus on Brute Force I/O (T0806) and Unauthorised
Command Message (T0855) (MITRE Corporation 2025h; MITRE Corporation
2025a; MITRE Corporation 2025n).

Why multi-attack in ICS is not just data mining

ICS are cyber—physical systems: a CIP/Modbus request only matters in terms of
what it should do to the plant (actuators and sensors). If we judge packets one
by one (no sequence model), a multi-attack campaign can still look like normal
traffic unless we read each command against plant physics, engineering limits,
and interlocks (Stouffer et al. 2023). This breaks two common data-mining as-
sumptions: (i) rows are independent and identically distributed (i.i.d.), and (ii)
features and labels are purely cyber with no physical meaning (Murphy 2022;
Holdbrook et al. 2024). In ICS, a command has a physical effect; “normal”
is constrained by control logic and safety functions; and many attacks try to
change the process itself rather than just the packet statistics (MITRE Corpora-
tion 2025h).

How this approach differs

We developed a NIDS, but we train it to be process-aware. During training,
each network record is aligned with its matching historian record and used as
privileged information. This teaches the model what a legitimate command
should do to the plant. At test time, we used network features only.

We also encode per-record semantics (function code, target tag, requested
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value/limits). The detector then flags command records whose implied process
effect is inconsistent with normal operation—without needing long sequence
models.

Our scenarios focus on Impair Process Control (TA0106), especially Brute
Force I/0O (T0806) and Unauthorised Command Message (T0855). These often
look legitimate at the packet level unless judged against process expectations

(Stouffer et al. 2023; MITRE Corporation 2025a; MITRE Corporation 2025n).

Selected attack scenarios: coverage and scale

We chose five attack scenarios to cover both what is changed and how it is
carried out. They span the four common shapes—single-source/single-point
(SSSP), single-source/multi-point (SSMP), multi-source/single-point (MSSP),
and multi-source/multi-point (MSMP)—so the model sees everything from a
simple one-actuator manipulations to a coordinated, multi-actuator move. This
is deliberate: under Impair Process Control (TA0106), small command tweaks
can cause outsized physical effects (MITRE Corporation 2025h). We focus on
two technique families: Brute Force I/O (T0806), where an attacker keeps push-
ing an I/O point toward a target state, and Unauthorised Command Message
(T0855), where out-of-policy commands are sent to actuators or controllers
(MITRE Corporation 2025a; MITRE Corporation 2025n).

To vary difficulty, SSSP cases (e.g. forcing a single valve or pump) expose
clear actuator—sensor mismatches; SSMP and MSSP add cross-unit interactions;
MSMP brings timing and coordination, where short command sequences mat-
ter as much as individual packets. Because SWaT records synchronised network
and historian data for each attack, we can train with process data as privileged
information but keep the runtime detection network-only—matching real de-

ployment constraints (iTrust, SUTD 2016; Aditya P. Mathur et al. 2016b). For
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scale, Table 3.4 lists the approximate number of merged network transactions
per scenario; we also include one “no physical change” case to check that the
detector ignores command traffic with no process impact. Overall, this set bal-
ances topology and effect and directly targets the two technique families at the

heart of our study. The selected attacks are summarised in Table 3.4, and their

record counts appear in Table 3.5.

Attack # Attack  Attack Actual Description
Type Point Change

1 SSSP MV-101  Yes Open MV-101

21 SSMP  LIT-101, Yes Keep MV-101 open;
MV-101 force LIT-101=700

26 MSSP P-101, Yes Start P-101; force LIT-
LIT-301 301=801

30 MSMP LIT-101, Yes Start P-101; open MV-
P-101, 101; force LIT-301=700
MV-201

36 SSSP LIT-101 No Force LIT-101 below

low limit

Table 3.4: Subset of attacks used and their scale (approximate merged network

records)

Table 3.5 presents the raw per-attack availability (merged network—process
pools) with the modelling sample we actually used (equal per-attack, equal Nor-

mal), evidencing sparsity and uneven scenario lengths in the source while keep-

ing like-for-like comparison in modelling.
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Attack # Available Share of Sampled for Sampling Train Test
pool attack pool modelling fraction (70%) (30%)
1 98,185 17.4% 49,500 50.4% 34,650 14,850
21 56,824 10.1% 49,500 87.1% 34,650 14,850
26 188,325 33.4% 49,500 26.3% 34,650 14,850
30 133,970 23.8% 49,500 36.9% 34,650 14,850
36 85,860 15.2% 49,500 57.7% 34,650 14,850
Totals (attacks) 100% 247,500 — 173,250 74,250

. “Available pool” = merged network-historian records per scenario before sampling (sum = 563,164 across the five
attacks). “Sampled for modelling” uses an equal per-scenario sample n = 49,500; Normal was sampled to an equal
total (247,500).

Table 3.5: Raw per-attack availability vs. modelling sample (network-process
pairs).

3.4 Data pre-processing

We prepare the data so features are on the same scale, labels are reliable, and
class imbalance doesn’t overwhelm training. The steps below match the pipeline

we used in our experiments.

3.4.0.1 Normalisation (numeric features).

We standardise all numeric features (process and network) to have mean 0 and
variance 1. This puts everything on a common scale, so no single feature dom-

inates just because of its units (Murphy 2022).

3.4.0.2 Encoding (categorical fields).

We encode small categorical fields in the network data (e.g. protocol family,
function code) using one-hot indicators. It’s a simple, transparent choice that

works well when there are only a few possible values (ibid.).
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3.4.0.3 Train/test split.

The network dataset is randomly split into 70% for training and 30% for test-
ing. The process (historian) records aligned with the training network samples
are used as Privileged Information (PI) during training; at test time the network

features were used only.

3.4.0.4 Class distribution (modelling dataset) and sampling design

To avoid bias from unequal scenario lengths, we sampled the same number of
records per attack scenario and an equal total from Normal, yielding a bal-
anced modelling dataset of 495,000 records (Attack 247,500; Normal 247,500).
With a 70/30 split, train and test contain 173,250 vs. 74,250 records per class,

respectively.

Table 3.6: Class distribution in the modelling dataset (N = 495,000) and 70/30

split.
Totals 70/30 split
Class Count % Train (70%) Test (30%)
Normal 247,500 50.00% 173,250 74,250
Attack 247,500 50.00% 173,250 74,250

As a stress test, we applied SMOTE only to the training split of the mod-
elling dataset; since the modelling set is already 50/50, SMOTE did not alter
class totals but perturbed the decision boundary slightly (Chawla et al. 2002).

Evaluation used the unmodified test split.
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3.4.0.5 Feature ranking (RFE with Decision Tree).

To understand which variables help most, we apply recursive feature elimina-
tion (RFE) with a Decision Tree base learner on the integrated dataset (process +
network) (Guyon et al. 2002). In our runs, process variables (e.g. tank level and
flow sensors) ranked higher than packet-only fields for the intrusion-detection
task on SWaT. We therefore use process data as PI during training to teach a

network-only detector at deployment.

3.4.0.6 Label alignment

Two practical label issues arise in SWaT. First, some process records are marked
as “attack” even when the physical behaviour does not yet (or no longer) reflect
an attack—i.e., the label boundary leads or lags the observable change (also
noted in prior work) (Bernieri et al. 2019). Second, network labels appear to
be inherited from process timestamps, introducing small timing mismatches
between streams.

To avoid relabelling the dataset while reducing edge effects, we use a con-
servative boundary filter: for each labelled attack window, we discard a short
guard band at the beginning and end of the window when training and evaluat-
ing. This removes the slices where misalignment is most likely, without altering
the original labels. Figures 3.2 and 3.3 illustrate typical cases: in Attack 36, the
level sensor (LIT101) begins changing slightly before the indicated start, and
returns to baseline before the indicated end; in Attack 1, the actuator (MV101)
flips state earlier than the annotated boundary. These patterns match known
“stealthy” behaviours in ICS, where small command sequences can create pro-

cess impact with subtle network traces(Cardenas et al. 2011).
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Figure 3.2: Misalignment between indicated attack endpoints (red) and process
change (blue) for Attacks 3 and 36 in SWaT.
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Figure 3.3: Misalignment between indicated endpoints (red) and process
change (blue) for Attack 1 in SWaT.
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3.5 Evaluation metrics

We used four evaluation measures to report the predictive performance of the

proposed intrusion detection methods. This includes:
* Classification accuracy, measures all of the correctly identified cases,

TP+TN

1
TP+FP+TN+FN, (3.1)

where TP, FP, FN and TN denote true positives, false positives, false

negatives and true negatives, respectively

* Precision, the ratio of correctly predicted positive records to the total pre-

dicted positive records,
TP

—_— 3.2
TP+FP (3:2)

* Recall, the ratio of correctly predicted positive records to all data records

in a class,
TP (3.3)
TP+FN '
* The F1-score, it conveys the balance between precision and recall.
2 x (Recall x Precision) (3.4)

(Recall + Precision)

3.6 Machine Learning Algorithms Used

3.6.1 Learning Using Privileged Information

Supervised classical ML algorithms aim to learn the distribution pattern of

labelled training data presented in n number of training pairs (x;,y;), where
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i=1,.,n x; € X, and y; € {+1,-1}. During training, a mapping function
f + X —> +1,-1 is formulated that can map an input instance (x;) to a pre-
dicted output (y;) with the lowest error possible. In classical supervised learn-
ing problems, the same data features are used for both training and testing (run-
time). In some pattern recognition problems, there may be additional helpful
information about the training samples that will not be available during the
testing phase. Such data would often be discarded by classical ML algorithms
since models have been trained based on training input features only. Recently,
there has been a trend in designing ML models that incorporate this additional
information (referred to as ”privileged information”), alongside the main the
training samples. The framework of Learning Using Privileged Information
(LUPI) was originally proposed by Vapnik and Vashist (Vapnik and Vashist
2009b; Vapnik 2006) in the context of the Support Vector Machine (SVM) clas-
sifier, where a triplet of training data is provided (x;,x;+v;),i = 1,..,n, x; € X,
x; € X*, and y; € {+1,-1}. Similar to classical ML, the goal is to find a function
f : X— +1,-1 that can predict labels with the lowest error possible. The idea
is that the privileged information might improve the learning process and help

the ML model converge to a better decision boundary in the input space.

3.6.2 Knowledge Transfer

SVM (Cortes et al. 1995), is a popular supervised learning algorithm for solv-
ing non-linear classification problems. The aim is construct a non-linear hy-
perplane with maximum margin that separates two classes (in the case of bin-
ary classification). The SVM allows the decision margin to make some viola-
tions known as slack variables (&;). The task here is to find a decision function

f(x) =sgn[{w,x)+b], where w € X, b € R and they are obtained by solving the
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following optimization problem

R e .
l + . 3.5
min 2wl y;a (3.5)
under the constraints,
vV 1 SiSn, [yi(wlxi>+b]21_éil EiZOJ (36)

where y > 0 is a hyper-parameter that controls the trade-off between margin
maximization and margin violation. If the slacks &; are all equal to zero then
we call the set of given examples separable, otherwise they are non-separable.
In SVM+ (Vapnik and Vashist 2009b; Vapnik 2006; Fouad 2013), which is based
on LUPI, the additional information x;* € X* will be available during training
but not at the test stage. Unlike SVM which uses a correcting slack variable &;,
the SVM+ uses a slack function &; = [(w",x}) + b*], where w* € X*, b* € R and
they are obtained by solving the following optimization problem:

n
i

1 2, P *12 ok *
min = fhwll3 + 5l +yZl[<w )+ 1] (3.7)

under the constraints,

V 1<i<n, [y{w,x;)+b]>1-[y(w",x])+b"], 3:5)
3.8
(w5x)+b"]>0

In SVM+, correcting functions control the slack variables based on the priv-
ileged information. The objective function of SVM+ contains two hyper-parameters
7,¢ > 0. The p is a non-negative parameter that reflects the imposition of

smoothness in the slack model.
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3.6.3 Margin Transfer

Margin Transfer SVM is another implementation of Learning Using Privileged
Information (LUPI) proposed in (Sharmanska et al. 2013). It focused on trans-
ferring knowledge about the learning problem to improve the predictive solu-
tion. Similar to SVM+, the aim of Margin Transfer SVM is to distinguish the
easy and hard examples. For a Classification problem, Sharmanska et al. (ibid.)
suggested to train an ordinary SVM using privileged information X* and use
the achieved prediction function f*(x*) = (w*,x") to calculate the margin dis-
tance of the training samples to the classifying hyperplane in the same space
pi == vif *(x’;). This computed margin can be transferred to an ordinary SVM
on Original space instead of exploiting a constant margin of 1. for solving the

optimisation problem in the standard space.

