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A B S T R A C T

This study investigates the experimental production and multi-objective optimization of the production process 
of microporous activated carbon (AC) derived from Raphia nut endocarp (RNE) for solid adsorption refrigerators 
(SARs) and related systems. Using phosphoric acid (H₃PO₄) and calcium chloride (CaCl₂) as activating agents, a 
comprehensive optimization technique integrating genetic algorithms (GA), Pareto optimality (PO), min-max 
normalization (MMN), and machine learning (ML) was applied to determine the optimal RNE-derived AC 
(RNEAC) properties, including surface area, carbon yield, and ash content. Linear regression was used as the ML 
algorithm to analyze the relationship between the production variables of the RNEAC. The experimental design 
varied parameters such as carbonization temperature, residence time, activating agent concentration, and 
impregnation ratio, to statistically evaluate their impacts. Results revealed that temperature and residence time 
significantly influence ash content, while impregnation ratio, temperature, and residence time optimize surface 
area. Similarly, carbon yield was affected by temperature, residence time, and impregnation ratio. The optimized 
RNEAC exhibits properties that include a high surface area, low ash content, and a promising methanol 
adsorption capacity, highlighting its suitability for application in SARs. This study will contribute to achieving a 
greener environment and the development of high-efficiency and sustainable adsorption cooling technologies for 
rural communities by valorizing agricultural wastes and turning them into excellent low-cost adsorbents for the 
next generation of SARs.

1. Introduction

The growing demand for sustainable and environmentally friendly 
cooling technologies is directly tied to the escalating impacts of global 
warming. Agriculture alone contributes 30 % of global anthropogenic 
greenhouse gas (GHG) emissions, primarily methane and nitrous oxide 
from land-based sources [1–4]. Developing countries disproportionately 
contribute to these emissions due to inefficient farming practices, 
inadequate product storage facilities, and poor waste management. In 
sub-Saharan Africa, postharvest losses range between 15 % and 50 %, 
resulting in an estimated annual loss of $4 billion due to inadequate 
storage facilities [5]. The resulting wastes from surplus crops signifi
cantly add to landfill emissions and environmental degradation [6–9]. 
Cold chain infrastructure is critical for rural and off-grid areas to 

mitigate these challenges and ensure product quality and economic 
stability [10,11]. Solid adsorption refrigerators (SARs), which rely on 
activated carbon (AC) as an adsorbent, and on efficient heat exchangers 
for effective heat and mass transfer [12], offer a sustainable solution for 
off-grid cooling. SARs maintain stable low temperatures, helping to 
reduce spoilage of perishable crops by 25 % to 35 % and supporting food 
security, particularly in regions with limited electricity access, such as 
remote northern parts of Nigeria [13–19]. While cold rooms are used in 
many rural areas for vaccine and crop preservation, frequent project 
failures are common due to unreliable power supply. A viable alterna
tive is to use locally sourced materials for adsorbent production, which is 
a critical component in a solid adsorption regeration (SAR) system. 
These systems require minimal electricity, involve straightforward 
activation methods, and support modular and decentralized 
manufacturing. The RNEAC production, in particular, can provide an 
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economical, scalable, and environmentally friendly solution tailored to 
the needs of rural areas in developing countries. Its integration into SARs 
could enhance food and vaccine preservation, create employment, and 
reduce seasonal waste buildup, making it a transformative strategy for 
underserved communities.

SARs use AC, which can be sustainably sourced from agricultural 
byproducts, such as the Raphia nut endocarp (RNE). RNE is abundant in 
West Africa and is a cost-effective and renewable resource that can be 
used sustainably. Studies have shown that it contains a carbon content of 
over 70 %, making it suitable for high-performance adsorbents [20,21]. 
When chemically activated, RNE achieves a surface area of up to 1200 
m²/g, enhancing adsorption efficiency [22–24]. Chemical agents like 
phosphoric acid (H₃PO₄) and calcium chloride (CaCl₂) lower carbon
ization temperatures by up to 20 %, reduce tar formation and optimize 
pore development, which is essential for producing high-quality AC [25, 
26]. Utilizing RNE in AC production supports circular economic prin
ciples by converting agricultural waste into a value-added product and 
reducing environmental burdens associated with improper waste 
disposal [7]. This approach can significantly contribute to regional 
economic growth by using underutilized agro-waste resources.

Despite its potential, Nigeria’s lack of locally developed AC pro
duction technologies limits the adoption of SARs for critical applica
tions, including food and vaccine storage. Producing AC from 
indigenous resources such as RNE could address this gap, providing a 
sustainable cooling solution that aligns with the country’s environ
mental and economic priorities [10,11]. AC’s exceptional properties, 
such as a high adsorption capacity of 0.5 to 1.5 g/g refrigerant and a 
pore volume exceeding 0.8 cm³/g, make it indispensable for application 
in SARs [27,28]. These characteristics enhance the operation efficiency 
of SARs, enabling applications in solar-powered refrigeration system, 
where energy savings of up to 30 % have been reported [29,30]. 
RNE-derived AC (RNEAC) also addresses regional waste management 
challenges, with studies estimating that 40 % of agricultural byproducts 
in West Africa remain unutilized [7,8]. This makes RNE an economically 
viable precursor for localized AC production. Also, studies have 
confirmed that agro-waste AC often meets and exceeds the performance 
of commercially available adsorbents, making it a sustainable alterna
tive for application in SARs in rural and off-grid regions [31,26]. In the 
context of sustainability, RNEAC is preferable because it can be devel
oped from agricultural residue, supporting efficient material usage and 
mitigating environmental impact. Compared to commonly used 

synthetic alternatives, such as silica gel and Zeolite [15], RNEAC is 
cheaper to produce, adaptable to suit specific applications by varying 
activation time and temperature, and can be locally produced, to pro
mote economic and environmental sustainability [17,32,33].

Chemical activation techniques are critical for enhancing AC prop
erties. Agents such as H₃PO₄ and ZnCl₂ can produce AC with porosities 
ranging from 300 to 2000 m²/g, which exceed commercial standards 
[34,23]. The performance of AC can be significantly influenced by its 
pore structure. Pores in AC can be classified into three categories based 
on their diameter. Micropores (<2 μm), mesopores (2–50 μm), and 
macropores (>50 μm), as defined by IUPAC (International Union of Pure 
and Applied Chemistry). These three categories contribute to adsorption 
efficiency, as found by Yakout and Sharaf El-Deen [24] and Reza et al. 
[23], who emphasized that micropores provide a high surface area for 
adsorbate intake, mesopores ensure molecular transport and prevent 
channel blockage, while serving as pillars for other categories.

Pore size distribution (PSD) can be obtained via several methods, 
such as Nitrogen (N2) Physisorption [35,36] and Scanning Electron 
Microscopy (SEM) [37,38]. Applying the N2 physisorption model re
quires stringent precautions, because N2 adsorption to micropores is 
often diffusionally limited, leading to an incorrect value of PSD [36,39]. 
Various studies have used image analysis software on SEM images to 
quantify particle pore size and distribution as well as classify surface 
morphology. One popular method for such analysis is the use of ImageJ, 
an open-source image software. For instance, Maheshwaran et al. [40] 
investigated water retention potential of coconut shell (CS) aggregates 
and how they could be reduced using this method. The SEM image of the 
precursor was analyzed using ImageJ for microstructural analysis of 
pore properties, including the number of pores and the minimum, 
maximum and mean pore areas. Their analysis indicated a minimum 
pore area of 2 µm2, a 75–85 % threshold efficiency, and 8-bit and RGB 
image types, yielding comparable pore area and percentage values. 
Agboola et al. [41] synthesized AC from Olive seeds for dye removal. 
The authors performed quantitative pore and interpore spacing analyses 
using ImageJ on SEM images to characterize the pore network accu
rately. Also, Chilev et al. [37] present a quantitative approach to char
acterizing porous solid material based on SEM and ImageJ analysis. The 
study highlighted the effectiveness of SEM analysis to characterize 
porous solid materials, including pore size distribution (PSD), surface 
area, and pore volume, thereby eliminating the need for supplementary 
analytical approaches, such as adsorption-based methodologies.

