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ARTICLE INFO ABSTRACT

Keywords: This study investigates the experimental production and multi-objective optimization of the production process
Raphia nut endocarp-derived activated carbon of microporous activated carbon (AC) derived from Raphia nut endocarp (RNE) for solid adsorption refrigerators
(RNEAC)

(SARs) and related systems. Using phosphoric acid (HsPO4) and calcium chloride (CaClz) as activating agents, a
comprehensive optimization technique integrating genetic algorithms (GA), Pareto optimality (PO), min-max
Hybrid optimization techniques normalization (MMN), and machine learning (ML) was applied to determine the optimal RNE-derived AC
Solid adsorption refrigerators (SARs) (RNEAC) properties, including surface area, carbon yield, and ash content. Linear regression was used as the ML
Machine learning algorithm to analyze the relationship between the production variables of the RNEAC. The experimental design
varied parameters such as carbonization temperature, residence time, activating agent concentration, and
impregnation ratio, to statistically evaluate their impacts. Results revealed that temperature and residence time
significantly influence ash content, while impregnation ratio, temperature, and residence time optimize surface
area. Similarly, carbon yield was affected by temperature, residence time, and impregnation ratio. The optimized
RNEAC exhibits properties that include a high surface area, low ash content, and a promising methanol
adsorption capacity, highlighting its suitability for application in SARs. This study will contribute to achieving a
greener environment and the development of high-efficiency and sustainable adsorption cooling technologies for
rural communities by valorizing agricultural wastes and turning them into excellent low-cost adsorbents for the
next generation of SARs.

Agro-waste valorization
Chemical activation

mitigate these challenges and ensure product quality and economic
stability [10,11]. Solid adsorption refrigerators (SARs), which rely on
activated carbon (AC) as an adsorbent, and on efficient heat exchangers
for effective heat and mass transfer [12], offer a sustainable solution for
off-grid cooling. SARs maintain stable low temperatures, helping to
reduce spoilage of perishable crops by 25 % to 35 % and supporting food
security, particularly in regions with limited electricity access, such as
remote northern parts of Nigeria [13-19]. While cold rooms are used in
many rural areas for vaccine and crop preservation, frequent project
failures are common due to unreliable power supply. A viable alterna-
tive is to use locally sourced materials for adsorbent production, which is
a critical component in a solid adsorption regeration (SAR) system.
These systems require minimal electricity, involve straightforward
activation methods, and support modular and decentralized
manufacturing. The RNEAC production, in particular, can provide an

1. Introduction

The growing demand for sustainable and environmentally friendly
cooling technologies is directly tied to the escalating impacts of global
warming. Agriculture alone contributes 30 % of global anthropogenic
greenhouse gas (GHG) emissions, primarily methane and nitrous oxide
from land-based sources [1-4]. Developing countries disproportionately
contribute to these emissions due to inefficient farming practices,
inadequate product storage facilities, and poor waste management. In
sub-Saharan Africa, postharvest losses range between 15 % and 50 %,
resulting in an estimated annual loss of $4 billion due to inadequate
storage facilities [5]. The resulting wastes from surplus crops signifi-
cantly add to landfill emissions and environmental degradation [6-9].
Cold chain infrastructure is critical for rural and off-grid areas to
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Nomenclature

Wasc Weight Ash Content

Nasc Normalized Ash Content

Wsa Weight Surface Area

Nsa Normalized Surface Area

Ncy Normalized Carbon Yield

X Original data point

Xnormatiseda Normalized dataset

Xmin Datapoint with a minimum value

Xinax Data point with the maximum value

fm Objective function

CD;ip, Crowding distance

R; Ranking of Non-dominated Pareto front
R; Ranking of Non-dominated Pareto front
AC Activated carbon

ANOVA Analysis of Variance
CCD Central Composite Design

CI Confidence Interval
DOE Design of Experiments
GA Genetic Algorithm

GHG Greenhouse Gas

GP Genetic programming

HFC Hydrofluorocarbon

HVACR Heating, ventilation, air-conditioner, and refrigeration
IDE Integrated Development Environment

MAE Mean Absolute Error

MOGA  Multi-Objective Genetic Algorithm

MOO Multi-objective optimization

MSE Mean Square Error

NSGA - II Non-dominated Sorting Genetic Algorithm II
PI Prediction Interval

RNE Raphia nut endocarp

RNEAC Raphia nut endocarp-derived activated carbon
RSA Response Surface Analysis

RSM Response Surface Methodology

SAR/SARs Solid adsorption refrigerator (refrigeration)/

refrigerators
SE Standard Error
SEM Scanning Electron Microscopy
STD Standard Deviation

VOC Volatile Organic Materials

economical, scalable, and environmentally friendly solution tailored to
the needs of rural areas in developing countries. Its integration into SARs
could enhance food and vaccine preservation, create employment, and
reduce seasonal waste buildup, making it a transformative strategy for
underserved communities.

SARs use AC, which can be sustainably sourced from agricultural
byproducts, such as the Raphia nut endocarp (RNE). RNE is abundant in
West Africa and is a cost-effective and renewable resource that can be
used sustainably. Studies have shown that it contains a carbon content of
over 70 %, making it suitable for high-performance adsorbents [20,21].
When chemically activated, RNE achieves a surface area of up to 1200
m?/g, enhancing adsorption efficiency [22-24]. Chemical agents like
phosphoric acid (HsPO4) and calcium chloride (CaClz) lower carbon-
ization temperatures by up to 20 %, reduce tar formation and optimize
pore development, which is essential for producing high-quality AC [25,
26]. Utilizing RNE in AC production supports circular economic prin-
ciples by converting agricultural waste into a value-added product and
reducing environmental burdens associated with improper waste
disposal [7]. This approach can significantly contribute to regional
economic growth by using underutilized agro-waste resources.

Despite its potential, Nigeria’s lack of locally developed AC pro-
duction technologies limits the adoption of SARs for critical applica-
tions, including food and vaccine storage. Producing AC from
indigenous resources such as RNE could address this gap, providing a
sustainable cooling solution that aligns with the country’s environ-
mental and economic priorities [10,11]. AC’s exceptional properties,
such as a high adsorption capacity of 0.5 to 1.5 g/g refrigerant and a
pore volume exceeding 0.8 cm?/g, make it indispensable for application
in SARs [27,28]. These characteristics enhance the operation efficiency
of SARs, enabling applications in solar-powered refrigeration system,
where energy savings of up to 30 % have been reported [29,30].
RNE-derived AC (RNEAC) also addresses regional waste management
challenges, with studies estimating that 40 % of agricultural byproducts
in West Africa remain unutilized [7,8]. This makes RNE an economically
viable precursor for localized AC production. Also, studies have
confirmed that agro-waste AC often meets and exceeds the performance
of commercially available adsorbents, making it a sustainable alterna-
tive for application in SARs in rural and off-grid regions [31,26]. In the
context of sustainability, RNEAC is preferable because it can be devel-
oped from agricultural residue, supporting efficient material usage and
mitigating environmental impact. Compared to commonly used

synthetic alternatives, such as silica gel and Zeolite [15], RNEAC is
cheaper to produce, adaptable to suit specific applications by varying
activation time and temperature, and can be locally produced, to pro-
mote economic and environmental sustainability [17,32,33].

Chemical activation techniques are critical for enhancing AC prop-
erties. Agents such as HsPOa4 and ZnClz can produce AC with porosities
ranging from 300 to 2000 m?/g, which exceed commercial standards
[34,23]. The performance of AC can be significantly influenced by its
pore structure. Pores in AC can be classified into three categories based
on their diameter. Micropores (<2 pm), mesopores (2-50 pm), and
macropores (>50 pm), as defined by IUPAC (International Union of Pure
and Applied Chemistry). These three categories contribute to adsorption
efficiency, as found by Yakout and Sharaf El-Deen [24] and Reza et al.
[23], who emphasized that micropores provide a high surface area for
adsorbate intake, mesopores ensure molecular transport and prevent
channel blockage, while serving as pillars for other categories.