1 N
minimize =|wl|]®>+C Z&'
weRd,EeR - 2 =

subject to, foralli=1,...,N
viw,x;)>p;—& and & >0

In this approach not only the performance of Margin Transfer SVM has been
validated in the privileged space and enhance the training of a classifier in the
original space, it also can identify the easy and hard examples both in privileged
space and original space. In contract, SVM+ differentiate the easy and difficult
examples by learning the the slack function within privileged space. As stated
in &; = <w*, x’:> + b the label information is not involved in formulating slack

function, therefore, SVM+ performance is not validated in privileged space.
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3.6.4 Distillation

The idea of distilling knowledge has been proposed By(Hinton et al. 2015). It
has been developed based on the fact that almost any machine learning al-
gorithm’s performance can be improved in an ensemble structure by training
many different models on the data and then averaging their prediction, or by
using larger datasets. However, such improvement comes with computational
cost and complexity. The distillation technique proposes a methodology to ex-
tract and compress class knowledge (hard label) and the probability vector of
each class (soft label) to a smaller model. Distillation is used to transfer know-
ledge from a complex Neural Network model to a smaller one while saving
accuracy while reducing the computational cost considerably. For an N-class

classification task with data as
(vl x € R, y; € AC

where A is an N-dimensional probability vector, the aim would be to learn the

following function in which Z is a function from R? to R¢.

fo=argmins Y~ €(i0 (f () + Q(IfI) (59)

feR i=1

Here o is a Softmax function that operates from R° to A® and Q) is an increasing

function that works on regularization.

o2k == (3.10)
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Cross entropy loss will be measured by function ¢ for all 1 <k <c:

Cc
0y,9)=-) vilogh (3.11)
k=1

In order to distill the previously learnt f; in to f;, (Hinton et al. 2015) proposed

following optimization problem to be solved:

fo=arg min% Z[(l =M (pi,0 (f (x;) + AL (s;, 0 (f (x:)))] (3.12)

feF,

where s; is the soft labels obtained from f; on the training data
si=0(fi (x;)/T) € A° (3.13)

The temperature parameter T > 0, control the softness in the prediction of the
class probability from f;. The imitation parameter A € [0, 1] balance the import-
ance of the soft predicted label s; and the true hard predicted label y;. Sugges-
ted in Eq.3.13. increasing the temperature will result in predicting softer class
probability which will identify label dependencies. By using the proposed dis-
tillation method, f; € F; will be used that is simpler than f, therefore, resulting
in faster prediction during run-time. (Lopez-Paz et al. 2015) merged Hinton’s
distillation technique with Vapnik’s Privileged information and proposed gen-
eralised distillation. With a data such as {(xl-,x;", yi)}?zl, the knowledge is ex-
tracted by a teacher model learned f; € F; on privileged information that is a
pair of {(x;", yi)}:lzl using Eq.3.9. This knowledge is then compressed through
computing teacher soft labels using Eq.3.13. for x* and T > 0. To pass this to
the student model, the student should learn f; € F, on the input-output pairs of
{(x;,9;)};—; and {(x;,5;)};-, using Eq.3.12. and A € [0,1]. This approach decreases

the computational complexity by following Hinton’s distillation method and
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improves the accuracy of the classification over the standard dataset by incor-
porating Vapnik’s privileged information. Generalised distillation can be re-

duced to Hinton’s distillation if x* = x; for all 1 <i <n.

3.6.5 Transfer Learning

Transfer learning is developed based on the fact that humans use their learnt
knowledge from one task or problem to solve other problems (Pan et al. 2009).
Such motivation suggests retraining a previously learnt model for solving a new
task. Classical ML algorithms use labelled or unlabeled data for learning a spe-
cific task from scratch and aim to predict future data for that specified task dur-
ing run-time (Yin et al. 2006; Baralis et al. 2007). However, transfer learning is
a technique that transfers knowledge from a learnt task to improve generaliza-
tion in a target task especially when the available data for the target task does
not provide enough information for developing a high-quality model.

Suppose a classification task in domain D, D = {X,P(X)}, that includes a la-
bel space ) and a predictive function f(:). Training data that consisting of
pairs {x;,v;}, where x; € X and y; € J would be used to learn the predictive
function f(-) such that f(x) predicts the corresponding label of an unseen in-
stance x. This function, f(x) can be presented as P(y | x). Suppose there is
a source domain Dg, and its data is denoted as Dg = {(xSwySl)""'(XSHSI?SnS)}’
where x5 € X5 is the feature instance and ys, € Vs is the corresponding class
label. Similarly consider a target domain, Dy, data of each is denoted as Dy =
{(le'yTl)""’(xTnT’yTnT )}, where the input x7, is in X7 and y7, € Vr is the cor-
responding output.

One definition for Transfer Learning presented in the work of (Pan et al. 2009)
suggests that for a source domain Dg and corresponding learning task 7g, as

well as a target domain D and corresponding learning task 77, transfer learn-

110



3.7. SUMMARY

ing’s objective is to utilize the knowledge available in Dg and 75, where Dg #
Dr, or Ts # 77 and improve the learning performance of the target predictive
function fr(-) in Dr.

Two approaches for implementing transfer learning were suggested by (Good-

fellow et al. 2017) as follow:

* Weight Initialization This method relies on the information derived from
the first task data for training a model on the target task. In this approach,
the weights from the learnt model will be used as the initial weights for
training the target model therefore, in this process transfer learning can

be considered as a weight initialization strategy.

* Feature Extraction When the weights from the learnt model cannot be ad-
apted to the target task, transfer learning can be used as a feature extrac-
tion strategy. In this approach, new layers after previously trained layers

of a neural network will retrain with target data.

In general, when features of one task correspond to the fundamental factors in
another task, transfer learning can be of use to reduce training time that leads

to a likely faster or a superior solution due to lower generalisation error.

3.7 Summary

This chapter details the evaluation of a proposed framework designed to en-
hance the performance of NIDS within ICS environments. The evaluation lever-
ages the Secure Water Treatment (SWaT) test-bed, a scaled-down water treat-
ment plant, and its associated datasets to assess the framework’s efficacy.

First SWaT test-bed is introduced, outlining its hierarchical architecture and

operational capabilities. The specific datasets used in the evaluation is then

111



3.7. SUMMARY

discussed, highlighting the inclusion of both network and process data collec-
ted during normal operations and simulated attack scenarios.

A taxonomy of attack types present in the SWaT dataset is provided, categor-
izing attacks based on their target location and impact on the physical pro-
cess. The rationale behind selecting specific attack scenarios for evaluating the
framework is also explained, emphasizing the focus on attacks that aim to dis-
rupt process control.

This chapter then delves into the data pre-processing steps undertaken to pre-
pare the datasets for analysis. These steps include data normalization, handling
of categorical variables and addressing class imbalance as well as the use of pro-
cess data as ”privileged information” during the training phase of the machine
learning models.

Furthermore, the chapter identifies and discusses inconsistencies discovered in
the labelling of attack data within the SWaT dataset. These inconsistencies,
related to both process and network data labelling, are addressed through a fil-
tering approach to ensure the accuracy of the evaluation results.

Finally, the chapter provides a comprehensive overview of the machine learn-
ing algorithms employed in the study. Techniques such as Learning Using Priv-
ileged Information (LUPI), Knowledge Transfer, Margin Transfer, Distillation,
and Transfer Learning are discussed, outlining their theoretical foundations
and practical applications in the context of intrusion detection.

In summary, this chapter establishes the experimental setup for evaluating the
proposed NIDS framework, encompassing the test-bed, datasets, attack scen-
arios, data pre-processing techniques, and machine learning algorithms em-
ployed. It ensures a robust and reliable evaluation of the framework’s ability to

enhance intrusion detection capabilities in ICS environments.
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Chapter 4

A framework for ML-based network

intrusion detection in ICS

4.1 Generic Overview of an ICS Network Structure

The main difference between ICS and traditional information systems is the
close relationship with the physical world. We refer to the ICS architecture de-
scribed in chapter 2 (Figure 2.1). In this chapter, we collect network traffic at L2
and historian data at L3, which is where PINID learns correlations.This chapter
motivates and specifies the Process-Informed NIDS (PINID). We focus on at-
tacks that impair process control, especially Brute Force I/0, (T0806), (MITRE
Corporation 2025a) and Unauthorized Command Message, (T0855), (MITRE
Corporation 2025n), because they alter the physical process with subtle net-
work traces. Figure 4.1 presents the landscape of MITRE ATT&CK for ICS and
highlights where PINID aims to help.
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4.2

ICS Attack Surface

According to a study conducted by researchers and professionals in the cyber

security field, 12 adversarial tactics have been identified for attacking ICS (Al-

exander et al. 2020). Today an active area of research in the cybersecurity do-

main involves the integration of ML into the field of ICS for intrusion detection

and anomaly detection purposes. Researchers are actively exploring and ex-

perimenting with different ML techniques to improve the security of ICS. Their

proposed methods target diverse tactics that attackers use to reach their desired

goal.

1.

These adversarial tactics and the incentive of the adversaries are:

Initial Access (TA0108): The adversary’s primary goal is to infiltrate the

ICS environment, aiming for initial access (MITRE Corporation 2025j).

. Execution (TA0104): The adversary’s goal during execution is to run code

or manipulate system functions, parameters, and data without authorisa-

tion (MITRE Corporation 2025f).

. Persistence (TA0110): The adversary’s primary objective is to persistently

maintain their presence in the ICS environment, in order to continue their

malicious activities (MITRE Corporation 2025I).

. Privilege escalation (TA0111): The adversary’s objective includes gaining

higher-level permissions, which is known as privilege escalation (MITRE

Corporation 2025m).

Evasion (TA0103): The adversary is employing tactics to bypass and elude
the existing security defences (MITRE Corporation 2025e).

Discovery (TA0102): The adversary is actively searching for information
in order to assess and identify potential targets within the industrial net-

work (MITRE Corporation 2025d).

115



4.2. ICS ATTACK SURFACE

7.

10.

11.

12.

Lateral Movement (TA0109): The adversary is actively attempting to nav-
igate and infiltrate the ICS environment (MITRE Corporation 2025k).

Collection (TA0100): The adversary’s primary objective is to obtain valu-
able data and acquire comprehensive domain knowledge related to the
ICS environment, which will serve as crucial information to advance their

goal (MITRE Corporation 2025b).

Command and Control (TA0101): The adversary’s objective is to establish
communication with compromised systems, controllers, and platforms
that have access to the ICS environment, with the intention of gaining

control over them (MITRE Corporation 2025c).

Inhibit Response Function (TA0107): The main objective of the adversary
is to hinder the proper functioning of the safety, protection, quality assur-
ance, and operator intervention functions in responding effectively to any

failure, hazard, or unsafe state (MITRE Corporation 2025i).

Impair Process Control (TA0106): The adversary is attempting to engage
in activities that involve manipulating, disabling, or damaging physical

control processes (MITRE Corporation 2025h).

Impact (TA0105): The adversary’s goal is to manipulate, interrupt, or even
go as far as destroying the ICS systems, the valuable data they hold, and
the environment in which they operate (MITRE Corporation 2025g).

By thoroughly studying literature on the detection of ICS cyberattacks and ana-

lysing notable and recent cyberattacks on ICS systems,such as the Stuxnet cy-

ber attack on Iran’s nuclear facilities in 2010 (Langner 2011), the cyber attack

on the Ukrainian power grid in 2015 (Case 2016), and the recent cyber attack
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on the Colonial Pipeline in the USA(Hobbs 2021), we have identified a pat-
tern wherein attackers consistently opt for Impair Process Control techniques.
Impairing Process Control refers to the various techniques used by malicious
actors to disrupt the control logic of systems and cause detrimental outcomes
for the processes being controlled within the targeted environment. The po-
tential targets for manipulation could include procedures or parameters that
have an active impact on the physical environment. These techniques are not
limited to prevention or manipulation of reporting elements and control logic,
they can also involve various other approaches. When an adversary modifies
the functionality of a process, it is important to note that they might obfuscate
the results as well, and these outcomes often provide clear evidence of their in-
fluence on a product or the surrounding environment. The safety of operators
and downstream users is at risk because of the direct physical control exerted
by these techniques, and this can lead to the activation of response mechanisms,
such as a safety shutdown. To successfully control processes and cause impact,
adversaries utilise techniques to inhibit such mechanisms. This research is ex-
ploring the efficacy of supervised ML techniques in augmenting the detection of
cyber-attacks where attackers attempt to manipulate, interrupt, or destroy ICS
( Impair Process Control). We prioritise two Impair Process Control techniques:
Brute Force I/O (T0806)—repetitively changing I/O point values to manipulate
a process—and Unauthorized Command Message (T0855)—issuing commands
outside intended bounds. Both can produce faint network signals yet meaning-

ful process effects.

