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Abstract

Stenotrophomonas maltophilia (S. maltophilia), is a low virulence opportunistic pathogen intrinsically resistant to a wide
range of antibiotics with several virulence factors and is increasingly found in hospital and community settings, the organ-
ism is increasingly associated with biofilm infections in diabetic foot ulcers. With limited options, a novel treatment strat-
egy is required, and the use of lytic phages presents a promising alternative. In this study, lytic phage vB_SmaS BCU-1
was isolated from soil and propagated with a clinical S. maltophilia strain, isolated from a diabetic foot ulcer. Morphology
characterisation and genomic analysis revealed it is a siphophage belonging to the family Casjenviridae, genus Sanovirus.
Phage vB_SmaS BCU-1 is a dsDNA virus consisting of 57,752 bp containing 75 open reading frames, with no virulence
or antibiotic resistance genes found. vB_SmaS BCU-1 was stable at a range of temperatures (4-55 °C) & pH values
(4-12), has a short latent period (30 min), a large burst size (150 PFU/cell) and efficient adsorption. The phage demon-
strated lysis of planktonic cells and can significantly reduce biofilm biomass. In a human fibroblast co-culture model, the
phage exhibited no cytotoxicity, protected cells from bacterial-induced damage and significantly reduced the bacterial load.
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Introduction

Stenotrophomonas maltophilia (S. maltophilia) is a Gram-

Impact StatementStenotrophomonas maltophilia has become a
significant threat to global health. This research highlights the
potential of a novel lytic phage with bacteriolytic activity and biofilm
penetration properties. It offers a new avenue into phage therapeutics
and has the potential as a promising alternative therapeutic agent to
address antibiotic resistance and limited antibiotic options.
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Negative bacillus, found in environments associated with
soil, water and plants [1]. The global incidence and preva-
lence of S. maltophilia infection over the past 15 years have
increased and it has been listed as a leading drug-resistant
nosocomial pathogen by the World Health Organization [2].
Regarded as an organism with low virulence, it has emerged
as a highly resistant organism with a mortality rate of up to
37.5% [3], the pathogen is a causative agent for bacterae-
mia, pneumonia, urinary tract infections, meningitis, endo-
carditis [4-8], and in recent years S. maltophilia has been
implicated in diabetic foot ulcers (DFU), diabetic foot infec-
tions (DFI), and osteomyelitis [9—12].

S. maltophilia is equipped with many intrinsic resistance
mechanisms such as chromosomally encoded multidrug
efflux pumps, the majority of these belong to the resistance-
nodulation cell-division family (RND Family), Notably,
major facilitator superfamily efflux pump (EFS) and ATP
binding cassette family (ABC) efflux pumps have also been

@ Springer


https://doi.org/10.1007/s10096-025-05395-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s10096-025-05395-z&domain=pdf&date_stamp=2026-1-28

European Journal of Clinical Microbiology & Infectious Diseases

characterised. These pumps reduce and provide protection
against diffusion of antibiotics. Furthermore, S. maltophilia
exhibits resistance to -lactam antibiotics via chromosomally
encoded inducible B-lactamases L1 and L2. Aminoglycoside
resistance is governed by modifying enzymes (aminogly-
coside acetyltransferases AAC(6”)-1z and AAC(6°)-lak), all
contribute to the organism’s resistome [13—15].

S. maltophilia strains are known to express cell-associ-
ated virulence factors, for example the outer lipopolysac-
charide layer (LPS) plays a vital role in colonization and
biofilm formation, fimbriae structures such as type 1 fim-
briae SMF-1 are known to adhere to epithelial cells and the
type IV pilus has been implicated in correlating biofilm for-
mation onto mammalian cells. Extra cellular virulence fac-
tors such as, proteases, phospholipases, nucleases, lipases,
and haemolysins are known to contribute to cytotoxicity, in
particular the protease StmPrl, StmPr2 and StmPr3 which
have been associated with tissue destruction [16].

Due to the narrow spectrum of antibiotics to treat such
infections, an alternative strategy is required, and phage
therapy may be a promising option. Bacteriophages (phages)
are biological entities that are capable of infecting and kill-
ing bacteria via the lytic replication cycle, they target bac-
teria through surface receptors and demonstrate selective
tropism [17]. By the end of August 2025, The International
Committee on Taxonomy of Viruses (ICTV) had registered
thirty-one phages targeting S. maltophilia [18], moreover,
it has been reported there may be up to 120 S. maltophilia
phages deposited in the National Centre for Biotechnology
Information (NCBI) [19].

In this current study, a new lytic phage, vB_SmaS BCU-1
was isolated using a strain of S. maltophilia (SM-BCU1)
cultured from a diabetic foot ulcer. Physical and genomic
characterisation of the phage was undertaken; antibacterial
activity and efficacy of biofilm destruction was investigated,
furthermore, safety and influence of the phage was assessed
using human dermal fibroblasts.

Materials and methods
Bacterial isolate, phage isolation and purification

A clinical S. maltophilia strain (SM-BCU1) isolated from a DFI
(kindly, donated from Southmead Hospital, Medical Microbiol-
ogy Dept. UK) was used as the host. Genomic characterisation
and antibiotic-biogram can be found in Supplementary tables
S1-S5 and figure S1. Available meta data can be found in the
Sequence Read Archive (SRA) SUB14869520.