Pore size distribution (PSD) can be obtained via several methods,
such as Nitrogen (N3) Physisorption [35,36] and Scanning Electron
Microscopy (SEM) [37,38]. Applying the Ny physisorption model re-
quires stringent precautions, because Ny adsorption to micropores is
often diffusionally limited, leading to an incorrect value of PSD [36,39].
Various studies have used image analysis software on SEM images to
quantify particle pore size and distribution as well as classify surface
morphology. One popular method for such analysis is the use of ImageJ,
an open-source image software. For instance, Maheshwaran et al. [40]
investigated water retention potential of coconut shell (CS) aggregates
and how they could be reduced using this method. The SEM image of the
precursor was analyzed using ImageJ for microstructural analysis of
pore properties, including the number of pores and the minimum,
maximum and mean pore areas. Their analysis indicated a minimum
pore area of 2 pmz, a 75-85 % threshold efficiency, and 8-bit and RGB
image types, yielding comparable pore area and percentage values.
Agboola et al. [41] synthesized AC from Olive seeds for dye removal.
The authors performed quantitative pore and interpore spacing analyses
using ImageJ on SEM images to characterize the pore network accu-
rately. Also, Chilev et al. [37] present a quantitative approach to char-
acterizing porous solid material based on SEM and ImageJ analysis. The
study highlighted the effectiveness of SEM analysis to characterize
porous solid materials, including pore size distribution (PSD), surface
area, and pore volume, thereby eliminating the need for supplementary
analytical approaches, such as adsorption-based methodologies.
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The efficiency of AC also depends on its moisture and ash content.
Moisture levels, typically between 3 % and 10 %, ensure optimal
adsorption while minimizing carbon dilution [42]. Ash content, typi-
cally ranging from 2 % to 10 %, influences the structural stability and
catalytic properties of AC, making it a critical production parameter
[43]. Hybrid activation methods, which combine chemical and physical
processes, have further enhanced the cost-effectiveness and sustain-
ability in AC production, offering production cost savings of up to 15 %
compared to conventional methods [44,45]. By leveraging resources
such as RNE and advanced activation methods, AC production can play a
transformative role in supporting the development of sustainable and
high-efficiency SAR, reducing environmental impacts and creating
economic opportunities for local communities [7,46,26]. Therefore, the
sustainable cooling potential of RNEAC can be summarized as twofold —
its production from abundant agro-waste using cost-effective activation
methods ensures low-cost, scalable production of adsorbent. At the same
time, its high adsorption capacity enhances SAR performance, enabling
energy-efficient cooling solutions suitable for off-grid deployment.

Producing AC with excellent adsorption properties for SARs involves
balancing carbon yield, ash content, and surface area, making it a
complex multi-objective optimization problem. Advanced hybrid opti-
mization techniques such as genetic algorithms (GA), Pareto optimality
(PO), and min-max normalization (MMN) are increasingly used to
streamline this process [47,48]. These methods enable researchers to
navigate high-dimensional parameter spaces, ensuring optimal
trade-offs without compromising crucial performance metrics. For
instance, the use of GA for AC production has been shown to improve
adsorption efficiency by 10-20 % through iterative solution evolution,
while NSGA-II variants enable precise Pareto-optimal balancing across
multiple objectives [30,49]. Elham Kabiri and Negin Maftouni [50]
optimized a trade centre’s energy efficiency using NSGA-II genetic al-
gorithms and environmentally friendly materials and achieved a 52.3 %
energy reduction, 37.3 % cooling load decrease, and 167.67 tons of CO2
savings. PO ensures no parameter improvement compromises another,
fostering balanced decision-making [44]. Meanwhile, MMN standard-
izes variables across scales, thereby minimizing bias and ensuring the
equitable treatment of competing objectives [51]. Research using
response surface methodology (RSM) has demonstrated its efficacy in
identifying optimal parameters for producing AC with enhanced
adsorption properties from agricultural residues such as corn cobs [52].

Although traditional multi-objective optimization methods, such as
dynamic programming, offer precise results, they are computationally
intensive and time-consuming. Modern heuristic techniques, including
simulated annealing and artificial neural networks, provide significant
efficiency improvements but require rigorous parameter tuning [53].
Hybrid models integrating GA with PO and MMN have demonstrated
remarkable versatility, addressing constraints across various applica-
tions. For instance, multigene geometric programming has improved
adsorption rates by 15 %, while min-max robustness models have
significantly enhanced system reliability [54-56]. These advanced
methods highlighted the potential for producing AC that will improve
SAR efficiency and its sustainability by optimizing the production pro-
cess parameters.

The application of machine learning methods to optimize AC pro-
duction parameters has significantly contributed to the adaptation of
this technology for specific applications. These methods facilitate the
efficient synthesis of application-specific adsorbents for various uses.
Liao et al. [57] demonstrated the effectiveness of ANN in predicting AC
yield and surface area from various biomass feedstocks. Their findings
showed that the model achieved R? above 0.9, implying accurate pre-
diction. Similarly, Chang and Lee [58] utilized Random Forest and
Support Vector Machine (SVM) to predict the adsorption capacity of
biochar-activated carbon synthesized from waste wood. The models
were optimized, and they compared favourably with the ANN.

Despite significant advancements in AC production, challenges
remain in achieving scalable and cost-effective methods. Hybrid
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optimization techniques, such as GA, PO, and MMN, have effectively
addressed multi-objective trade-offs, including ash content, carbon
yield, and surface area. However, these methods often face difficulties in
fully resolving non-linear relationships among variables in complex
systems. This study tackles these challenges by integrating advanced
statistics, machine learning, and optimization methods into a compre-
hensive framework for producing application-specific RNEAC tailored to
applications in SARs. Linear regression was used solely as a predictive
model for response features based on experimental factors. Subse-
quently, GA/PO was optimized based on the regression outcome. By
incorporating linear regression, normalization models, and error anal-
ysis tools, the approach ensures precise control over production condi-
tions and performance metrics, thereby enhancing optimization
outcomes and enabling the development of AC with optimized proper-
ties for efficient SAR systems.

Crucial experimental parameters such as carbonization temperature,
residence time, activating agent concentration, and impregnation ratio
are systematically optimized to produce high-quality RNEAC. This
tailored adsorbent enhances the efficiency of SARs, particularly with
natural refrigerants like ammonia, CO2, and methanol. The fact that
these natural refrigerants have a negligible global warming potential
(GWP) and do not deplete the ozone layer, makes them environmentally
superior to synthetic alternatives, such as HFCs. The proposed optimi-
zation framework can enhance SAR performance, reduce GHG emis-
sions, and promote the valorization of agricultural waste. These
outcomes align with global sustainability goals, offering significant
environmental and economic benefits, especially for rural and off-grid
communities. By leveraging RNE as a renewable precursor for AC, this
research advances waste management solutions and contributes to the
development of off-grid cooling technologies. By integrating sustainable
materials with advanced optimization techniques, SARs can be posi-
tioned as a viable solution for addressing pressing environmental and
economic challenges in underserved regions.

2. Materials and methods
2.1. Sample collection, preparation and characterisation

The experimental data is obtained from the test setup described in
Ayoola et al. [25]. Details of the use of acid (HsPOa) and salt (CaClz) as
activating agents in the preparation of RNEAC were discussed, and the
authors comprehensively describe the experimental setup, sample
collection, preparation, and characterization of RNEAC. Chemical acti-
vation of high-carbon agro-waste materials (as shown in Fig. 1), such as
RNE, has proven especially effective, as it optimizes microporous
structures and contributes to environmental sustainability [31,26].

2.2. Chemical activation pathway of RNE in rneac production

The activation process of RNE involved impregnating the precursor
with activating agents (CaClz and HsPOa) for 24 h. Each activator plays a
distinct role in pore development during this chemical treatment. At the
impregnation phase, the phosphoric acid (HsPO4) assists in dehydration
and cross-linking reactions within the precursor’s lignocellulosic struc-
ture. This chemical interaction facilitates a steady structure of carbon,
which prevents tar formation during pyrolysis. As the material is heated
post-impregnation, HsPOa4 supports the formation of a polyphosphate
matrix, which is typically washed off after treatment to leave behind a
well-developed micro and mesoporous structure. On the other hand,
CaCl;, facilitates pore formation by extracting volatile organic materials
and water during carbonization. This salt penetrates the precursor’s
internal matrix, causing disruption and expanding it to create pore
networks. The residual calcium compounds are washed with distilled
water to further enhance the carbon porosity. The choice of CaClz and
HsPO. as activating agents can be justified because they have been
proven effective in improving the pore sizes and surface structure of
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Chemical Activation
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Fig. 1. Chemical Activation for Activated Carbon.
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Fig. 2. Flowchart for synthesizing chemically activated Raphia-nut-based activated carbon.
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lignocellulosic precursors converted to AC [59,60]. CaCl», a neutral salt,
promotes the development of micropores through a mild dehydration
mechanism, whereas HsPOa aids in forming mesoporous structures and
positively impacts surface functionalities [61,62].

