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Abstract

This study introduces GAT-CAMDA, a novel framework for the structural health moni-
toring (SHM) of composite materials under temperature-induced variability, leveraging
the powerful feature extraction capabilities of Graph Attention Networks (GATs) and ad-
vanced domain adaptation (DA) techniques. By combining Maximum Mean Discrepancy
(MMD) and Correlation Alignment (CORAL) losses with a domain-discriminative adver-
sarial model, the framework achieves scalable alignment of feature distributions across
temperature domains, ensuring robust damage detection. A simple yet at the same time
efficient data augmentation process extrapolates damage behaviour across unmeasured
temperature conditions, addressing the scarcity of damaged-state observations. Hyperpa-
rameter optimisation via Optuna not only identifies the optimal settings to enhance model
performance, achieving a classification accuracy of 95.83% on a benchmark dataset, but also
illustrates hyperparameter significance for explainability. Additionally, the GAT architec-
ture’s attention demonstrates the importance of various sensors, enhancing transparency
and reliability in damage detection. The dual use of Optuna serves to refine model accuracy
and elucidate parameter impacts, while GAT-CAMDA represents a significant advance-
ment in SHM, enabling precise, interpretable, and scalable diagnostics across complex
operational environments.

Keywords: structural health monitoring (SHM); composite materials; graph attention
networks (GATs); domain adaptation (DA); temperature variability; explainability

1. Introduction

Ultrasonic-guided waves (UGWs), particularly Lamb waves, have become fundamen-
tal in SHM due to their ability to propagate over long distances with minimal attenuation,
making them highly effective for inspecting large structures such as wind turbine blades
and aerospace components. Their high sensitivity to both surface and internal defects
facilitates robust damage detection when interacting with structural anomalies that alter
propagation characteristics [1-3]. Piezoelectric sensors, pivotal in generating and detect-
ing Lamb waves, offer a scalable and cost-effective SHM solution, providing widespread
monitoring capabilities [4,5]. However, the multimodal and dispersive nature of Lamb
waves introduces significant challenges in interpreting signals and accurately localising
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damage. These difficulties are compounded by environmental and operational variabil-
ities (EOVs) such as temperature, humidity, and mechanical stress, which distort wave
propagation and impair system reliability [2,6]. In composite materials such as Carbon
Fibre-Reinforced Polymer (CFRP), the heterogeneity and anisotropy of the material further
necessitate specialised techniques to manage failure modes, including delamination and
matrix cracking [7-10].

1.1. Temperature-Induced Variability and Conventional Compensation Methods

Among the various EOVs, temperature changes can influence guided wave propaga-
tion by affecting wave speed, phase, and amplitude, potentially masking or mimicking
damage signatures [11-13]. Numerous compensation strategies have been proposed to
mitigate these effects. Scheerer and Lager [14] evaluated three temperature compensa-
tion techniques (Best Baseline, Signal Interpolation, and Frequency Shift), concluding that
Frequency Shift was effective under moderate temperature variations (<5 °C). In addi-
tion, statistical modelling approaches have been applied to tackle temperature-induced
variability. For example, Silva et al. [15] used auto-regressive models with cubic spline
extrapolation to track damage progression under temperature fluctuations, although the ap-
proach required extensive baseline data and thus faced scalability limitations. Ren et al. [16]
adopted Gaussian Process Regression with Monte Carlo sampling to quantify uncertainty
in damage detection, demanding large datasets that may not be practical for real-time SHM.
Complementing these statistical methods, semi-analytical and finite element (FE) modelling
also feature prominently. Ren et al. [17] explored temperature compensation in composite
structures through a semi-analytical FE model, validating their findings experimentally
but relying on well-defined material and geometric properties. Similarly, Perfetto et al. [18]
studied guided wave propagation under thermal loads using FE modelling, deriving time
compensation factors that nonetheless require extensive experimental corroboration.

1.2. Data-Driven Methods for Temperature Compensation

Given the limitations of purely model-based and statistical strategies, data-driven
methods are increasingly used to compensate for temperature effects [19]. Ferreira et al. [20]
proposed a Bayesian framework that integrates FE model updating with neural networks
to produce synthetic datasets for temperature compensation, reducing reliance on physical
experiments but introducing potential inaccuracies when dealing with poorly characterised
conditions. Giannakeas et al. [21] presented an up-scaling methodology using Bayesian
regression to extend temperature compensation factors across structural scales, thus improv-
ing damage detection reliability, though at the expense of comprehensive validation efforts.
Meanwhile, Cheng et al. [22] combined fibre optic sensors with piezoelectric transducers in
a hybrid system for guided wave monitoring, although the sensitivity adjustments required
for fibre optic sensors add complexity to the system.

GATs have garnered particular interest for capturing intricate spatial-temporal de-
pendencies in graph-structured sensor data [23,24]. Niu et al. [25], for instance, leveraged
attention mechanisms within GATs to handle incomplete SHM datasets by accounting
for spatial-temporal relationships among sensors. Zhao et al. [26] further demonstrated
a virtual sensor for bearing load prediction using heterogeneous temporal graph neural
networks that explicitly modelled sensor signal dependencies and outperformed standard
convolutional neural networks in load estimation tasks.

1.3. Transfer Learning for Mitigating EOVs in SHM

While data-driven models can capture complex wave behaviours, they often depend
on large, high-quality labelled datasets that may not be available across different environ-
mental regimes. Transfer learning (TL) therefore offers a promising solution, focusing on
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translating knowledge obtained in one domain to enhance performance in another [27].
Among TL methods, adversarial approaches such as Domain-Adversarial Neural Networks
(DANNs) operate by minimising discrepancies between source and target distributions,
thereby generating domain-invariant features. Ozdagli and Koutsoukos [28] demonstrated
this technique in SHM, achieving improved cross-domain damage detection. Other feature-
based alignment methods have also emerged: Zhuojun et al. [29] used MMD to recon-
cile simulated and experimental Lamb wave data for precise damage localisation, and
Wang et al. [30] combined MMD with techniques including Variational Mode Decomposition
and Transfer Component Analysis (TCA) to boost damage detection performance. Although
many of these studies investigated TL under EOVs such as variations in loading or operat-
ing conditions, they rarely addressed temperature explicitly, which remains a critical and
underexplored factor influencing guided wave propagation and model generalisation.

CORAL offers another feature-alignment strategy, albeit less commonly applied to
UGW-based SHM. Poole et al. [31] employed CORAL in a partial DA setting, illustrating
the benefit of aligning source and target covariance matrices for population-based SHM. By
normalising datasets to account for anticipated EOVs, CORAL mitigates negative transfer
and class imbalance, thereby improving damage localisation even with limited target-
domain data. These advances collectively illustrate how TL can address data scarcity and
ensure robust performance under varying environmental or operational conditions, making
it an attractive approach for temperature compensation.