Nomenclature

WASC Weight Ash Content
NASC Normalized Ash Content
WSA Weight Surface Area
NSA Normalized Surface Area
NCY Normalized Carbon Yield
X Original data point
Xnormalised Normalized dataset
Xmin Datapoint with a minimum value
Xmax Data point with the maximum value
fm Objective function
CDim Crowding distance
Ri Ranking of Non-dominated Pareto front
Rj Ranking of Non-dominated Pareto front
AC Activated carbon
ANOVA Analysis of Variance
CCD Central Composite Design
CI Confidence Interval
DOE Design of Experiments
GA Genetic Algorithm

GHG Greenhouse Gas
GP Genetic programming
HFC Hydrofluorocarbon
HVACR Heating, ventilation, air-conditioner, and refrigeration
IDE Integrated Development Environment
MAE Mean Absolute Error
MOGA Multi-Objective Genetic Algorithm
MOO Multi-objective optimization
MSE Mean Square Error
NSGA - II Non-dominated Sorting Genetic Algorithm II
PI Prediction Interval
RNE Raphia nut endocarp
RNEAC Raphia nut endocarp-derived activated carbon
RSA Response Surface Analysis
RSM Response Surface Methodology
SAR/SARs Solid adsorption refrigerator (refrigeration)/ 

refrigerators
SE Standard Error
SEM Scanning Electron Microscopy
STD Standard Deviation
VOC Volatile Organic Materials
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The efficiency of AC also depends on its moisture and ash content. 
Moisture levels, typically between 3 % and 10 %, ensure optimal 
adsorption while minimizing carbon dilution [42]. Ash content, typi
cally ranging from 2 % to 10 %, influences the structural stability and 
catalytic properties of AC, making it a critical production parameter 
[43]. Hybrid activation methods, which combine chemical and physical 
processes, have further enhanced the cost-effectiveness and sustain
ability in AC production, offering production cost savings of up to 15 % 
compared to conventional methods [44,45]. By leveraging resources 
such as RNE and advanced activation methods, AC production can play a 
transformative role in supporting the development of sustainable and 
high-efficiency SAR, reducing environmental impacts and creating 
economic opportunities for local communities [7,46,26]. Therefore, the 
sustainable cooling potential of RNEAC can be summarized as twofold – 
its production from abundant agro-waste using cost-effective activation 
methods ensures low-cost, scalable production of adsorbent. At the same 
time, its high adsorption capacity enhances SAR performance, enabling 
energy-efficient cooling solutions suitable for off-grid deployment.

Producing AC with excellent adsorption properties for SARs involves 
balancing carbon yield, ash content, and surface area, making it a 
complex multi-objective optimization problem. Advanced hybrid opti
mization techniques such as genetic algorithms (GA), Pareto optimality 
(PO), and min-max normalization (MMN) are increasingly used to 
streamline this process [47,48]. These methods enable researchers to 
navigate high-dimensional parameter spaces, ensuring optimal 
trade-offs without compromising crucial performance metrics. For 
instance, the use of GA for AC production has been shown to improve 
adsorption efficiency by 10–20 % through iterative solution evolution, 
while NSGA-II variants enable precise Pareto-optimal balancing across 
multiple objectives [30,49]. Elham Kabiri and Negin Maftouni [50] 
optimized a trade centre’s energy efficiency using NSGA-II genetic al
gorithms and environmentally friendly materials and achieved a 52.3 % 
energy reduction, 37.3 % cooling load decrease, and 167.67 tons of CO2 
savings. PO ensures no parameter improvement compromises another, 
fostering balanced decision-making [44]. Meanwhile, MMN standard
izes variables across scales, thereby minimizing bias and ensuring the 
equitable treatment of competing objectives [51]. Research using 
response surface methodology (RSM) has demonstrated its efficacy in 
identifying optimal parameters for producing AC with enhanced 
adsorption properties from agricultural residues such as corn cobs [52].

Although traditional multi-objective optimization methods, such as 
dynamic programming, offer precise results, they are computationally 
intensive and time-consuming. Modern heuristic techniques, including 
simulated annealing and artificial neural networks, provide significant 
efficiency improvements but require rigorous parameter tuning [53]. 
Hybrid models integrating GA with PO and MMN have demonstrated 
remarkable versatility, addressing constraints across various applica
tions. For instance, multigene geometric programming has improved 
adsorption rates by 15 %, while min-max robustness models have 
significantly enhanced system reliability [54–56]. These advanced 
methods highlighted the potential for producing AC that will improve 
SAR efficiency and its sustainability by optimizing the production pro
cess parameters.

The application of machine learning methods to optimize AC pro
duction parameters has significantly contributed to the adaptation of 
this technology for specific applications. These methods facilitate the 
efficient synthesis of application-specific adsorbents for various uses. 
Liao et al. [57] demonstrated the effectiveness of ANN in predicting AC 
yield and surface area from various biomass feedstocks. Their findings 
showed that the model achieved R2 above 0.9, implying accurate pre
diction. Similarly, Chang and Lee [58] utilized Random Forest and 
Support Vector Machine (SVM) to predict the adsorption capacity of 
biochar-activated carbon synthesized from waste wood. The models 
were optimized, and they compared favourably with the ANN.

Despite significant advancements in AC production, challenges 
remain in achieving scalable and cost-effective methods. Hybrid 

optimization techniques, such as GA, PO, and MMN, have effectively 
addressed multi-objective trade-offs, including ash content, carbon 
yield, and surface area. However, these methods often face difficulties in 
fully resolving non-linear relationships among variables in complex 
systems. This study tackles these challenges by integrating advanced 
statistics, machine learning, and optimization methods into a compre
hensive framework for producing application-specific RNEAC tailored to 
applications in SARs. Linear regression was used solely as a predictive 
model for response features based on experimental factors. Subse
quently, GA/PO was optimized based on the regression outcome. By 
incorporating linear regression, normalization models, and error anal
ysis tools, the approach ensures precise control over production condi
tions and performance metrics, thereby enhancing optimization 
outcomes and enabling the development of AC with optimized proper
ties for efficient SAR systems.

Crucial experimental parameters such as carbonization temperature, 
residence time, activating agent concentration, and impregnation ratio 
are systematically optimized to produce high-quality RNEAC. This 
tailored adsorbent enhances the efficiency of SARs, particularly with 
natural refrigerants like ammonia, CO₂, and methanol. The fact that 
these natural refrigerants have a negligible global warming potential 
(GWP) and do not deplete the ozone layer, makes them environmentally 
superior to synthetic alternatives, such as HFCs. The proposed optimi
zation framework can enhance SAR performance, reduce GHG emis
sions, and promote the valorization of agricultural waste. These 
outcomes align with global sustainability goals, offering significant 
environmental and economic benefits, especially for rural and off-grid 
communities. By leveraging RNE as a renewable precursor for AC, this 
research advances waste management solutions and contributes to the 
development of off-grid cooling technologies. By integrating sustainable 
materials with advanced optimization techniques, SARs can be posi
tioned as a viable solution for addressing pressing environmental and 
economic challenges in underserved regions.

2. Materials and methods

2.1. Sample collection, preparation and characterisation

The experimental data is obtained from the test setup described in 
Ayoola et al. [25]. Details of the use of acid (H₃PO₄) and salt (CaCl₂) as 
activating agents in the preparation of RNEAC were discussed, and the 
authors comprehensively describe the experimental setup, sample 
collection, preparation, and characterization of RNEAC. Chemical acti
vation of high-carbon agro-waste materials (as shown in Fig. 1), such as 
RNE, has proven especially effective, as it optimizes microporous 
structures and contributes to environmental sustainability [31,26].

2.2. Chemical activation pathway of RNE in rneac production

The activation process of RNE involved impregnating the precursor 
with activating agents (CaCl₂ and H₃PO₄) for 24 h. Each activator plays a 
distinct role in pore development during this chemical treatment. At the 
impregnation phase, the phosphoric acid (H₃PO₄) assists in dehydration 
and cross-linking reactions within the precursor’s lignocellulosic struc
ture. This chemical interaction facilitates a steady structure of carbon, 
which prevents tar formation during pyrolysis. As the material is heated 
post-impregnation, H₃PO₄ supports the formation of a polyphosphate 
matrix, which is typically washed off after treatment to leave behind a 
well-developed micro and mesoporous structure. On the other hand, 
CaCl2 facilitates pore formation by extracting volatile organic materials 
and water during carbonization. This salt penetrates the precursor’s 
internal matrix, causing disruption and expanding it to create pore 
networks. The residual calcium compounds are washed with distilled 
water to further enhance the carbon porosity. The choice of CaCl₂ and 
H₃PO₄ as activating agents can be justified because they have been 
proven effective in improving the pore sizes and surface structure of 
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Fig. 1. Chemical Activation for Activated Carbon.

Fig. 2. Flowchart for synthesizing chemically activated Raphia-nut-based activated carbon.
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lignocellulosic precursors converted to AC [59,60]. CaCl₂, a neutral salt, 
promotes the development of micropores through a mild dehydration 
mechanism, whereas H₃PO₄ aids in forming mesoporous structures and 
positively impacts surface functionalities [61,62].

