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A B S T R A C T

Accurate and real-time identification of power quality disturbances (PQDs) remains a pressing challenge in
modern power systems, especially with the increased penetration of renewable energy sources and the resulting
complexity of electrical networks. This study proposed a novel hybrid framework for PQD recognition, inte-
grating Gramian Angular Difference Field (GADF) image encoding, the Swin Transformer for hierarchical local
feature extraction, and a Temporal-Frequency-Symmetry Enhanced Global Attention Mechanism (TFSGAM) for
capturing global and domain-specific features. The one-dimensional PQD signals are first converted into two-
dimensional images using GADF, effectively preserving temporal dependencies. The Swin Transformer exploits
local contextual information, while TFSGAM further enhances feature representation by incorporating temporal
position encoding, frequency-domain awareness, and symmetry-based spatial attention. Experimental results on
synthetic and real-world datasets demonstrated that the proposed framework achieved classification accuracy
exceeding 98 % under most noise conditions, while maintaining strong robustness across 25 PQD types and
ensuring real-time applicability with an average inference time of 169 ms/sample. Comparative studies with
state-of-the-art methods and extensive ablation analyses confirmed that this approach exhibits strong robustness
in noise scenarios with SNR = 20/30/40 dB.

1. Introduction

With the rapid advancement of renewable energy technologies, wind
and solar power generation have emerged as the primary focus in the
ongoing transformation of modern power systems [1]. The increasing
integration of renewable energy sources into the grid inevitably in-
troduces a higher proportion of nonlinear and fluctuating loads, posing
significant challenges to maintaining power quality [2]. In microgrid
systems, the high penetration of inverter-based resources and frequent
islanding transitions exacerbate power quality challenges. Disturbances
such as harmonics, voltage fluctuations, and transients degrade power
quality indices and trigger instability through complex inverter in-
teractions and control loop coupling. Recent advances in coordinated
predictive secondary control for DC microgrids have highlighted the
need to mitigate such disturbances to maintain voltage regulation and
system stability under high-order dynamic conditions [3]. Moreover,

integrating inverter-based distributed resources and the frequent tran-
sitions between grid-connected and island modes in microgrids amplify
PQDs, leading to instability risks through control loop interactions and
communication vulnerabilities. Beyond conventional control strategies,
emerging paradigms such as blockchain-enabled consensus mechanisms
have been introduced to enhance the resilience of renewable energy
systems. For example, the recently proposed Proof of Task protocol has
demonstrated the ability to achieve secure real-time regulation in
renewable energy power systems, ensuring trustworthy data exchange
and system stability under cyber threats [4]. These findings underline
that accurate PQD recognition is crucial to ensuring reliable operation
and resilience of microgrids with high renewable penetration. Currently,
approaches for PQD recognition can be broadly classified into tradi-
tional signal processing methods and deep learning-based techniques
utilizing neural networks, each with distinct advantages and limitations.

Traditionally, PQD recognition has relied on feature engineering
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techniques grounded in digital signal processing. In such approaches,
characteristic features are manually extracted from raw electrical sig-
nals using methods such as the Short-Time Fourier Transform (STFT),
Wavelet Transform, or Hilbert-Huang Transform and are subsequently
classified using conventional machine learning classifiers like support
vector machines or decision trees [5–7]. However, these traditional
approaches are often heavily dependent on expert signal processing and
feature selection knowledge. The performance of such methods is sen-
sitive to the choice of signal decomposition technique and may result in
redundant or insufficient feature representations. Consequently, they
are increasingly inadequate in the era of artificial intelligence and large
language models, where automated and intelligent feature extraction is
essential for achieving high recognition, accuracy and adaptability
across complex scenarios.