4.2.1 Brute Force IO

In the enterprise network, the tactic known as brute force is employed to gain

unauthorized access to a system. This involves repeatedly guessing login cre-
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dentials until the correct combination is identified. This tactic is often used in
conjunction with other attack methods, such as phishing or social engineering,
to obtain login credentials or other sensitive information. In Industrial Con-
trol Systems (ICS), the tactics employed by adversaries involves repeatedly or
sequentially altering I/O point values, thus allowing them to execute specific
actions. By repetitively altering either a range of I/O point values or a single
point value, brute force I/O is used to manipulate a process function. The ap-
proach chosen will vary depending on the objectives of the adversary and their
level of knowledge about the target environment. When attempting to brute
force a range of point values, the adversary may inadvertently cause an impact,
without having a specific target in mind. On the other hand, if the focus is solely
on one point, it is possible for the adversary to cause instability in the corres-
ponding process function. The reason brute force IO attacks can be so harmful
in ICS environments is that they give attackers the ability to gain control of cru-
cial systems, which can then result in physical damage or significant disruption
to operations. As an illustration, let us consider a scenario where an attacker
successfully infiltrates the control system of a power plant or water treatment
facility. In such a situation, the potential consequences could range from trig-
gering a widespread blackout to deliberately contaminating the water supply.
In order to enhance security against brute force 1O attacks in ICS environments,
organizations should consider implementing robust password policies and in-
corporating multi-factor authentication. These measures can significantly in-
crease the difficulty for attackers to guess or obtain login credentials. Further-
more, organizations need to stay vigilant by consistently monitoring their sys-
tems for any potential signs of suspicious activity. This involves being alerted
to repeated login attempts coming from the same IP address and being mind-

ful of any unusual login patterns that might indicate a security breach. In ICS
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environments, there are several security measures that can be implemented to
prevent brute force IO attacks. These include network segmentation, which di-
vides the network into smaller sections, as well as the use of intrusion detection
and prevention systems. Regular security assessments and audits should also
be conducted to ensure the effectiveness of these measures. Implementing a
proactive security strategy empowers organizations to minimize the risk of suc-
cessful brute force IO attacks, thereby safeguarding their critical systems and

operations.

4.2.2 Unauthorised Command Message

In ICS, the unauthorised command message tactic is employed by attackers who
try to send or execute commands that are not allowed within the ICS environ-
ment. The main objective of this tactic is to manipulate or disrupt the control
system’s normal operation. Attackers may try to send unauthorised commands
to gain control over devices like programmable logic controllers (PLCs) or re-
mote terminal units (RTUs). The intention behind these commands is to change
process parameters, adjust control logic, or potentially disrupt the function-
ing of critical infrastructure. Attackers could exploit this technique through
range of methods, such as taking advantage of vulnerabilities present in the
ICS network, compromising user accounts that have higher privileges, or em-
ploying social engineering tactics to gain control over the control system. The
consequences of unauthorised command messages in ICS can be severe, ran-
ging from operational disruptions to safety hazards and even potential phys-
ical damage. To illustrate the consequences, imagine an attacker gaining un-
authorised access and using it to send commands that manipulate the flow of a

pipeline, alter temperature settings in a chemical plant, or disrupt power distri-
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bution in a grid. In order to reduce the risk of unauthorised command message
attacks in ICS, it is recommended to implement effective security measures.
One of the key measures to ensure security is network segmentation, which in-
volves isolating critical control systems. Besides that, implementing strong ac-
cess controls that include multi-factor authentication can enhance the security
measures. In order to identify any potential vulnerabilities, regular security as-
sessments and audits should be conducted. A system of continuous monitoring
would enable identifying and investigating any suspicious activities or anom-
alies within the ICS environment. In addition, implementing user awareness
training and establishing strict change management processes can be effective
measures to prevent the execution of unauthorised commands within the ICS
infrastructure. A proactive measure in safeguarding the industrial network ,
is to implement intrusion detection and prevention systems, which detect and
prevent unauthorised access or malicious activities.

In the event of a Brute Force attack and Unauthorised Command Message and
alteration of the system, an irregular pattern will be created in the usual flow
of network traffic and data held in the Historian. These surprising coincidences
that are detectable in both databases concurrently could be seen as an indicator
of potential breach. Thus, this can be employed to recognise and uncover both

of these classifications of attack on an ICS system.

4.3 Process Informed Network Intrusion Detection

Framework (PINID)

In order for external attackers to manipulate the process, they must gain ac-
cess to the organisation through an enterprise network. By utilising their un-

derstanding of the organisational infrastructure, industrial devices and equip-
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ment, communication systems, as well as the employees and staff, they can de-
tect weaknesses and vulnerabilities within the organisation. By leveraging this
information, they would possess the capability to direct their efforts towards
a systems or users within the enterprise network, gaining illicit access to their
system. This can be achieved through the execution of targeted attacks, such
as phishing attacks, ultimately resulting in the establishment of a command-
and-control connection that remains undetected. Their ability to remain silent
within the network enables them to gather additional information on systems
and user credentials. This information can then escalate privileges and gain ac-
cess to critical systems leaving no significant trace. By exploiting identified vul-
nerabilities in critical systems, they can effectively disturb the process and ma-
nipulating operators’ HMI view. The current methods for detecting adversarial
attempts to impair process control tactics are limited to process BAD and Net-
work Intrusion Detection (NID).

The application of an anomaly detection approach in the ICS environment, with
a specific emphasis on process behaviour, has been proposed by a team of re-
searchers. The suggested strategies encompass a combination of supervised and
unsupervised machine learning techniques, including one-class, binary, and
multi-class categorization (Maglaras and J. Jiang 2014; Suaboot et al. 2020) as
well as time-series prediction (D. Li et al. 2019). The activation of an alert
will be triggered by any deviation from the expected behaviour in these meth-
ods. However, given the potential for cyber incidents to alter system behaviour,
besides system failures or equipment malfunctions, a comprehensive investig-
ation is needed to determine the origin of each detected anomaly and obtain an
accurate assessment of the security state. It is important to mention that the
technique of focusing on Process behaviour presents a greater challenge in de-

tecting cyber-attacks during the initial stages of reconnaissance, as the attacker
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is still in the process of gathering information and has not yet caused signific-
ant changes to the process behaviour. Various research groups have explored
the analysis of ICS network traffic to detect network intrusion, operating under
the assumption that any external cyber incident would eventually penetrate the
ICS environment through the network. The researchers utilised parallel Ma-
chine Learning techniques, incorporating the supervised approaches noted by
Valdes et al. (2009) and the unsupervised methods as described by Almalawi,
Yu et al. (2014). The drawback of this approach lies in its ability to detect in-
ternal attacks and those that can bypass established security measures without
affecting the network’s status, such as stealthy attacks. As stated by Cardenas
et al. (2011), attacks of this nature have been found to have limited influence
on the manipulation of sensor data, persisting over an extended period and
posing a risk of significant damage. If this minor modification is introduced
into the control loop, it has the potential to manifest in the behaviour of the
process. Given that the network status remains unaltered, the immediate visib-
ility of the impact on network traffic may be limited. By categorising all device
malfunctions or failures as behaviour anomalies, the first method is likely to de-
tect cyber incidents. However, the second technique is incapable of identifying
attacks that have successfully eluded security countermeasures, even if their
effect on the system is negligible. The design of our proposed framework, illus-
trated in Figure 4.2, is aimed at enhancing the detection capabilities of NIDS
specifically against attacks targeting ICS Process Control. This framework is
structured to align with the hierarchical network of ICS networks, taking into
account the distribution of components across different levels as defined by
the Purdue model Williams 1994. For our purposes, we focus on levels 0-3 of
the Purdue model, encompassing ICS components, while excluding Enterprise

levels dedicated to IT and business functions.
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PINID follows LUPI paradigm: during training, we expose the model to pro-

cess data aligned to network features; at runtime, the model uses network fea-
tures only. LUPI has been shown to improve generalisation when rich valuable
data are available at training time (S. Yan et al. 2023; Z. Gao et al. 2024; S. Yang
et al. 2022; X. Li et al. 2020).
Data collection for the development of our supervised Machine Learning (ML)-
based NIDS is conducted at level 2, the supervisory level. This level provides
access to network traffic exchanged between servers and control systems, as well
as operator stations situated at level 3. Simultaneously, process data is acquired
from the historian server at level 3. Despite simultaneous data collection, vari-
ations in data capturing frequencies from the network and storage rates within
the historian server, as elaborated in section 1.2, necessitate a label alignment
process. This process ensures accurate correlation between network traffic and
corresponding process data based on attack occurrence time, facilitating effect-
ive manual labelling. The aligned datasets are then integrated into a unified
database using common entities as linking points. Both network and process
features from this integrated dataset serve as inputs for training the ML-based
NIDS. However, it’s important to note that during the validation phase and real-
time operation, the trained model relies solely on network features for attack
detection. This approach ensures the practicality and efficiency of the NIDS in
real-world deployments. As illustrated in Figure 4.3, this framework comprises
four distinct stages.

The first phase, known as Collection and Analysis , starts by gathering net-
work traffic and process data from the industrial setup (1.1). Network traffic is
to be obtained from the supervisory network, while the process data should be
acquired from the historian server. To ensure the accuracy of the labels, a thor-

ough analysis of these datasets is necessary, focusing specifically on detecting

123



4.3. PROCESS INFORMED NETWORK INTRUSION DETECTION

FRAMEWORK (PINID)

‘“UOT}eULIOJU] PISIALL] Sk Be(] SS9001J 3Uls) Paqisd], LBMS U3

10J (QINId) JIomaurer] UO1d333(] UOISNIIUT JI0MISN PIULIOJUI-SSID01J Y} JO WeIder(] [9A3] WAISAS 7§ 2In31]

swpuny uj |opoi _ uondIpaLd [2qe] _

uoire1aq
UoISNJIu| 3I0MIaN

- i

A

-3 ~, 7

= [ePoN
“~ , ||||||||||IIIIII|||||III|.| .
u@u \.n_& aepiiep

1uoneuwoyu| pagajialg

_m,c_wz |2poIN Suiwiea o
&

ELEY!