Studies on activation methods indicate that chemical activation, like
phosphoric acid, is particularly effective for applications like solvent
recovery, while physical activation is more commonly used for water
treatment purposes [63,64]. Chemical activation was chosen because
this study focuses on RNEAC for application in SARs. This study employs
a concentration gradient protocol for sample impregnation, following
the method described by Caturla et al. [65]. For brevity, Fig. 2 illustrates
the flow process for preparing, characterizing, and optimizing RNEAC
production. Critical factors, such as the activating agent concentration,
carbonization temperature, residence time, and impregnation ratio,
were selected based on their economic viability and environmental
impact, as guided by the literature data. H3PO4 and CaCly, known for
their oxidation and dehydration properties [66], were used to evaluate
the effect of acid concentration on the three performance metrics. Their
synergistic application in comparative investigations facilitates a thor-
ough assessment of activation mechanisms conducive to adsorption or
catalytic functionalities. Fig. 3 shows the application of RNEAC in a SAR
setup. Further details about the test rig are not repeated here as they
have been published elsewhere. Table 1 shows the chemical properties
of the RNEAC, while Table 2 shows equations (1 - 5) used for the AC
evaluation.

2.2. overview of dataset attributes

The data was collected through factorial experimental design, which
involves varying two or more factors in parallel to observe their impact
on a response variable. All numeric values have been carefully measured
and recorded, to ensure accuracy and reliability for optimization pur-
poses. The dataset utilized to optimize RNEAC comprises four crucial
input parameters and three overarching responses, as described in
Table 3.

2.3. Optimization of production parameters

A hybrid optimization approach was employed to identify optimal
production parameters using GA, PO, ML and advanced statistics
(including linear regression models, optimization-model, error analysis,
and standard deviation of the optimization score). In optimizing AC
production using agro-based precursors (e.g., RNE) and chemical acti-
vation methods, various process variables such as activation tempera-
ture, residence time, activator concentration, and yield characteristics
frequently exhibit non-uniform scales and units. Min-max normalization
is considered relevant due to the multidimensional features involved in
the production of RNEAC. It standardizes all input parameters to a
consistent range (typically from O to 1), ensuring that no individual
parameter disproportionately influences the optimization process due to
its numerical magnitude.

Heat exchanger 1
(heat intake)

AC from RNE

Heat exchanger 2
(heat extraction)

SAR test Rig
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Table 1
The Chemical Composition of Raphia Palm Seed.

Element Composition ( %)
Carbon 39

Oxygen 4.21

Hydrogen 0.172

Sulphur 0.03

Nitrogen 3.703

(Source: [13]).

Table 2
Equations for activated carbon evaluation (Equations 1-5).
Carbon properties Governing equation Legend Author
MoistureContent (%) Wi — W, W, =initial weight of [8l
———= x 100 .
( wh ) the known quantity of
(Eq. 1) activated carbon.
W, = Final weight after
heating for 1 hour at
105°C
Ash content (%) Ash weight(g) « [8,67]
Over dry weight(g)
100
(Eq. 2)
N 8 W, = weight of the [[s,
Bulk density By (mL) Wy =W-We empty cylinder. 67]
ws w,
Vs = weight of the sample.
(Eq- 3) Vs = Volume occupied
by the packed sample.
W = weight of the
crucible plus weight of
the sample
CarbonYield (%) We % 100 Wea(g) = The dried [68]
ca weight
(Eq. 4) of precursor.
Wt =
Dry weight of RNEAC
Surface Area (m?/g) 6(m?/g) Bg = particle bulk [8,671
BaPqg density
(Eq. 5) P4 = the particle
diameter

2.3.1. Genetic algorithms (GA)

GA evolve diverse solution sets within a population through selec-
tion, crossover, and mutation cycles, effectively addressing conflicting
objectives [47]. In this study, GA is employed to identify near-optimal
solutions. The NSGA-II algorithm enables multi-objective optimization
by identifying non-dominated solutions, facilitating the exploration of
trade-offs and achieving balanced outcomes across the study’s objec-
tives [69]. Equation 1 presents the general form of the multi-objective
function, summarising the GA computation process.

a) Sort all “I” solutions in a Pareto front in ascending order of f, and
compute.

A

Adsorption/desorption

process (working fluid)

Fig. 3. Flow process of RNEAC application in SARs.
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Table 3
Input and output parameters for process optimization.
Factor Response
Input parameters  Input Input Output Obtained Targeted
Level/ steps parameters value value
range

Carbonization 200 - 200 Ash 1-24.5%, 2.50 %

Temperature 600 °C °C contents (
%)

Impregnation 1-4 1 Carbon 64.6-73.7 75%
ratio yield ( %) %

Concentration of 25 - 25 % Surface 1400 - 1400
the Activating 100 % area (m%/g) 2200 (m%>/  (m%g)
agent g)

Soaking/ 30 - 30 - - -
residence time 120 min

min
Dy = In i) =InlXin) 5o (1-1) 6)

fm (xmax) _fm (xmin)7 ’

Where CDj,, and f;,, are Crowding distance and Objective function,
respectively.

a) Repeat step 1 for each objective and find the crowding distance of
solution I.

CD; = Z CDin )

m-1

Given two solutions i and j with the following condition, solution i is
preferred to solution j if:

R; < RjOr (Rl :Rj and CD; > CD}) 8)

R; — Ranking of Non dominated Pareto fronti = 1
R; — Ranking of Non dominated Pareto front j = 2...Nynking

2.3.2. Pareto optimality

In multi-objective optimization problems, the goal is to achieve the
optimal decision-making outcome. PO seeks to optimize multiple
competing objectives simultaneously, ensuring that improving one does
not worsen another [54]. The mathematical formulation for MOO using
PO is given in Equation 4 [56].

f1;0pt = minfl(x) seekstominimize f1(x).
f2;0pt = minf2(x) seekstominimize f2(x). 9
fn;opt = minfn(x) seekstominimize fn(x).

The objective functions f1 (x), f2 (x)..., fn (x) are independently
optimized in a bid to seek simultaneous optimization of all objectives. In
this context, x* represents a Pareto optimal solution where a feasible
solution x exists, as illustrated in Equation 5.

2.3.3. Min-Max Normalisation
Although PO can identify the Pareto frontier solutions, in-
consistencies may still arise due to differences in objective scales,

(x*) (forminimizationobjectives).
(x*) (formaximizationobjectives).
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complicating decision-making that requires precise trade-offs (Ehrgott
et al., 2014). Min-max normalization is a suitable scaling technique for
mitigating these inconsistencies by reducing the impact of uneven data
distributions. While various normalization techniques exist, their
effectiveness depends on the statistical characteristics of the dataset.
This study employs the min-max approach due to its ability to handle
outliers effectively, either by addition or removal as needed, ensuring a
consistent and uniformly scaled solution set [70]. This method adjusts
data by subtracting the minimum value and then dividing by the range
of each variable (i.e., the difference between maximum and minimum
limits), as shown in Eq. (6).
Xnormalised = m 1)
Xmax — Xmin

Where, X, Xnormatise; Xmin, and Xmayx are the original data point, normal-
ized dataset, data point with minimum value and data point with
maximum value, respectively.