In addition to traditional strategies, recent research has explored a
variety of advanced material designs to enhance both environmental
remediation and energy storage performance. For example, the
controllable preparation of coal gangue-based SAPO-5 molecular sieves
has provided a low-cost solution for removing heavy metal ions from
wastewater, demonstrating the potential of porous frameworks in
pollution control [8]. In energy storage, localized highly concentrated
electrolytes with ionic liquid solvents were shown to form rigid and
Li⁺-conductive interphases, effectively suppressing dendrite growth and
enabling stable cycling of lithium metal batteries across wide tempera-
ture ranges [9]. Similarly, oxygen-vacancy engineering in C-WO₃/BiOBr
heterojunctions has significantly improved visible-light photocatalytic
degradation of benzene by enhancing charge separation and reactive
radical generation [10]. These studies highlighted the pivotal role of
structural control and interfacial engineering in advancing
high-performance functional materials. Inspired by these advances, this
study focused on the intelligent classification of complex power quality
disturbances by combining GADF-based signal encoding with Swin
Transformer and a temporal-frequency-symmetry enhanced global
attention mechanism, thereby extending the concept of optimization
and integration into modern power systems.

Deep learning architecture can autonomously learn salient features
from training data, capturing complex non-linear dependencies without
manual feature engineering. In PQD recognition, the CNN-BiLSTM
model first employed convolutional layers to extract local spa-
tial–temporal features from raw signals, then used a bidirectional LSTM
to model long-term dependencies and global temporal correlations [11].
The CNN-Transformer model similarly used convolutional layers to
capture local spatial–temporal patterns, followed by a Transformer
module with self-attention to model global dependencies and long-range
relationships [12]. Although effective, directly employing raw sampled
signals may introduce redundant information, hinder the discrimination
of subtle disturbance patterns, and exacerbate overfitting risks, partic-
ularly in limited or noisy datasets, compromising model generalizability
and robustness in practical scenarios. When models are applied to PQD
signals directly, part of the extracted features may correspond to noise
components inherent in the raw signals, which provide little value for
classification. Moreover, the hierarchical feature extraction process can
repeatedly capture similar local patterns across multiple layers,
increasing model complexity without yielding additional informative
content. In the case of combined disturbances, overlapping feature
characteristics among constituent signals may further generate dupli-
cated or correlated representations in the feature space. Such redun-
dancy reduces the efficiency of feature utilization. Despite the stable
performance observed under noiseless and high-SNR scenarios, it
amplified the models’ sensitivity to low signal-to-noise conditions, as
evidenced by the notable accuracy degradation at 20 dB.

With advances in computer vision, converting one-dimensional PQD
signals into two-dimensional representations has shown superior clas-
sification accuracy over traditional 1D methods. Techniques such as the
adaptive superlet transform yielded high-resolution time–frequency
images for CNN-based classification [13], while the Gramian Angular

Field encoded nonlinear spatial–temporal features for grouped residual
CNNs with attention, complemented by LSTM-based temporal model-
ling and feature fusion [14]. These approaches captured both spatial and
temporal characteristics of complex disturbances. Still, single-model
solutions may lack robustness, generalization, and multi-scale contex-
tual awareness, underscoring the need for integrated or multi-modal
strategies for reliable real-world PQD recognition.

To address the challenges, the principal contributions of this article
are summarized as follows.

1) Proposed a Temporal-Frequency-Symmetry Enhanced Global Atten-
tion Mechanism specifically tailored for PQD image representations.
The proposed attention module can capture multi-dimensional cor-
relations and domain-specific structural features beyond conven-
tional attention mechanisms by integrating temporal positional
encoding, frequency-aware enhancement, and symmetry-aware
convolution.

2) This study proposed a hybrid framework that transforms one-
dimensional PQD into Gramian Angular Difference Field images,
extracts local and global features using a Swin Transformer and a
TFSGAM, and fuses these features for robust and discriminative PQD
classification.

3) Rigorous experiments on synthetic and real-world datasets demon-
strate that the proposed framework consistently achieves high clas-
sification accuracy, exceeding 98 % across 25 distinct power quality
disturbance categories and a wide range of noise environments.
Moreover, the model exhibits rapid inference speeds, averaging 169
milliseconds per sample, which satisfies real-time operational
requirements.