ELE)

[
ELEY!

uoneuwLIo| 135
paBajinug ias el uonepiea
| A J
"JUC) [aWelq awl|
<>
mx_omcmm ".‘ @ WLOHMJHU( _ Sa.inles{ ss8201d _ _ saunies4 vTOP)um.Z _
0/1 210way S E
m m
................................... SEINSENTTAREINEIF NN _ ! '
B ! h
J3||osuo) 5 ; m
s : ; . i
||||||||||||||||||||| , 2 “ S2IUBR)SU| anjep sngpon “
T T T T T T T T T T T T T T T T T T T T T T T T I T T T T T 0NAl 01 93¢ Talield awl ! o mm eped 1
ul 0] J2ag aulelq awl ! [} saunleay | BpeEDS
IWH |E207 1A 03 995 4 1 m “ W “ |2qe “swil |2qe ‘awil m
1 1 u 1
D H F_\“_Iw_mlmh._.luto;uwz m m, m + + m
P - i eleq ayed| “
“ m . m $53201d v_LO_.SHmZ “
....................................... IH ST GijA2WeI] 3l | 1 1 m ' '
1 T TN | | e m e — - =
€ _ _ _ _ ' ! q uoneigauj ejeq
1 1
el @ = Bt o ]|
E .I.Lm.imm HE — m > Juawuslly [aqe
1
uollels Jolesado SM "8u3 uela01siH m m
-|-|-|-|:.o|_muum_|_mm.m__..m|n_ @oueuajulely pue juswdojanaq [opon

|2POIAl 3aNping Woly s|aAa] 10

)yiomawei4 pasodoid jo weiSe|q |9A3] widlsAS

124



4.3. PROCESS INFORMED NETWORK INTRUSION DETECTION
FRAMEWORK (PINID)
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any anomalous patterns(1.2). The patterns that have been identified should be
compared with both the attack specification and the normal state. Given that
this framework is focused on supervised network intrusion detection, the accur-
acy of the labels holds significant importance and has the potential to impact
the predicted outcome. It is imperative that the verification of dataset labelling
is performed by a process specialist who has a thorough understanding of the
specific process for which the NID is being designed (1.3). Integrating the two
datasets should occur by considering the timestamp from each dataset(1.4). The
next stage encompasses the pre-processing of data to prepare it for the training
and testing of a machine learning algorithm. The conversion of categorical data
to numerical format is essential for network traffic data. In addition, the nor-
malisation of all numerical data ensures that the machine learning algorithm’s
prediction is influenced equally by each feature. The imbalanced distribution
of the data classes must be addressed at this stage through implementing data
sampling techniques. Finally, the data should be divided into two sections,
namely training and validation (70%), and testing (30%). In the third stage, the
training of the supervised machine learning based intrusion detection sys-
tem (IDS) model will take place. To proceed with this phase of the process, it
will be necessary to utilise the testing and validation segment of the integrated
data ( which includes network and process features ). This segment will be di-
vided into a training set (70%) to train the algorithm and a validation set (30%)
to validate the optimised model. To attain the highest level of performance for
the model, it is imperative to fine-tune the algorithm parameters through an
optimisation process (3.2). The ML based NID model will be fully operational
in the test environment after the successful completion of this stage. The fourth
and ultimate phase of this framework NID model in the runtime involves the

model’s execution in the test environment. Given that this model is specifically
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designed for network intrusion detection, only the network features will be re-
ceived during runtime. Consequently, only the network features from the test
partition of the data prepared during stage 2 of the framework will be utilised
by ML based NID for attack detection. It is important to note that, during the

training phase, the model was trained on both network and process features.

4.4 Summary

This chapter provides an analysis of ICS security, focusing on the limitations
of existing anomaly detection methods and proposing a novel framework for
enhanced intrusion detection. The chapter begins by differentiating ICS from
traditional information systems, highlighting the direct link between ICS and
physical processes and the resulting security implications as well as the hier-
archical architecture of ICS, which although efficient, it extend the ICS attack
surface.// This chapter then delves into the vulnerabilities of ICS, outlining
twelve adversarial tactics and emphasizing the prevalence of Impair Process
Control techniques. Brute Force IO and Unauthorized Command Message at-
tacks are explained in detail, illustrating their mechanisms and potential con-
sequences. Existing security measures and their limitations are also discussed.//
The chapter analyses current ICS security research, particularly Process BAD
and NIDS. BAD'’s reliance on detecting significant deviations from normal
behaviour is deemed insufficient for identifying subtle manipulations, while
NIDS focus on network traffic analysis is seen as susceptible to stealthy attacks.
To address these limitations, we propose PINID framework. PINID integrates
network and process data during the training phase of its machine learning-
based intrusion detection system, enabling it to discern subtle correlations between

network activities and process behaviour. This approach enhances PINID’s
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ability to detect attacks that might evade traditional methods.// The chapter
concludes by outlining the training process of PINID’s supervised machine
learning-based IDS model and emphasizing the framework’s unique use of pro-
cess data as ”privileged information” during training. This approach enables
PINID to develop a more comprehensive understanding of the relationship
between network traffic and process behaviour, bolstering its accuracy and effi-

ciency in detecting real-world attacks.
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Chapter 5

Result and analysis

5.1 Experiments and Findings

This research has proposed a new framework for ML-Based NIDS in ICS. In
distinction to other proposed methodologies in this research domain, which
primarily focus on either network traffic data or process data in an ICS envir-
onment, the objective of this research was to take into account the principal
characteristics of ICS in controlling a physical process through a highly con-
nected network architecture. Therefore, the two data types (network traffic and
process data ) were employed in the training process for the development of a
MIL-based NIDS model. However, to conform to the expected operational defin-
ition of a NIDS, during the runtime, the model is solely exposed to the network
traffic . The core structure of the proposed framework is built upon the Ma-
chine Learning concept known as Learning Using Privilege Information (LUPI).
Validation of the framework was conducted by applying various techniques
that were specifically adjusted for LUPI. This chapter will begin with a brief
summary of the testbed and datasets employed in this research (for a detailed

explanation, please refer to section 5.1.1). Following that, it will present the
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design, implementation, and analysis of the results of each experiment. Lastly,
the chapter will be brought to a close with a concise summary that will present

the key findings.

5.1.1 Brief summary of the Testbed

The SWaT test bed, is a small water treatment plant with six process stages,
delivering 5gal/min of double-filtered water. Each stage of the process in the
SWaT architecture is managed by a redundant pair of PLCs. The data collected
from this testbed consists of network traffic and historian data. SWaT network
dataset consists of network traffic captured from SCADA and PLCs interaction.
it includes 19 selected features in the dataset for intrusion detection (for the
detail list of the features please refer to section 3.2) each logged at a high rate of
milliseconds. SWAT Historian dataset includes readings from 51 field instru-
ments recorded every second. The SWaT datasets includes 36 attack scenarios
with physical impacts on the process which are categorised into 4 groups based
on the location of the attack point in the process stage and the number of com-
promised elements in each attack as Single Stage Single Point (SSSP), Single Stage
Multi-Point (SSMP), Multi-Stage Single Point (MSSP) and Multi-Stage Multi-Point
(MSMP). This chapter’s experiments considered a selection of attacks on actu-

ators and sensors from these 4 categories.

5.1.2 Data subset used for each experiment

As outlined in sections 3.2-3.5, our modelling dataset has N=495,000 merged
network—process pairs with a 50:50 class balance by design (equal per-attack
sampling and an equal number from Normal). For the single-attack scenario,

the most we can use is the per-attack draw (n = 49,500 Attack + 49,500 Normal
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= 99,000 records). For the multi-attack studies, we can use the full set (495,000
records).

Neural networks usually benefit from more data and train more stably with
larger subsets, so we give them the maximum possible in each scenario to steady
optimisation and reduce run-to-run variance (Kaplan et al. 2020). By contrast,
SVM+ adds constraints and variables for the privileged features, which raises
memory and computational cost versus a standard SVM; we therefore use a
smaller but balanced subset to keep training feasible without changing how we
evaluate (Vapnik and Vashist 2009a; Lapin et al. 2014).

To keep comparisons fair while respecting compute limits, we follow three
simple rules:

(i) all subsets are balanced (Attack:Normal = 1:1) and stratified; (ii) Neural
Network runs use the largest available subset in each scenario (same size across
repeats to stabilise training); (iii) SVM+ (LUPI) uses a smaller subset due to
higher training cost with privileged features.

This explains the different record counts across techniques. The evaluation

protocol itself is unchanged (see section 3.5; 70/30 split; network-only at test).

Experiment Total records Class ratio
Neural Network (Distillation) 49,500 1:1
Neural Network (Transfer Learning) 49,500 1:1
Neural Network (Margin Transfer) 49,500 1:1
SVM+ (LUPI) 9,424 1:1

Table 5.1: Data subsets used in the single-attack scenario (example: Attack 36).
All subsets are balanced (Attack:Normal = 1:1).
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Experiment Total records  Class ratio
Neural Network (Distillation) 99,200 1:1
Neural Network (Transfer Learning) 99,2000 1:1
Neural Network (Margin Transfer) 99,200 1:1
SVM+ (LUPI) 9,424 1:1

Table 5.2: Data subsets used in the multi-attack scenario (five attacks). All sub-
sets are balanced (Attack:Normal =1:1).

5.2 Impact of label alignment on baseline classifi-
ers

this section presents the performance of common classifiers before vs. after
applying the label boundary filter described in section 3.4.0.6. The goal is to
quantify how small start/end timestamp misalignments (Figures 3.2-3.3) affect
detection performance.

In this sanity check, all models use network-only features for both training
and testing, keep the same 70/30 split, and follow the metrics in section 3.5.
The “post-alignment” step only trims short guard-bands at the start and end
of labelled attacks; we do not change any labels. We therefore observed fewer
talse positives near those boundaries and a lift in precision, with recall changing

little if at all.
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Classifier Accuracy Precision Recall F1-score
KNN 65.057% 66.214% 66.717% 63.972%
(£2.580%)  (£1.723%)  (+£0.858%)  (+£0.663%)
LR 59.770% 64.594% 61.602% 60.089%
(£2.666%)  (£1.817%)  (+1.435%)  (+£2.305%)
DT 84.215% 61.570% 63.238% 60.888%
(£1.686%)  (£2.259%)  (£1.990%)  (£2.226%)
MLP 59.847% 60.754% 59.378% 53.219%
(£3.726%)  (£9.690%)  (£4.821%)  (£3.269%)
CNN 60.327% 66.084% 61.382% 58.033%
(+4.249%)  (£6.244%)  (£3.637%)  (£5.693%)
SVM 60.690% 66.696% 60.688% 60.062%

(+1.202%)

(+3.681%)

(+2.284%)

(+3.019%)

Table 5.3: NIDS Performances Using Network Traffic Before Applying the Label
Alignment Method. The mean values of Accuracy, Precision, Recall and F1-

score, along with standard deviations (+) across 5 training/test re-sampling is

reported.
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Classifier Accuracy Precision Recall F1-score
KNN 65.779% 65.151% 65.666% 64.492%
(£2.164%)  (£2.242%)  (£2.826%)  (£2.308%)
LR 60.913% 61.790% 62.610% 61.107%
(£1.282%)  (£2.020%)  (£2.153%)  (+1.312%)
DT 84.639% 62.269% 61.814% 64.193%
(£1.963%)  (£2.429%)  (£1.847%)  (+1.501%)
MLP 65.095% 62.548% 66.192% 62.060%
(£2.324%)  (£7.562%)  (£1.054%)  (£2.969%)
CNN 61.714% 63.828% 61.726% 60.269%
(£2.470%)  (£2.811%)  (£1.849%)  (+2.473%)
SVM 62.890% 62.698% 63.598% 61.088%

(+2.186%)

(+2.986%)

(£2.299%)

(£2.721%)

Table 5.4: NIDS Performances Using Network Traffic After Applying the Label
Alignment Method. The mean values of Accuracy, Precision, Recall and F1-
score, along with standard deviations (+) across 5 training/test re-sampling is

reported.

Subsequent sections report single- and multi-attack results under the same
evaluation protocol; where privileged information is used (e.g. SVM+), it is

during the train-time only, with network-only features at test.

5.3 Single attack scenario results

We evaluate models on a single attack (36) to isolate per-scenario behaviour
under TA0106 (Impair Process Control). We use the balanced data subset (At-

tack:Normal = 1:1) exact record counts for each experiment is listed in Table 5.1.
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5.3.1 Knowledge Transfer (SVM+)

This experiment follows the protocol in Section 5.1.2 an Table 5.1 with label
alignment per section 3.4.0.6. Dataset scale and per-experiment subset sizes
are summarised at the start of this chapter.

In this experiment, we applied supervised ML models to identify one type
of attack (Attack 36) using network data of the SWaT testbed. We particu-
larly evaluated the performance of six classical and popular ML models includ-
ing, K-Nearest Neighbour (K-NN), Logistic Regression (LR), Decision Tree (DT),
Multilayer Perceptron (MLP), one-dimension Convolutional Neural Network
(CNN), and Support Vector Machine (SVM) (Géron 2019). (Hyper-)parameters
of all classification algorithms were tuned via 5-fold cross-validation on the
training set. we then trained the SVM+ (LUPI) model, discussed in section
3.6.2, to identify Attack 36 using the integrated training set. this model was
tested using the network data only. For fair comparisons, the experiments were
run five times for each classifier and we reported the average results over five
runs. All experiments were run using Python (scikit-learn libraries) and Jupy-
ter hosted on Google’s Colab platform. SVM+ trains with network features as
standard inputs and aligned historian records as privileged inputs; at test time,
it uses network data only. The evaluation protocol, metrics, and subset policy

follow section 5.1.2 and section 3.5; label alignment follows section 3.4.0.6.