1.4. The Need for Explainability in ML-Based SHM

Despite these advances in data-driven and TL approaches, the opaque nature of many
ML algorithms can hinder adoption in critical SHM tasks, where trust, interpretability, and
actionable insights are essential. Explainable Al methods, including SHapley Additive
exPlanations (SHAP) [32] and Local Interpretable Model-agnostic Explanations (LIME) [33],
have been proposed to tackle the “black box” problem. As highlighted by Schnur et al. [34],
neural networks are widely employed in SHM applications; however, their lack of in-
terpretability limits their suitability for safety-critical contexts. Consequently, machine
learning outcomes must be physically interpretable to facilitate their deployment in
such domains.

To this end, Salih et al. [35] integrated SHAP and LIME into SHM workflows, with
SHAP quantifying feature contributions and LIME providing localised signal interpreta-
tions. Tiwari et al. [36] harnessed SHAP in an ensemble approach for estimating shear
strength in reinforced concrete, highlighting its utility in identifying sensor contributions.
Azad and Kim [37] developed an explainable Vision Transformer for polymer composite di-
agnostics, employing attention mechanisms to highlight crucial decision regions, although
at a substantial computational cost.

1.5. Main Contributions

This research addresses key limitations in the SHM of composite plates under
temperature-induced EOVs through a novel framework, GAT-CAMDA. The main contri-
butions are as follows:

e  Combines multiple temperature domains into a single target domain, improving gen-
eralisation and reflecting real-world variability for greater robustness and practicality.

e Integrates CORAL and MMD losses to align feature distributions across temperatures,
explores CORAL’s effectiveness in SHM, and employs GATs to capture complex
spatial-temporal dependencies in UGW data for accurate damage detection.
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e  Uses GAT attention weights to visualise and quantify sensor contributions, enhancing
model transparency and providing valuable insights into sensor importance for both
theoretical and practical SHM applications.

e  Employs Optuna [37], an automated hyperparameter optimisation framework, to sys-
tematically fine-tune model parameters within the semi-supervised process, thereby
enhancing robustness and generalisability across temperature domains without re-
quiring labelled target data for the DA stage [37].

The novelty of this work lies in its ability to generalise across diverse temperature
conditions by merging multiple temperature domains into a unified framework. In contrast
to previous studies restricted to narrow or isolated settings, this approach more closely
represents real-world environmental variabilities. Furthermore, the thorough investigation
of CORAL loss, an underexplored method in SHM applications, combined with the ad-
vanced feature extraction capabilities of GATs, marks a substantial step forward in aligning
feature distributions and extracting discriminative patterns. By incorporating explainability
through attention-weight visualisation and leveraging semi-supervised optimisation with
Optuna, the proposed framework not only enhances damage detection accuracy but also
delivers a transparent and scalable solution, setting a higher benchmark in SHM under
complex environmental conditions.

The remainder of this paper is structured as follows: Section 2 presents the proposed
framework, detailing its methodological advancements along with the implemented data
synthesising technique. Section 3 outlines the case study, including the dataset and experi-
mental setup. Section 4 discusses the results and evaluates the framework’s performance,
and Section 5 concludes with key findings and future directions.

2. Materials and Methods
2.1. Overview of the Proposed Framework

GAT-CAMDA is a semi-supervised deep learning framework designed to address
the challenge of SHM across different environmental conditions subjected to data scarcity.
This pipeline comprises multiple stages, beginning with feature extraction using GATs,
followed by DA through DANN enhanced with MMD and CORAL losses, and concluding
with damage detection in the target domain system. To address data scarcity, damaged
responses at target temperatures were estimated by leveraging temperature-dependent
trends in healthy signals. The objective function in the optimisation procedure (Optuna)
was to maximise the classification accuracy on the validation set of the target domain. To
improve the explainability of the framework, the contributions of various hyperparameters
and the significance of individual sensors were calculated and visualised.

In this study, the source domain refers to the data collected from a structural sys-
tem under baseline environmental conditions (e.g., at a reference temperature), where
labelled observations of both healthy and damaged states are available. The target domain
comprises the data from the same structural system but under different environmental
conditions (e.g., at various temperatures), where labelled damaged observations are scarce
or unavailable. The fundamental challenge is to transfer knowledge learned from the
source domain to accurately detect damage in the target domain, despite the distribution
shift caused by EOVs.

Figure 1 displays a schematic of the feature extraction and DA stages of GAT-CAMDA
on the assumption that there are four GATs layers.
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Figure 1. A schematic of GAT-CAMDA.

In the following parts each of these blocks are elaborated.

2.2. Graph Attention Networks

GATs were implemented as the feature extractor to capture both local and global
relational structures within the input data. While conventional feature extraction methods
excel at identifying localised patterns, they often struggle to comprehensively represent the
complex interdependencies present in certain datasets more specifically, on the assumption
that there are multi-sensor readings. GATs address this challenge by employing atten-
tion mechanisms that dynamically weight the importance of connections based on the
significance of neighbouring features [38], thereby enabling a richer and more contextually
informed representation. The process of a GAT can be summarised as follows [23]:

1. Feature transformation: Each node’s input feature vectors x; and x; undergo a shared
linear transformation:

xj = Wx;, xj = Wx; (1)
where W is a learnable weight matrix; the transformed feature vectors x; and x; are then

used in subsequent steps.

2. Computation of importance scores: A self-attention mechanism computes unnor-
malised importance scores ¢;;, quantifying the relevance of the j-th node’s features to
the i-th node:

ejj =a (xf, x;) 2)
where 4 is a learned vector that parameterises the attention score.

3. Normalisation of attention coefficients: The scores ¢;; are normalised using the softmax
function to produce attention coefficients a;;:

exp (e;j)
T el ®)
Yken(i) exp(eik)

This normalisation ensures that the attention coefficients are comparable across the
neighbourhood of node i. Assuming a single-layer feedforward neural network as the

Dél‘]‘ =
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attention mechanism a4, and employing the LeakyReLU (Leaky Rectified Linear Unit)
activation function, which introduces a small non-zero response for negative inputs to
maintain gradient flow and prevent inactive neurons, the attention coefficients can be
calculated as follows:

-
exp (LeakyReLU (E) [x; [ x;} ) >

—
Lken (i) eXP <LeakyReLU <Z EAEA ) )

4)

ocij =

in which a" denotes the transpose of a (the attention parameter vector), and || indicates
concatenation.