Soil samples (50 g) were collected in 100 ml sterile flask,
elution phage buffer (150 mM NaCl, 40 mM Tris-Cl and 10
mM MgSO,) was added in a 1:1 ratio. Sample was manually
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shaken for 10 min through repetitive inversion and left over-
night at 4 °C. The sample was then centrifuged at 10,000
x g for 15 min and supernatant passed through a 0.22 um
membrane filter to remove any unwanted bacterial debris
and kept aside.

Supernatant sample was added to equal volumes of 2x
LB broth supplemented with 100 mM CacCl, and 150 mM
MgSO,. 100 pl of SM-BCU1 was grown to exponential
log phase and added to the supernatant. The mixture was
incubated at 30 °C at 150 rpm for 18-22 h. After which
chloroform at 0.1 volume of the suspension was added and
incubated at room temperature for 30 min. After incubation,
sample was centrifuged at 11,000 x g for 5 min to remove
bacteria and debris. This was repeated twice more before
a double-layer plaque agar assay (DLA) was performed to
isolate phages [20]. A single phage was isolated and trans-
ferred to 1 ml SM buffer, vortexed thoroughly and subjected
to the double-layer plaque agar assay using the original host.
This particular step was repeated 5 times and lysate contain-
ing purified phage was stored at 4 °C. PEG 8000 (20%) and
NaCl (2.5 M) was added to the purified lysate and incubated
at 4 °C for 24 h with continuous stirring. After incubation,
the lysate was centrifuged at 10,000 x g for 20 min to precip-
itate the phages. The supernatant was decanted and resultant
pellet was left to soak in 500 pl of Salt-magnesium (SM)
buffer (5.8 g NaCl, 2 g MgSO,:7H,0 into 900 ml of distilled
water, supplemented with 50 ml 1 M Tris-HCL [pH 7.4] and
5 ml 1% w/v gelatine solution) for 30 min and then resus-
pended into the buffer. The phage solution was stored at 4
°C until further use. Spot test and quantification of phages
were performed through the double-layer agar method [21].

Transmission electron microscopy

Morphology of phage isolated was determined by transmis-
sion electron microscopy [22] and conducted by electron
microscopy suite, Open University (https://emsuite.stem.o
pen.ac.uk/). Briefly, 10 ul of phage lysate at a concentration
of 1 x 10° PFU/ml was added onto a carbon coated copper
grid and negatively stained with 2% uranyl acetate. Images
were processed through a JEOL JEM 1400 transmission
electron microscope at a voltage of 120 kV.

Physical characterization of phage

Multiplicity of infection determination and one-step
growth curve

The multiplicity of infection (MOI) assay was performed as
previously described [23], in brief, host bacteria SM-BCU1


https://emsuite.stem.open.ac.uk/
https://emsuite.stem.open.ac.uk/

European Journal of Clinical Microbiology & Infectious Diseases

was grown to logarithmic phase, adjusted to 10 CFU/mL
and mixed with phage at different MOIs (0.01,0.1, 1, 10,
100). The mixture was incubated for 4 h at 30 °C, followed
by centrifugation at 10,000 rpm for 10 min. Supernatant was
filtered through a 0.22 pum filter and MOI with the high-
est titre was determined through the double-overlay plaque
assay.

The one-step growth curve assay was performed to deter-
mine latency period and burst size, 10 ml of early exponen-
tial phase (ODgy, 0.4) culture of SM-BCUlwas grown in
LB media and centrifuged at 4 °C for 5 min at 5,000 x g.
Pellet was re-suspended in 1 ml LB medium at concentra-
tion of 10° CFU/ml with ImM CaCl,. 100 pl of phage lysate
at a multiplicity of infection (MOI) of 0.01 was added to the
re-suspended pellet. The mixture was left to absorb at room
temperature for 15 min. Phage-bacterial culture was then
centrifuged for 5 min at 6,000 x g to remove unadsorbed
phages. Pellet was re-suspended in 50 ml prewarmed LB
broth supplemented with 1mM CaCl,. Sample was incu-
bated in a shaking incubator, at 37 °C 120 rpm for 60 min.
100 pl was drawn from the sample every five minutes to
determine phage titre and relative burst size through double-
overlay plaque assay. Each assay was repeated three times
[24].

Adsorption assay

An adsorption assay was used to determine the adsorption
of the phage by calculating the number of unadsorbed
phages, as previously described [25], with slight modifi-
cations. SM-BCU1 was grown to exponential growth and
bacterial population was determined through a counter
chamber at a concentration of 10° CFU/ml. Phage lysate
was added to 100 ml of bacterial host to achieve a Mul-
tiplicity of Infection (MOI) of 0.01. The co-culture was
incubated for 10 min at 37 °C and repeat sampling was
performed every 5 min for up to 20 min by adding 100
ul of samples to 900 ul ice cold LB media. Samples were
centrifuged 12,000 x g for 4 min. Supernatant was titrated
through a plaque assay to determine unadsorbed phages
expressed as a percentage. The adsorption rate constant
was calculated as previously described [26].

Influence of pH and temperature on phage stability

Stability and viability of phage was demonstrated
through the effects of pH and temperature [23], by pre-
paring known concentration of phage (10® PFU™ ), sus-
pending it in 2 ml sterile microcentrifuge tubes with SM
buffer at various levels of pH (3—13, respectively), using
1 M hydrochloric acid (HCI) and 1 M sodium hydroxide

(NaOH) to obtain the correct pH. The tubes were incu-
bated at 37 °C for 12 h and phage titres were determined
through the double- overlay assay. The effects of tem-
perature on the phage were evaluated by incubating the
phage at4 °C, 25 °C, 37 °C, 45 °C, 55 °C and 60 °C for 60
min In both instances, Surviving phages under different
pH values and temperatures was expressed as percent-
age of plaques obtained for treated samples compared to
untreated via the double-overlay assay. All assays were
repeated in triplicate.