5.3.1.1 Findings and Analysis

Results obtained from SVM+ algorithm was compared against the six classical
ML models, which were trained and tested on network traffic only, without
considering the impact of the process data. As reported in table 5.5, on av-
erage, the accuracy, precision, Recall and F1-scores results obtained by SVM+

algorithm outperform the results obtained by all classical ML algorithms by
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Classifier Accuracy Precision Recall F1-score
KNN 65.779% 65.151% 65.666% 64.492%
(£2.164%)  (+£2.242%)  (+2.826%)  (+£2.308%)
LR 60.913% 61.790% 62.610% 61.107%
(£1.282%)  (£2.020%)  (£2.153%)  (+1.312%)
DT 84.639% 62.269% 61.814% 64.193%
(£1.963%)  (£2.429%)  (£1.847%)  (+1.501%)
MLP 65.095% 62.548% 66.192% 62.060%
(£2.324%)  (£7.562%)  (£1.054%)  (£2.969%)
CNN 61.714% 63.828% 61.726% 60.269%
(£2.470%)  (+£2.811%)  (£1.849%)  (+2.473%)
SVM 62.890% 62.698% 63.598% 61.088%
(£2.186%)  (£2.986%)  (+2.299%)  (£2.721%)
SVM+1ypr 74.2534% 77.251% 74.1692% 73.4782%

(£1.022%)

(£0.849%)

(£1.173%)

(£1.375%)

Table 5.5: Single-attack results for SVM+ (LUPI). Mean+sd over 5 repeats; train
features: network+ process (privileged); test features: network-only; evaluation
protocol section 5.1.2; metrics section 3.5; label alignment per section 3.4.0.6.

12.49%, 22.57%, 16.71%, and 19.45%, respectively. It is important to highlight
that, the accuracy obtained by SVM+ outperforms all baseline ML algorithms

except for the DT classifier.

5.3.2 Margin Transfer

This experiment follows the protocol in Section 5.1.2 an Table 5.1 with label
alignment per section 3.4.0.6. Dataset scale and per-experiment subset sizes
are summarised at the start of this chapter.

This experiment was completed by teaching a Neural Network model through
a gradient descent optimisation process. The Margin Transfer method was em-
ployed to alter the learning rate of the examples used for training this NN
structure. Two Neural Network models, one with one hidden layer and the

other with two hidden layers, were created and trained with the ReLU activa-
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tion function. To begin, the NN models were trained using network data, while
the learning parameters from the back-propagation of each layer of the network
were recorded. The same course of action was repeated with process data as PI
and the learning parameters were retained in the same manner. To assess our
hypothesis, we have tested the NN models with a data set made up entirely of
network data, using only the learning parameters from network data. We meas-
ured the performance metrics from the models which had taken learning para-
meters from PI data against the same experiment dataset. Table 5.6 displays a
comparison where NN is for a neural network trained with network data and
N Np; is a neural network trained with network data with learning parameters

obtained from the neural network trained with process data as PI.

Classifier Accuracy Precision Recall F1-score
NN(LHL)yjine 47.70% 88.10% 42.30% 57.10%
(£0.052%)  (+0.044%)  (+£0.047%)  (£0.051%)
NN(1HL)p; 80.70% 83.80% 94.80% 88.70%
(£0.078%)  (£0.016%)  (£0.105%)  (£0.054%)
NN(2HL)p; 82.50% 82.50% 100% 90.40%

(£0.0003%) (£0.003%)  (+0.00%)  (+£0.002%)

Table 5.6: Single-attack results for Margin Transfer-Based NIDS. Mean+sd over
5 repeats; train features: network+ process (privileged); test features: network-
only; evaluation protocol section 5.1.2 5.1; metrics section 3.5; label alignment
per section 3.4.0.6.

5.3.2.1 Findings and Analysis

During the learning phase, the NN model with Margin Transfer denoted here as
NNpr, has been trained using the network data. In addition, this model incor-
porates the difficulty of the sample information into the learning process. The
NN model without Margin Transfer, denoted here as N Ny;,., has been trained

using the network data only without incorporating the difficulty of the sample
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information. The detection performances of both NN models were assessed us-
ing our evaluation measures and reported in Table 5.6. For fair comparisons, we
ran this experiment five times for each NN model and we reported the average
results over the 5 runs.

The experimental results show that the NN(2HL)pr method, which incor-
porates the process data in the learning phase, provides superior performance
over the baseline NN model (N Ny q.1i,e) across Accuracy, Recall and F1-score .
On average, the results obtained from Margin Transfer method with NN (1HL)pr
outperform the baseline model on Accuracy, Recall and Fl-score by 42.18%,
57.70% and 35.63% while the NN(2HL)pr outperform the baseline model on
Accuracy, Recall and F1-score by 40.89%, 55.38% and 36.84%. Obtained results
display the superiority of the Margin Transfer method in PINID framework.

5.3.3 Distillation

This experiment follows the protocol in Section 5.1.2 an Table 5.1 with label
alignment per section 3.4.0.6. Dataset scale and per-experiment subset sizes
are summarised at the start of this chapter.

This experiment focuses on examining the effectiveness of the distillation ap-
proach for detection of a single attack (explained in section 3.6.4) by distilling
the information from privileged process data into a NN model during the learn-
ing phase of NIDS.

First a teacher model was trained using the privileged process samples.
Then the performance of two similarly structured Deep Neural Network (DNN)
models, known as student was studied. These models included two hidden
layers and a Softmax layer for each class and were trained by network data.
However, the DNN — Studentp model was informed by teacher model’s under-

standing of the process data, while the DN N —Students model was trained just
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using the network data. The DNN models comprised an input layer with 1000
neurons, besides the two hidden layers with 50 and 10 neurons, respectively,
with the ReLU activation function while the Adam optimizer, with a learning
rate of 0.001 was used (selected via grid search). Batch size and epoch are re-
spectively selected as 1000 and 10 during optimisation. Since we are using the
Softmax for the calculation of the loss function, as discussed in section 3.6.4,
we fed the non-normalised probabilities from the last layer of the neural net-
work to the loss function while applying Adam optimizer Kingma et al. 2014.
A similar experiment was performed using the CNN model. Like the previous
experiment, teacher and student models were structured similarly comprising
two 1 Dimensional Convolution layers with the ReLu function, followed by a
1 Dimensional MaxPooling layer, a flattened layer. The standard CNN student
model was trained with network data only, denoted here as CNN — Students.
The CNN teacher model was trained with process data, and the learnt pattern
was then distilled to the student model CNN — Studentp, as trained with net-
work data.

For a fair comparison, we run the training and testing of each of the DNN and
CNN models five times and we reported the average testing results over 5 runs

in Table 5.7.

5.3.3.1 Findings and Analysis

The result obtained from distilled DNN model and distilled CNN model out-
perform their baseline models with a considerable improvement in the accur-
acy, precision, and F1-score while the average results obtained by DNN struc-
tured distillation model for accuracy, precision and Fl-score outperform the
DNN baseline model by 47.24%, 52.60% and 26.39% respectively. CNN struc-

tured distillation model outperforms its baseline model for accuracy, precision
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Classifier Accuracy Precision Recall F1-score
DNN - 42.68% 46.90% 72.98% 57.10%
Studentg (£0.0037%) (+£0.002%)  (+0.002%)  (+£0.002%)
DNN - 80.89% 98.95% 62.37% 76.21%
Studentp (£0.0438%) (+£0.0102%) (+0.0835%) (+£0.0704%)
CNN - 33.51% 65.45% 82.49% 72.98%
Studentg (£0.018%)  (+£0.026%)  (+0.012%)  (+£0.021%)
CNN - 81.76% 98.68% 64.40% 77.77%

Studentp — (£0.026%)  (£0.008%)  (+0.026%)  (+0.042%)

Table 5.7: Single-attack results for Distilation-Based NIDS. Mean+sd over 5
repeats; train features: network+process (privileged); test features: network-
only; evaluation protocol section 5.1.2 5.1; metrics section 3.5; label alignment
per section 3.4.0.6.

and F1-score on average by 59.01%, 33.67% and 6.16% respectively. As dis-
played in Table 5.7 distilled CNN model outperforms distilled DNN model
slightly in the number of True Positive and True Negative predictions of the
model and accuracy and F1-score. However, comparing the accuracy, precision
and F1-score of the distilled models with their recall score, distillation may not

be successful in reducing the number of False Negatives.

5.3.4 Transfer Learning

This experiment follows the protocol in Section 5.1.2 an Table 5.1 with label
alignment per section 3.4.0.6. Dataset scale and per-experiment subset sizes
are summarised at the start of this chapter.

The experiment was designed to use the feature extraction capability of trans-
fer learning. To do so a Convolution Neural Network (CNN) model was created
including two-Dimensional Convolution layers, a max pooling layer followed
by a Deep Neural Network (DNN) with an input layer with 1000 neurons, be-
sides the two hidden layers with 100 and 10 neurons, and the ReLU activation

function. The grid search optimisation algorithm was used to was optimise the
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model and the filter and kernel size of the convolution layers were set at 5,
while an Adam optimizer was used with a 0.001 learning rate. The batch and
epoch were set at 1000 and 100 respectively. The CNN model was first trained
on the previously selected dataset (comprising both process and network fea-
tures). After the initial training step, the Convolution layers were frozen and
the DNN part of the model was re-trained with network data only. This pre-
trained CNN model, denoted here as CN Npretrained, was then tested on the
network data only. The performance of this this model was compared against
a similarly structured CNN model that was trained and tested using network
data only, denoted here as CN Ngaseline. For the fair performance comparison
between these two models, the training and testing of each of the pre-trained
DNN and DNN models were ran five times and the average testing results over

5 runs were reported in Table 5.8.

Classifier Accuracy Precision Recall F1-score

CNNpysotine 54.934% 46.412% 42.415% 42.415%
(£0.068%)  (£0.293%)  (+0.126%)  (+0.126%)

CNNpyotrained 50.443% 35.113% 50.443% 34.281%
(£0.009%)  (£0.221%)  (+£0.009%)  (+0.021%)

Table 5.8: Single-attack results for Transfer Learning-Based NIDS. Meanz+tsd
over 5 repeats; train features: network+process (privileged); test features:
network-only; evaluation protocol section 5.1.2 5.1; metrics section 3.5; label
alignment per section 3.4.0.6.

5.3.4.1 Findings and Analysis

The experimental results show that the Pre-trained CNN and baseline CNN
models exhibit almost similar behaviour regarding the accuracy, recall and pre-
cision and they were not successful in performing the single attack detection
task. However, Pre-trained CNN provides slightly better Recall score perform-

ance over the baseline CNN model (trained using network data only).
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As presented in Table5.8 although it seems the two models behave almost
similarly, the lower standard deviation calculated for the average results of the
transferred model suggest that this practice resulted in a slightly more robust

model( pre-trained).

5.4 Key findings from Single attack scenario

These experiments presented alternative ML-based NIDS that use the LUPI
framework. Unlike classical ML algorithms for anomaly detection which rely
upon only one source of data for learning, these ML-based NIDS incorporates
process data as privileged information during the training phase. This allows
for a more accurate and robust ML-based NIDS than is possible using classic
methods, while requiring similar computational resources at run-time because

the testing phase only involves one source of data, namely, the network traffic.

5.5 Single attack Scenario : Summary

This chapter presents an empirical evaluation of PINID framework through em-
ploying LUPI paradigm to enhance the performance of ML-based NIDS in ICS.
The study leverages the SWaT testbed and its datasets, focusing on single attack
detection scenarios.

Initially, a feature selection analysis using the DT algorithm highlighted the su-
perior predictive power of process features compared to network features for
intrusion detection. This finding justified the use of process data as privileged
information during the training phase of LUPI-based NIDS models.

This chapter then presents a series of experiments evaluating different LUPI

implementations:
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* Knowledge Transfer: SVM+ model, trained with both network and pro-
cess data, outperformed six classical ML models trained solely on network
data, demonstrating significant improvements across all evaluation met-

rics.

* Margin Transfer: Neural Network models incorporating process data-
derived learning parameters through margin transfer exhibited superior
performance compared to baseline models, highlighting the effectiveness

of knowledge transfer from process data.

 Distillation: Distilling knowledge from a process data-trained teacher
model to network data-trained student models (both DNN and CNN ar-
chitectures) significantly enhanced detection accuracy, precision, and F1-

score.

» Transfer Learning: While both pre-trained (using process data) and baseline
CNN models showed comparable performance, the pre-trained model ex-
hibited slightly better recall and lower standard deviation, suggesting en-

hanced robustness.