4.  Feature aggregation: Each node’s output feature is computed as a weighted sum of its
neighbours’ transformed features:

"o o
x; =0l ), ;X )
JEN (i)
In this equation, ¢ denotes an activation function (e.g., ReLU) and x;’ represents the
refined feature for node i.

5. Multi-head attention: To improve stability and expressiveness, multiple attention
mechanisms (heads) are employed. Each head independently computes its own set of
attention coefficients and aggregated features:

I k
o =Kol ¥ aly (6)
JEN (i)
here, K denotes the number of attention heads; for the final layer, concatenation is replaced
by averaging as follows:

"o 1 K (k) s
X! =0 EE ) ;i xj 7)
k=1 jeN (i)
Figures 2a and 2b present the attention mechanism described above, e.g., ¢;;, and the
multi-head attention when there are four heads, i.e., K = 4, by node 1 and its neighbour

nodes, respectively.

Z Concat/Avg@

(@) (b)

Figure 2. A schematic of the (a) self-attention mechanism and (b) multi-head attention mechanism in
the GAT layer [39].
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In Figure 2b, each line style and colour represent independent (here four) attention
calculations.

2.3. Domain Adaptation

The DA stage of GAT-CAMDA combined DANN with MMD and CORAL loss func-
tions to handle more severe distribution gaps between the source and target domains.

2.3.1. Domain-Adversarial Neural Network

The DANN unit of GAT-CAMDA consists of a feature extraction unit that is re-
sponsible for projecting the source and target domain data into a shared space. Since in
GAT-CAMDA an extra feature extraction stage is applied (i.e., GATs), the feature extractor
unit of the DANN projects the distilled features from GATs to the shared space.

There are two heads connected to the DANN, i.e., a damage classifier and a domain
discriminator. The damage classification unit predicts fault classes, while the domain
discriminator determines whether input data come from the source or target domain.

Looking at Figure 1, it can be seen that a Gradient Reversal Layer (GRL) is used
between the feature extractor and domain discriminator [40]; during the forward pass, the
GRL acts as an identity layer, but during backpropagation, it reverses the gradients by —1.

The damage classifier consists of three blocks, i.e., input, hidden, and addition blocks,
each of which is composed of various layers such as linear layers, batch normalisation, and
dropout, among others. Figure 3 presents a schematic of this neural network.

Input Block 1 : Hidden Block ] Addition Block
= = cl
8 £ £ £
E = Z S z
S = i = = - s %
= s = s = e ] 25
g » :» £ pld > > Erls > = PRt > &
s 3 = & = 2 ~ s = (Sl
S = = = )
= 2 £ $
2 2 =

Figure 3. Schematic of damage classifier in GAT-CAMDA.

Structuring an overly complex damage classifier in DA tasks can lead to overfitting
to the source domain [41]. Consequently, it is crucial to establish a trade-off between the
model’s complexity and its capacity to generalise effectively to target domains. This balance
ensures that the classifier maintains robust performance across diverse domains without
being unduly influenced by the intricacies of the source data. As a result, a simple structure
was chosen as the classifier in GAT-CAMDA.

In contrast, the domain discriminator comprises five blocks. Each block contains a
linear layer followed by a LeakyReLU activation to introduce non-linearity while avoiding
the dying ReLU problem. Dropout layers are included for regularisation, and the final
block maps the learned features to domain-specific logits, enabling discrimination between
source and target domains. A deeper discriminator architecture was selected to ensure suf-
ficient representational power to capture subtle domain shifts and to generate a meaningful
adversarial signal for the feature extractor during training. This design choice establishes
an equilibrium between the discriminator and the classifier: the classifier remains general-
isable, while the discriminator is strong enough to challenge it, thereby promoting robust
and domain-invariant feature learning.
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The loss functions for damage classifier (Lp) and domain discriminator (L7) are well
discussed in the literature [40].

2.3.2. Maximum Mean Discrepancy

The MMD quantifies the distance between the average feature representations. This
metric is pivotal in evaluating how effectively the feature distributions of the two domains
align, which is essential for successful DA. The MMD (L) between two sets of observations
belonging to domain s and ¢ can be computed as follows [42]:

. 2

12@(3{’/51,) -

s (®)

Ly =

SN

m
Z %) (x// tj)
j=1

in which x”5; and x” t represent the sets of features from the source and target domains,
respectively. The function @ maps these features into a higher-dimensional feature space,
and n and m are the number of samples in each domain.

By mapping the features into a higher-dimensional space, MMD loss effectively cap-
tures more intricate patterns and discrepancies between the domains; a lower MMD
loss indicates a greater similarity between the domains, which is indicative of improved
DA performance.

When applying MMD, it is essential to select an appropriate kernel type, such as
linear or Radial Basis Function (RBF). Specifically, for RBF kernels, adjusting the Gamma
parameter is crucial, as it governs the kernel’s bandwidth and subsequently influences the
sensitivity of the MMD measure to discrepancies in feature distributions.

2.3.3. Correlation Alignment

The CORAL loss functions as a metric for evaluating the alignment between
two domains by quantifying the discrepancies in their feature covariance matrices. Within
the scope of DA, it is employed to align the data distributions of the source and target
domains, thereby reducing statistical variations to enhance generalisation. By minimising
this loss, the features that are learned become more consistent across both domains, thereby
increasing the prediction accuracy for the target domain. The central concept of CORAL loss
involves addressing domain shift by aligning second-order statistics, specifically through
the minimisation of the Frobenius norm of the difference between the covariance matrices
of the source and target domains. The CORAL loss (Lc) function can be expressed as
follows [43]:

1
Le = ;pllCov s = Cov |7 9)

where Cov x” s and Cov x”; denote the covariance matrices of the source and target features,
respectively, d represents the dimensionality of the features, and ||-|| ; refers to the Frobenius
norm. CORAL loss can be computed on a per-class basis or as an overall measure. Typically,
the aggregate CORAL loss is more indicative, as it captures the general alignment across
all classes, thereby ensuring that the adaptation generalises well across the entire domain
rather than merely fitting specific classes.

2.4. Training Process of GAT-CAMDA

The total training loss comprises weighted losses from damage classification, domain
discrimination, MMD, and CORAL, expressed as follows:

Liptal = M X Lp+ Ay XL+ A3 X Ly + Ag X L (10)
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where Ay, Ay, A3, and A4 are the weights assigned to the classification, discriminator, MMD,
and CORAL losses, respectively.

In this hybrid DA framework, unlike the damage classification loss (Lp) and the
domain discriminator loss (L), which each have explicit backpropagation paths due to
their association with trainable network components, MMD (L) and CORAL (L) losses
act as regularisation terms applied directly to shared feature representations. Consequently,
their gradients are propagated only through the feature extractor to encourage domain-
invariant feature learning, rather than through separate trainable branches.