Host range

The Host range of the phage was performed by spot test
[21], using bacterial strains available, (this included 2 envi-
ronmental strains of S. maltophilia, 3 clinical strains of
multi drug-resistant P. aeruginosa, (4) baumannii and (B)
cepacia complex). In summary, 100 pl of log phase bacteria
was cultured on to LB agar plates via the double-overlay
method. 10 pl of phage at 108 PFU/ml was spotted onto the
plate and incubated at 30 °C for 24 h. The host range experi-
ment was repeated for all bacteria assessed and in triplicate.

Lysis profile assay

Lytic activity of phage and host specificity range was deter-
mined through a liquid microtitre assay [24]. Host bacte-
rium was grown overnight in LB broth, 30 °C. Next, 500 pl
of culture was added to 4.5 ml fresh LB broth and incubated
for 2 h at 30 °C 120 rpm, until cell density was equivocal
to exponential growth phase. 180 pl of culture was added to
a sterile 96-well titre plate and mixed with 20 pl of appro-
priate phage, at MOI 100, 10, 1 0.1 and 0.01, untreated
host culture was used as a positive control. The plate was
then incubated at 37 °C with continuous shaking. Bacterial
growth was measured by reading the absorbance at ODy)
every 30 min for 10 h. Lysis curves were obtained by plot-
ting OD against time.

Biofilm metabolic activity

Biofilm quantification was determined through metabolic
activity. The following methodology was adopted with
modifications using the MBEC assay [27, 28]. Bacterial
strain, SM-BCU1 was grown overnight in LB at 30 °C and
200 rpm, culture was adjusted to ODy, (equivalent to 1 X
108 CFU/mL) and diluted to 1 x 10" CFU/mL. 200 pl was
dispensed into a 96-well biofilm plate. The peg lids were
carefully immersed into the biofilm plate, sealed and incu-
bated without shaking for 24 h at 30 °C. The following day,
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peg lids were carefully removed and washed twice in a wash
microtitre plate with 200 ul 1x PBS. The biofilm plate was
read at an absorbance of 0Dy, to determine growth and ste-
rility (data not shown). Phage was diluted to MOI 0.01, 0.1,
1 and 10 with minimal media and 200 pl of each MOI was
dispensed into a 96-well test microtitre plate. Biofilm peg
lids were immersed into the appropriate wells and plate was
incubated for 24 h. The controls included non-treated bio-
film peg, minimal media alone, media and phage with appro-
priate MOIs. After 4- and 8-hour treatments, peg-lids were
carefully removed and washed twice as before in 1x PBS.
AlamarBlue was used as a resazurin indicator and diluted
to 10% of total well volume used, in minimal medium. In a
separate 96-well plate, 150 pl of the diluted indicator solu-
tion was dispensed into all wells and the challenged biofilm
peg-lid was immersed and sealed with parafilm. The Plate
was incubated for 60 min at 37 °C and absorbance was read
at 570 nm and 600 nm using a spectrophotometer. Percent-
age of growth inhibited was calculated with the manufac-
turer’s formulae, which can be found in supplementary data,
figure S2 [29]. The Assay was repeated in triplicate.

Quantification of bacteria within the biofilm was deter-
mined by scraping the peg lids and dispensing contents into
a sterile 1.5 ml microcentrifuge tube containing 1 ml 1%
PBS. The tube was centrifuged at 10,000 x g for 5 min and
Supernatant was removed. Pellet was washed 3 times in
1% PBS and left to air dry for 10 min. It was re-suspended
in 100 pl 1% PBS, serial diluted and plated on LB agar.
Results were expressed as Log,, density [30]. Formulae can
be found in the supplementary data, figure S3.

Phage toxicity to fibroblasts

Cytotoxicity of phage towards fibroblasts was based on ISO
10993-12 standard [31], with modifications. Human Dermal
Fibroblasts were grown overnight in a 96-well tissue cul-
ture plate at 37 °C with 95% air and 5% CO, in Dulbecco’s
Modified Eagle Medium (DMEM) with 10% foetal bovine
serum. Cell density was 1 x 10* cells/ml and total volume
per well was 150 pl. After incubation, media was decanted,
and phage stock was diluted in Eagle’s Minimum Essential
Medium (EMEM) with 10% FBS, to achieve concentrations
of 10° to 10° PFU/ml. 100 pl of each dilution was added
to the cells, 100 pl Triton-X was used as a positive control
and wells with PBS 1X was considered as a negative con-
trol. The plate was incubated for 2, 4 and 8 h at 37 °C with
95% air and 5% CO,. After incubation, media was decanted
and 100 pl non supplemented EMEM with 10% Alamar-
Blue was dispensed into the cells. Plate was incubated as
before for 90 min; Absorbance was read at 560 nm and 605
nm. Cytotoxicity percentage differences between treated
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and control cells were calculated using the manufacturer’s
recommended formulae (AlamarBlue Protocols | Bio-Rad).