Studies on activation methods indicate that chemical activation, like 
phosphoric acid, is particularly effective for applications like solvent 
recovery, while physical activation is more commonly used for water 
treatment purposes [63,64]. Chemical activation was chosen because 
this study focuses on RNEAC for application in SARs. This study employs 
a concentration gradient protocol for sample impregnation, following 
the method described by Caturla et al. [65]. For brevity, Fig. 2 illustrates 
the flow process for preparing, characterizing, and optimizing RNEAC 
production. Critical factors, such as the activating agent concentration, 
carbonization temperature, residence time, and impregnation ratio, 
were selected based on their economic viability and environmental 
impact, as guided by the literature data. H3PO4 and CaCl2, known for 
their oxidation and dehydration properties [66], were used to evaluate 
the effect of acid concentration on the three performance metrics. Their 
synergistic application in comparative investigations facilitates a thor
ough assessment of activation mechanisms conducive to adsorption or 
catalytic functionalities. Fig. 3 shows the application of RNEAC in a SAR 
setup. Further details about the test rig are not repeated here as they 
have been published elsewhere. Table 1 shows the chemical properties 
of the RNEAC, while Table 2 shows equations (1 – 5) used for the AC 
evaluation.

2.2. overview of dataset attributes

The data was collected through factorial experimental design, which 
involves varying two or more factors in parallel to observe their impact 
on a response variable. All numeric values have been carefully measured 
and recorded, to ensure accuracy and reliability for optimization pur
poses. The dataset utilized to optimize RNEAC comprises four crucial 
input parameters and three overarching responses, as described in 
Table 3.

2.3. Optimization of production parameters

A hybrid optimization approach was employed to identify optimal 
production parameters using GA, PO, ML and advanced statistics 
(including linear regression models, optimization-model, error analysis, 
and standard deviation of the optimization score). In optimizing AC 
production using agro-based precursors (e.g., RNE) and chemical acti
vation methods, various process variables such as activation tempera
ture, residence time, activator concentration, and yield characteristics 
frequently exhibit non-uniform scales and units. Min-max normalization 
is considered relevant due to the multidimensional features involved in 
the production of RNEAC. It standardizes all input parameters to a 
consistent range (typically from 0 to 1), ensuring that no individual 
parameter disproportionately influences the optimization process due to 
its numerical magnitude.

2.3.1. Genetic algorithms (GA)
GA evolve diverse solution sets within a population through selec

tion, crossover, and mutation cycles, effectively addressing conflicting 
objectives [47]. In this study, GA is employed to identify near-optimal 
solutions. The NSGA-II algorithm enables multi-objective optimization 
by identifying non-dominated solutions, facilitating the exploration of 
trade-offs and achieving balanced outcomes across the study’s objec
tives [69]. Equation 1 presents the general form of the multi-objective 
function, summarising the GA computation process. 

a) Sort all “I” solutions in a Pareto front in ascending order of fm and 
compute. 

Fig. 3. Flow process of RNEAC application in SARs.

Table 1 
The Chemical Composition of Raphia Palm Seed.

Element Composition ( %)

Carbon 39
Oxygen 4.21
Hydrogen 0.172
Sulphur 0.03
Nitrogen 3.703

(Source: [13]).

Table 2 
Equations for activated carbon evaluation (Equations 1–5).

Carbon properties Governing equation Legend Author

MoistureContent (%)
(

W1 − W2

W1
× 100

)

(Eq. 1)

W1 =initial weight of 
the known quantity of 
activated carbon. 
W2 = Final weight after 
heating for 1 hour at 
105◦C

[8]

Ash content (%) Ash weight(g)
Over dry weight(g)

×

100 
(Eq. 2)

​ [8,67]

Bulk density Bd

( g
mL

)

Ws = W − Wc 
Ws

Vs 
(Eq. 3)

Wc = weight of the 
empty cylinder. 
Ws 

= weight of the sample. 
Vs = Volume occupied 
by the packed sample. 
W = weight of the 
crucible plus weight of 
the sample

[[8, 
67]

CarbonYield (%) Wf

Wca
× 100 

(Eq. 4)

Wca(g) = The dried 
weight 
of precursor. 
Wf =

Dry weight of RNEAC

[68]

Surface Area (m2/g) 6
(
m2/g

)

BdPd 
(Eq. 5)

Bd = particle bulk 
density 
Pd = the particle 
diameter

[8,67]
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CDim =
fm(xi+1) − fm(xi− 1)

fm(xmax) − fm(xmin)
, i = 2,………, (l − 1) (6) 

Where CDim and fm are Crowding distance and Objective function, 
respectively. 

a) Repeat step 1 for each objective and find the crowding distance of 
solution I. 

CDi =
∑M

m− 1
CDim (7) 

Given two solutions i and j with the following condition, solution i is 
preferred to solution j if: 

Ri < Rjor
(
Ri =Rj and CDi >CDj

)
(8) 

Ri – Ranking of Non dominated Pareto front i = 1
Rj – Ranking of Non dominated Pareto front j = 2…Nranking

2.3.2. Pareto optimality
In multi-objective optimization problems, the goal is to achieve the 

optimal decision-making outcome. PO seeks to optimize multiple 
competing objectives simultaneously, ensuring that improving one does 
not worsen another [54]. The mathematical formulation for MOO using 
PO is given in Equation 4 [56]. 

f1;opt = minf1(x) seekstominimize f1(x).
f2;opt = minf2(x) seekstominimize f2(x).
fn; opt = minfn(x) seekstominimize fn(x).

(9) 

The objective functions f1 (x), f2 (x)…, fn (x) are independently 
optimized in a bid to seek simultaneous optimization of all objectives. In 
this context, x* represents a Pareto optimal solution where a feasible 
solution x exists, as illustrated in Equation 5.  

2.3.3. Min-Max Normalisation
Although PO can identify the Pareto frontier solutions, in

consistencies may still arise due to differences in objective scales, 

complicating decision-making that requires precise trade-offs (Ehrgott 
et al., 2014). Min-max normalization is a suitable scaling technique for 
mitigating these inconsistencies by reducing the impact of uneven data 
distributions. While various normalization techniques exist, their 
effectiveness depends on the statistical characteristics of the dataset. 
This study employs the min-max approach due to its ability to handle 
outliers effectively, either by addition or removal as needed, ensuring a 
consistent and uniformly scaled solution set [70]. This method adjusts 
data by subtracting the minimum value and then dividing by the range 
of each variable (i.e., the difference between maximum and minimum 
limits), as shown in Eq. (6). 

xnormalised =
x − xmin

xmax − xmin
(11) 

Where, x, xnormalise, xmin, and xmax are the original data point, normal
ized dataset, data point with minimum value and data point with 
maximum value, respectively.

Each response variable from the dataset for the two activating agents 
(H3PO4 and CaCl2) was normalized based on the Min-Max normalization 
criteria as follows: 

Ash Content Normalised =
min(Ash Content)

Ash Content
(12) 

Surface Area Normalised =
Surface Area

max (Surface Area)
(13) 

Carbon Yield Normalised =
Carbon yield

Max(Carbon Yield)
(14) 

2.3.4. Optimization model
Improving and standardizing existing production processes through 

optimization is a continuous process, as current methods still require 
adaptation to emerging conditions. Therefore, the summation of the 
normalized values indicates that the optimization goal is to maximize 
the combined effect of these normalized parameters. The optimization 
score (Sopt) is defined as: 

Sopt =
∑3

i=1
wixi (15) 

Where Xi represents each of the normalized variables and wiare the 
weight of the dependent variables while the sum goes from I = 1 to 3

2.3.5. Machine learning algorithm and advanced statistics
Machine learning models exhibit varying performance depending on 

internal and external factors influencing their application process, 
making it essential to evaluate multiple models to identify the most 
suitable one for a given problem. A linear regression algorithm based on 
input variables is applied to predict the RNEAC preparation process 
outputs (ash content, surface area, and carbon yield). The model is 
tested on two experimental datasets (H₃PO₄ and CaCl₂ activations) 
applied to the same precursor under identical conditions. The process 
parameters are optimized using MMN and GA, and cross-validation is 
employed to assess the model’s stability. This is implemented in Visual 
Studio Code (VS Code 1.92.2) using Python 3.11 and relevant data- 
processing libraries such as deap, matplotlib, pandas, and numpy.

2.3.6. Linear regression model
Eq. (16) represents the quadratic model applied to experimental data 

from RNEAC production to examine the relationships between the 

Table 3 
Input and output parameters for process optimization.