Each training iteration comprises forward and backward propagation within a stan-
dard optimisation loop. During the forward pass, data from both domains are processed
through the feature extractor to generate embeddings, which are subsequently fed into the
damage classifier and the domain discriminator. The GRL ensures that these embeddings
do not reveal their domain origin to the discriminator, thereby promoting domain-invariant
feature learning. The MMD and CORAL losses are also computed once per iteration to
minimise discrepancies between the feature distributions of the two domains.

During the backward pass, the combined losses update the model parameters as
defined in Equation (10). This iterative process is fully automated and follows conventional
neural network training procedures, without any manual adjustment or heuristic matching
between the source and target domains. The parameter -y regulates the strength of the GRL
by scaling the gradients associated with the domain discriminator loss Lt. Initially, v is
small to maintain training stability and is progressively increased according to a sigmoidal
schedule defined as follows:

2
Y = Ymax (H(pr(—l()w - 1) (11)

inwhichp = Elif’ci(;i:x, Ymax is the maximum value of oy, and Epoch, . is the total number of
training epochs. This adaptive scheduling strategy enables gradual and effective TL while
preserving the discriminative capacity of the extracted features for damage classification.

Designed as a semi-supervised framework, GAT-CAMDA does not use the labels
from the target domain observations during the DA process. Additionally, given that
there are multiple target domains, i.e., signals recorded at various temperatures, these
are consolidated into a single target domain to further assess the generalisability of the

framework. Algorithm 1 denotes a pseudocode for GAT-CAMDA.

2.5. Data Synthesising

As will be shown in the following section, the employed dataset contains observations
for all health states at a baseline temperature (Ty, e.g., 30 °C), whilst for the remaining
temperatures only healthy measurements are available. To address the lack of data at other
temperatures and for the damaged plates, a data augmentation stage was applied. The
methodology extrapolates the behaviour of damaged signals at new target temperatures
(T") by leveraging the temperature dependence observed in healthy signals.

First, the data for the healthy and damaged plates were separated based on their
labels, ensuring a clear delineation of reference (healthy) and target (damaged) conditions.
The average healthy response X(T;) was computed for each available temperature T;; a
spline interpolation function was then fitted to these mean signals, providing a continuous
approximation of x(T) across the temperature range. Using this interpolation, the mean
healthy signal at the target temperature X(T") was estimated as follows:

X(T) = Interp({X(T:) }, {T:}) (12)
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Algorithm 1. GAT-CAMDA framework for SHM.

Input: Source domain data and labels, target domain data, target domain labels (held
out for the validation and testing).
Output: Trained GAT-CAMDA model, feature-space alignment and sensor-importance
visualisations, final classification performance on source test and target test.
1. Configuration and Setup
1.1 Set the device to GPU if available.
1.2 Initialise random seeds for reproducibility.
1.3 Define global configuration (e.g., hidden dimensions, batch size).
2. Data Preprocessing
2.1 Load source and target data.
2.2 Split source data into training, validation, and testing sets.
2.3 Split target data into training, validation, and testing sets, supporting stratification.
2.4 Convert labels to tensors and create graph-based representations of the data.
3. Model Initialisation
3.1 Define the GNN-based feature extractor using GAT.
3.2 Define the discriminator for domain classification.
3.3 Define the classifier for damage classification.
3.4 Initialise the DANN.
4. Training the Model
4.1 For each epoch:
4.1.1 Compute the adaptive weight for domain-adversarial loss.
4.1.2 For each batch of source and target data:
a. Forward pass through the feature extractor, classifier, and discriminator.
b. Compute classification loss, domain loss, MMD loss, and CORAL loss.
c. Backpropagate the combined loss and update model parameters.
4.2 Perform early stopping based on validation loss.
5. Hyperparameter Optimisation
5.1 Use Optuna for hyperparameter tuning with a defined search space.
5.2 Optimise learning rate, weight decay, loss weights, and model architecture based on
validation set of target domain.
5.3 Train and evaluate the final model with the best hyperparameters.
6. Model Evaluation
6.1 Evaluate the model on the source test set for classification accuracy.
6.2 Evaluate the model on the target validation set for domain adaptation performance.
6.3 Generate confusion matrices and classification reports.
7. Feature-Space Visualisation
7.1 Extract feature embeddings using the trained model.
7.2 Apply t-SNE for dimensionality reduction.
7.3 Visualise embeddings before and after domain alignment.
8. Sensor Importance Analysis
8.1 Compute attention scores for each sensor from the GAT layers.
8.2 Normalise and visualise sensor importance scores.
9. Final Outputs
9.1 Trained GAT-CAMDA model.
9.2 Visualisations of feature alignment and sensor importance.
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To derive the temperature-specific scaling factor for the damaged data, the ratio
between the mean healthy signals at the target and baseline temperatures was employed:

al

(T*)

Ty

(13)

This scaling factor S was then applied to the damaged signals at the baseline
temperature,X4maged(To), to generate the corresponding signals at the target tempera-
ture. A small stochastic term €, drawn from a Gaussian distribution with an incredibly low
variance, was included to introduce realistic variability. Thus, the synthesised damaged
data were obtained as follows:

xdﬂmaged(T*) = xdamaged(TO)'S'(l + 6) (14)

Following this procedure, new labels were assigned to the synthesised datasets to
maintain consistency with the classification scheme.

2.6. Hyperparameter Optimisation

The optimisation process applies Optuna [44] to maximise the classification accuracy
on the validation set of the target domain; this technique employs the Tree-structured
Parzen Estimator (TPE) to model the probability distribution of () being maximised. This
approach allows the optimiser to focus on hyperparameter regions that are more likely to
enhance the classification accuracy. The TPE method effectively constructs a model of | and
updates this model iteratively as new data (hyperparameter values and their corresponding
Ay) are observed.

The objective function | is designed to maximise the classification accuracy of the
validation subset of the target domain (A;); this function can be formulated as follows:

J(6) = A(6) (15)

where 0 and A;(6) present the vector of model hyperparameters and the classification
accuracy on the target test set, respectively.

The goal of the optimisation is to find the optimal set of hyperparameters 8 that
maximises J:
argmax J(6)

0" =
0

(16)

This optimisation problem involves dynamically adjusting 0 to achieve the highest
possible A;, which indicates the model’s performance in effectively transferring learned
knowledge from the source domain to the target.

2.7. Computing Sensor Importance

The computation of sensor importance in GAT-CAMDA directly relies on the attention
coefficients (w;j) defined in Section 2.2 and illustrated in Figure 2. These coefficients
represent the learned weights that quantify the relative contribution of neighbouring nodes
(sensors) to each node’s feature aggregation. For clarity, the symbol ¢ (glg) is subsequently
used to denote the same attention weights when aggregated at the edge level in layer |,
where each edge e € E connects two sensors i and j.