Phage activity within fibroblast cell membranes

Concentrations of phage ranging from 10° to 10° PFU/ml
and their disruption of cell membranes within fibroblasts,
was further investigated using a commercial Lactate dehy-
drogenase (LDH) assay. The Fibroblasts were grown and
treated with the stated phage concentrations as mentioned in
the above method. LDH release was measured via the man-
ufacturer’s protocol (CytoTox 96® Promega) with minor
modifications. Sixty minutes before the end of the penulti-
mate incubation period, 10 pl of 10X lysis buffer, acting as
a positive control was added to the appropriate wells. After
incubation, 50 pl of medium from all wells were transferred
into a sterile 96-well microtitre plate and 50 pl of LDH sub-
strate mix was added to each well. The Plate was incubated
for 30 min in the dark at room temperature. Following incu-
bation, 50 ul of stop solution was added and absorbance
read at 490 nm, and results were expressed as percentage of
LDH released [32].

Phage activity against host bacteria within
fibroblasts

To determine phage activity against infected fibroblast
cells, an overnight culture of SM-BCU1 was grown to
exponential phase at 30 °C, 150 rpm. Sample was cen-
trifuged for 90 s at 10,000 x g, 4 °C. Supernatant was
discarded and the pellet was washed twice with PBS, to
remove any possible bacterial metabolites and excess
media, it was then resuspended in DMEM and used imme-
diately to inoculate cell line.

100 pl of bacterial suspension at 1 x 10° CFU/ml was
added and plate was incubated for 2 h. Bacteriophage at
107 PFU/mL was added and plate was incubated for 2- 4-,
and 8-hours. At each stoppage, 50 pul of the medium was
removed, serially diluted in distilled water and 50 pul of each
dilution was inoculated onto a LB agar plate. The plates
were incubated for 24 h at 37 °C, the following day via-
ble bacterial concentration was calculated using the CFU
method [32, 33].

Statistical analysis

All experiments were performed in triplicate. Results were
expressed as replicate means+SD and differences evalu-
ated with One-way ANOVA and Tukey-Kramer test, when
required on Excel XLSTAT P-value<0.05 were considered
statistically significant.
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DNA extraction of bacteriophage
Removal of bacterial DNA and RNA

Residual bacterial DNA and RNA in phage lysate at PFU/
ml of 10° was treated by adding 100 pul of DNase I 10x buf-
fer, 1 ul DNase I (1U/ul) and 1 pl RNase A (10 mg/ml) to
900 pl filter-sterilized lysate. The lysate was then incubated
at 37 °C for 90 min. DNase I and RNase A activity was inhib-
ited by adding 20 ul 0.5 M EDTA. Phage protein capsid was
digested by adding 1.25 pl Proteinase K (20 mg/ml) and
incubated for another 90 min at 56 °C. DNA was extracted
using the NORGEN BIOTEK phage DNA isolation kit and
its protocol. Qubit was used, according to the manufactur-
er’s instructions to quantify the concentration and quality of
DNA and Nano Drop were used to quantify DNA.

Genomic sequencing method

Samples were sequenced by microbesNG (https://microb
esng.com), genomic DNA libraries were prepared via the
Nextera XT Library Prep Kit, following the manufacturer’s
protocol, Library preparation and DNA quantification was
performed on the Hamilton MicrolaB STAR automated
handling system. The libraries were sequenced on Illumina
NovaSeq 6000 using a 2 x 250 bp paired end protocol.

Raw reads of the genome were adapter-trimmed using
Trimmomatic v.0.30, assembled using SPAdes and CDS
were annotated through BV-BRC genome annotation
service and RAST [34, 35]. Sequence was verified via
BLAST (BLAST: Basic Local Alignment Search Tool)
and PHASTEST servers [36]. Functions of CDS were con-
firmed through BLASTp (BLAST: Basic Local Alignment
Search Tool) against non-redundant protein sequences (E
< 10 %). Presence of Antimicrobial resistance genes and
virulence factors were annotated through CARD using the
Resistance Gene Identifier (RGI) and VFDB [37] and were
further analysed using the PARTRIC k-mer based AMR

Fig. 1 (a) Plaque formation by a
vB_SmaS_BCU1 in in a double-
layer plaque assay. (b) Electron
micrographs of bacteriophage.
Magnification x250k fold mag-
nification. Scale bar represents
50 nm

genes detection method [34]. Whole genome phylogenetic
analysis of phage was analysed using the Virus Classifica-
tion and Tree building online tool (VICTOR) [38]. Similar
phage sequences were obtained from the NCBI nucleotide
database and all pairwise comparisons of the sequences
were analysed using phylogenomic inference and precise
intergenomic distances, that were calculated using the
Genome BLAST Distance Phylogeny approach (GBDP)
with the algorithm ‘coverage’ and distance formulae d,
confidence levels were calculated using the recommended
settings of GGDC (https://ggdc.dsmz.de/victor.php) [39].
An evolution tree with branch support was generated with
FASTME 2.1.6.1 and SPR processing [40]. Branch support
was inferred from 100 pseudo-bootstraps each, trees were
visualised with PhyD3 using iTOL (iTOL: Interactive Tree
Of Life (embl.de) and rooted at the midpoint [41]. VIRDIC
(Virus Intergenomic Distance Calculator) was used to deter-
mine the phage intergenomic distance between its closest
relatives via BLASTn and calculating the pairwise average
nucleotide identity [42]. Visualization of the phage was pro-
duced using Proksee [43].

Nucleotide sequence accession numbers

S. maltophilia strain (SM-BCUI1) meta data can be found
in the Sequence Read Archive (SRA) SUB14869520. The
complete genome sequence of the phage was deposited in
GenBank under the name Stenotrophomonas phage vB_
SmaS BCUI and accession number PQ111865.1.