Each response variable from the dataset for the two activating agents
(H3PO4 and CaCl,) was normalized based on the Min-Max normalization
criteria as follows:

min(Ash_Content)

Ash_Content_Normalised = Ash_Content 12)
i Surface_Area

Surface_Area_Normalised = max (Surface Area) 13

Carbon_Yield_Normalised = Carbon.yield a4

Max(Carbon_Yield)

2.3.4. Optimization model

Improving and standardizing existing production processes through
optimization is a continuous process, as current methods still require
adaptation to emerging conditions. Therefore, the summation of the
normalized values indicates that the optimization goal is to maximize
the combined effect of these normalized parameters. The optimization
score (Sopy) is defined as:

3
Sopt = z WiX; (5)
=1
Where X; represents each of the normalized variables and w;are the
weight of the dependent variables while the sum goes fromI =1 to 3

2.3.5. Machine learning algorithm and advanced statistics

Machine learning models exhibit varying performance depending on
internal and external factors influencing their application process,
making it essential to evaluate multiple models to identify the most
suitable one for a given problem. A linear regression algorithm based on
input variables is applied to predict the RNEAC preparation process
outputs (ash content, surface area, and carbon yield). The model is
tested on two experimental datasets (HsPOs and CaCl. activations)
applied to the same precursor under identical conditions. The process
parameters are optimized using MMN and GA, and cross-validation is
employed to assess the model’s stability. This is implemented in Visual
Studio Code (VS Code 1.92.2) using Python 3.11 and relevant data-
processing libraries such as deap, matplotlib, pandas, and numpy.

10

2.3.6. Linear regression model
Eq. (16) represents the quadratic model applied to experimental data
from RNEAC production to examine the relationships between the
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predictor variables (temperature, concentration, impregnation ratio,
and residence time) and responses (Ash content, surface area and carbon
yield).

4 4 4
Y=Py+ > BXi+ D BXi+ D BXiX;+e (16)
i=1 i=1 1=1

Where Y is the response variable, X; are the input parameters,
Bo B; By By are coefficients, and e Is the error term.

2.3.7. Error analysis

The accuracy of the ML is measured using error metrics, including
Mean Absolute Error (MAE) and Mean Square Error (MSE), which pro-
vide the error between the actual and predicted values. Similarly, R?
quantifies the proportion of variance explained by the LR model
employed in this study. MAE and MSE are computed using:

1& N
MAE:;ZD’:'—}'J a7)
i=1
1& B
MSE =~ - 1
S, n;(y] 1) 18)

y; is the actual value, y; is the normalized/predicted value, and n is
the number of data points
The coefficient of Performance R? is represented by Eq. (19)

1 S\2
R =1- 7%:% 3;))2 a9
y is the mean of the actual values

Eq. (20) illustrates the residual ¢; between the ith original value
y; and normalized value y; is expressed as

e =yi—Yyi (20)

2.3.8. Standard deviation of optimization score
The standard deviation of the optimization score is calculated as:

o (Optimisation Score) = , /l/nz (X —p)? @1
i=1

Where:

X; is the i — th Optimization Score,
u is the mean of the Optimization Scores, and n is the number of opti-
mization scores.

The variance of the Optimization Score is the square of the standard
deviation, given as

Var( OptimizationScore ) = o(optimisationScore)? (22a)

2.4. Evaluation of experimental results

The study employs multi-objective weighted sum optimization
(MOWSO) and machine learning techniques, including NSGA-II and
regression analysis, to evaluate the performance of GA, PO, and MMN in
optimizing RNEAC production parameters. These methods focus on
achieving the study’s objectives of minimizing ash content while
maximizing surface area and carbon yield. PO solutions are generated
and analyzed for the two activators used, providing insight into the
effectiveness of the optimization technique. The optimal production
conditions identified through hybrid optimization were validated by
reproducing AC samples under these conditions. The properties of these
samples were compared with initial experimental results to confirm the
reliability and robustness of the optimization approach. Results are
compared with data from the literature, such as the surface structure
from SEM micrographs. It is essential to determine the specific values of
factors that affect every quality of the developed adsorbent [71]. On this
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basis, we adopt the response optimization results through the Design of
Experiments (DOE). The best solutions obtained from this experiment
were ranked using composite desirability scores, with the first ranking
representing superior quality.

3. Results and discussion
3.1. SEM-Based surface morphology analysis

The surface morphology of H3PO4-RNEAC was examined using
scanning electron microscopy (SEM) at a magnification of 713x and
502x and different scale bars of 50 pm and 100 pm, as depicted in Fig. 4
(a & b). The micrographs show a heterogeneous surface structure with a
network of irregularly formed pores and voids, indicative of the for-
mation of a porous architecture critical for adsorption applications. The
pore dimensions observed fall within the micrometre scale (~10-50
pm), suggesting macroporosity. This irregularity enhances the specific
surface area, reported to range from 800 to 1200 m?/g in similar studies
by Khalil et al. [72], which is crucial for adsorption applications such as
SAR systems. The distinct voids and irregular surface morphology sup-
port the material’s potential for adsorptive phenomena, partially
compensating for the lack of Brunauer-Emmett-Teller (BET) surface
area assessments. The visual evidence substantiates the effective acti-
vation and morphological development of the carbonaceous adsorbent.
SEM images reported by Khalil et al. [72], Martinez et al. [73], and
Yahya et al. [21] underscore the influence of biomass precursor type on
AC surface morphology, complementing RNEAC’s analysis. Different
biomass-AC exhibits distinct surface morphology with specific effects on
accessibility and adsorption efficiency. Olive pit-derived AC exhibits a
flatter surface, reducing pore accessibility and adsorption efficiency.
Walnut shell and coconut shell ACs exhibit spherical pores averaging
4-6 pm, while oil palm fruit bunches and bamboo stems have irregular
pores exceeding 10 um [21]. These differences can be attributed to
variations in the lignin and cellulose content across precursors, which in
turn influence the carbonization process and the final morphology.
HsPOa activation (Fig. 5b) forms a well-structured matrix dominated by
mesopores (~2-50 nm) and micropores (<2 nm), achieving a specific
surface area of 1400-1600 m?/g [74]. This distribution is optimal for
SAR systems that adsorb refrigerants, such as methanol.

The surface area of RNEAC was evaluated using semi-quantitative
methods identified as ‘SEM + ImageJ’ techniques, as shown in Fig. 4
(c & d). These figures illustrate feature segmentation and a binary image
showing pores filled with red particles as the feature of interest. In this
method, SEM images were analyzed using ImageJ to evaluate pore sizes.
The calibration of the SEM image, thresholding, and particle analysis
yielded 1378 unique features. The average pore area was 52.12 pm?>
(Perimeter = 18.72 pm), with a total surface coverage of approximately
21.07 %, indicating a relatively high porosity. These results suggest that
the adsorbent possesses a moderately dense and evenly distributed pore
network, which may influence its adsorbate affinity or fluid transport
properties. The quantitative insights gained from SEM analysis through
ImageJ are essential for evaluating RNEAC suitability in SARs. As indi-
cated in Fig. 4e, the log-scaled histogram illustrates that most pores fall
within the range of 1 to 10 pm? with an exponential decline in fre-
quency for larger sizes. This indicates a tightly arranged microporous
structure where smaller pores are predominantly present. Table 4 shows
the results of the ‘SEM + ImageJ’ analysis for important parameters.
Fig. 5 (a-d) illustrates the application process and the result of the ‘SEM
+ ImageJ’ for CaCl,-RNEAC at a magnification of 1.5 kx, which in-
dicates a low pore network within the adsorbent matrix. CaClz activation
generates larger pores (>10 um) with a lower density, ideal for rapid
diffusion in air filtration applications. This result is consistent with
previous findings ([21]) where ZnClz-activated samples exhibit exten-
sive microporosity, accounting for >60 % of the pore volume. Also, KOH
and K2CO:s activations yield intermediate pore sizes, thereby balancing
the adsorption capacities for volatile organic compounds (VOCs) and



R.B. Ayoola et al.

.

SEM HV: 10.0 kV/
SEM MAG: 713 x

WD: 20.81 mm
Det: SE

VEGA3 TESCAN
50 pm

View field: 291 ym _Date(m/d/y): 10/02/19

University of Ibadan

T

SEM HV: 10.0 kV/ WD: 20.81 mm
SEM MAG: 713 x Det: SE
View field: 291 ym  Date(m/d/y): 10/02/19

VEGA3 TESCAN

University of Ibadan

Next Research 3 (2026) 101132

.0 kV WD: 20.
SEM MAG: 502 x Det: SE
(b) View field: 413 ym  Date(m/dly): 10/02/19

VEGA3 TESCAN

University of Ibadan

600

500

8
8

*Frequency**
w
8
3

~
3
3

100

il | S

0.5 1.0

(e)

15
**|ogio(Pore Area [pm?2])**

20 25 30 35

Fig. 4. SEM + ImageJ analysis of pore size and distribution for H3PO4-RNEAC: (a) SEM Image (713 x), (b) SEM Image (502x), (c) Feature segmentation stage on
ImageJ analysis for 713x maginification (d) Binary image showing pores in white (e) Log-scaled pore size distribution analysis in SEM + ImageJ.

hydrocarbons.