Factor Response

Input parameters Input 
Level/ 
range

Input 
steps

Output 
parameters

Obtained 
value

Targeted 
value

Carbonization 
Temperature

200 – 
600 ◦C

200 
◦C

Ash 
contents ( 
%)

1 - 24.5 %, 2.50 %

Impregnation 
ratio

1 – 4 1 Carbon 
yield ( %)

64.6 - 73.7 
%

75 %

Concentration of 
the Activating 
agent

25 - 
100 %

25 % Surface 
area (m2/g)

1400 – 
2200 (m2/ 
g)

1400 
(m2/g)

Soaking/ 
residence time

30 - 
120 
min

30 
min

- - -

f1(x) ≤ f1(x*), f2(x) ≤ f2(x*),…, fn(x) ≥ fn(x*) (forminimizationobjectives).
f1(x) ≥ f1(x*), f2(x) ≥ f2(x*),…, fn(x) ≤ fn(x*) (formaximizationobjectives). (10) 
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predictor variables (temperature, concentration, impregnation ratio, 
and residence time) and responses (Ash content, surface area and carbon 
yield). 

Y = β0 +
∑4

i=1
βiXi +

∑4

i=1
βiiX2

i +
∑4

1=1
βijXiXj + ϵ (16) 

Where Y is the response variable, Xi are the input parameters, 
β0 βi βii βij are coefficients, and ϵ Is the error term.

2.3.7. Error analysis
The accuracy of the ML is measured using error metrics, including 

Mean Absolute Error (MAE) and Mean Square Error (MSE), which pro
vide the error between the actual and predicted values. Similarly, R2 

quantifies the proportion of variance explained by the LR model 
employed in this study. MAE and MSE are computed using: 

MAE =
1
n
∑n

i=1
|yi − ŷi| (17) 

MSE =
1
n
∑n

i=1
(y1 − ŷ1)

2 (18) 

yi is the actual value, ŷi is the normalized/predicted value, and n is 
the number of data points

The coefficient of Performance R2 is represented by Eq. (19)

R2 = 1 −

∑1
i=n(yi − ŷi)

2

∑1
i=n(yi − y)2 (19) 

y is the mean of the actual values
Eq. (20) illustrates the residual εi between the ith original value 

yi and normalized value ŷi is expressed as 

ε1 = yi − ŷi (20) 

2.3.8. Standard deviation of optimization score
The standard deviation of the optimization score is calculated as: 

σ (Optimisation Score) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/n
∑n

i=1
(Xi − μ)2

√

(21) 

Where:
Xi is the i − th Optimization Score,

μ is the mean of the Optimization Scores, and n is the number of opti
mization scores.

The variance of the Optimization Score is the square of the standard 
deviation, given as 

Var( OptimizationScore ) = σ(optimisationScore)2 (22a) 

2.4. Evaluation of experimental results

The study employs multi-objective weighted sum optimization 
(MOWSO) and machine learning techniques, including NSGA-II and 
regression analysis, to evaluate the performance of GA, PO, and MMN in 
optimizing RNEAC production parameters. These methods focus on 
achieving the study’s objectives of minimizing ash content while 
maximizing surface area and carbon yield. PO solutions are generated 
and analyzed for the two activators used, providing insight into the 
effectiveness of the optimization technique. The optimal production 
conditions identified through hybrid optimization were validated by 
reproducing AC samples under these conditions. The properties of these 
samples were compared with initial experimental results to confirm the 
reliability and robustness of the optimization approach. Results are 
compared with data from the literature, such as the surface structure 
from SEM micrographs. It is essential to determine the specific values of 
factors that affect every quality of the developed adsorbent [71]. On this 

basis, we adopt the response optimization results through the Design of 
Experiments (DOE). The best solutions obtained from this experiment 
were ranked using composite desirability scores, with the first ranking 
representing superior quality.

3. Results and discussion

3.1. SEM-Based surface morphology analysis

The surface morphology of H3PO4-RNEAC was examined using 
scanning electron microscopy (SEM) at a magnification of 713x and 
502x and different scale bars of 50 μm and 100 μm, as depicted in Fig. 4
(a & b). The micrographs show a heterogeneous surface structure with a 
network of irregularly formed pores and voids, indicative of the for
mation of a porous architecture critical for adsorption applications. The 
pore dimensions observed fall within the micrometre scale (~10–50 
μm), suggesting macroporosity. This irregularity enhances the specific 
surface area, reported to range from 800 to 1200 m²/g in similar studies 
by Khalil et al. [72], which is crucial for adsorption applications such as 
SAR systems. The distinct voids and irregular surface morphology sup
port the material’s potential for adsorptive phenomena, partially 
compensating for the lack of Brunauer–Emmett–Teller (BET) surface 
area assessments. The visual evidence substantiates the effective acti
vation and morphological development of the carbonaceous adsorbent. 
SEM images reported by Khalil et al. [72], Martinez et al. [73], and 
Yahya et al. [21] underscore the influence of biomass precursor type on 
AC surface morphology, complementing RNEAC’s analysis. Different 
biomass-AC exhibits distinct surface morphology with specific effects on 
accessibility and adsorption efficiency. Olive pit-derived AC exhibits a 
flatter surface, reducing pore accessibility and adsorption efficiency. 
Walnut shell and coconut shell ACs exhibit spherical pores averaging 
4–6 µm, while oil palm fruit bunches and bamboo stems have irregular 
pores exceeding 10 µm [21]. These differences can be attributed to 
variations in the lignin and cellulose content across precursors, which in 
turn influence the carbonization process and the final morphology. 
H₃PO₄ activation (Fig. 5b) forms a well-structured matrix dominated by 
mesopores (~2–50 nm) and micropores (<2 nm), achieving a specific 
surface area of 1400–1600 m²/g [74]. This distribution is optimal for 
SAR systems that adsorb refrigerants, such as methanol.

The surface area of RNEAC was evaluated using semi-quantitative 
methods identified as ‘SEM + ImageJ’ techniques, as shown in Fig. 4
(c & d). These figures illustrate feature segmentation and a binary image 
showing pores filled with red particles as the feature of interest. In this 
method, SEM images were analyzed using ImageJ to evaluate pore sizes. 
The calibration of the SEM image, thresholding, and particle analysis 
yielded 1378 unique features. The average pore area was 52.12 μm2 

(Perimeter = 18.72 μm), with a total surface coverage of approximately 
21.07 %, indicating a relatively high porosity. These results suggest that 
the adsorbent possesses a moderately dense and evenly distributed pore 
network, which may influence its adsorbate affinity or fluid transport 
properties. The quantitative insights gained from SEM analysis through 
ImageJ are essential for evaluating RNEAC suitability in SARs. As indi
cated in Fig. 4e, the log-scaled histogram illustrates that most pores fall 
within the range of 1 to 10 μm2, with an exponential decline in fre
quency for larger sizes. This indicates a tightly arranged microporous 
structure where smaller pores are predominantly present. Table 4 shows 
the results of the ‘SEM + ImageJ’ analysis for important parameters. 
Fig. 5 (a-d) illustrates the application process and the result of the ‘SEM 
+ ImageJ’ for CaCl2-RNEAC at a magnification of 1.5 kx, which in
dicates a low pore network within the adsorbent matrix. CaCl₂ activation 
generates larger pores (>10 µm) with a lower density, ideal for rapid 
diffusion in air filtration applications. This result is consistent with 
previous findings ([21]) where ZnCl₂-activated samples exhibit exten
sive microporosity, accounting for >60 % of the pore volume. Also, KOH 
and K₂CO₃ activations yield intermediate pore sizes, thereby balancing 
the adsorption capacities for volatile organic compounds (VOCs) and 
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hydrocarbons.
The observed differences in pore size and distribution across samples 

(cf. Figs. 4& 5) suggest that activating agents can be tailored to optimize 
ACs for specific applications. For instance, H₃PO₄ activation is ideal for 
SAR systems that require high refrigerant adsorption capacities, while 
CaCl₂ activation is better suited for VOC removal and catalytic processes 
due to their enhanced mesoporosity. From a sustainability perspective, 
using biomass as a precursor ensures environmental benefits, while 
tailored activation methods maximize efficiency, making biomass- 
derived ACs a promising option for sustainable and environmentally 
friendly cooling solutions.

3.2. Optimization from scenario rankings

Table 5 presents the optimized values for various properties and 
post-treatment features of RNEAC. A comparative analysis was 

conducted to identify the most favorable scenarios by maximizing sur
face area and carbon yield while minimizing ash content, as detailed in 
Appendices 1–2. Appendix 1 explicitly highlights the results of the PO 
analysis performed in MATLAB using MOGA [53].