Results
Isolation and morphology
Phage vB SmaS BCU1 was isolated after propagation

with its host. It produced clear plaques with sizes rang-
ing between 1.0 mm and 2.0 mm (Fig. 1a). Transmission

b
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electron microscopy (Fig. 1b) indicated that this virus
belongs to the Caudoviricetes family, and its morphology
corresponds to the former family of Siphoviridae, with a
long non-contractile tail. The phage has a head width of
6045 nm, head length of 6745 nm and its tail length was
213410 nm.

MOI, one-step growth and adsorption kinetics

MO1 0.01 achieved the highest phage titre with a value of
10° PFU/mL.

Phage vB_SmaS BCUI had a latent period of 30 min
and burst size was approximately 150 particles per bacte-
rial cell (Fig. 2a). Regarding kinetics, vB_SmaS BCU1
viral particles adsorbed over 88.9% to S. maltophilia strain
SM-BCU1 within 10 min. Adsorption constant, kK was deter-
mined as 1.9x 103 ml cell ! min~' (Fig. 2b).

2zK 15.ng

Time (Mins)

C
120
100
: 80
#
60
@
e I I
3 4 5 6 7 g 9 10 11 12 13
pH

Fig. 2 Biological properties of phage vB Smas BCUI. (a) One-
step growth curve demonstrating triphasic growth pattern. (b) Phage
adsorption with host. Time of exposure is represented by the X axis
and Y axis is the percentage of free pages in solutions at specific time
points. (¢) Graph showing effects of various pH conditions on phages.
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Free phage (%)

Effect of pH and temperature on phage stability and host
range

Phage vB_SmaS BCUI1 was stable at pH ranges of 4—12.
Optimum pH with the highest percentage of survived
phages, was pH 7, closely followed by pH 6. Survival of
phage was dramatically reduced by 50% at pH ranges of 4
and 12. Activity of phage was completely inactivated at pH
ranges of 3 and 13. Temperatures 4, 25, 37, 45, 55 and 65 °C
were used to assess the thermal stability of the phage. Sur-
vival rates of phage were over 95% at temperatures ranging
from 4 to 45 °C, rates decreased by 30% at 55 °C and by
90% at 65 °C (Fig. 2¢ & d).

The host range of the phage was assessed on 12 isolates,
vB SmaS BCUI could lyse 2 out of 3 S. maltophilia strains
but no lysis was apparent against the other strains of bacte-
ria tested.
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Expressed as percentage of survived phages (d) Thermal stability of
phages at different temperatures. Expressed as percentage of survived
phages. Data obtained in all cases were from three independent experi-
ments and represented as mean value +/- SD
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Genomic characterization of vB_SmaS_BCU1
genome

Whole genomic sequencing of vB SmaS BCUIl was
undertaking using [llumina MiSeq platform. It is composed
of linear ds DNA, with a length of 57,752 bp and GC Con-
tent 62.1%, No tRNA were detected using ARAGORN
[44]. No virulence factor genes or antimicrobial resistant
genes were found within the genome, analysis by Phage-
Lead [45] revealed no genes related to temperate phages and
RAST and BV-BRC [46] predicted 75 open reading frames
(ORFs), 31 were annotated with known functions, whereas
44 were hypothetical proteins (Table S5) (Fig. 3 ).
Annotated proteins with known and similar functions
were categorised into groups ORF 11 (DNA primase),
ORF 14 (exonuclease), ORF 16 (DNA polymerase), ORF
17 (endonuclease) and ORF 47 (DNA topoisomerase) all
play a role in DNA/RNA processing and metabolism [47,
48],. ORF 18 and 19 (terminase small and large subunits),
are known to play vital roles in DNA packaging systems,
the large subunit allows the ATP-powered translocation of

DNA, whereas the small subunit can initiate the packaging
of the genome [49]. The following ORFs were categorised
as structural and assembly proteins. ORFs 20-24 and ORFs
27-40 are all associated with the structure of the neck and
tail complex, commonly associated with siphophages and
their facilitation of receptor binding [50]. Furthermore,
ORFs 43—45 (endolysin, R,-like spanin and O-spanin) were
classified as lysis proteins [51]. ORFs 53 and 56, (putative
MazG-like pyrophosphatase and cysteine dioxygenase) had
unknown functions.

Phylogenetic analysis

BLASTn was used for comparative genomic analysis. eight
of the closest phages were selected, with Stenotrophomonas
phage Suzuki (MZ326855.1) demonstrating the highest
similarity at 95.66% with a query coverage of 84%, phage
Seregon (ON189048.1) had the lowest similarity at 78.62%
with a query coverage of 67%. A phylogenetic tree using
whole genomic sequences from the phages selected, was
generated using VICTOR and visualised on iTOL (Fig. 4a).