The observed differences in pore size and distribution across samples
(cf. Figs. 4& 5) suggest that activating agents can be tailored to optimize
ACs for specific applications. For instance, HsPOa activation is ideal for
SAR systems that require high refrigerant adsorption capacities, while
CaClz activation is better suited for VOC removal and catalytic processes
due to their enhanced mesoporosity. From a sustainability perspective,
using biomass as a precursor ensures environmental benefits, while
tailored activation methods maximize efficiency, making biomass-
derived ACs a promising option for sustainable and environmentally
friendly cooling solutions.

3.2. Optimization from scenario rankings

Table 5 presents the optimized values for various properties and
post-treatment features of RNEAC. A comparative analysis was

conducted to identify the most favorable scenarios by maximizing sur-
face area and carbon yield while minimizing ash content, as detailed in
Appendices 1-2. Appendix 1 explicitly highlights the results of the PO
analysis performed in MATLAB using MOGA [53].

This normalization ensured comparability across variables measured
on different scales. Equal weights were assigned to the three response
variables (ash content, carbon yield, and surface area), and an aggregate
score for each scenario was calculated using a weighted sum as
described in Eq. (22). The results, presented in Fig. 7, illustrate the
effectiveness of this approach in reflecting balanced preferences across
the response variables.

3
Composite score = Z (W; X N;) (22)
i=1

Where:
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Fig. 5. SEM + ImageJ analysis of pore size and distribution for CaCl,-RNEAC (a) SEM Image (1.52kX), (b) Feature segmentation stage on ImageJ, (c) Binary image
showing pores (white), and (d) Log-scaled pore size distribution analysis in SEM + ImageJ.

Table 4

Summary — Results of SEM + ImageJ analysis of RNEAC.
Slice Count Total Area Average Size 1%Area Mean Perim. Circ. Feret MinFeret
SEM_H3PO4_ 165,234.png 1378 71,822 52.12 21.073 255 18.721 0.873 5.077 3.043

Wi = Wyse W = Wy, and W3 = Wey. Ny = Npge N2 = Nga, and N3
= Ney

Each scenario is ranked in ascending order based on its composite
score, with lower scores indicating better options according to the
criteria. Scenarios 1 and 26, identified as having the lowest scores,
represent the optimized values for RNEAC production (see Appendix 2).

Table 5
Optimized scenarios for RNEAC production with composite scores.
Ranked Scenario 1 Ranked
Scenario 2

Scenarios 26 1
Impregnation ratio (-) 2.416 2.2972
Temperature ( °C) 400.38 400.2
Residence Time (mins) 111 109.72
Concentration ( %) 75.737 75.392
Ash Content ( %) 1.0573 1.0447
Carbon Yield ( %) 73.211 73.15
Surface Area (m?/g) 1401.7 1402.3
Composite Score 0.000269 0.000387

These scenarios (highlighted in Fig. 6) best meet the criteria of high
carbon yield, high surface area, and low ash content.

In Fig. 7 (a & b), bar plots of normalized scores for each response are
shown to compare the normalized values of the dependent variables
under optimal conditions. In Fig. 7a, a clear trade-off can be observed
between carbon yield and ash content for CaCl-RNEAC, where mini-
mizing ash content (approximately 0.05) results in a high normalized
carbon yield score (about 0.9). However, this reduction in ash content
has a relatively low impact on surface area. Conversely, for HsPOa-
RNEAC (Fig. 7b), the trade-off between ash content and the other two
responses, carbon yield and surface area, is more significant and
consistent. This highlights the influence of activating agents on the op-
timum yield and surface area of AC.

Fig. 8 illustrates the Pareto-front of the three objectives using
convergence and diversity metrics. Converged points represent
normalized results, while divergent points indicate the distribution
across the Pareto front. The scatter plot reveals scenarios where lower
composite scores correspond to higher values for carbon yield and sur-
face area [51]. The chart shows pronounced divergence compared to
convergence, reflecting significant trade-offs among ash content, carbon
yield, and surface area and highlighting a wide range of non-dominated
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solutions. Optimizing for surface area and carbon yield tends to result in
higher composite scores, as shown by the deep-coloured points in the
Z-plane. Fig. 9 (a & b) further visualizes these trade-offs using a colour
gradient to depict the interplay between the objectives. The plot bal-
ances carbon yield and surface area, with the colour bar illustrating the
influence of ash content on each Pareto optimal solution.

Multiple trials were conducted to optimize the process parameters
for producing RNEAC, necessitating an analysis of experimental uncer-
tainty. Fig. 10 (a & b) shows the error bars for the two activators,
illustrating the relationship between input parameters and optimization
scores. While a few outliers are present, most temperature levels at 200
°C and 400 °C exhibit lower optimization scores compared to the 600 °C
level in both cases.

3.2.1. Response optimization

The objective of optimizing the RNEAC production process is to
minimize the ash content while maximizing surface area and carbon
yield, adhering to recommendations in the literature for producing
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economically viable, high-quality AC [21]. Optimizing multiple objec-
tives in parallel can be challenging due to conflicting goals. Therefore,
Response Surface Analysis (RSA) from the Design of Experiments (DOE)
is used to evaluate scenarios that generate response optimization values.
This approach aggregates the performance of all objective functions into
a unified benchmark, simplifying decision-making [75,53]. The opti-
mization results yielded 17 optimal solutions for the three responses
(Carbon yield, surface area, and ash content), as shown in Appendix 3.
The goal and parameter settings (setting limits and targets) for response
variables are shown in Table 6. Based on the equal weight assigned to all
responses, any solutions can give factor values (elements) that affect the
responses (quality) the most. However, the composite desirability of
0.710484 corresponds to the values most affected by every quality. The
corresponding elements (factors) are 212.121 °C, 100 %, 120 min, and 4
g/g for Temperature, Concentration, Resident time, and impregnation
Ratio, respectively.

As shown in Tables 7 and 8, the best fit indicates RNEAC’s superior
carbon yield as 74.11 % at optimal factors of 212.121 °C, 100 %, 120
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min, and 4 g/g for temperature, concentration, resident time, and
impregnation ratio, respectively. Other qualities, such as surface area
and carbon yield corresponding to the optimal factors, are 1755 m%/g
and 12.46 %, respectively. The RNEAC exhibit an optimal surface area
superior to that of a typical commercially available activated carbon,
with a surface area ranging from 800-1000 m?/g, as Wu et al. [76] re-
ported. RNEAC result is also comparable with 1450 m?/g reported by
Sun & Webley [77] when evaluating the surface area of AC from corn
cob precursor using KoCOs3 as an activating agent. Table 8 shows the
values of Fit, Standard error of fit (SE Fit), confidence interval (CI) and
prediction interval (PI) for response variables. The carbon yield is ex-
pected to lie between 63.84 and 85.70 under the given optimal condi-
tions with 95 % confidence (see Table 6). On the other hand, the 95 %
confidence interval suggests that the true mean for carbon yield falls
between 70.89 and 78.66.

3.3. Effect of input variables

The experiment data is presented in Fig. 11 (a & b). Using a central
composite design (CCD) for the experimental design, the process vari-
ables for RNEAC preparation are distributed across various levels for
each scenario. The plot of the optimization score versus temperature
suggests that the optimization score is better at higher temperatures,
indicating that lower temperatures are less effective in producing high
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Table 6
Goal and parameter settings for the response variables.
Response Goal Lower Limit Target Upper Limit Weight Importance
Carbon Yield ( %) Maximum 55.48 82.10 1 1
Surface Area (mz/g) Maximum 387.80 4000.00 1 1
Ash Content ( %) Minimum 0.22 50.18 1 1
Table 8
Tabl.e 7 o Fit, standard error of fit, confidence interval and prediction interval for response
Multiple response prediction. variables.
Variable Setting Response Fit SEFit  95%CI 95 % PI
Temperature (°C) 212121 Carbon Yield ( %) 7477 197 (70.89, 78.66)  (63.84, 85.70)
Concentration ( %) 100 Surface Area (m%/g) 1755 121 (1516, 1994) (1084, 1426)
Resident Time (mins) 120 Ash Content (%) 1246 376 (5.04, 19.88) (~8.40, 33.32)
Impregnation Ratio (-) 4

RNEAC yields. However, the scatter plots for the optimization score
versus the other three process variables do not reveal clear trends,
making it challenging to determine their impact on RNEAC yields. The
experimental data suggest that identifying an optimized mix of input
variables to maximize outputs while minimizing others is complex and
time-consuming. The Kernel Density Estimate (KDE) plot of the opti-
mization score shows that the median optimization score across exper-
iments is approximately 96 %.