This normalization ensured comparability across variables measured 
on different scales. Equal weights were assigned to the three response 
variables (ash content, carbon yield, and surface area), and an aggregate 
score for each scenario was calculated using a weighted sum as 
described in Eq. (22). The results, presented in Fig. 7, illustrate the 
effectiveness of this approach in reflecting balanced preferences across 
the response variables. 

Composite score =
∑3

i=1
(Wi X Ni) (22) 

Where: 

Fig. 4. SEM + ImageJ analysis of pore size and distribution for H3PO4-RNEAC: (a) SEM Image (713 x), (b) SEM Image (502x), (c) Feature segmentation stage on 
ImageJ analysis for 713x maginification (d) Binary image showing pores in white (e) Log-scaled pore size distribution analysis in SEM + ImageJ.
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W1 = WASC,
W2 = WSA, and W3 = WCY. N1 = NASC,

N2 = NSA, and N3

= NCY 

Each scenario is ranked in ascending order based on its composite 
score, with lower scores indicating better options according to the 
criteria. Scenarios 1 and 26, identified as having the lowest scores, 
represent the optimized values for RNEAC production (see Appendix 2). 

These scenarios (highlighted in Fig. 6) best meet the criteria of high 
carbon yield, high surface area, and low ash content.

In Fig. 7 (a & b), bar plots of normalized scores for each response are 
shown to compare the normalized values of the dependent variables 
under optimal conditions. In Fig. 7a, a clear trade-off can be observed 
between carbon yield and ash content for CaCl₂-RNEAC, where mini
mizing ash content (approximately 0.05) results in a high normalized 
carbon yield score (about 0.9). However, this reduction in ash content 
has a relatively low impact on surface area. Conversely, for H₃PO₄- 
RNEAC (Fig. 7b), the trade-off between ash content and the other two 
responses, carbon yield and surface area, is more significant and 
consistent. This highlights the influence of activating agents on the op
timum yield and surface area of AC.

Fig. 8 illustrates the Pareto-front of the three objectives using 
convergence and diversity metrics. Converged points represent 
normalized results, while divergent points indicate the distribution 
across the Pareto front. The scatter plot reveals scenarios where lower 
composite scores correspond to higher values for carbon yield and sur
face area [51]. The chart shows pronounced divergence compared to 
convergence, reflecting significant trade-offs among ash content, carbon 
yield, and surface area and highlighting a wide range of non-dominated 

Fig. 5. SEM + ImageJ analysis of pore size and distribution for CaCl2-RNEAC (a) SEM Image (1.52kX), (b) Feature segmentation stage on ImageJ, (c) Binary image 
showing pores (white), and (d) Log-scaled pore size distribution analysis in SEM + ImageJ.

Table 4 
Summary – Results of SEM + ImageJ analysis of RNEAC.

Slice Count Total Area Average Size 1%Area Mean Perim. Circ. Feret MinFeret

SEM_H3PO4_ 165,234.png 1378 71,822 52.12 21.073 255 18.721 0.873 5.077 3.043

Table 5 
Optimized scenarios for RNEAC production with composite scores.

Ranked Scenario 1 Ranked 
Scenario 2

Scenarios 26 1
Impregnation ratio (-) 2.416 2.2972
Temperature ( ◦C) 400.38 400.2
Residence Time (mins) 111 109.72
Concentration ( %) 75.737 75.392
Ash Content ( %) 1.0573 1.0447
Carbon Yield ( %) 73.211 73.15
Surface Area (m2/g) 1401.7 1402.3
Composite Score 0.000269 0.000387
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solutions. Optimizing for surface area and carbon yield tends to result in 
higher composite scores, as shown by the deep-coloured points in the 
Z-plane. Fig. 9 (a & b) further visualizes these trade-offs using a colour 
gradient to depict the interplay between the objectives. The plot bal
ances carbon yield and surface area, with the colour bar illustrating the 
influence of ash content on each Pareto optimal solution.

Multiple trials were conducted to optimize the process parameters 
for producing RNEAC, necessitating an analysis of experimental uncer
tainty. Fig. 10 (a & b) shows the error bars for the two activators, 
illustrating the relationship between input parameters and optimization 
scores. While a few outliers are present, most temperature levels at 200 
◦C and 400 ◦C exhibit lower optimization scores compared to the 600 ◦C 
level in both cases.

3.2.1. Response optimization
The objective of optimizing the RNEAC production process is to 

minimize the ash content while maximizing surface area and carbon 
yield, adhering to recommendations in the literature for producing 

economically viable, high-quality AC [21]. Optimizing multiple objec
tives in parallel can be challenging due to conflicting goals. Therefore, 
Response Surface Analysis (RSA) from the Design of Experiments (DOE) 
is used to evaluate scenarios that generate response optimization values. 
This approach aggregates the performance of all objective functions into 
a unified benchmark, simplifying decision-making [75,53]. The opti
mization results yielded 17 optimal solutions for the three responses 
(Carbon yield, surface area, and ash content), as shown in Appendix 3. 
The goal and parameter settings (setting limits and targets) for response 
variables are shown in Table 6. Based on the equal weight assigned to all 
responses, any solutions can give factor values (elements) that affect the 
responses (quality) the most. However, the composite desirability of 
0.710484 corresponds to the values most affected by every quality. The 
corresponding elements (factors) are 212.121 ◦C, 100 %, 120 min, and 4 
g/g for Temperature, Concentration, Resident time, and impregnation 
Ratio, respectively.

As shown in Tables 7 and 8, the best fit indicates RNEAC’s superior 
carbon yield as 74.11 % at optimal factors of 212.121 ◦C, 100 %, 120 

Fig. 6. Composite scores distribution across scenarios for RNEAC production.

Fig. 7. Bar Plot of normalized scores for (a) CaCl2, (b) H3PO4.
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min, and 4 g/g for temperature, concentration, resident time, and 
impregnation ratio, respectively. Other qualities, such as surface area 
and carbon yield corresponding to the optimal factors, are 1755 m2/g 
and 12.46 %, respectively. The RNEAC exhibit an optimal surface area 
superior to that of a typical commercially available activated carbon, 
with a surface area ranging from 800–1000 m2/g, as Wu et al. [76] re
ported. RNEAC result is also comparable with 1450 m2/g reported by 
Sun & Webley [77] when evaluating the surface area of AC from corn 
cob precursor using K2CO3 as an activating agent. Table 8 shows the 
values of Fit, Standard error of fit (SE Fit), confidence interval (CI) and 
prediction interval (PI) for response variables. The carbon yield is ex
pected to lie between 63.84 and 85.70 under the given optimal condi
tions with 95 % confidence (see Table 6). On the other hand, the 95 % 
confidence interval suggests that the true mean for carbon yield falls 
between 70.89 and 78.66.

3.3. Effect of input variables

The experiment data is presented in Fig. 11 (a & b). Using a central 
composite design (CCD) for the experimental design, the process vari
ables for RNEAC preparation are distributed across various levels for 
each scenario. The plot of the optimization score versus temperature 
suggests that the optimization score is better at higher temperatures, 
indicating that lower temperatures are less effective in producing high 

Fig. 8. Composite scores distribution across scenarios for RNEAC production.

Fig. 9. Composite scores distribution across scenarios for RNEAC production (a) CaCl2 (b) H3PO4.

Fig. 10. Error bar for temperature against optimization score.
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RNEAC yields. However, the scatter plots for the optimization score 
versus the other three process variables do not reveal clear trends, 
making it challenging to determine their impact on RNEAC yields. The 
experimental data suggest that identifying an optimized mix of input 
variables to maximize outputs while minimizing others is complex and 
time-consuming. The Kernel Density Estimate (KDE) plot of the opti
mization score shows that the median optimization score across exper
iments is approximately 96 %.

Fig. 12 illustrates the correlations between input variables and the 
optimization score. Insignificant correlations among the input variables 
confirm the absence of multicollinearity, which is critical for main
taining the statistical power of regression analyses. Temperature ex
hibits a relatively strong positive correlation (22e-16) with residence 
time, while concentration shows a negligible negative correlation with 
the impregnation ratio and residence time. Additionally, the heatmap of 
the correlation matrix (Fig. 12a) indicates a very weak positive corre
lation (5.4e-17) between residence time and concentration. A compar
ative evaluation of approaches for combining optimized preparation 
variables is essential. Moreover, the correlation matrix for CaCl₂ in 
Fig. 12b shows a null relationship between input variables, which may 
reflect the weak influence of the activating agent on the AC precursor.