This section introduces a novel approach to developing robust and accurate
Machine Learning (ML)-based Network Intrusion Detection Systems (NIDS) for
Industrial Control Systems (ICS) by integrating industrial network traffic and
physical process data during the training phase of a supervised learning frame-
work. While the trained model utilizes only network traffic during operation,
the incorporation of process data as privileged information during training sig-
nificantly enhances its detection capabilities, leading to improved accuracy and

robustness compared to traditional methods relying solely on network data.
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5.6 Multi attack scenario results

We train a single classifier over multiple attacks spanning SSSP/SSMP/MSSP/MSMP
topologies to test cross-scenario generalisation. Unless noted otherwise, we use

the balanced modelling dataset the subset sizes presented in Table 5.2.

5.6.1 Knowledge Transfer Experiment

According to the findings presented in subsection5.3.1 and in (Pordelkhaki et
al. 2021), the initial experiment on knowledge transfer shows that the SVM+
(LUPI) algorithm, trained on both network and process features, outperforms
baseline ML models trained exclusively on network features. The classification
process in this experiment was restricted to the detection of a single type of
attack from the SWaT dataset, specifically Attack 36. This experiment expands
upon the previously suggested work by examining numerous attacks from the
SWaT dataset (outlined in section 3.3 ). This experiment follows the protocol in
Section 5.1.2 an Table 5.2 with label alignment per section 3.4.0.6. Dataset scale
and per-experiment subset sizes are summarised at the start of this chapter.

The training dataset, which includes network and process features, was utilised
to train the SVM+ (LUPI) algorithm. Subsequently, the test dataset, compris-
ing solely of network features, was employed to evaluate its performance. The
efficacy of the SVM+ (LUPI) algorithm has been analysed by comparing its res-
ults with those of the five baseline ML models. These models were trained ex-
clusively on network data and did not incorporate the privileged process data
during training. This assessment specifically focused on analysing the perform-
ance of K-Nearest Neighbour (K-NN), Logistic Regression (LR), Decision Tree
(DT), Multilayer Perceptron (MLP), and Support Vector Machine (SVM) (Géron

2019). Previous researchers have extensively utilised these algorithms to tackle
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comparable intrusion detection issues (Goh, Adepu, Tan et al. 2017; Junejo and
Goh 2016; Bernieri et al. 2019). The parameters of these models have been
optimised through a comprehensive and randomised parameter searches and
were tuned through a 5-fold cross-validation on the training set. In order to es-
tablish a fair basis for comparing algorithm performance during runtime, each
algorithm was executed five times and the average results from these runs were
recorded. Unlike the SVM+ (LUPI) algorithm, which considers process features,

these models have solely relied on network data for training and testing.

Classifier Accuracy Precision Recall F1-score
KNN 75.586% 75.254% 75.244% 74.528%
(£0.582%)  (£0.742%)  (£0.372%)  (£0.398%)
LR 55.980% 56.219% 56.204% 55.663%
(£0.619%)  (+£0.515%)  (+1.079%)  (+£0.671%)
DT 86.477% 56.457% 55.216% 56.246%
(£0.500%)  (+£0.620%)  (+0.497%)  (+£0.327%)
MLP 63.830% 65.482% 64.384% 64.087%
(£0.758%)  (£3.230%)  (+3.965%)  (+£1.618%)
SVM 62.767% 63.708% 63.079% 62.219%
(£0.430%)  (+£0.387%)  (+0.305%)  (+£0.837%)
SVM+rypr  69.217% 93.530% 62.807% 75.132%

(+0.018%)

(+0.0101%)

(+0.0232%)

(+0.0178%)

Table 5.9: Multi-attack results for SVM+ (LUPI). Mean+tsd over 5 repeats; train
features: network+ process (privileged); test features: network-only; evaluation
protocol section 5.1.2; metrics section 3.5; label alignment per section 3.4.0.6.

Findings and Analysis

The findings, presented in Table 5.9, indicate that the SVM+ (LUPI) algorithm
consistently outperforms other conventional ML algorithms in terms of preci-
sion and F1-score, with improvements of 49.19% and 21.47% respectively on

average. It should be emphasised that the precision attained by SVM+ in this
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experiment far exceeds that of other conventional ML algorithms, underscoring
the superiority of the SVM+ algorithm in accurately predicting attack records.
Furthermore, the standard deviation of the results achieved from multiple it-
erations of the SVM+ algorithm, when compared to other Machine Learning
algorithms utilised in this experiment, exhibited negligible changes and re-
mained within the range of +0.01. This serves as evidence of the robust per-

formance of this model across 5 runs.

5.6.2 Margin Transfer Experiment

As outlined in Section 3.6.3, the Margin Transfer approach introduces a novel
technique for integrating privileged information into the Neural Network (NN)
models. This is achieved by utilising the learning rate of the privileged information-
trained model to train a model with the original data. To accomplish this, the
steps outlined in previous studies by (Momeni et al. 2018) and (Sharmanska
et al. 2013) were used. The findings of the feature importance analysis (as dis-
cussed in section 3.6.3) indicate that process data exhibits stronger predictive
power when compared to network data. Utilising this finding, the process data
was used for training a simple linear classifier with Softmax activation func-
tion (Bridle 1989) in the output layer, allowing for the computation of class
probabilities. The probabilities obtained from the Softmax function acted as an
identifier for the difficulty of the samples; The higher the probability, the easier
the example is. The weights obtained from this neural network model were
subsequently utilised to train a two-layer neural network with Rectified Linear
Unit (ReLU) activation function (Fukushima 1975) and Softmax function in the
output layer, using network data. This experiment follows the protocol in Sec-
tion 5.1.2 an Table 5.2 with label alignment per section 3.4.0.6. Dataset scale

and per-experiment subset sizes are summarised at the start of this chapter.
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The neural network model referred to as NNy has been trained utilising the
network features of the training dataset. Additionally, this model integrates
the weights derived from a process feature-trained model as an indicator of
sample difficult. The NNbaseline model was trained using only the network
data incorporating no difficulty measures. The detection capabilities of both
neural network models we assessed using the evaluation measures, which are
displayed in the Table 5.10. In order to establish a fair comparison, the testing
phase was performed five times for each neural network model, and the average

findings from these five iterations were documented.

Classifier Accuracy Precision Recall F1-score

N Nyaseline 50.100% 50.0% 50.00% 49.600%
(£0.400%)  (£0.500%)  (£0.500%)  (£0.002%)

NNyt 53.100% 53.100% 53.500% 52.300%

(£3.400%)  (£3.800%)  (+4.200%)  (+3.300%)

Table 5.10: Multi-attack results for Margin Transfer based NIDS. Mean+sd over
5 repeats; train features: network+ process (privileged); test features: network-
only; evaluation protocol section 5.1.2; metrics section 3.5; label alignment per
section 3.4.0.6.

Findings and Analysis

The experimental results indicate that the N N,,;r method, which integrates the
difficulty measures during the learning phase, outperforms the baseline NN

model (N Nygse1ine) in all evaluation metrics.

5.6.3 Distillation Experiment

The objective of this experiment is to examine the efficacy of the distillation
approach (as discussed in section 3.6.4) in the integration of privileged pro-

cess data during the learning phase of NIDS for detection of multiple attacks.
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This experiment follows the protocol in Section 5.1.2 an Table 5.2 with label
alignment per section 3.4.0.6. Dataset scale and per-experiment subset sizes
are summarised at the start of this chapter.

Our initial step involved training a teacher model through the use of privileged
process samples. Following that, an analysis was conducted on the performance
of two Deep Neural Network (DNN) models, known as student models, which
shared a similar structure. The DNN models comprised an input layer with
1000 neurons, in addition to the two hidden layers with 50 and 10 neurons, re-
spectively, with the ReLU activation function and a softmax layer for each class.
The Adam optimizer (Kingma et al. 2014) was employed and its learning rate
was set to 0.001 using a grid search. Furthermore, the batch size was determ-
ined as 1000 and the number of epochs as 10 utilising the grid search technique
. Given that the Softmax was employed for calculating the loss function, as
stated in section 3.6.4, we passed the non-normalised probabilities from the
neural network’s last layer to the loss function. This was accomplished by con-
figuring the loss function with the from-logits option set to True. Both student
models were trained with network data, however, the knowledge gained by the
teacher model from process data was distilled into the DN N — Studentp while
the other DNN student model, denoted here as DN N — Studentg, is trained us-
ing the network data only. A similar experiment was conducted using Convolu-
tion Neural Networks (CNN) model (LeCun et al. 1998), which proved superior
performance in similar cyber security detection tasks. Similar to the previous
experiment, teacher and student models were structured similarly comprising
two 1 Dimensional Convolution layers with the ReLu function, followed by a 1
Dimensional MaxPooling layer, a flattened layer. The training of a CNN-based
teacher model was conducted using process data and a CNN model named

CNN - Studentg was trained using only network data. In addition, during the
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training process, the second student model, denoted as CNN — Studentp, ac-
quired the learning pattern from the teacher model by utilizing network data.
For a fair comparison, we run the training and testing of each of the DNN and

CNN models five times and we reported the average testing results over 5 runs

in Table 5.11.

Classifier Accuracy Precision Recall F1-score
DNN 45.03% 44.84% 70.86% 54.92%
Studentg (£0.027%)  (+£0.008%)  (+0.004%)  (+£0.007%)
DNN 71.65% 94.76% 45.82% 61.64%
Studentp (£0.023%)  (£0.003%)  (+0.047%)  (+£0.042%)
CNN 45.66% 46.62% 70.84% 56.18%
Studentg (£0.034%)  (£0.036%)  (+0.017%)  (+£0.029%)
CNN 70.52% 93.14% 44.32% 60.06%

Studentp

(+0.008%)

(+0.019%)

(20.009%)

(+0.011%)

Table 5.11: Multi-attack results for Distillation-Based NIDS. Mean+sd over 5
repeats; train features: network+process (privileged); test features: network-
only; evaluation protocol section 5.1.2; metrics section 3.5; label alignment per
section 3.4.0.6.

Findings and Analysis

The experimental results shown in in Table 5.11 demonstrate that the F1-score
performance of the DNN-StudentD and CNN-StudentD models, trained using
the distillation approach with the privileged process data, surpasses that of the
baseline DNN-StudentS and CNN-StudentS models, which are trained solely
using network data. Nevertheless, it was observed that the DNN-StudentD and
CNN-StudentD models employing the distillation method exhibited lower re-
call outcomes in comparison to the DNN and CNN models respectively. This
result might suggest that these models were not successful in reducing the num-

ber of False Negatives.
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5.6.4 Transfer Learning Experiment

This experiment investigated the utilisation of the Transfer Learning approach
(as elaborated in section 3.6.5) for integrating privileged process data during
the learning phase of NIDS to detect multiple attacks. This experiment fol-
lows the protocol in Section 5.1.2 an Table 5.2 with label alignment per section
3.4.0.6. Dataset scale and per-experiment subset sizes are summarised at the
start of this chapter.

The experiment was planned with consideration of the feature extraction ap-
plication of transfer learning. The implementation involved the utilisation of a
Convolution Neural Network (CNN) model comprising two-Dimensional Con-
volution layers and a max pooling layer. Subsequently, a Deep Neural Network
(DNN) was employed, consisting of an input layer with 1000 neurons, as well
as two hidden layers consisting of 100 and 10 neurons respectively, all activ-
ated by the ReLU activation function. The model was optimized using a grid
search optimisation algorithm. The convolution layers were configured with a
filter and kernel size of 5. The Adam optimizer was employed, with a learning
rate of 0.001. The batch size and epoch count were set to 1000 and 100, re-
spectively. The CNN model was initially trained on the privilege process data
features extracted from the training dataset, which comprised both process and
network features. Following the training process, the Convolution layers were
frozen and the DNN part of the model was re-trained with network data only.
Pre-trained CNN model, denoted here as pre — trained — CNN, was tested on
the network data only. The performance of this pre-trained model was com-
pared against a similarly structured CNN model , denoted here as CNN, that
was trained and tested using network data only. In order to ensure a fair com-
parison, we conducted five rounds of testing for each of the pre-trained DNN

and DNN models. The average testing results over these five runs are presented
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in Table 5.12.

Classifier Accuracy Precision Recall F1-score

CNN 64.500% 65.200% 64.500% 59.500%
(£7.900%)  (£20.500%) (£7.600%)  (£13.600%)

CNNbpyetrained 64.400% 65.700% 64.400% 63.700%
(£0.600%)  (£1.200%)  (£0.700%)  (+£1.600%)

Table 5.12: Multi-attack results for Transfer Learning based NIDS. Mean+sd
over 5 repeats; train features: network+process (privileged); test features:
network-only; evaluation protocol section 5.1.2; metrics section 3.5; label align-
ment per section 3.4.0.6.