Mcos

Il GC Content
M GC Skew+
Il GC Skew-

Stenotrophomonas phage

vB_SmaS_BCU1,
PQ111865.1

Fig. 3 Circular presentation of phage vB_Smas BCU1. Genomic annotation visualised through Proksee. Hypothetical proteins not shown
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Xylella phage Bacata (NC 052973) HEEE =
T
(%]
Xylella phage Salvo (NC 042345) EEEE .
—Stenotrophomonas phage vB SmaS Bhz60 (OR797045) mm I
"
L— Stenotrophomonas phage Suzuki (MZ326855) EEEE — =
>
Stenotrophomonas phage vB SmaS BCU1 (PQ111865) EEn — 8
]
Xylella phage Sano (NC 042344) EEEN .
0.06 F887 £528
— 2333 Eng
g 285
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Fig. 4 (A) Phylogenetic relatedness of 10 closely related strains to
phage vB_SmaS BCUI. Based on whole genomic sequencing between
hallmark and core genes via thresholds optimised to the ICTV classifi-

A heatmap based upon intergenomic similarities between
vB SmaS BCUTI and its closest homologs in BLASTn was
also generated using VIRIDIC. Results from the phyloge-
netic tree generated by VICTOR and heat map by VIRDIC
(Fig. 5a), revealed phage vb SmaS BCUl belonged
to the family Casjenviridae, genus Sanovirus. It shared
greater > 50% high level of nucleotide sequence similar-
ity, with phages vB_SmaS Bhz60 (OR797045.1), Suzuki
(MZ326855.1) and Sano (NC_042344.1) and shared a linage
with the genus Salvovirus. DiGAlign function from VipTree
was used to visualise % identity of protein sequence with its
closest homologs by comparing viral genome sequence sim-
ilarities between phage Sano and BCU-1 using tBLASTx
[52]. Phage vB_SmaS BCUI had greater than 5% nucleo-
tide similarity to the phages stated, through BLASTn, sug-
gesting phage BCUI could be a separate genus within the
subfamily [53]. This was further explored by assessing the
evolutionary relationship between the closely related phages
through a phylogenetic tree based upon the terminase large
subunit (Fig. 4b). vB_SmaS BCUI1 is placed on a separate
evolutionary branch but shares the same clade with phages
vB_SmaS Bhz60 and Suzuki.

@ Springer

URAO07206 1 terminase large subunit Xanthomonas phage Seregon
YP 009639195 1 terminase large subunit Xylella phage Salvo
YP 009997466 1 terminase large subunit Xylella phage Bacata

-WNO28873 1 terminase large subunit Clavibacter phage 33

YP 009639123 1 terminase large subunit Xylella phage Sano

XFC52462 1 terminase large subunit Stenotrophomonas phage vB SmaS BCU1
QZI85644 1 terminase large subunit Stenotrophomonas phage Suzuki

WVWTT7547 1 putative terminase large subunit Stenotrophomonas phage vB SmaS Bhz60

cation using VICTOR (B) Viral conserved protein based phylogenetic
tree illustrating evolutionary relatedness of the terminase large subunit
of vB_SmaS_BCUI and closely related phages

Biofilm assay

Anti-Biofilm activity of the phage was determined via
MBEC (Minimum Biofilm Eradication Concentration)
assay system. Destruction of biofilm was determined via a
resazurin assay measuring the metabolic activity of the cells
after 4- and 8-hours post treatment. There was no statisti-
cal difference between the MOI’s evaluated and destruction
of biofilm (Fig. 6b & c), however, MOI 10 demonstrated
the highest biofilm destruction at 38.1% after 4-hours and
37.2% after 8-hours post treatment when compared to the
control (untreated biofilm). MO1 0.1 and 1 had similar
effects on the destruction of the biofilm after 4- and 8-hours
post treatment hours (36.2%; 35.2% and 36.4%; 35.2%,
respectively). MOI 0.01 illustrated the lowest percentage of
biofilm destruction (35.8% and 35%).

The number of bacteria lysed by the phage within the
MBEC assay were quantified via a CFU assay. All MOI’s
demonstrated a statistical significance (*P<0.001) when
compared to the control (untreated biofilm), however MOI
10 had the largest reduction in bacterial density by 36.1%
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(2.6 log difference) and 36.4% (2.5 log difference) after
4-hours and 8-hours post treatment. The two lowest MOI’s,
0.1 and 0.01 had comparable results with an average of 32%
reduction in bacterial load (2.1 log difference) after 4-hours,
and 31% (2.1 log difference) after 8-hours post treatment,
respectively.

Phage toxicity to fibroblasts

Various concentrations of the phage (10> to 10° PFU/mL)
were used to determine the cytotoxicity effect on fibro-
blasts after 2-, 4- and 8-hours through an AlamarBlue assay.
Results indicted, even at high concentrations, there was no
detrimental effect on the fibroblasts. There was no statis-
tical significance between the concentrations or the nega-
tive control. The LDH assay was used to determine any
disruption within the cell membranes caused by the differ-
ent phage concentrations, which could lead to cell death.
Results (Fig. 7a and b) showed phage concentrations across
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Fig. 7 (a) Cell viability of fibroblasts treated with phage at differ-
ent concentrations during 2-, 4- and 8-hour incubation, compared
to triton-x treated positive control using AlamarBlue as cytotoxicity
indicator, Results expressed as percentage reduction of resazurin.
(b) LDH release assay from fibroblasts treated with phage at differ-
ent concentrations during 2-, 4- and 8-hour incubation compared to
LDH release positive control. (¢) LDH release assay from fibroblasts
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all incubation times on the cell membranes produced similar
amounts of LDH to the negative control and there was no
statistical significance between them.

Fibroblast membrane integrity was also assessed through
the LDH assay when host bacteria was inoculated onto the
fibroblasts and challenged with the phage. Results indicated,
after 2-hours, minimal amounts of LDH were released
between the negative control, untreated cells (bacteria only)
and treated cells (phage treated), however after 4-hours
and 8-hours, phage vB_SmaS BCU1 reduced the toxicity
of bacterial infection towards fibroblast cells compared to
the untreated cells by 68.9% after 4-hours and 65.2% after
8-hours, respectively. When compared to the positive LDH
control, there was 85.4% and 73.7% difference after 4-hours
and 8-hours, respectively. However, state of cell line did
start to deteriorate over time, between 2- and 8-hours result-
ing in a 30% increase in LDH (Fig. 7¢).