Fig. 13 (a & b) presents the histogram plots showing the frequency 
distribution of residuals for the dependent variables associated with the 
two activating agents (CaCl₂ and H₃PO₄). The sinusoidal trendlines 
observed in the histograms confirm a non-linear relationship between 
the dependent and independent variables, justifying the use of models 
that can account for non-linearity. While this trend is evident in both 
datasets, the variable range is more evenly distributed in the CaCl₂ group 
(Fig. 13a) compared to the H₃PO₄ group (Fig. 13b). A logarithmic 
transformation was applied to address the overfitting observed in the 
initial residuals, regularising the model and ensuring a more robust 
prediction of response variables for the RNEAC.

Table 9 presents the ML-optimized process parameters for the 
RNEAC. Unlike the Pareto front analysis, which highlights trade-offs 
between multiple objectives, ML-based optimization reduces uncer
tainty, offering a more definitive solution.

3.4. Error analysis result

Metrics such as MAE, MSE, cross-validation, STD, and variance of the 
optimization score were evaluated to evaluate model performance using 
Eqs. (17) - 22. MAE and MSE were calculated between each dependent 
variable’s normalized and actual values. Table 10 shows that the MAE 

and MSE values for each dependent variable are statistically significant 
compared to the Pareto front values normalized for max-min optimi
zation, indicating that the problem formulation and algorithm design 
align well with the dataset. Additionally, the low mean cross-validation 
error (0.0381 ± 0.00814) and STD of the optimization score (0.22) 
suggest strong regression model performance. The actual optimization 
scores, 2.20 and 2.33 for H₃PO₄ and CaCl₂, respectively, exceed the STD 
of the optimization score, further confirming the model’s reliability.

Fig. 14 (a-c) illustrate the trade-offs between the three objectives of 
RNEAC process optimization: maximizing carbon yield and surface area 
while minimizing ash content. Fig. 14a represents the Pareto Optimal 
Front (POF) for the objective functions “carbon yield” maximization and 
“ash content” minimization, where the concavity in the plot depicts the 
trade-off within the solution space. Similarly, Fig. 14b shows the POF for 
maximizing surface area and minimizing ash content. Fig. 14c shows the 
POF for maximizing carbon yield and surface area. A non-dominated 
solution for all three objectives can be observed as the POF in the 
plots [78]. Suboptimal regions outside the POF represent outcomes that 
fail to satisfy the objectives. These results underscore the need to apply 
PO to manage the competing objectives addressed in this study.

3.5. Analysis of experimental outcome

Analysis of the experimental data confirms the optimization. Fig. 15a
illustrates the impact of residence time on the ash content at specific 
temperatures, revealing a dependency of RNEAC’s ash content on acti
vation time and carbonization temperature. At 400 ◦C, ash content 
consistently decreases with increasing residence time. However, at 200 
◦C and 600 ◦C, ash content initially declines up to a residence time of 2 
min before increasing, with the highest ash content observed at 200 ◦C. 
This dynamic suggests that at temperatures above the optimum, useful 
AC transforms into ash, while below the optimum, the small yield of AC 
converts to ash as residence time increases. The decline in ash content at 
400 ◦C with increasing residence time aligns with the optimization 
outcomes derived from Pareto-NDSGA II-Min-Max Normalization (cf. 
Appendix 2). These findings are further supported by Analysis of Vari
ance (ANOVA) described in Appendices 4–6, confirming the statistical 
significance of temperature and its interaction with residence time in 
influencing ash content. This underscores the critical role of residence 
time and carbonization temperature in adjusting ash content, thereby 
validating the optimization results and reinforcing their robustness 
across various analytical methods. Fig. 15b illustrates the impact of 
residence time on ash content across different concentrations of H₃PO₄. 

Table 6 
Goal and parameter settings for the response variables.

Response Goal Lower Limit Target Upper Limit Weight Importance

Carbon Yield ( %) Maximum 55.48 82.10 ​ 1 1
Surface Area (m2/g) Maximum 387.80 4000.00 ​ 1 1
Ash Content ( %) Minimum ​ 0.22 50.18 1 1

Table 7 
Multiple response prediction.

Variable Setting

Temperature ( ◦C) 212.121
Concentration ( %) 100
Resident Time (mins) 120
Impregnation Ratio (-) 4

Table 8 
Fit, standard error of fit, confidence interval and prediction interval for response 
variables.

Response Fit SE Fit 95 % CI 95 % PI

Carbon Yield ( %) 74.77 1.97 (70.89, 78.66) (63.84, 85.70)
Surface Area (m2/g) 1755 121 (1516, 1994) (1084, 1426)
Ash Content ( %) 12.46 3.76 (5.04, 19.88) (− 8.40, 33.32)
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Fig. 11. Pair Plot of input variables and optimization scores for (a) H3PO4, (b) CaCl2.
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The response variation concerning residence time appears minimal, 
indicating that ash content remains relatively constant regardless of the 
concentration. Similarly, Fig. 15c shows that the interaction between 
residence time and H₃PO₄ concentration exhibits no significant varia
tion, confirming the statistical insignificance of concentration or its 
interaction with residence time on RNEAC’s ash content.

Fig. 16a illustrates the impact of the impregnation ratio on carbon 
yield for H₃PO₄ across various temperatures, showing a consistent trend 
with minor fluctuations. The highest carbon yield was achieved at 200 
◦C with a 2 g/mL impregnation ratio, while the lowest yield occurred at 

600 ◦C with a 3 g/mL ratio. Lower temperatures and moderate 
impregnation ratios were generally more favourable for higher carbon 
yield, likely due to the activating agent’s efficient removal of inorganic 
content to enhance the carbon yield of RNEAC. Fig. 16b shows the effect 
of impregnation ratio and activating agent concentration on carbon 
yield. The highest yield was recorded at 75 % concentration with a 2 g/ 
ml ratio, while the lowest occurred at 50 % concentration with a 4 g/ml 
ratio, indicating that both parameters significantly influence carbon 
yield. Fig. 16c explores the impact of the impregnation ratio on carbon 
yield across different residence times in the furnace. While residence 

Fig. 12. Correlation between the input variables for (a) H3PO4, (b) CaCl2.
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time influenced carbon yield, its effect diminished at prolonged dura
tions, such as 120 min, likely due to the collapse of the delicate carbon 
matrix. The highest yield was achieved with a 2 g/ml ratio at a residence 
time of 90 min, which aligns with the experimental optimal conditions. 
Fig. 16d illustrates the effect of the impregnation ratio on surface area 
across various residence times. The surface area shows a minimal in
crease with higher impregnation ratios at 30, 60, and 120-minute resi
dence times. However, at a 90-minute residence time, an impregnation 
ratio of 4 g/ml significantly enhances the surface area, demonstrating a 
positive correlation between impregnation ratio and surface area at this 
specific duration. This finding aligns with Kwaghger et al. [8], who 
observed similar trends in mango kernel-activated carbon activated with 
HCl, where activating agent concentration, impregnation ratios, and 
residence times collectively influenced the specific surface area of AC 
materials.

In summary, the influence of H₃PO₄ as an activator on the ash con
tent, surface area, and carbon yield of RNEAC was statistically analyzed. 
The ANOVA results for ash content indicate that temperature is highly 
significant, with a p-value of 0. The interaction between temperature 
and time was also statistically significant, demonstrating a combined 
effect on ash content. These findings highlight the critical role of tem
perature and its interaction with time in optimizing the production of 
RNEAC with H₃PO₄. Such insights are crucial for improving the quality 
of RNEAC and tailoring its properties for engineering applications, such 
as in SARs. The study also examined the impact of H₃PO₄ on the surface 

Fig. 13. Histogram of the residuals distribution of dependent variables (a) CaCl2 (b) H3PO4.

Table 9 
ML Optimal condition for the preparation of RNEAC.

Group Optimal Condition

Parameters CaCl2 value H3PO4 value

Impregnation Ratio (-) 2 4
Temperature ( ◦C) 600 400
Residence Time (mins) 120 90
Concentration ( %) 75 25
Ash Content ( %) 1 0.22
Carbon Yield ( %) 49.9 72
Surface Area (m2/g) 508.51 1818.2
Optimization Score 2.2 2.33

Table 10 
Error analysis result for the experimental data.

Error Indices Scores Error Indices Scores

MAE - Ash Content 1.630 MSE - Ash Content 3.969
MAE - Surface Area 1361.75 MSE - Surface Area 2.29240
MAE - Carbon Yield 66.36 MSE - Carbon Yield 4439.93
Cross-Validation MSE 0.0381 

± 0.00814
​ ​

STD of Optimization Score 0.22 ​ ​
Variance of Optimization Score 0.047 ​ ​
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Fig. 14. Pareto Frontier for trade-offs between parameters (a) ASH Content and Carbon Yield, (b) Ash Content and Surface Area, (c) Surface Area and Carbon Yield.
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Fig. 15. An interaction effect on ash content (a) residence time and temperature (b) residence time and H3PO4 concentration (c) Impregnation ratio and resi
dence time.