Findings and Analysis

The experimental results show that the Pre-trained CNN and baseline CNN
models exhibit almost similar behaviour regarding the accuracy, recall and pre-
cision. As presented in Table5.12 although it seems the two models behave
almost similarly, the transferred model is performing better with reference to
F1l-score obtained Reported average results also suggest that the transferred
model performance is more stable in each run due to the lower standard devi-

ation calculated for the average results.

5.7 Key findings from multi-attack scenario

This research aimed to consider the key characteristics of ICS and its highly
connected network architecture in proposing a new framework for ML-based
network intrusion detection in ICS. This requires using both network traffic
and process data to train the ML-based NID model however, the model would
solely analyse network traffic during runtime. The framework is based on the

Machine Learning concept known as LUPIL. The validation of this framework
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was conducted through the use of tailored techniques involving LUPI concept,
which included Knowledge transfer, Margin transfer, Distillation, and Trans-
fer Learning. The key findings and observations derived from the conducted

experiments are:

* Despite the superior capabilities of deep learning algorithms, such as CNN,
compared to ML algorithms, such as SVM, our research reveals that LUPI
using ML methods (as presented in Table. 5.9) achieves better results than
the investigated LUPI utilising DNN-based methods. This could poten-
tially be attributed to the limited size of the training data utilised in our

ICS application.

* The SVM+ employs a future-oriented teaching approach, which is the
rationale behind its superior performance compared to the DNN-based
models employed in this study. The reason for this is the influence that

each input variable has on the decision made by the model.

* Despite the high performance of LUPI utilising ML methods like SVM+,
it falls short in terms of scalability with large datasets. Conversely, CNN
and DNN-based models excel in their ability to scale with such datasets.
As a matter of fact, the greater the amount of training data provided to

the DNN-based models, the greater the accuracy of their predictions.

* Although the LUPI - based models did not consistently outperform their
counterpart models in some experiments, the overall performance of the
LUPI - based model demonstrated robustness and stability across all ex-
periments. This was evident from the generation of lower standard devi-
ation across all performance metrics compared to their counterpart mod-

els.
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5.8 Multi-attack scenario: Summary

This section presents a comprehensive evaluation of proposed PINID frame-
work for developing ML-based NIDS specifically designed for ICS. This frame-
work distinguishes itself by incorporating both network traffic data and process
data during the training phase, while relying solely on network traffic data dur-
ing operation, aligning with the practical constraints of real-world NIDS de-
ployments.

The framework leverages the concept of Learning Using Privileged Information
(LUPI), which allows ML models to learn from additional information during
training that is not available during testing. The SWaT testbed, a scaled-down
water treatment plant, and its associated datasets, comprising network traffic
and process data from various attack scenarios, were utilized to evaluate the
framework’s efficacy.

Four distinct ML techniques adapted to LUPI paradigm and were implemented
and rigorously evaluated: Knowledge Transfer, Margin Transfer, Distillation,
and Transfer Learning. Each technique was assessed based on its ability to en-
hance the performance of the NIDS model in detecting multiple attack scen-
arios. The experimental results yielded several key findings. Firstly, despite the
advancements in deep learning, LUPI implementations using traditional ML
algorithms, particularly the SVM+ algorithm, outperformed those using Deep
Neural Networks (DNNs) in this study. This observation is attributed to the lim-
ited size of the training data, suggesting that DNNs may require larger datasets
to generalize effectively in this context.

Secondly, the SVM+ algorithm demonstrated superior performance compared
to other LUPI techniques, attributed to its “future-oriented teaching approach.”
This approach emphasizes the influence of each input variable on the model’s

decision-making process, contributing to its enhanced accuracy.
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Thirdly, while SVM+ excels in accuracy, it faces scalability challenges with large
datasets. Conversely, DNN-based models exhibit superior scalability, achieving
higher accuracy as the size of the training data increases.

Finally, despite not consistently outperforming their counterparts in every ex-
periment, LUPI-based models consistently demonstrated robustness and stabil-
ity across all experiments. This is evidenced by the lower standard deviations
observed across all performance metrics compared to their non-LUPI counter-
parts.

This chapter provides compelling evidence for the potential of the proposed
LUPI-based framework in enhancing the accuracy and robustness of NIDS in
ICS environments. The study highlights the importance of considering both
network traffic and process data during training to develop more effective and
reliable intrusion detection systems for critical infrastructure. However, fur-
ther research is encouraged to address the scalability challenges associated with
certain LUPI techniques and to explore the impact of larger datasets on the per-

formance of DNN-based LUPI models.

5.9 Implications of this research for ICS security

Our results reinforce a practical pattern for defenders: Train models to be
process-aware, but run them where teams already have control—on the net-
work. In OT/ICS, this lines up with guidance to prioritise visibility and seg-
mentation at Purdue Levels 1-3, where most commands and telemetry flow
and where passive monitoring carries the least production risk (Stouffer et al.
2023). For environments that can’t host heavy analytics on controllers or his-
torians, a NIDS that was trained to understand expected process effects is a

low-friction way to catch command misuse earlier(e.g. Impair Process Control,
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TA0106) (MITRE Corporation 2025h).

A second implication concerns alert quality and operator trust. Adding
short guard-bands around attack boundaries (our label-alignment step) reli-
ably cut false positives from timing variances, lifting precision without hurting
recall. In practice, this mirrors how security/control-room teams already use
alarm times and correlation windows to filter noise while keeping time-critical
events. Building this alignment into model evaluation—and later into alarm
logic—helps ensure new analytics don’t add noise to safety-critical workflows
that already dealing with process, maintenance, and cyber alarms (Stouffer et
al. 2023).

Third, the approach complements—not replaces—defence-in-depth. IEC/ISA
62443 stresses basics like asset inventory, segmentation, allow-listing, and se-
cure remote access. A NIDS that understands command semantics (function
code, target tag, requested values/limits) can sit alongside these controls to
catch threats that slip past coarse policy—supporting earlier detection of ab-
normal command intent and faster containment (International Society of Auto-
mation (ISA) 2025).

Finally, before enabling blocking or automated responses, models should be
validated in a staging environment that mirrors the historian/network align-
ment assumptions in the training stage of PINID framework. Tune thresholds
to the environment’s real base rates and track precision, recall, and balanced

accuracy to avoid optimism from training-time class balance.
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Chapter 6

Discussion and finding evaluation

The findings of this research have been organized and presented in Chapter
5. This chapter is specifically devoted to evaluating the hypotheses outlined
in Section 1.2, based on the findings presented in earlier chapters. this will
include the analysis of the findings regarding the application of ML techniques
used in this research. The assessment of the study’s design and the presentation
of limitations and potential strategies for improving future research designs
are discussed in Section 6.2. this section also includes the assessment of the
findings in in light of the identified limitations and the feedback received from

peers and domain experts.

6.1 Hypotheses and the Performance Assessment

This section reflects on the results presented in Chapter 5 and Chapter 6 of
this study in the context of the research Hypotheses, presented in 1.2, assessing

whether this our hypothesis was proved true by the results obtained.
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Hypothesis: Incorporating process information along the network traffic
during training of a supervised ML-based NIDS following proposed PINID
framework improve the performance of the ML-based NIDS in detecting con-

trol attacks in ICS network when tested on the network traffic only.

6.1.1 Single Attack Scenario

To evaluate our hypothesis we have used the data available from SWaT testbed
and designed an experiment as a proof of concept to assess the effectiveness of
the proposed framework focusing on detecting a single attack in the SWaT ICS
network (attack 30). To do so an SVM model (denoted as SVM+) was trained
following LUPI framework with a data set consist network traffic and process
information. Accuracy, Precision, Recall and F1 score has been used as per-
formance metrics to compare the performance of this model with classic ML
algorithms which were trained and tested using network traffic only. The ini-
tial result obtained from this experiment suggested that on average, the accur-
acy, precision, Recall and F1-scores obtained by SVM+ outperform the results
obtained by other classical ML algorithms used in this experiment. Although
the accuracy obtained by SVM+ outperforms all baseline ML algorithms, it was
slightly lower that the accuracy obtained by DT classifier as presented in Table
5.5. However SVM+ presented bettre performance in compare to DT Classi-
fier with respect to precision, recall and F1 score. Additionally, SVM+ demon-
strated the lowest standard deviations in all four performance metrics across
five run of training/test in compare to other classifiers, which was interpreted
as reliability and robustness metric of this model.

To assess the proposed framework further, a NN technique known as Margin
Transfer was used to train a model following the proposed framework (denoted

as NN(1HL)p;). The performance of this model was then compared against
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similar model which was solely trained and tested on network traffic. as presen-
ted in Table 5.6, this model outperformed similar model that was trained and
tested following a classic classification methodology. BY improving the struc-
ture of the NN(1HL)p; model from a NN model with one hidden layer to a
NN model with two hidden layer, denoted as NN (2HL)p;, the obtained results
outperform the initial model as well as the results obtained by SVM+ model
with lower standard deviation across all the performance metrics over five run
of train and test. focusing on NN techniques, we have adapted the Distillation
technique to the proposed PINID framework and created a DNN and a CNN
student model , known as distilled student models. While training with Net-
work traffic, these distilled student models received the distilled information
from similarly constructed teacher models (DNN and CNN) that were trained
on process data. These models were then tested using network traffic and their
performance was compared with similarly structured student models which
were trained and tested on network traffic. As presented in Table 5.7 the dis-
tilled student models outperform the similarly structured student models with
distilled CNN student model outperform the distilled DNN student model on
all performance metrics except for the precision.

Transfer learning technique was also explored following PINID framework.
We created trained a CNN model including DNN layers. The CNN model was
first trained using process data. Following the initial training, the CNN layers
of the model were frozen and the DNN layers of the model were re-trained
using network traffic. The final model was then tested using network traffic.
The performance of this model was compared with a baseline model that was
similarly structured CNN model which was trained and tested on network data.
Both model performed equally poor in identifying selected attack. We believe

for the pre-trained model to be able to perform at its possible best it should be
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initially trained with considerably large dataset. In this experiment the the size
of the process data used for initial training was limited to the existing dataset.
Based on the findings from the performance of SVM+ , Margin Transfer and
Distillation technique following the proposed framework in identifying a single
, we can accept the hypothesis. However, the performance of the proposed
framework needs further evaluation to access the generalisation of the pro-
posed framework. Therefore, similar experiments were performed on a data-
set including a subset of attacks as presented in Table 3.4 and discussed in 3.3
the selected dataset included 5 attacks which as a representative of the 4 attack

types considered in development of the SWaT dataset.

6.1.2 Multiple Attack Scenario

The performance of SVM+ in detecting a various attack types in compare to the
other classic classifiers was shown in Table 5.9. Obtained results demonstrate
that the SVM+ outperform all the conventional classifiers in terms of Precision
and F1-score. The precision score attained by SVM+ algorithm exceeded that of
other classic ML algorithms by far. This demonstrate the superiority of SVM+ in
predicting attack records. Additionally, similar to the previous experience with
the SVM+ algorithm, the negligible standard deviation in the results obtained
from SVM+ performance metrics over five train and test run in compare to the
other algorithm is an evidence to the reliability and robustness of this model.

In a similar experience the margin transfer technique was examined in de-
tecting of a set of different attacks following proposed framework. The results
of this experiment which is shown in Table 5.10 present slight improvement
in performance metrics in compare to a similar model which was trained and
tested on network traffic.

Same experiment was setup to evaluate the performance of distillation tech-
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nique in detection of multiple attack type. The findings from this experiment
which was presented in Table 5.11 demonstrate that the DNN distilled student
and the CNN distilled student outperform the standard student in accurately
identifying the attacks over all metrics except for the recall. It is important
to highlight That the performance of both distilled student in detecting the
attacks with respect to Precision score exceeded the standard counterpart mod-
els. The DNN distilled student average performance outperform SVM+ model
in identifying multiple attack types.

Transfer learning technique was reassessed with respect to the identifying
multiple attacks following PINID framework. Pre-trained and baseline models
were created using the multi-attack database. findings from this experiment
is demonstrated in Table 5.12. The performance of these model is slightly im-
proved when compared to the similar experiment with single attack database,
which cam be due to the larger dataset used for training. Although the results
obtained from pre-trained and baseline models demonstrated similar perform-
ance in detecting different type of attacks, the pre-trained model demonstrate
considerably lower standard deviation across all performance metrics over five
run of train and test. this is an evidence to the robustness of the model yet
the performance with respect to accuracy, precision, recall and F1-score needs
further improvement.