Fig. 12 illustrates the correlations between input variables and the
optimization score. Insignificant correlations among the input variables
confirm the absence of multicollinearity, which is critical for main-
taining the statistical power of regression analyses. Temperature ex-
hibits a relatively strong positive correlation (22e-16) with residence
time, while concentration shows a negligible negative correlation with
the impregnation ratio and residence time. Additionally, the heatmap of
the correlation matrix (Fig. 12a) indicates a very weak positive corre-
lation (5.4e-17) between residence time and concentration. A compar-
ative evaluation of approaches for combining optimized preparation
variables is essential. Moreover, the correlation matrix for CaClz in
Fig. 12b shows a null relationship between input variables, which may
reflect the weak influence of the activating agent on the AC precursor.

Fig. 13 (a & b) presents the histogram plots showing the frequency
distribution of residuals for the dependent variables associated with the
two activating agents (CaCl: and HsPOas). The sinusoidal trendlines
observed in the histograms confirm a non-linear relationship between
the dependent and independent variables, justifying the use of models
that can account for non-linearity. While this trend is evident in both
datasets, the variable range is more evenly distributed in the CaCl> group
(Fig. 13a) compared to the HsPO. group (Fig. 13b). A logarithmic
transformation was applied to address the overfitting observed in the
initial residuals, regularising the model and ensuring a more robust
prediction of response variables for the RNEAC.

Table 9 presents the ML-optimized process parameters for the
RNEAC. Unlike the Pareto front analysis, which highlights trade-offs
between multiple objectives, ML-based optimization reduces uncer-
tainty, offering a more definitive solution.

3.4. Error analysis result

Metrics such as MAE, MSE, cross-validation, STD, and variance of the
optimization score were evaluated to evaluate model performance using
Egs. (17) - 22. MAE and MSE were calculated between each dependent
variable’s normalized and actual values. Table 10 shows that the MAE
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and MSE values for each dependent variable are statistically significant
compared to the Pareto front values normalized for max-min optimi-
zation, indicating that the problem formulation and algorithm design
align well with the dataset. Additionally, the low mean cross-validation
error (0.0381 + 0.00814) and STD of the optimization score (0.22)
suggest strong regression model performance. The actual optimization
scores, 2.20 and 2.33 for HsPO4 and CaCls, respectively, exceed the STD
of the optimization score, further confirming the model’s reliability.

Fig. 14 (a-c) illustrate the trade-offs between the three objectives of
RNEAC process optimization: maximizing carbon yield and surface area
while minimizing ash content. Fig. 14a represents the Pareto Optimal
Front (POF) for the objective functions “carbon yield” maximization and
“ash content” minimization, where the concavity in the plot depicts the
trade-off within the solution space. Similarly, Fig. 14b shows the POF for
maximizing surface area and minimizing ash content. Fig. 14c shows the
POF for maximizing carbon yield and surface area. A non-dominated
solution for all three objectives can be observed as the POF in the
plots [78]. Suboptimal regions outside the POF represent outcomes that
fail to satisfy the objectives. These results underscore the need to apply
PO to manage the competing objectives addressed in this study.

3.5. Analysis of experimental outcome

Analysis of the experimental data confirms the optimization. Fig. 15a
illustrates the impact of residence time on the ash content at specific
temperatures, revealing a dependency of RNEAC’s ash content on acti-
vation time and carbonization temperature. At 400 °C, ash content
consistently decreases with increasing residence time. However, at 200
°C and 600 °C, ash content initially declines up to a residence time of 2
min before increasing, with the highest ash content observed at 200 °C.
This dynamic suggests that at temperatures above the optimum, useful
AC transforms into ash, while below the optimum, the small yield of AC
converts to ash as residence time increases. The decline in ash content at
400 °C with increasing residence time aligns with the optimization
outcomes derived from Pareto-NDSGA II-Min-Max Normalization (cf.
Appendix 2). These findings are further supported by Analysis of Vari-
ance (ANOVA) described in Appendices 4-6, confirming the statistical
significance of temperature and its interaction with residence time in
influencing ash content. This underscores the critical role of residence
time and carbonization temperature in adjusting ash content, thereby
validating the optimization results and reinforcing their robustness
across various analytical methods. Fig. 15b illustrates the impact of
residence time on ash content across different concentrations of HsPOa.
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The response variation concerning residence time appears minimal,
indicating that ash content remains relatively constant regardless of the
concentration. Similarly, Fig. 15c shows that the interaction between
residence time and HsPOa concentration exhibits no significant varia-
tion, confirming the statistical insignificance of concentration or its
interaction with residence time on RNEAC’s ash content.

Fig. 16a illustrates the impact of the impregnation ratio on carbon
yield for HsPOa across various temperatures, showing a consistent trend
with minor fluctuations. The highest carbon yield was achieved at 200
°C with a 2 g/mL impregnation ratio, while the lowest yield occurred at

14

600 °C with a 3 g/mL ratio. Lower temperatures and moderate
impregnation ratios were generally more favourable for higher carbon
yield, likely due to the activating agent’s efficient removal of inorganic
content to enhance the carbon yield of RNEAC. Fig. 16b shows the effect
of impregnation ratio and activating agent concentration on carbon
yield. The highest yield was recorded at 75 % concentration with a 2 g/
ml ratio, while the lowest occurred at 50 % concentration with a 4 g/ml
ratio, indicating that both parameters significantly influence carbon
yield. Fig. 16¢ explores the impact of the impregnation ratio on carbon
yield across different residence times in the furnace. While residence
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ML Optimal condition for the preparation of RNEAC.

Group Optimal Condition

Parameters CaCl, value H3PO, value
Impregnation Ratio (-) 2 4
Temperature ( °C) 600 400
Residence Time (mins) 120 90
Concentration ( %) 75 25
Ash Content ( %) 1 0.22
Carbon Yield ( %) 49.9 72
Surface Area (m?%/g) 508.51 1818.2
Optimization Score 2.2 2.33

Table 10

Error analysis result for the experimental data.
Error Indices Scores Error Indices Scores
MAE - Ash Content 1.630 MSE - Ash Content 3.969
MAE - Surface Area 1361.75 MSE - Surface Area 2.29240
MAE - Carbon Yield 66.36 MSE - Carbon Yield 4439.93
Cross-Validation MSE 0.0381

+ 0.00814

STD of Optimization Score 0.22
Variance of Optimization Score 0.047
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time influenced carbon yield, its effect diminished at prolonged dura-
tions, such as 120 min, likely due to the collapse of the delicate carbon
matrix. The highest yield was achieved with a 2 g/ml ratio at a residence
time of 90 min, which aligns with the experimental optimal conditions.
Fig. 16d illustrates the effect of the impregnation ratio on surface area
across various residence times. The surface area shows a minimal in-
crease with higher impregnation ratios at 30, 60, and 120-minute resi-
dence times. However, at a 90-minute residence time, an impregnation
ratio of 4 g/ml significantly enhances the surface area, demonstrating a
positive correlation between impregnation ratio and surface area at this
specific duration. This finding aligns with Kwaghger et al. [8], who
observed similar trends in mango kernel-activated carbon activated with
HCI, where activating agent concentration, impregnation ratios, and
residence times collectively influenced the specific surface area of AC
materials.