Fig. 16. Interaction effect of impregnation ratio and other process parameters (a) Carbonization temperature on carbon yield (b) H₃PO₄ Concentration on carbon 
yield (c) Resident time on carbon yield (d) Resident time on surface area of RNEAC.
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area of RNEAC. Significant factors influencing surface area included 
impregnation ratio, temperature, and their interactions with time, 
showing p-values below 0.05. These results highlight the importance of 
these variables in optimizing the pore structure of RNEAC, providing 
valuable guidance for enhancing its adsorption capabilities through 
precise control of activation conditions. Furthermore, the effect of H₃PO₄ 
on the carbon yield of RNEAC was evaluated, revealing statistically 
significant influences from impregnation ratio, activation time, con
centration, and their interactions (cf. Appendix 3). The interactions of 
ratio with time and temperature with time were particularly note
worthy. These findings underscore the combined effects of these pa
rameters in maximizing carbon yield and optimizing the activation 
process.

3.6. Validation of RNEAC effectiveness

To test the effectiveness of the optimized RNEAC, Sorption kinetics 
and capacity retention studies were conducted using a purpose-built 
solid adsorption refrigeration test rig [25]. The changes in adsorption 
and desorption rates with cycles were tested and benchmarked against 
the well-known commercial activated carbon (CAC). Technically, the 
adsorption/desorption characteristics of the adsorbent-adsorbate inter
action in a SAR system depend on the type of activated carbon used. As 
such, 500 g of RNEAC and CAC each was evaluated with varying masses 
of methanol (as refrigerant) in the range of 0.4, 0.6, 0.8 and 1.0 g for 120 
min at a 15-minute time step. Fig. 17 shows the refrigerant’s desorption 
patterns over time for RNEAC and GAC adsorbents. The result is 
consistent with theoretical expectations, as an increase in the adsor
bent’s initial resident time proportionately correlates with the refrig
erant desorbed. The curve exhibits a plateau between 105 and 120 min, 
signifying a transition towards saturation. Additionally, the RNEAC’s 
desorption and adsorption capacity compared favourably with the CAC 
and even slightly outperformed the CAC. This is interesting and reveals 
the apparent potential of RNEAC, considering the refinement it can still 
undergo over time compared to the commercially available AC that’s 
already matured.

4. Conclusion and recommendations

This study demonstrates the successful transformation of Raphia nut 
endocarp (RNE) into high-performance activated carbon (RNEAC) using 
calcium chloride (CaCl₂) and phosphoric acid (H₃PO₄) as activating 
agents. The production process was comprehensively optimized by 
integrating genetic algorithms, Pareto optimality, min-max normaliza
tion, and machine learning to achieve desirable adsorbent characteris
tics, including low ash content, high surface area, and superior carbon 
yield. Quantitative pore structure assessment using Scanning Electron 
Microscopy (SEM) coupled with ImageJ analysis confirmed the presence 
of a well-developed porous network, validating the effectiveness of the 
activation strategy. The experimental validation revealed that the 
optimized RNEAC matched and slightly outperformed commercial 
activated carbon in terms of adsorption capacity within the solid 
adsorption refrigeration (SAR) test rig. This is particularly significant as 
it demonstrates that agro-waste can be converted into high-performance 
adsorbents suitable for environmentally friendly, off-grid cooling solu
tions. These findings further highlight the potential of agricultural waste 
valorization in addressing cooling and environmental challenges, 
particularly in resource-constrained communities. Collectively, this dual 
benefit will advance the development of scalable, environmentally 
sustainable cooling technologies for rural and off-grid areas.

Future work should focus on refining the pore size distribution and 
enhancing surface chemistry to improve adsorption kinetics for natural 
refrigerants. Exploring alternative low-cost activating agents, opti
mizing physical form factors, and conducting lifecycle assessments will 
further support commercial scalability. Combining computational 
modelling with experimental validation can also streamline the devel
opment of next-generation sustainable adsorbents tailored for applica
tion in SARs. The practical considerations for the real-world deployment 
of this technology in off-grid communities are essential for the economic 
viability and scalability of the manufacturing process. Additionally, 
further study should consider long-term durability testing of RNEAC in a 
real SAR system to evaluate its mechanical and thermal stability.

Fig. 17. Adsorption/Desorption Patterns of Desorbed Refrigerant for RNEAC and CAC.
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Appendix 1. RNEAC Production Parameters Optimization with Genetic Algorithm (Pareto Optimal Front)

Ratio Temp. Time Conc. Ash Content ( %) Carbon Yield ( %) Surface Area (m2/g)

1.6989 399.98 116.11 95.587 3.3099 73.753 1440.6
2.2972 400.06 109.72 75.392 1.0447 73.15 1402.3
3.9797 208.41 119.99 96.614 22.942 71.984 2176.6
2.7982 211.78 66.706 34.846 11.602 64.636 1948.9
3.2299 219.56 79.965 54.763 13.981 66.978 2011.9
3.5822 230.67 117.21 89.124 20.256 71.211 2130.7
3.514 370.46 117.9 93.852 9.6582 72.571 1600.1
2.6798 220.73 73.313 41.843 13.094 65.591 1967.5
2.9866 348.59 117.26 93.418 14.647 70.801 1710.9
3.9708 210.03 119.98 85.813 24.505 72.18 2166.3
2.7374 351.61 117.05 90.836 14.127 71.045 1690.8
3.8253 223.48 119.25 93.603 21.259 71.558 2151.9
2.6127 384.18 114.41 79.268 3.9421 73.094 1497.1
2.4261 398.51 114.39 79.638 1.3064 73.446 1419.9
2.5144 383.1 116.86 91.41 5.3617 73.326 1526.2
3.296 381.8 115.75 79.279 4.7858 73 1511.5
2.8704 221.26 112.59 95.576 20.785 71.374 2141.9
1.7948 394.75 116.08 93.093 3.1282 73.706 1464.8
3.2787 234.76 119.58 92.163 19.437 70.985 2129.8
2.6758 376.88 115.94 87.655 6.9111 72.944 1552.6
2.4774 378.37 117.1 85.207 6.2983 72.99 1540.6
2.6936 365.32 114.5 87.853 10.714 72.132 1613
3.5523 334.8 117.44 94.311 15.867 69.716 1780.5
2.4023 392.57 118.58 80.268 2.3123 73.422 1454.8
3.8868 220.51 119.38 93.961 21.737 71.684 2157.2
3.9061 327.55 119.26 95.808 16.133 69.228 1819.3
2.416 400.38 111 75.737 1.0573 73.211 1401.7
2.9788 259.25 119.13 90.497 16.876 69.463 2067.6
3.56 214.28 119.86 95.268 22.577 71.883 2167.6
3.2086 220.2 77.694 43.899 13.549 66.161 1986
3.1891 325.17 118.61 91.095 16.172 69.09 1821.1
3.2114 306.72 116.55 89.452 16.33 68.354 1896.3
2.58 212.66 83.763 63.193 15.171 68.003 2045.1
2.8497 358.2 114.85 91.931 12.82 71.601 1657.4
3.4528 373.6 116.44 88.961 8.16 72.753 1573.7
3.4185 241.28 119.34 91.46 18.467 70.586 2115
2.8176 273.95 118.54 91.352 16.457 68.711 2022.9
3.1445 377.77 116.31 83.465 6.3587 72.911 1541
3.5035 359.96 117.34 92.526 12.486 71.75 1652.4
2.9294 364.44 117.25 89.337 11.13 72.092 1622.6
3.0024 398.85 116.64 86.206 1.945 73.649 1431.5
3.8751 212.94 119.3 92.381 23.183 71.99 2166.6

Appendix 2. Result of Pareto Optimization from Multi-objective Genetic Algorithm (MOGA) and Min-Max Normalisation

Ranked Scenarios Scenarios Ratio Temp Time Conc Ash Content ( %) Carbon Yield ( %) Surface Area (m2/g) Composite Score

1 26 2.416 400.38 111 75.737 1.0573 73.211 1401.7 0.000269
2 1 2.2972 400.2 109.72 75.392 1.0447 73.15 1402.3 0.000387
3 13 2.4261 398.51 114.39 79.638 1.3064 73.446 1419.9 0.017321

(continued on next page)
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(continued )

Ranked Scenarios Scenarios Ratio Temp Time Conc Ash Content ( %) Carbon Yield ( %) Surface Area (m2/g) Composite Score