To determine which sensor exerts the greatest influence on the final damage-detection
outcome, the attention weights from the GAT are interpreted as indicators of each sensor’s
contribution to the overall task. For each GAT layer, the attention weights correspond-
ing to the edges connecting sensors are extracted and evenly distributed between the
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two connected nodes. These per-sensor contributions are then aggregated to obtain a batch-
wise score, normalised within each batch, and subsequently accumulated and renormalised
across all batches to yield a global sensor-importance metric.

Sll]atch+ _
S]ﬁzutch+ — % .
gbatch o _ Ghateh 17)

S <+—

XS

In the following section, the calculated weights are visualised as a gradient bar chart
for the three receiving sensors.

3. Case Study

A publicly available dataset, CONCEPT: CarbON-epoxy CompositE PlaTe, was em-
ployed to evaluate the effectiveness of the SHM framework designed in this study. The
dataset includes Lamb wave measurements captured on a CFRP plate made of unidirec-
tional plies, in both healthy and damaged states. The experiments focused on the effects of
temperature variations and damage progression on the structural integrity of the plate.

Four Lead Zirconate Titanate transducers from Acellent Technologies were bonded to
the plate, with one (PZT1) serving as an actuator and the others (PZT2, PZT3, and PZT4) as
receiving sensors. To minimise wave propagation constraints, the laminate was mounted
under free—free boundary conditions. Figure 4 shows the setup along with the test rig and
instrumentation; Table 1 presents the test rig and the instruments used.

The experiments were conducted in a Thermotron thermal chamber to precisely control
temperature. The chamber uses an integrated cascade refrigeration system, with the 0 °C
condition achieved through mechanical cooling rather than ambient freezing. A sinusoidal
tone burst served as the excitation signal, with response signals sampled accordingly.
Signal generation and measurement were managed by designated data acquisition systems,
controlled via LabVIEW software. For the intact plate, 100 measurements were conducted
at each of seven temperatures, ranging from 0 °C to 60 °C in 10 °C increments. For the
damaged scenarios, 100 observations were recorded only at 30 °C, which was considered
the baseline, with no measurements for damaged cases at other temperatures.

Table 1. Summary of the test rig and instruments used in the CONCEPT experiments.

Category Parameter Value
Laminate plate Dimensions (L x W x T) 500 mm X 500 mm X 2 mm
P Number of Plies 10
Type pPzZT
Transducers Diameter 6.35 mm
Configuration One actuator, three sensors
Mounting conditions Boundary condition Free-Free
Temperature control Range 0°C to 60 °C
p Increment 10 °C
e Type Five-cycle sinusoidal tone burst
Excitation signal Frequency 250 kHz
. Sampling rate 5 MHz
Data sampling Duration per measurement 100 ms
Generation system NI USB 6353
Data acquisition Measurement system Keysight DSO7034B

Control software

LabVIEW
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Figure 4. The test rig setup with CFRP plate and PZT transducers and temperature chamber from the
CONCEPT experiments [45].

Table 2. Damage scenarios and severities for simulated defects in the CONCEPT experiment.

Damage Scenario Severity Class Description Temperature Temperature
(Area Covered) Label (Degree Celsius) Label
0 0
10 1
20 2
Healthy 0% Co No damage 30 3

40 4
50 5
60 6

Damaged D1 0.196% C1 Industrial putty

Damaged D2 0.282% 2 Increased coverage of putty

Damaged D3 0.384% C3 Further increase in coverage

Damaged D4 0.502% C4 Progressive increase

Damaged D5 0.785% (€5) Larger area covered

Damaged D6 1.13% Cé6 Substantial coverage 30 3

Damaged D7 1.53% Cc7 Continued increase

Damaged D8 1.95% C8 Different progression pattern

Damaged D9 2.01% c9 Extensive coverage

Damaged D10 2.27% C10 High severity

Damaged D11 2.54% c1 Maximum simulated severity
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The damage scenarios were simulated by applying industrial adhesive putty to the
composite plate’s surface, representing delamination-like defects. The damage was progres-
sively increased in a localised region between PZT1 and PZT2 to examine the attenuation
and propagation changes caused by the defects. Various health scenarios along with their
severities and brief descriptions are summarised in Table 2, which also contains the labels
allocated to the different temperatures. This dataset was employed in multiple research
studies that have represented its capability in evaluating SHM frameworks in mitigating
EOVs [15,46,47].

4. Result and Discussion

This section aims to show that the proposed SHM system, i.e., GAT-CAMDA, can ac-
curately identify different health states of the structure, even with temperature changes that
occur during operation. As previously mentioned, the source domain dataset comprises
measurements from all health scenarios at a baseline temperature of 30 °C, with one PZT
functioning as the actuator positioned at the centre of the plate (PZT1) and the remaining
three PZTs (PZT2, PZT3, and PZT4) capturing the received Lamb waves. Initially, a data
synthesis approach was employed as detailed in the preceding sections. Subsequently, the
performance of the end-to-end hybrid DA and classification model was evaluated under
the assumption that the testing data encompassed a range of background temperatures.
Finally, a comparative study was performed to assess the superiority of GAT-CAMDA.
Additionally, the analysis identified which receiver sensors were more significant and
which hyperparameters had a substantial impact on the results.

4.1. Dataset Complementation

To produce data for target temperatures, e.g., 0 °C, 10 °C, 20 °C, 40 °C, 50 °C, and
60 °C, the interpolation and extrapolation processes were executed for each temperature
and sensor using MATLAB (R2023a)®. The spline interpolation technique was employed to
estimate signal values at unmeasured temperatures. In synthesising the damaged scenario
data for new temperatures, a scaling factor, which was empirically derived from the healthy
signals across different temperatures to reflect realistic temperature-dependent attenuation
trends in guided wave propagation, was applied to adjust the signals. To add realism and
account for natural variations in the data, a controlled variability of +1% was introduced
to the scaled signals. For each of the damaged health scenarios at the target temperatures,
100 observations were generated.

To evaluate the effectiveness of the applied data synthesis, the source temperature,
e.g., 30 °C, was employed. To this end, among the 100 observations belonging to the
healthy situation, 50 observations were selected randomly and employed to produce
synthesised data, while the remaining 50 samples were used for the validation phase.
Figure 5 displays an experimental observation of the intact plate, i.e., CO (recorded at the
baseline temperature) alongside its synthesised counterpart for the three channels.