Phage activity against S. maltophilia strain SM-BCU1 on
the surface of the cell line was determined by calculating the
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CFU/mL within all time frames tested, the phage was able
to reduce the bacterial population compared to the control
(untreated cells), after 2-hours there was a 12% (0.8) log
reduction, 4 h a 23.1% (1.6 log) reduction and after 8 h a
31.4% (2.2 log) reduction, respectively (Fig. 7d).

Discussion

S. maltophilia is an opportunistic pathogen with numerous
intrinsic and extrinsic acquired resistant mechanisms, it is
increasingly involved in tissue associated infections [54]
The resistome of S. maltophilia and the emergence of high-
level trimethoprim/sulfamethoxazole resistance among the
genus Stenotrophomonas make it difficult treat [55]. There-
fore, an alternative strategy to treat and control such infec-
tions is required.

In this study, a novel lytic phage was isolated and char-
acterised using a clinical S. maltophilia strain SM-BCU1
responsible for a diabetic foot ulcer as the host organism.
Through the double-layer agar assay, the phage produced
transparent plaques, sizes ranging between 1.0 mm and 2.0
mm in size. Different in size could be attributed to T-even
lysis inhibition phenomenon, where larger phage virions
can cause smaller plaque sizes [56]. TEM morphology of
phage particles suggested it was a siphophage, classifica-
tion and genus were confirmed through genomic analysis,
placing the phage in the family Casjensviridae, genus
Sanovirus.

A key indicator of phage lysis proficiency is through
the MOI, lower the MOI result in fewer phage particles
required to lyse the same number of bacteria [57]. Phage
vB_SmaS BCUI1 had an optimal MOI of 0.01, similar to
other S. maltophilia phages, vB_SmaS QH3 PP932004.1
[58] and phage BUCT603 [59] suggesting, the highest num-
ber of progenies are produced at this MOL.

Adsorption is crucial in phage infection and within the
context of phage therapy, understanding the process is
essential [60]. In this study, adsorption rate & (ml cells™ !
min~ ') forvB_SmaS_BCUI was 1.9 x 10" ®ml cell 'min ™!,
approximately 89% of the phage had adsorbed into the host
within 10 min, demonstrating a fast adsorption. Other Ste-
notrophomonas phages, BCUT 609 [59], BCUT 555 [61]
and Ps15 [62] demonstrated > 90% adsorption within 10
min or less, whereas phage CUB19 took over 20 min to
adsorb 90% into the host bacterium with an adsorption rate
of 1.59 x 10”2 ml cell” ! min™ ! [63]. Differences in adsorp-
tion can be attributed to phage type, phage receptor speci-
ficity, accessibility, tail structure and binding efficacy [64].
Notably, a high adsorption rate is desirable, which leads to
rapid infection and bacterial eradication.

Another crucial element within phage therapy is its
biocontrol application, phage latent period and burst size
are essential parameters within this paradigm. Phage vB
SmaS BCUI had a latent period of 30 min and burst size
of 150 PFU/cell, higher than Sanovirus phage Sano (100
+ 10.1 PFU per cell) [65], less than phage BUCT 555 (30
min latent period and a burst size of 204 PFU per cell) and
similar to Stenotrophomonas phage CUB19 (155 PFU per
cell). Stability of phage BCU-1 in environmental conditions
demonstrated its integrity was maintained in a range of tem-
peratures and pH values, suggesting its stability is ideal for
antimicrobial drug formulation and production [66]. Host
range of phage vB_SmaS BCUI can be regarded as nar-
row, due to the limited strains of S. maltophilia evaluated
and seems to be specific to Stenotrophomonas as none of the
closely related strains were lysed by the phage. More strains
will be needed to fully evaluate its host range.

Bacteriolytic activity of a phage is a crucial step in
evaluating lysis activity, in this regard in vitro assays were
undertaken. BCU-1 was able to lyse the clinical strain at
the MOI’s tested over a 10-hour period, with significant
decrease in the bacterial population less than 100 min post
infection for MOI’s 0.01-10.Whereas inhibitory activity of
MOI 100, started to decrease at around 5 h, (Fig. 6a), this
could be due to greater selective pressure and the emergence
a phage resistant population [67]. MOI is a critical param-
eter when characterising a phage for possible phage therapy,
a reason for the similar outcomes between MOIs 0.01-10
within this assay could be due to phage-adsorption kinet-
ics, burst size & replication cycles (including lysis timing),
cell saturation and phage competition which all can be com-
pounded by experimental conditions [68], yet the findings
do indicate vB_SmaS BCUI can effectively lyse bacteria
at low MOIs with results comparable to higher MOIs within
the 10 h time frame.