4 40 3.0024 398.85 116.64 86.206 1.945 73.649 1431.5 0.038416
5 23 2.4023 392.57 118.58 80.268 2.3123 73.422 1454.8 0.061278
6 0 1.6989 399.98 116.11 95.587 3.3099 73.753 1440.6 0.073377
7 17 1.7948 394.75 116.08 93.093 3.1282 73.706 1464.8 0.08512
8 12 2.6127 384.18 114.41 79.268 3.9421 73.094 1497.1 0.123307
9 15 3.296 381.8 115.75 79.279 4.7858 73 1511.5 0.15058
10 14 2.5144 383.1 116.86 91.41 5.3617 73.326 1526.2 0.172339
11 20 2.4774 378.37 117.1 85.207 6.2983 72.99 1540.6 0.201592
12 37 3.1445 377.77 116.31 83.465 6.3587 72.911 1541 0.203138
13 19 2.6758 376.88 115.94 87.655 6.9111 72.944 1552.6 0.222396
14 34 3.4528 373.6 116.44 88.961 8.16 72.753 1573.7 0.262628
15 6 3.514 370.46 117.9 93.852 9.6582 72.571 1600.1 0.311593
16 21 2.6936 365.32 114.5 87.853 10.714 72.132 1613 0.342418
17 39 2.9294 364.44 117.25 89.337 11.13 72.092 1622.6 0.357478
18 38 3.5035 359.96 117.34 92.526 12.486 71.75 1652.4 0.405607
19 33 2.8497 358.2 114.85 91.931 12.82 71.601 1657.4 0.415951
20 10 2.7374 351.61 117.05 90.836 14.127 71.045 1690.8 0.465358
21 8 2.9866 348.59 117.26 93.418 14.647 70.801 1710.9 0.48941
22 22 3.5523 334.8 117.44 94.311 15.867 69.716 1780.5 0.56032
23 3 2.7982 211.78 66.706 34.846 11.602 64.636 1948.9 0.578081
24 25 3.9061 327.55 119.26 95.808 16.133 69.228 1819.3 0.591025
25 30 3.1891 325.17 118.61 91.095 16.172 69.09 1821.1 0.593018
26 7 2.6798 220.73 73.313 41.843 13.094 65.591 1967.5 0.621881
27 29 3.2086 220.2 77.694 43.899 13.549 66.161 1986 0.643516
28 31 3.2114 306.72 116.55 89.452 16.33 68.354 1896.3 0.644907
29 4 3.2299 219.56 79.965 54.763 13.981 66.978 2011.9 0.669434
30 32 2.58 212.66 83.763 63.193 15.171 68.003 2045.1 0.716219
31 36 2.8176 273.95 118.54 91.352 16.457 68.711 2022.9 0.729302
32 27 2.9788 259.25 119.13 90.497 16.876 69.463 2067.6 0.767075
33 35 3.4185 241.28 119.34 91.46 18.467 70.586 2115 0.831567
34 18 3.2787 234.76 119.58 92.163 19.437 70.985 2129.8 0.86179
35 5 3.5822 230.67 117.21 89.124 20.256 71.211 2130.7 0.879826
36 16 2.8704 221.26 112.59 95.576 20.785 71.374 2141.9 0.898327
37 11 3.8253 223.48 119.25 93.603 21.259 71.558 2151.9 0.914882
38 24 3.8868 220.51 119.38 93.961 21.737 71.684 2157.2 0.928489
39 28 3.56 214.28 119.86 95.268 22.577 71.883 2167.6 0.953102
40 41 3.8751 212.94 119.3 92.381 23.183 71.99 2166.6 0.965372
41 2 3.9797 208.41 119.99 96.614 22.942 71.984 2176.6 0.966688
42 9 3.9708 210.03 119.98 85.813 24.505 72.18 2166.3 0.993354

Appendix 3. Response Optimization Solutions

Ranking order T ◦C Conc ( %) RT (min) IR (g/g) CY ( %) SA (m2/g) Fit AS-C ( %) Fit Composite Desirability

1 212.121 100 120 4 74.7738 2755 12.4565 0.710484
2 249.955 100 119.699 3.77491 75.3321 2443.33 10.7079 0.694713
3 206.711 58.182 120 3.69579 71.8448 2574.02 18.9947 0.614683
4 282.464 98.895 117.76 2.50949 75.8463 1826.89 14.2238 0.603103
5 278.461 48.873 120 3.75534 70.9711 2166.6 13.3352 0.595655
6 436.331 100 95.315 3.40906 72.7223 1369.98 7.2812 0.532775
7 298.499 26.127 120 1.82128 70.765 1542.14 12.2763 0.518273
8 349.774 95.465 71.731 2.06976 70.383 1455.13 8.4617 0.51693
9 348.37 35.116 64.022 3.11654 67.3442 1558.14 9.3927 0.490333
10 423.798 29.966 112.541 3.90631 67.4382 1345.05 9.253 0.460291
11 336.647 25.178 54.909 1.40683 66.454 1364.7 6.638 0.459735
12 460.386 100 34.667 3.81677 65.8485 1322.73 6.352 0.445535
13 447.129 41.526 68.509 1 67.1074 1156.66 5.5402 0.436331
14 417.462 90.522 93.515 1.12914 69.9505 1084.09 11.8516 0.431583
15 425.582 29.414 33.939 1.4603 65.7893 1230.46 5.9079 0.430992
16 433.58 88.497 33.056 1.48658 65.3682 1211.14 8.5372 0.413248
17 411.368 34.098 33.571 3.29833 64.9351 1298.26 10.9286 0.412787

Note: T ◦C = Temperature, Conc ( %) = Concentration, RT (min), IR = Impregnation_Ratio, CY ( %) = Carbon_Yield, AS-C ( %) = Ash_Content, SA 
(m2/g) = Surface_Area

Appendix 4. ANOVA for the Effect of H3PO4 on ash content of the RNEAC

The alpha value is 0.05 (95 % confidence level).
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Source Sum Sq. d.f. Mean Sq. F Prob>F

Ratio 216.51 3 72.17 1.04 0.3787
Temp 5941.73 2 2970.86 42.66 0
Time 527.15 3 175.72 2.52 0.0604
Conc 164.94 3 54.98 0.79 0.5017
Ratio*Temp 874.84 6 145.81 2.09 0.0579
Ratio*Time 350 9 38.89 0.56 0.8289
Ratio*Conc 1091.31 9 121.26 1.74 0.0855
Temp*Time 5260.3 6 879.72 12.59 0
Temp*Conc 829.78 6 138.30 1.99 0.0719
Time*Conc 471.37 9 52.37 0.75 0.6606
Error 9401.07 135 69.64 ​ ​
Total 25,128.98 191 ​ ​ ​

Appendix 5. ANOVA for the Effect of H3PO4 on surface area of the RNEAC

Source Sum Sq. d.f. Mean Sq. F Prob>F

Ratio 4345,238 3 1448,412.7 19.61 0
Temp 53,769,095.9 2 26,884,548 363.92 0
Time 41,742.4 3 13,914.1 0.19 0.9042
Conc 428,225.4 3 142,741.8 1.93 0.1273
Ratio*Temp 10,326,021.8 6 1721,003.6 23.3 0
Ratio*Time 2119,652.7 9 235,517 3.19 0.0016
Ratio*Conc 1016,015 9 112,890.6 1.53 0.144
Temp*Time 3524,255.9 6 587,376 7.95 0
Temp*Conc 444,854.3 6 74,142.4 1 0.4257
Time*Conc 370,128.1 9 41,125.3 0.56 0.8303
Error 9973,094.5 135 73,874.8 ​ ​
Total 86,358,323.8 191 ​ ​ ​

Appendix 6. ANOVA for the Effect of the Activating Agents on Carbon Yield of the RNEAC

Source Sum Sq. d.f. Mean Sq. F Prob>F

Ratio 422.72 3 140.907 6.33 0.0005
Temp 135.48 2 67.738 3.04 0.0509
Time 1352.13 3 450.711 20.25 0
Conc 273.05 3 91.018 4.09 0.0081
Ratio*Temp 388.49 6 64.748 2.91 0.0106
Ratio*Time 215.45 9 23.939 1.08 0.3846
Ratio*Conc 249.19 9 27.688 1.24 0.2734
Temp*Time 632.08 6 105.347 4.73 0.0002
Temp*Conc 274.23 6 45.706 2.05 0.0627
Time*Conc 161.25 9 17.916 0.81 0.6122
Error 3004.06 135 22.252 ​ ​
Total 7108.11 191 ​ ​ ​
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