2. Feature extraction

In this section, we described the key methodologies for signal-to-
image conversion and advanced feature representation that drove the
effectiveness of the proposed model.

2.1. Gramian angular difference field

The Gramian Angular Field (GAF) encodes one-dimensional time
series into two-dimensional images bymapping disturbance signals from
Cartesian to polar coordinates and constructing a Gramian matrix via
trigonometric operations, thereby preserving temporal correlations and
enhancing feature extraction for image-based classification tasks [15].
In this study, the GADF encoding approach was employed, defined
mathematically as follows:

Ggadf =

⎡
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⎢
⎢
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⎢
⎢
⎢
⎣
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(1)

Where, ϕi denotes the angular value corresponding to the ith element

Fig. 1. Shifted windows mechanism in the Swin Transformer.
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in the sequence. Each element sin(ϕi − ϕj) represents the sine of the
angular difference between a normalized time series’ ith and jth samples.
The diagonal entries are always zero since ϕi − ϕi = 0, while the off-
diagonal entries encode the relative phase relationships between
different time points. This construction yielded a skew-symmetric ma-
trix that captured pairwise temporal dependencies in a two-dimensional
form, where positive or negative values reflected the direction of
angular differences. This encoding method preserved the temporal order
of the one-dimensional sequence within a two-dimensional image, with
the main diagonal retaining the original signal and off-diagonal ele-
ments representing inter-time-step relationships. Each matrix value,
computed through convolution-like operations, reflected the intensity of
a specific feature. For time-dependent PQD signals, the GAF thus inte-
grated the time vector and signal into a unified feature representation.

2.2. Swin transformer

The Swin Transformer, an enhanced Vision Transformer (ViT), im-
proves fine-grained spatial understanding in image recognition by
adopting a hierarchical feature representation akin to VGG [16]. Unlike
ViT, which processes fixed-size patches globally, the Swin Transformer
partitions feature maps into 7 × 7 non-overlapping windows for local
self-attention, reducing computational complexity but initially limiting
cross-window interaction, as shown in Fig. 1. To overcome this, a Shifted
Windows mechanism shifts windows by half their size after each
attention step, enabling overlap and information exchange between
previously independent regions, thereby mitigating information loss and
enhancing model accuracy.

However, these newly formed windows are composed of patches not
naturally adjacent to the original feature map. For example, windows 4
and 5 contain discontinuous patches, which makes direct attention
computation invalid. To resolve this, a masking mechanism is intro-
duced [17]. An attention mask is applied to the attention matrix, where
interactions between non-contiguous patches are assigned a negative
value Inf = − 100, which prevents attention from being computed

across unrelated patches, as depicted in Fig. 2.

2.3. Temporal-frequency-symmetry enhanced global attention mechanism

The Global Attention Mechanism (GAM) jointly models channel–-
spatial attention and their cross-dimensional interactions, enhancing
image recognition performance [18]. Its channel attention submodule
applies three-dimensional permutation to preserve spatial–channel de-
pendencies, followed by a two-layer MLP to capture higher-order in-
teractions. In contrast, the spatial attention submodule employs two
convolutional layers for effective spatial feature aggregation. For PQD
analysis, GAM is further refined through structural modifications, as
shown in Fig. 3.

The GADF encodes time series into two-dimensional representations
whose pixel values reflect the sequence’s temporal order. To preserve
this structure, a Temporal Positional Encoding (TPE) layer is introduced
before the GAM [19], embedding explicit time-dependent information
to enhance long-range dependency modelling and sensitivity to
sequence order. Additionally, to address the limitation of conventional
channel attention, which focuses solely on spatial statistics and neglects
informative frequency characteristics, frequency-aware enhancement is
incorporated into the channel attention submodule, as illustrated in
Fig. 4. Specifically, a two-dimensional Discrete Cosine Transform
(2D-DCT) is applied to each channel Ffreqc , allowing the model to extract
and emphasize frequency domain characteristics critical to identifying
PQD patterns. The transformation is defined as follows:

Ffreqc (u, v) =
∑H− 1

x=0

∑W− 1

y=0
F(x, y)cos

[
π(2x+ 1)u

2H

]

cos
[

π(2y+ 1)v
2W

]

, ∀c ∈ [1,C]

(2)

Ffreqconcat = concat
(
Ffreq1 ,…, FfreqC

)
∈ RC×H×W (3)

zfreq =
1

H⋅W
∑H

i=1

∑W

j=1
Ffreqconcat(i, j) (4)

Mc = σ
(
W2⋅δ

(
W1⋅zfreq

))
∈ RC×1×1, W1 ∈ RC

r×C,W2 ∈ RC×C
r (5)

Where F(x, y) denotes the input pixel at position (x, y), u and v
respectively represent the horizontal frequency index and vertical fre-
quency index in the output frequency domain, r is the compression ratio,
δ is the ReLU activation function, σ is the Sigmoid function, W1and W2

are two layers of weights used for dimensionality reduction and
enhancement and H, W represent the height and width of the feature
map, respectively.

Fig. 2. Masking mechanism for discontinuous windows.

Fig. 3. Overview of the proposed Temporal–Frequency–Symmetry Enhanced Global Attention Mechanism.

Fig. 4. Frequency-aware channel attention submodule.
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GADF encodes the angular information of time series data into a two-
dimensional image, exhibiting prominent diagonal symmetry and peri-
odic patterns. These characteristics are distinct from the texture struc-
tures commonly found in natural images. As a result, conventional
spatial attention mechanisms, which are primarily designed for natural
image textures, may not capture the inherent structural properties of
GADF representations. To address this issue, a symmetry aware
enhancement mechanism is incorporated into the spatial attention
submodule. This design facilitates the recognition of repetitive and
mirrored patterns by explicitly modeling the bilateral dependencies
along the horizontal axis, as illustrated in Fig. 5. The corresponding
formulation of the mirror-aware convolution operation is given as
follows:

Fsym =
1
2
(Fch + flip(Fch)) (6)

Ms = σ
(
Conv7×7

(
Fsym

))
∈ RC×H×W (7)

Where flip represents horizontal flipping of the H ×W dimension.

3. Methodology

A novel PQD classification framework was proposed, combining
GADF-based signal-to-image transformation, the Swin Transformer for
local contextual feature extraction, and TFSGAM for global spatial
representation across temporal, frequency, and symmetrical di-
mensions. Features from both branches are fused and processed via
adaptive average pooling, as illustrated in Fig. 6.

3.1. Power quality disturbances and datasets

A synthetic PQD dataset was generated in Python following IEEE Std.
1159 [20], comprising 10 single-disturbance and 15 multi-disturbance
types as listed in Table 1, with 1000 samples each for a total of 25,
000 waveforms. Each sample contains 10 cycles at 50 Hz, sampled at
5120 Hz with 1024 data points over 0.2 s, and the dataset is split into
training 70 %, validation 20 %, and testing 10 %. To improve robust-
ness, noise at 20, 30, and 40 dB SNRs was added during waveform
generation.

3.2. Conversion of GADF for power quality disturbances

To facilitate the image-based classification of PQDs, one-dimensional
time-series signals were transformed into two-dimensional images using
GADF. Before the transformation, each series was normalized to the
range [− 1, 1] and encoded into angular values using the transformation
φi = arccos(xt). Subsequently, the GADF matrix was visualized as a two-
dimensional colour image using the jet colour map, effectively high-
lighting subtle differences in temporal dynamics. The resolution of the
GADF matrix was set to 500, and the resulting image was resized to
224× 224 pixels using the DPI scaling factor provided by the matplotlib
library, which was also done by other researchers [21]. The workflow is
illustrated in Fig. 7.