Plots in Figure 5 show that the experimental and the synthesised data are close to each
other for all three sensors in the time domain. To further analyse whether the synthesised
data mimic the behaviour of the experimental signals, two metrics, namely Dynamic Time
Warping (DTW) [48] and Cross-Correlation (CC) [49], were employed. Data was generated
for the base temperature of 30 °C, which includes observations for all health scenarios. From
each health state, 50 observations were used for data synthesising, while the remaining
50 observations per class were reserved for comparison with the synthesised data; this
approach ensured a balanced and consistent evaluation process.
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Figure 5. Time-domain signal of the experimental and synthesised data for the healthy plate for
(a) PZT2, (b) PZT3, and (c) PZT4.

DTW measured the optimal alignment between temporal sequences, with lower DTW
values indicating greater similarity between the real and synthesised signals. CC assessed
the linear relationship between the signals, where values close to —1 or +1 demonstrated
higher similarity in amplitude and phase. The results of this validation process are pre-
sented in the bar graphs of Figure 6a,b, providing a visual representation of the synthesised
data’s fidelity to the original observations by measuring the average values of DTW and
CC metrics for the three sensors.

Dynamic Time Warping Cross-Correlation

PZT2

® 1
= 0.99995

S 0.9999
L 0.99985
O 0.9998
£ 0.99975 . l
%)
- 0.9997
- = 0.99965
PZT3 PZT4 PZT2 PZT3 PZT4
Sensor Number Sensor Number

(a) (b)

Figure 6. Comparison of synthesised and real data across sensors (PZT2, PZT3, PZT4) at 30 °C using
(a) mean DTW values and (b) mean CC values.

The acquired results demonstrate the effectiveness of the data synthesising process, as
indicated by the low DTW values and CC values near 1 across all sensors. For PZT?2, the
DTW value is slightly higher (0.122) compared to PZT3 (0.034) and PZT4 (0.0321), which
can be attributed to the larger amplitude of signals recorded by this sensor. However, the
CC values for all sensors, e.g., PZT2 (0.99994), PZT3 (0.99977), and PZT4 (0.99979) are con-
sistently close to 1, highlighting a strong similarity between the synthesised and real signals
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in terms of their temporal structure and amplitude relationships. These results validate the
ability of the data synthesising process to generate realistic signals that align closely with
the real observations, even in the presence of sensor-specific amplitude differences.

4.2. Damage Detection

To assess the performance of the proposed SHM framework, i.e.,, GAT-CAMDA,
for detecting damage in composite plates subjected to EOVs, the data acquired at 30 °C
was designated as the source domain. This source dataset was split into training (63%),
validation (27%), and testing (10%). The remaining temperatures (0, 10, 20, 40, 50, and
60 °C) were combined to form a single dataset serving as the target domain, of which 70%
was allocated to DA (with equal representation from each target temperature ensured by
the ‘stratify’ option) and 15% was assigned to the validation set. The remaining 15% of the
target dataset was reserved for testing; as a result, each of the 12 damage classes (C0-C11)
in the target test set comprises 90 samples. Among these 90 observations, 15 belonged to
0°C, 15to0 10 °C, and the others belonged to the remaining target temperatures. Table 3
provides a summary of the source and target datasets.

Table 3. Splitting the dataset for source and target domains.

Number of Observations per Class

Domain
Training Validation Testing
Source 63 27 10
Target 420 90 90

GAT-CAMDA was executed for 100 trials using an Optuna optimisation schedule to
identify the framework’s optimal configuration, guided by 13 hyperparameters outlined in
Table 4. The number of epochs was fixed at 50, and the objective function was defined as
the maximum classification accuracy achieved on the target validation set.

Table 4. Hyperparameter values for executing GAT-CAMDA.

Hyperparameter Value Hyperparameter Value
Learning rate (1 x 1074, 1x1072) Number of GAT heads 1,2,4
Weight decay (1% 107°, 1x 107%) Pooling option Max, Mean, Sum

Adversarial weight 0,0.3) Normalisation True, False
MMD weight 0,0.3) MMD kernel Linear, RBF
CORAL weight (0,0.3) Gamma parameter (0.1, 10)
Hidden dimension 128, 256, 512 Number of GAT layers 4,8
Dropout rate (0.1,0.5) Batch size 32

During the DA phase, a random seed of 42 was then fixed to ensure reproducibility;
the entire process of running GAT-CAMDA was performed through Jupyter Notebook in
Python 3.11 (64-bit).

Executing GAT-CAMDA through the mentioned optimisation scheme, the highest
damage detection accuracy was found at trial 56, as can be observed in the optimisation
history plot (e.g., Figure 7).

Results from Figure 7 illustrate the extent to which choosing suitable hyperparameters
can affect the outcome. For instance, at trial 20, the accuracy reached nearly 20%, while in
the most optimal scenario (i.e., trial 56), it developed to 95.83%.
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Figure 7. Hyperparameter optimisation history.

The slice plot in Figure 8 shows the values and options (for the categorical hyperpa-
rameters such as pooling function, normalisation approach, and the type of MMD kernel)
throughout the optimisation process and, more specifically, the trial in which the most
optimal objective function was discovered; the hyperparameter values for this trial are
surrounded by the red rectangle.
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Figure 8. Slice plot of hyperparameters during optimisation.

The prominent results presented in Figure 8 and more specifically red box indicate
that implementing a normalisation process within GAT-CAMDA led to inferior outcomes
compared to using the original signals during the signal processing stage. Additionally,
employing lower learning rate values resulted in improved performance. Furthermore,
the mean pooling function was found to be unsuitable for GAT-CAMDA, as the highest
accuracy achieved in this scenario was approximately 75%.
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Damage Detection - Source Set

Before representation of the damage detection results utilising the full version of
GAT-CAMDA and to demonstrate the effectiveness of the feature extraction phase and
the capability of the classifier, the trained GAT-CAMDA framework was evaluated using
the test subset of the source domain. Moreover, the DA component of GAT-CAMDA was
removed, and the trained network was subsequently tested on the target test subset. The
confusion matrices presented in Figure 9a,b display the damage detection outcomes for
both of these scenarios, respectively.
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Figure 9. Classification outcomes through GAT-CAMDA without DA section for (a) source domain
test set and (b) target test set.

The confusion matrix presented in Figure 9a demonstrates that the implemented
feature extraction method can effectively differentiate between the various damage sce-
narios. Furthermore, these results confirm that the classifier is trained impeccably and
has a high capability in the classification phase. Figure 9b, on the contrary, reveals that
this well-trained network fails to accurately identify the different damage classes (approxi-
mately 36% accuracy) when the feature distribution space of the test set is altered due to
EOVs. Consequently, these findings underscore the need for a DA phase to ensure that the
framework trained on the source domain functions properly when applied to data from
the target domain.