In summary, the influence of HsPO. as an activator on the ash con-
tent, surface area, and carbon yield of RNEAC was statistically analyzed.
The ANOVA results for ash content indicate that temperature is highly
significant, with a p-value of 0. The interaction between temperature
and time was also statistically significant, demonstrating a combined
effect on ash content. These findings highlight the critical role of tem-
perature and its interaction with time in optimizing the production of
RNEAC with HsPOs. Such insights are crucial for improving the quality
of RNEAC and tailoring its properties for engineering applications, such
as in SARs. The study also examined the impact of HsPO on the surface
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Fig. 17. Adsorption/Desorption Patterns of Desorbed Refrigerant for RNEAC and CAC.

area of RNEAC. Significant factors influencing surface area included
impregnation ratio, temperature, and their interactions with time,
showing p-values below 0.05. These results highlight the importance of
these variables in optimizing the pore structure of RNEAC, providing
valuable guidance for enhancing its adsorption capabilities through
precise control of activation conditions. Furthermore, the effect of HsPO4
on the carbon yield of RNEAC was evaluated, revealing statistically
significant influences from impregnation ratio, activation time, con-
centration, and their interactions (cf. Appendix 3). The interactions of
ratio with time and temperature with time were particularly note-
worthy. These findings underscore the combined effects of these pa-
rameters in maximizing carbon yield and optimizing the activation
process.

3.6. Validation of RNEAC effectiveness

To test the effectiveness of the optimized RNEAC, Sorption kinetics
and capacity retention studies were conducted using a purpose-built
solid adsorption refrigeration test rig [25]. The changes in adsorption
and desorption rates with cycles were tested and benchmarked against
the well-known commercial activated carbon (CAC). Technically, the
adsorption/desorption characteristics of the adsorbent-adsorbate inter-
action in a SAR system depend on the type of activated carbon used. As
such, 500 g of RNEAC and CAC each was evaluated with varying masses
of methanol (as refrigerant) in the range of 0.4, 0.6, 0.8 and 1.0 g for 120
min at a 15-minute time step. Fig. 17 shows the refrigerant’s desorption
patterns over time for RNEAC and GAC adsorbents. The result is
consistent with theoretical expectations, as an increase in the adsor-
bent’s initial resident time proportionately correlates with the refrig-
erant desorbed. The curve exhibits a plateau between 105 and 120 min,
signifying a transition towards saturation. Additionally, the RNEAC’s
desorption and adsorption capacity compared favourably with the CAC
and even slightly outperformed the CAC. This is interesting and reveals
the apparent potential of RNEAC, considering the refinement it can still
undergo over time compared to the commercially available AC that’s
already matured.
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4. Conclusion and recommendations

This study demonstrates the successful transformation of Raphia nut
endocarp (RNE) into high-performance activated carbon (RNEAC) using
calcium chloride (CaClz) and phosphoric acid (HsPO.) as activating
agents. The production process was comprehensively optimized by
integrating genetic algorithms, Pareto optimality, min-max normaliza-
tion, and machine learning to achieve desirable adsorbent characteris-
tics, including low ash content, high surface area, and superior carbon
yield. Quantitative pore structure assessment using Scanning Electron
Microscopy (SEM) coupled with ImageJ analysis confirmed the presence
of a well-developed porous network, validating the effectiveness of the
activation strategy. The experimental validation revealed that the
optimized RNEAC matched and slightly outperformed commercial
activated carbon in terms of adsorption capacity within the solid
adsorption refrigeration (SAR) test rig. This is particularly significant as
it demonstrates that agro-waste can be converted into high-performance
adsorbents suitable for environmentally friendly, off-grid cooling solu-
tions. These findings further highlight the potential of agricultural waste
valorization in addressing cooling and environmental challenges,
particularly in resource-constrained communities. Collectively, this dual
benefit will advance the development of scalable, environmentally
sustainable cooling technologies for rural and off-grid areas.

Future work should focus on refining the pore size distribution and
enhancing surface chemistry to improve adsorption kinetics for natural
refrigerants. Exploring alternative low-cost activating agents, opti-
mizing physical form factors, and conducting lifecycle assessments will
further support commercial scalability. Combining computational
modelling with experimental validation can also streamline the devel-
opment of next-generation sustainable adsorbents tailored for applica-
tion in SARs. The practical considerations for the real-world deployment
of this technology in off-grid communities are essential for the economic
viability and scalability of the manufacturing process. Additionally,
further study should consider long-term durability testing of RNEAC in a
real SAR system to evaluate its mechanical and thermal stability.
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Appendix 1. RNEAC Production Parameters Optimization with Genetic Algorithm (Pareto Optimal Front)

Ratio Temp. Time Conc. Ash Content ( %) Carbon Yield ( %) Surface Area (m2/g)
1.6989 399.98 116.11 95.587 3.3099 73.753 1440.6
2.2972 400.06 109.72 75.392 1.0447 73.15 1402.3
3.9797 208.41 119.99 96.614 22.942 71.984 2176.6
2.7982 211.78 66.706 34.846 11.602 64.636 1948.9
3.2299 219.56 79.965 54.763 13.981 66.978 2011.9
3.5822 230.67 117.21 89.124 20.256 71.211 2130.7
3.514 370.46 117.9 93.852 9.6582 72.571 1600.1
2.6798 220.73 73.313 41.843 13.094 65.591 1967.5
2.9866 348.59 117.26 93.418 14.647 70.801 1710.9
3.9708 210.03 119.98 85.813 24.505 72.18 2166.3
2.7374 351.61 117.05 90.836 14.127 71.045 1690.8
3.8253 223.48 119.25 93.603 21.259 71.558 2151.9
2.6127 384.18 114.41 79.268 3.9421 73.094 1497.1
2.4261 398.51 114.39 79.638 1.3064 73.446 1419.9
2.5144 383.1 116.86 91.41 5.3617 73.326 1526.2
3.296 381.8 115.75 79.279 4.7858 73 1511.5
2.8704 221.26 112.59 95.576 20.785 71.374 2141.9
1.7948 394.75 116.08 93.093 3.1282 73.706 1464.8
3.2787 234.76 119.58 92.163 19.437 70.985 2129.8
2.6758 376.88 115.94 87.655 6.9111 72.944 1552.6
2.4774 378.37 117.1 85.207 6.2983 72.99 1540.6
2.6936 365.32 114.5 87.853 10.714 72.132 1613
3.5523 334.8 117.44 94.311 15.867 69.716 1780.5
2.4023 392.57 118.58 80.268 2.3123 73.422 1454.8
3.8868 220.51 119.38 93.961 21.737 71.684 2157.2
3.9061 327.55 119.26 95.808 16.133 69.228 1819.3
2.416 400.38 111 75.737 1.0573 73.211 1401.7
2.9788 259.25 119.13 90.497 16.876 69.463 2067.6
3.56 214.28 119.86 95.268 22.577 71.883 2167.6
3.2086 220.2 77.694 43.899 13.549 66.161 1986
3.1891 325.17 118.61 91.095 16.172 69.09 1821.1
3.2114 306.72 116.55 89.452 16.33 68.354 1896.3
2.58 212.66 83.763 63.193 15.171 68.003 2045.1
2.8497 358.2 114.85 91.931 12.82 71.601 1657.4
3.4528 373.6 116.44 88.961 8.16 72.753 1573.7
3.4185 241.28 119.34 91.46 18.467 70.586 2115
2.8176 273.95 118.54 91.352 16.457 68.711 2022.9
3.1445 377.77 116.31 83.465 6.3587 72911 1541
3.5035 359.96 117.34 92.526 12.486 71.75 1652.4
2.9294 364.44 117.25 89.337 11.13 72.092 1622.6
3.0024 398.85 116.64 86.206 1.945 73.649 1431.5
3.8751 212.94 119.3 92.381 23.183 71.99 2166.6

Appendix 2. Result of Pareto Optimization from Multi-objective Genetic Algorithm (MOGA) and Min-Max Normalisation

Ranked Scenarios Scenarios Ratio Temp Time Conc Ash Content ( %) Carbon Yield ( %) Surface Area (m2/g) Composite Score
1 26 2.416 400.38 111 75.737 1.0573 73.211 1401.7 0.000269
2 1 2.2972 400.2 109.72 75.392 1.0447 73.15 1402.3 0.000387
3 13 2.4261 398.51 114.39 79.638 1.3064 73.446 1419.9 0.017321
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(continued)