The performance of the ML-based NIDS that were trained following the pro-
posed PINID framework when compared to the ML-based NIDS that were train
and tested on network traffic, present improvement specially with respect to the
accurate identification of attack records is evident in the high precision score at-
tained by these model except for the transfer learning approach. Furthermore,
all the models trained following PINID framework demonstrated lower stand-

ard deviation across all performance metrics over five train and test run which
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is another evidence of the improved performance of these models. A practical
path for asset owners is to train with process data (historian snapshots as priv-
ileged data) but deploy a NID. This keeps change-control light while improving
sensitivity to command misuse (e.g. unauthorised writes) which can look nor-
mal at packet level unless judged against expected process effects. In short, the
NID runs on the network where the SOC already has visibility, but it has been

trained to understand what a legitimate command should do to the plant.

6.2 Study Design: Limitations and Lessons Learned

There were a number of limitations in this research design, which will be ex-
plored in this section, based on which we suggest approaches for designing

future studies in this space to overcome the shortcomings of this study.

6.2.1 Research Structure and Process

It is worth noting that there are potential limitations to consider in this study.
The model’s training features are carefully chosen by considering common in-
stances identified in studies, and guidance provided by the test bed and data set
provider. In this research, all the features from both the SWaT process and net-
work datasets were utilised. As a possible outcome, these experiments could
have led to the development of models that were both heavier and slower in
nature.

Throughout the development and evaluation process of the framework, we
placed special emphasis on analysing the Brute Force IO and Unauthorised
Command Message adversarial techniques. The potential impact of this could
extend to the framework’s ability to effectively identify and address various ad-

versarial techniques that specifically target ICS.
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6.2.2 Study Setup

We ensured that the research setup was as realistic as possible with respect to
the test-bed and dataset used. This has limited this study to the SWaT dataset
which was collected from a small scale yet operational water treatment plant
with a distributed control systems use and data flow alignment to the Perdue
model. This limited the evaluation of the proposed framework to the SWaT

dataset.

6.2.3 Data quality.

Using the boundary guard-bands (section 5.2) improved Precision with almost
no change in Recall. This tells us that small timing shifts at the start and end of
attacks were boosting false positives, a data quality issue. To address this, we
didn’t change any labels; we trimmed short slices at the boundaries to reduce
the mismatch between labels and behaviour (section 3.4.0.6). That said, very
slow, stealthy attacks could still sit partly inside the guard-band. This should

be confirm this with cleaner, more precise ground-truth data.

6.2.4 Generalisability.

In single-attack tests, the models fit each scenario very well. In the multi-attack
setting, the model’s accuracy decreased a little as per-scenario but performed
better with respect to generalising across scenarios within SWaT’s SSSP/ SSMP/
MSSP/ MSMP topologies (section 3.2.3). This shows the approach works on
SWaT, but this still need to be check how well it transfers to other plants with

different processes, safety interlocks, and class balances.
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6.2.5 Legacy dataset.

All our experiments used SWaT, a water-treatment ICS with its own control
loops and safety interlocks. In the multi-attack runs, training one model across
SSSP/ SSMP/ MSSP/ MSMP improved generalisation across scenarios within
SWaT, but we have not tested this in other settings (e.g. power, chemicals), so we
cannot claim it generalises there yet. The approach works best when command
details (function code, tag, requested limits) map cleanly to well-constrained
plant physics. That holds in SWaT and likely in many regulated processes, but
it still needs checking elsewhere. To mitigate this, we focused on stage-agnostic
command misuse (e.g. write/force actions); nevertheless, independent valida-

tion on additional testbeds remains necessary.
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Chapter 7

Conclusions and future work

7.1 The Big Picture

We have presented the Process Informed Network Intrusion Detection frame-
work for ICS, an ML-Based NIDS which breaks new ground i.e. unlike other
proposed approaches in this research domain that are focused on data cap-
tured from networks or processes in an ICS environment, the proposed frame-
work focuses on the main characteristics of ICS in controlling a physical pro-
cess through a high network architecture. We achieve this by utilising valu-
able process-level information during the training phase of the ML-Based NIDS,
however, utilising network traffic alone during the run-time. We evaluated this
framework leveraging LUPI paradigm through Transfer Learning, SVM+ and
Distillation techniques and utilising SWaT dataset for detecting Brute Force and
Unauthorised Command Message attacks aiming to Impair Process Control.
Our first experiment on Knowledge Transfer demonstrates SVM+ trained on in-
tegrated data via the LUPI framework, outperforms baseline models trained on
network features on F1-score and precision metrics. Our experiment on Margin

transfer suggests when the learning difficulty — obtained from a model trained
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with privileged information — is transferred to a neural network model dur-
ing the training process with the network data, all performance metrics present
slight improvement in comparison with the similar neural network trained with
network data only. Our experiment on distilling knowledge from a teacher
model trained with process data — as privileged information — to a student
model while training with network data outperforms a student model trained

with network data only.

7.1.1 Re-stating research objectives

Objective 1 : Develop an ML-based NIDS for ICS that incorporates process and
network data. (Achieved.)
We designed PINID framework in which process data is used as privileged in-
formation for training an ML-based NIDs while the deployed detector is run-
ning on network daya only. Across the single- and multi-attack scenarios, the
framework delivered strong Precision/Recall and F1 under the common pro-
tocol (see the results tables in sections 5.3 and 5.6).

Objective 2: Evaluate the practicality of LUPI in ICS. (Achieved.)
SVM+ trained with network + process features (privileged) and tested network-
only outperformed network-only baselines in the single-attack series, and the
advantage persisted in the multi-attack scenarios (sections 5.3 and 5.6). This
shows LUPI is practical: it improves accuracy while keeping runtime simple
(network-only).

Objective 3: Compare traditional NIDS vs LUPI-based NIDS on single and
multi attacks. (Achieved.)
LUPI-based models performed better than the standard baselines throughout.
In single-attack tests, they showed the biggest improvements for each scenario.

In multi-attack tests, a single model lost a little per-scenario accuracy but gen-
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eralised better across different scenarios within SWaT (sections 5.3 and 5.6).
Objective 4: Evaluate robust neural-network knowledge transfer following

LUPI. (Achieved.)

Distillation, margin transfer and Transfer learning were evaluated and Dis-

tillation (teacher trained with process context; student trained network-only)

presented a considerable improvement over their network-only counterparts

and were most stable when trained on the larger, consistent subsets (5.3 and

5.6).

7.2 Summary of Contribution

Even though there is already a substantial body of research on ML-based anom-
aly detection for the SWaT test-bed, it is important to highlight that this study
is the first to utilise LUPI for ML-based network intrusion detection systems in

the ICS domain. The major contributions of this research can be outlined:

* This research introduces PINID, a novel Network Intrusion Detection Sys-
tem (NIDS) framework specifically designed for ICS environments. PINID
distinguishes itself by considering both cyber and physical aspects of the
system, offering a more comprehensive approach to security. While ex-
isting research primarily focuses on network data for intrusion detection,
PINID leverages the combined strengths of both network and process data
to enhance the detection of cyberattacks within an ICS. This integration
enables a more holistic and accurate assessment of the ICS security pos-
ture. In line with established practices, this research utilises network data
for developing an ICS-specific NIDS, adhering to the principles of the
LUPI framework. However, unlike many proposed techniques that dis-

regard the valuable information embedded within process data, this ap-
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proach retains and leverages this knowledge. This results in a more robust
and reliable Machine Learning (ML)-based NIDS specifically tailored for

ICS environments.

* The PINID framework’s effectiveness was rigorously evaluated against
a range of attacks targeting industrial processes, including brute force
IO and unauthorised command messages, aligned with MITRE ATT&CK
for ICS and considered hierarchical network architecture of the Purdue
Model. The evaluation used the SWaT dataset, which comprises ICS ex-
periments on a small-scale water treatment plant and represents 36 dif-
ferent attack types, to assess attacks on single and multiple field devices
within a simulated water purification process. The study also highlighted
the importance of data labelling for supervised learning in ICS security

and proposed an approach to address limitations in existing datasets.

* In a single attack scenario, the PINID framework’s performance was eval-
uated using common supervised machine learning algorithms: SVM, LR,
DT, MLP, KNN. Network traffic data was used for both training and
testing phases.The study compared the performance of these algorithms
against a knowledge transfer technique, SVM+, an adaptation of the SVM
algorithm incorporating Learning Using Privileged Information (LUPI).
In this approach, process information supplemented network traffic data,
enhancing the algorithm’s learning capabilities. Furthermore, the frame-
work’s evaluation included robust neural network methods for single at-
tack detection. This validation encompassed assessing margin transfer

and distillation techniques alongside transfer learning.

* Given the complexity of multi-attack scenarios and their diverse char-

acteristics, the PINID framework’s performance was rigorously assessed
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in this context. Common supervised machine learning (ML) algorithms,
including SVM, LR, DT, MLP, and KNN, were employed, utilising net-
work traffic data for both training and testing phases. The study spe-
cifically compared these algorithms’ performance against SVM+, a know-
ledge transfer technique. which adapts the SVM algorithm by incorporat-
ing Learning Using Privileged Information (LUPI), appending process in-
formation to network traffic data as supplementary information. Beyond
traditional ML methods, the framework evaluation encompassed robust
neural network approaches. This included assessing margin transfer and
distillation techniques, in addition to transfer learning, all implemented

within a neural network structure.

Originality: We believe this is the first time Learning Using Privileged In-
formation has been applied to a NIDS in ICS. In short: we train with pro-
cess context, but we run the model using network data only in runtime. This
mix—process-aware learning with a light, low-friction deployment—drives the
improvements reported in sections 5.3 and 5.6.

Practical implications: Two points carry straight into operations. First,
adding short guard-bands at attack boundaries (our label-alignment step) cut
false positives without hurting recall (section 5.1.2). Second, training with pro-
cess context improved precision on command misuse (e.g. unauthorised writes)
while keeping the live system network-only (sections 5.3 and 5.6). Together,

these changes mean earlier and more trustworthy alerts for security teams.

7.3 Future Work

This research highlights a framework that can potentially enhance NIDS per-
formance in ICS and other Cyber-Physical Systems like the Internet of Things
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(IoT). Future improvements could involve:

* Various ICS datasets : The evaluation of this framework can leverage ICS
datasets derived from diverse industrial environments, employing a hier-
archical network architecture. This approach enables the validation of the
framework’s efficacy across a spectrum of process types, including con-
tinuous, discrete, and batch processes, each characterized by distinct pro-
cess data characteristics. Furthermore, this methodology facilitates a com-
prehensive assessment of the proposed framework’s resilience against a
variety of cyberattacks targeting different industrial and proprietary com-

munication protocols.

* Feature selection: The integration of optimised feature selection methodo-
logies into this framework, specifically within the context of ICS network
intrusion detection, presents a significant area for further investigation.
A comprehensive assessment of such integration could encompass its im-
pact on multiple facets of the NIDS, including but not limited to; perform-
ance enhancements, improvements in generalisation capabilities, and the

implications for computational cost and overall scalability.

e Control Data : The integration of auxiliary data from ICS, including but
not limited to alarm and event logs, and control set-point values, consti-
tutes a promising area of research in the context of NIDS enhancement.
The rationale for this proposition emerge from the capacity of such data
to provide a comprehensive insight of the normal operational state within

the ICS environment.

* Integrating Adversarial knowledge: While the present framework demon-
strates efficacy in detecting a variety of attack vectors, further research is

needed to explore the integration of adversarial knowledge. Specifically,
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incorporating information about adversarial Tactics, Techniques, and Pro-
cedures (TTPs), such as Indicators of Compromise (IOC)s and privilege
escalation methods, presents a valuable opportunity to rigorously assess

and potentially improve the framework’s overall performance.

* Diverse neural network architecture and optimisation: With the advance-
ments in artificial intelligence and the various configurations of neural
network structures, future research in this field could explore the imple-
mentation of alternative neural network architectures, building upon the

techniques employed in this study.

* Unsupervised learning: Given the challenge of obtaining labelled datasets
from industrial environments, evaluating the performance accuracy of the
proposed framework can be done using an unsupervised approach in ICS

network intrusion detection.
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