The outcomes of the most optimal framework in classifying the target test set are
depicted in Figure 10a,b; the latter shows the classification metrics, i.e., Precision, Recall,
and F1-Score [50].

The classification metrics indicate that the proposed GAT-CAMDA framework
achieves a robust differentiation among the 12 structural health scenarios, maintaining high
precision and recall values across most classes (with an average accuracy of 95.83%). In
particular, classes exhibiting a precision of 1 reveal that the model consistently classifies
those specific damage conditions without false positives, demonstrating its capacity to
accurately identify even subtle differences in wave propagation patterns. Moreover, the
consistently elevated recall across all classes signifies a low rate of missed damage instances,
a critical requirement in damage detection tasks where undetected flaws may compromise
structural integrity. The marginally reduced precision for C10 nonetheless retains a high
recall, suggesting that, although the model occasionally misassigns instances into this
category, it rarely overlooks genuine damage of that type.
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Figure 10. Classification outcomes produced by the optimum GAT-CAMDA framework on the target
test set, showing (a) the confusion matrix and (b) the classification performance metrics.

To visualise the impact of GAT-CAMDA on feature distribution, t-distributed Stochas-
tic Neighbour Embedding (t-SNE) [51] was employed. This dimensionality reduction
technique projected the extracted features into a two-dimensional space, both before and af-
ter the hybrid DA stage within GAT-CAMDA. The resulting data distributions are displayed
in Figures 11a and 11b, respectively, with each scatter point representing an observation
belonging to a specific temperature and damage scenario.
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Figure 11. Two-dimensional t-SNE projections illustrating the distribution of extracted features
(a) before DA and (b) after DA using the GAT-CAMDA framework.

When comparing the t-SNE scatter plots before and after the GAT-CAMDA-based
DA, a marked improvement in feature-space alignment is evident. Specifically, observa-
tions corresponding to identical temperature-damage scenarios become more cohesively
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clustered post-adaptation, illustrating that GAT-CAMDA effectively compensates for the
distributional shifts introduced by varying temperature. Consequently, data points rep-
resenting identical classes converge into denser, well-separated regions, underscoring
the framework’s ability to disentangle and preserve class-discriminative characteristics.
These findings underscore GAT-CAMDA'’s capacity to capture subtle signal features and
thereby distinguish healthy from damaged states with high fidelity, which is an essential
requirement for a robust and generalised SHM system. By mitigating the confounding
effects of temperature variation, GAT-CAMDA enhances inter-class separability while
maintaining intra-class consistency, providing a scalable and reliable platform for advanced
SHM applications.

4.3. Comparative Study

The performance of the proposed GAT-CAMDA framework was compared with
multiple established feature-based DA methods. All models used an equal number of
observations, 70% of the combined target domain, for the feature alignment phase. The
hyperparameters of these baseline models were tuned by trial and error to determine
their best performance. In total, 10 DA methods, i.e., TCA, Feature Selection with MMD
(fMMD), CORAL, Deep CORAL, SrcOnly Prediction (PRED), Subspace Alignment (SA),
Domain-Adversarial Training of Neural Networks (DANN), DUA (Dynamic Unsupervised
Adaptation), and BAR (Balanced Adaptation Regularisation-based Transfer Learning)
were evaluated using the augmented version of the CONCEPT dataset. Among these,
two methods are supervised, while the remaining eight are UDA approaches.

Optuna-based optimisation was not employed for the baseline models to maintain
consistency with their originally reported configurations and to avoid introducing optimi-
sation biases unrelated to their native designs. Similarly, GAT-based feature extraction was
not applied to these methods, as doing so would alter their underlying architectures and
compromise the validity of the comparison. Table 5 presents the classification metrics for
all approaches alongside the proposed GAT-CAMDA framework.

Table 5. Comparison of GAT-CAMDA with other feature-based methods.

Model Accuracy (%) Precision F1-Score
TCA [52] 52 0.63 0.48
fMMD [53] 58 0.67 0.54
CORAL [43] 59 0.66 0.56
Deep CORAL [54] 63 0.63 0.62
PRED [55] 79 0.80 0.79
SA [56] 79 0.81 0.79
DUA [57] 82 0.81 0.79
DANN [40] 82 0.83 0.82
BAR [58] 91.02 0.92 0.92
GAT-CAMDA 95.83 0.96 0.96

The results in Table 5 show that, although it is a challenging case study because of the
integration of disjoint target domains, GAT-CAMDA sharply outperformed almost all of the
comparative approaches. It achieved an accuracy of 95.83%, with precision and F1-scores
each at 0.96. This is further improved compared to BAR, which, despite outperforming
the other methods assessed, with an accuracy of 91.02%, precision and F1-scores of 0.92
and 0.92, respectively, was not as effective as GAT-CAMDA. The better performance
underlines the robustness of the procedure proposed within this work. Confusion matrices
in Figure 12a to Figure 12d display the classification results of Deep CORAL, PRED, SA,
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and DANN, respectively, on the target test set, providing further visual insight into the
class-wise performance.
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Figure 12. Damage detection result utilising (a) Deep CORAL, (b) PRED, (c) SA, and (d) DANN.

From Figure 12, it is evident that GAT-CAMDA exhibits exceptional precision in
classifying the intact plate scenario (C0) and distinct damage states (C5 and C11) compared
to other methods such as SA and DANN, which frequently misclassify closely related
classes (e.g., C2 and C3). However, it is important to acknowledge that C6 presented
considerable classification challenges for all evaluated methods, although GAT-CAMDA
managed to resolve this challenge more effectively.

4.4. Hyperparameter Importance

To illustrate the relative influence of the 13 hyperparameters involved in the opti-
misation process on the outcomes of GAT-CAMDA, their importances were calculated
using Optuna and are depicted in Figure 13. This visual representation facilitates informed
decision-making by highlighting the hyperparameters with the most significant impact, al-
lowing future researchers to prioritise these for fine-tuning to enhance the model’s accuracy
and efficiency in future applications.
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Figure 13. The relative influence of hyperparameters on model performance in damage detection.

From Figure 13, it can be observed that the learning rate is the most critical hyperpa-
rameter, with a significant importance value of 0.59, underlining its pivotal influence on
model performance. The weight of the MMD loss and the number of heads in the GAT
also hold considerable importance, with values of 0.10 and 0.08, respectively, highlighting
their substantial roles in shaping the model’s effectiveness. Additionally, the dimension
of the hidden layer, though less influential at 0.04, is crucial for fine-tuning the model’s
operational capabilities in damage detection. This analysis underscores the necessity of pri-
oritising these hyperparameters during the optimisation process to maximise the model’s
accuracy and efficiency.