Chronic wounds and biofilm related infections especially
in diabetic foot ulcers can be difficult to treat due to the multi-
factorial pathophysiological elements attributed to them and
are detrimental to health [69]. Biofilms are known to con-
tain extracellular polysaccharides (EPS), a cellular matrix
enriched with eDNA (extracellular DNA) and amyloids that
limit the effect of antibiotics and contribute to the resistance
of the biofilm [70], notably, it has been reported up to 98% of
S. maltophilia clinical isolates are known to form biofilms on
host tissues and abiotic substances [71]. In this context anti-
biofilm activity of vB_SmaS BCU1 was evaluated against
preformed SM-BCU1 24-hour biofilm using different MOIs
in a MBEC assay. MOI 10 exhibited the greatest biofilm
disruption (Fig. 6b). Moreover, all MOIs demonstrated a
statistically significant reduction (P< ***(.001) of the bio-
film compared to the control with no significant difference
between the MOIs (Fig. 6¢). The similarity in results may
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be attributed to biofilm defences, such as adsorption traps,
diffusion inhibition, (phage cannot reach the denser cells
due to the extracellular matrix) and when it does, phage pro-
liferation is inhibited due to metabolically less active cells,
moreover, phage resistant bacteria are known to shield phage
sensitive bacteria in a process known as the wall effect, reduc-
ing phage predation [72]. Notably, environmental mutations
within spatial architecture of the biofilm can produce phage
resistant cells and alter phage receptors [72—74]. Regard-
less, across all MOI’s, phage treatment reduced the biofilm
by approximately 36% (2.2 log reduction) after 4-hour post
treatment and 35% (2.5 log reduction) after 8-hours post
treatment, suggesting the destruction of the biofilm is phage
mediated. Further investigations are required to assess phage
activity against more mature biofilms, the synergistic effects
of phage-antibiotic combinations and spatial analysis of the
biofilms at different time intervals.

Phage vB_SmaS BCUI1 has a standard lysis mechanism,
organised as lysis cassettes, however a protein coding for
holin was not found, yet lysis and destruction of the bacte-
rial membrane was evident within the lysis and antibiofilm
assays (Fig. 6b & c) suggesting host cell lysis is occurring
with the endolysin (associated with non-annotated holin and
anti-holin protein factors) causing inner membrane-peptido-
glycan disruption while the spanins cause outer membrane
disruption [75]. Moreover, high sequence similarity of the
endolysin gene was found in Xanthomonas phage AhaSv
(OR820514) with 82.9% homology, query cover 94% and
Xylella phage Salvo (NC_042345) with an 82.18% homol-
ogy and 94% query cover. Similarly, the spanin genes were
also found to be of high similarity in these Saloviruses,
there is an overlap with phages belonging to Sanovirus
genus but at lower homology, for example phage Suzuki
(MZ326855.1) with 36.4% homology and 97% query cover.

Genomic annotation of phage vB SmaS BCUI indi-
cated it possesses all the basic DNA replication and pack-
aging units, genes encoding structural and lysis proteins,
including additional functional proteins such as cysteine
dioxygenase, which has been speculated to be involved
in evasion of host receptors and play a role in DNA pack-
aging [76], whereas, MazG-like pyrophosphatase could
be involved as an antagonist against the Bacterial Cyclic
oligonucleotide-Based Anti-phage Signalling System
(CBASS) resulting in invasion and phage propagation
within the host [77, 78]. No antimicrobial resistant genes,
toxin-related genes were discovered, moreover, PHATEST
[36] detected no prophage related genes or virulence genes
within the genome. BLASTn and VICTOR analysis of
vB_SmaS BCUI, revealed high sequence similarity with
closely related phages Suzuki, Bhz60, and Sano (Fig. 4a).
Furthermore, the same phages were clustered together in
an evolutionary tree using the terminase large subunit (Fig.
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4b). Highest genomic similarity through VIRDIC (Fig. 5a),
placed phage Suzki (MZ2326855.1) as the closest rela-
tive to phage BCU-1 with a score of 89.3. Genomic align-
ment through DiGAlign showed protein coding genes of
vB SmaS BCUI and Suzuki shared an identity, averaging
60—-100% (Fig. 5b). Contextualizing the genomic phyloge-
netic information obtained, a case can be made for phage
BCU-1 to be considered a novel distant subspecies of the
genus Sanovirus Under ICTV recommendations [79, 80].

One of the simplest and safest ways to treat skin or tis-
sue infections is with topical medication, phages are differ-
ent to antibiotics, they can self-replicate and maintain high
concentrations within the body [81], but also interact with
eukaryotic cells, therefore it was important to assess the
cytotoxicity of vB SmaS BCUI. This study found even
at high phage lysate concentrations; there was no negative
impact on the cell line (Fig. 7a & b) and lysis of bacteria by
the phage did not completely deteriorate the cell line through
inflammation and apoptosis after 8-hours (Fig. 7c¢ & d).
These results share similarities with other studies [32, 33],
however notable differences suggest, different cell types can
influence phage uptake, and the type of phage and or size
can affect interaction with mammalian cells [82]. Additional
factors including pharmacokinetics, pharmacodynam-
ics, and phage inactivation warrant further investigation,
and further studies are required to examine phage activity
against other S. maltophilia wound strains and cell lines, as
well as elucidating these processes within a wound model.
Nevertheless, results suggest phage vB_SmaS BCUTI is not
toxic to human fibroblasts, can effectively inhibit the infec-
tious effects of the host strain and to our knowledge the first
direct evidence of S. maltophilia specific phage activity on
human dermal fibroblasts.

Conclusion

In this study, a new member of the Casjenviridae was iso-
lated and characterised through biological and genomic
analysis. Stenotrophomonas phage vB_SmaS BCU-1 is a
dsDNA virus, with no integrase, antibiotic resistant or toxic
genes. The phage demonstrated a lytic nature and antibiofilm
activity with efficient kinetics, and deemed safe, when used
in a human cell model. A primary limitation of this study is
the narrow host range; future studies will focus on expand-
ing host range and its synergist potential with antibiotics.
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