Ranked Scenarios Scenarios Ratio Temp Time Conc Ash Content ( %) Carbon Yield ( %) Surface Area (m2/g) Composite Score
4 40 3.0024 398.85 116.64 86.206 1.945 73.649 1431.5 0.038416
5 23 2.4023 392.57 118.58 80.268 2.3123 73.422 1454.8 0.061278
6 0 1.6989 399.98 116.11 95.587 3.3099 73.753 1440.6 0.073377
7 17 1.7948 394.75 116.08 93.093 3.1282 73.706 1464.8 0.08512
8 12 2.6127 384.18 114.41 79.268 3.9421 73.094 1497.1 0.123307
9 15 3.296 381.8 115.75 79.279 4.7858 73 1511.5 0.15058
10 14 2.5144 383.1 116.86 91.41 5.3617 73.326 1526.2 0.172339
11 20 2.4774 378.37 117.1 85.207 6.2983 72.99 1540.6 0.201592
12 37 3.1445 377.77 116.31 83.465 6.3587 72.911 1541 0.203138
13 19 2.6758 376.88 115.94 87.655 6.9111 72.944 1552.6 0.222396
14 34 3.4528 373.6 116.44 88.961 8.16 72.753 1573.7 0.262628
15 6 3.514 370.46 117.9 93.852 9.6582 72.571 1600.1 0.311593
16 21 2.6936 365.32 114.5 87.853 10.714 72.132 1613 0.342418
17 39 2.9294 364.44 117.25 89.337 11.13 72.092 1622.6 0.357478
18 38 3.5035 359.96 117.34 92.526 12.486 71.75 1652.4 0.405607
19 33 2.8497 358.2 114.85 91.931 12.82 71.601 1657.4 0.415951
20 10 2.7374 351.61 117.05 90.836 14.127 71.045 1690.8 0.465358
21 8 2.9866 348.59 117.26 93.418 14.647 70.801 1710.9 0.48941
22 22 3.5523 334.8 117.44 94.311 15.867 69.716 1780.5 0.56032
23 3 2.7982 211.78 66.706 34.846 11.602 64.636 1948.9 0.578081
24 25 3.9061 327.55 119.26 95.808 16.133 69.228 1819.3 0.591025
25 30 3.1891 325.17 118.61 91.095 16.172 69.09 1821.1 0.593018
26 7 2.6798 220.73 73.313 41.843 13.094 65.591 1967.5 0.621881
27 29 3.2086 220.2 77.694 43.899 13.549 66.161 1986 0.643516
28 31 3.2114 306.72 116.55 89.452 16.33 68.354 1896.3 0.644907
29 4 3.2299 219.56 79.965 54.763 13.981 66.978 2011.9 0.669434
30 32 2.58 212.66 83.763 63.193 15.171 68.003 2045.1 0.716219
31 36 2.8176 273.95 118.54 91.352 16.457 68.711 2022.9 0.729302
32 27 2.9788 259.25 119.13 90.497 16.876 69.463 2067.6 0.767075
33 35 3.4185 241.28 119.34 91.46 18.467 70.586 2115 0.831567
34 18 3.2787 234.76 119.58 92.163 19.437 70.985 2129.8 0.86179
35 5 3.5822 230.67 117.21 89.124 20.256 71.211 2130.7 0.879826
36 16 2.8704 221.26 112.59 95.576 20.785 71.374 2141.9 0.898327
37 11 3.8253 223.48 119.25 93.603 21.259 71.558 2151.9 0.914882
38 24 3.8868 220.51 119.38 93.961 21.737 71.684 2157.2 0.928489
39 28 3.56 214.28 119.86 95.268 22.577 71.883 2167.6 0.953102
40 41 3.8751 212.94 119.3 92.381 23.183 71.99 2166.6 0.965372
41 2 3.9797 208.41 119.99 96.614 22.942 71.984 2176.6 0.966688
42 9 3.9708 210.03 119.98 85.813 24.505 72.18 2166.3 0.993354

Appendix 3. Response Optimization Solutions

Ranking order T°C Conc ( %) RT (min) IR (g/8) CY (%) SA (m?/g) Fit AS-C (%) Fit Composite Desirability
1 212.121 100 120 4 74.7738 2755 12.4565 0.710484
2 249.955 100 119.699 3.77491 75.3321 2443.33 10.7079 0.694713
3 206.711 58.182 120 3.69579 71.8448 2574.02 18.9947 0.614683
4 282.464 98.895 117.76 2.50949 75.8463 1826.89 14.2238 0.603103
5 278.461 48.873 120 3.75534 70.9711 2166.6 13.3352 0.595655
6 436.331 100 95.315 3.40906 72.7223 1369.98 7.2812 0.532775
7 298.499 26.127 120 1.82128 70.765 1542.14 12.2763 0.518273
8 349.774 95.465 71.731 2.06976 70.383 1455.13 8.4617 0.51693
9 348.37 35.116 64.022 3.11654 67.3442 1558.14 9.3927 0.490333
10 423.798 29.966 112.541 3.90631 67.4382 1345.05 9.253 0.460291
11 336.647 25.178 54.909 1.40683 66.454 1364.7 6.638 0.459735
12 460.386 100 34.667 3.81677 65.8485 1322.73 6.352 0.445535
13 447.129 41.526 68.509 1 67.1074 1156.66 5.5402 0.436331
14 417.462 90.522 93.515 1.12914 69.9505 1084.09 11.8516 0.431583
15 425.582 29.414 33.939 1.4603 65.7893 1230.46 5.9079 0.430992
16 433.58 88.497 33.056 1.48658 65.3682 1211.14 8.5372 0.413248
17 411.368 34.098 33.571 3.29833 64.9351 1298.26 10.9286 0.412787

Note: T °C = Temperature, Conc ( %) = Concentration, RT (min), IR = Impregnation_Ratio, CY ( %) = Carbon_Yield, AS-C ( %) = Ash_Content, SA
(rnz/g) = Surface_Area

Appendix 4. ANOVA for the Effect of H3PO4 on ash content of the RNEAC

The alpha value is 0.05 (95 % confidence level).
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Source Sum Sq. d.f. Mean Sq. F Prob>F
Ratio 216.51 3 72.17 1.04 0.3787
Temp 5941.73 2 2970.86 42.66 0
Time 527.15 3 175.72 2.52 0.0604
Conc 164.94 3 54.98 0.79 0.5017
Ratio*Temp 874.84 6 145.81 2.09 0.0579
Ratio*Time 350 9 38.89 0.56 0.8289
Ratio*Conc 1091.31 9 121.26 1.74 0.0855
Temp*Time 5260.3 6 879.72 12.59 0
Temp*Conc 829.78 6 138.30 1.99 0.0719
Time*Conc 471.37 9 52.37 0.75 0.6606
Error 9401.07 135 69.64
Total 25,128.98 191
Appendix 5. ANOVA for the Effect of H3PO4 on surface area of the RNEAC
Source Sum Sq. d.f. Mean Sq. F Prob>F
Ratio 4345,238 3 1448,412.7 19.61 0
Temp 53,769,095.9 2 26,884,548 363.92 0
Time 41,742.4 3 13,914.1 0.19 0.9042
Conc 428,225.4 3 142,741.8 1.93 0.1273
Ratio*Temp 10,326,021.8 6 1721,003.6 23.3 0
Ratio*Time 2119,652.7 9 235,517 3.19 0.0016
Ratio*Conc 1016,015 9 112,890.6 1.53 0.144
Temp*Time 3524,255.9 6 587,376 7.95 0
Temp*Conc 444,854.3 6 74,142.4 1 0.4257
Time*Conc 370,128.1 9 41,125.3 0.56 0.8303
Error 9973,094.5 135 73,874.8
Total 86,358,323.8 191
Appendix 6. ANOVA for the Effect of the Activating Agents on Carbon Yield of the RNEAC
Source Sum Sq. d.f. Mean Sq. F Prob>F
Ratio 422.72 3 140.907 6.33 0.0005
Temp 135.48 2 67.738 3.04 0.0509
Time 1352.13 3 450.711 20.25 0
Conc 273.05 3 91.018 4.09 0.0081
Ratio*Temp 388.49 6 64.748 291 0.0106
Ratio*Time 215.45 9 23.939 1.08 0.3846
Ratio*Conc 249.19 9 27.688 1.24 0.2734
Temp*Time 632.08 6 105.347 4.73 0.0002
Temp*Conc 274.23 6 45.706 2.05 0.0627
Time*Conc 161.25 9 17.916 0.81 0.6122
Error 3004.06 135 22.252
Total 7108.11 191
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