It is important to note that the hyperparameter importance scores in Figure 13 repre-
sent global aggregated effects estimated by Optuna’s TPE across all 100 optimisation trials,
rather than performance trends observed in individual configurations such as those shown
in Figure 8. Consequently, parameters exhibiting consistent influence across multiple trials,
such as the learning rate, receive higher importance values, even if certain categorical
settings (e.g., normalisation = true or specific MMD kernels) occasionally produce pro-
nounced local variations in accuracy. This explains why the learning rate dominates the
global importance ranking, whereas other factors such as the MMD kernel, pooling type,
and normalisation show significant but less consistent effects. The two figures are therefore
complementary: Figure 8 visualises trial-level sensitivity, while Figure 13 summarises
overall influence across the entire optimisation landscape.

4.5. Sensor Importance

In the GAT-CAMDA framework, the attention scores for each sensor were normalised
to effectively evaluate their significance in the damage detection process. These scores
were determined by the extent to which each sensor contributed to identifying structural
anomalies, with all calculations having been performed under the optimal configuration
settings of the framework. The normalised scores ranged from 0 to 1, providing a consistent
and comparative metric of sensor importance. Figure 14 displays these scores, visualised as
a gradient bar chart, which illustrates the relative contribution of each sensor to the overall
damage detection capability.
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Figure 14. Sensor contribution levels determined by attention mechanism for the normalised signals.

As previously noted, the most optimal framework identified was for scenarios in
which the signals were not normalised. Figure 5 demonstrates that the amplitude of the
signals recorded by PZT2 is approximately eight times greater than those from the other
two receivers, PZT3 and PZT4. Furthermore, the signal amplitude captured by PZT4 is
marginally higher than that of PZT3. These differences in signal amplitude play a pivotal
role in determining the final outcome, as evidenced by the calculated sensor importance
scores, whereby PZT2, PZT4, and PZT3 exhibit progressively higher importance in the final
output, respectively.

The same optimal framework was assessed under the assumption that normalisation
was not applied, while maintaining the other hyperparameter values unchanged; the
computed sensor importances are displayed in Figure 15.

Sensor Importance
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0.358
4
S PZT2
g
7] 0.34
0.33
PZT4 0.315
0.291
0 0.1 0.2 0.3 0.4

Unnormalised Attention Score

Figure 15. Sensor contribution levels determined by attention mechanism for unnormalised signals.

The pronounced significance of PZT3 within the designed SHM framework on the
assumption that the unnormalised versions of the data were fed into the signal processing
and learning network is consistent with the findings in [47]. It was confirmed that PZT3
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exhibits a wider confidence interval in its signal data compared to PZT2, indicating greater
variability. This increased variability is influenced by temperature changes, which affect
the material’s mechanical properties. Specifically, as temperature rises, the stiffness of the
CFRP laminate decreases, with the shear modulus Gy, reducing by 7%. This decline is
much higher than the 1.3% decrease observed in the elastic modulus E;. This difference is
crucial because PZT3 is positioned at a 45-degree angle from the excitation point, making
it particularly sensitive to changes in the shear modulus due to its orientation relative to
the main direction of wave propagation. The heightened signal dispersion at PZT3 results
from its unique placement and the viscoelastic characteristics of the epoxy resin, which are
not present in the carbon fibres [47]. Consequently, despite a lower signal-to-noise ratio,
PZT3 shows an enhanced ability to detect subtle anomalies in wave propagation that may
indicate structural damage. Figure 15 reflects the intricate relationship between sensor
placement, material properties, and wave behaviour in composite structures.

5. Conclusions and Future Work

The GAT-CAMDA framework was designed to address the challenge of variability in
SHM caused by temperature fluctuations, with its effectiveness demonstrated on a CFRP
plate. Leveraging GATs for advanced feature extraction and incorporating MMD, CORAL,
and adversarial losses for discriminative DA, the framework successfully aligned feature
distributions across diverse temperature domains. This alignment significantly improved
the accuracy of damage detection within the system. Comparative studies with established
methods further validated the framework’s superior performance, highlighting its ability
to handle the complexities of temperature-integrated target domain datasets.

To address the challenge of data scarcity, particularly for unmeasured damage condi-
tions at different temperatures, a synthetic data generation algorithm was employed. This
algorithm enriched the dataset by creating synthetic samples, helping the validation of
the framework’s generalisability and robustness. As a result, the framework was exten-
sively evaluated and refined for conditions that were not physically measured, ensuring
consistent performance across a theoretical range of operational scenarios.

Explainability techniques played a crucial role in clarifying the decision-making pro-
cesses of GAT-CAMDA. These techniques visualised the contributions of various sensors,
identifying the most influential one for damage detection. Furthermore, the study displayed
the impact of key hyperparameters on damage detection accuracy, providing valuable
insights into optimal model configurations.

Although the GAT-CAMDA framework effectively addresses variability in SHM
caused by temperature changes, further improvements are needed to enhance its compu-
tational efficiency for real-time deployment. This includes optimising graph processing
algorithms and integrating hardware accelerations, such as Tensor Processing Units, to
reduce processing times. Additionally, increasing the realism and diversity of synthetic
data through advanced generative models could further strengthen the framework’s practi-
cal utility. As the current experiments were conducted using synthetic data, future work
should include comprehensive validation on real-world experimental datasets to confirm
the framework’s robustness and generalisability under practical operating conditions. Ex-
tending the framework’s adaptability to include a wider range of environmental conditions
beyond temperature, such as humidity or load variations, could broaden its applicability
across different industrial settings.
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Abbreviations

The following abbreviations are used in this manuscript:

BAR Balanced Adaptation Regularisation-based Transfer Learning
CcC Cross-Correlation

CFRP Carbon Fibre-Reinforced Polymer

CORAL  Correlation Alignment

DANN  Domain-Adversarial Training of Neural Networks
DA Domain Adaptation

DTW Dynamic Time Warping

DUA Dynamic Unsupervised Adaptation

EOVs Environmental and Operational Variabilities

FE Finite Element

fMMD  Feature Selection with MMD

GATs Graph Attention Networks

GRL Gradient Reversal Layer

ML Machine Learning

MMD Maximum Mean Discrepancy

PRED SrcOnly Prediction

PZT Lead Zirconate Titanate
RBF Radial Basis Function
ReLU Rectified Linear Unit
SA Subspace Alignment

SHM Structural Health Monitoring
TCA Transfer Component Analysis

TL Transfer learning
t-SNE t-distributed Stochastic Neighbour Embedding
TPE Tree-structured Parzen Estimator

UDA Unsupervised Domain Adaptation
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