3.3. Feature extraction of visual models

The Swin Transformer, employed as the visual mechanism to extract

Fig. 5. Symmetry-aware spatial attention submodule.

Fig. 6. Framework of the proposed GADF-Swin T-TFSGAM hybrid model.
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local spatial features from GADF images, partitions each [3224,224]
RGB input into 4 × 4 non-overlapping patches, yielding 56×56 tokens
projected into a 100-dimensional embedding space. Configured with a
single encoder layer and four self-attention heads, it computes local
attention within non-overlapping 7 × 7 windows using a shifted-
window mechanism, enabling efficient hierarchical feature
representation.

For each window, multi-head self-attention is performed indepen-
dently. Given a sequence of embedded tokens X ∈ RN×d, where N = 49
and d = 100, the attention is computed as:

Attention(Q,K,V) = Softmax
(
QKT
̅̅̅̅̅
dk

√ +B
)

V (8)

Where Q = XWQ, K = XWK, V = XWV are query, key, and value
projections, dk is the dimension of each attention head, B = 7

2 is the
relative positional bias specific to each window.

To allow cross-window communication, the shifted window mech-
anism shifts the feature map by an offset of B = 7

2. This enables attention
to span across previously non-overlapping windows while preserving
computational efficiency. After self-attention, each token is passed

through a MLP with a hidden layer dimension of 4d. The MLP operation
is defined as:

MLP(x) = σ(xW1 + b1)W2 + b2 (9)

Where W1 ∈ Rd×4d and W2 ∈ R4d×d are weight matrix, σ is the GELU
activation function, b1 and b2 are the offset constants of the first layer
and the second layer. The resulting spatial features retain a resolution of
56× 56, and the output is formatted as [32,56,56,100], where 32 rep-
resents the batch size.

3.4. Feature extraction of deep learning models

A convolutional neural network (CNN) augmented with the TFSGAM
module was employed to extract complementary global spatial features
from PQD images. The architecture consists of two 3 × 3 convolutional
blocks (padding = 1) with ReLU and 2 × 2 max-pooling, increasing
feature channels from 3 to 50 and 100, yielding a [32,100,56,56] feature
map aligned with the Swin Transformer output for fusion. A Temporal
Positional Encoding layer preceded channel attention to embed time-
dependent positional information. In the channel attention

Table 1
Classification accuracy of 25 PQDs under noise levels of noiseless, 20, 30, and 40 dB.

Types PQDs name Noiseless ( %) 20 dB ( %) 30 dB ( %) 40 dB ( %)

C1 Normal 100.00 97.00 100.00 100.00
C2 Swell 100.00 100.00 100.00 100.00
C3 Sag 99.00 100.00 97.00 100.00
C4 Harmonics 100.00 97.00 100.00 100.00
C5 Flicker 99.00 100.00 99.00 100.00
C6 Interruption 100.00 96.00 100.00 99.00
C7 Transient impulsive 100.00 95.00 100.00 99.00
C8 Transient oscillatory 100.00 100.00 100.00 100.00
C9 Notching 100.00 98.99 100.00 98.98
C10 Spike 96.00 96.00 97.00 99.00
C11 Harmonics + Swell 100.00 94.00 100.00 100.00
C12 Harmonics + Sag 97.00 98.99 97.00 100.00
C13 Harmonics + Interruption 100.00 100.00 100.00 98.99
C14 Harmonics + Flicker 100.00 100.00 100.00 100.00
C15 Harmonics + Transient impulsive 99.00 98.00 99.00 100.00
C16 Harmonics + Transient oscillatory 100.00 96.00 100.00 100.00
C17 Flicker + Swell 97.93 78.00 98.93 99.00
C18 Flicker + Sag 98.00 93.00 98.00 98.00
C19 Flicker + Transient oscillatory 96.00 98.00 96.00 99.00
C20 Flicker + Transient impulsive 99.00 99.00 99.00 100.00
C21 Transient oscillatory + Swell 97.00 97.00 97.00 98.00
C22 Transient oscillatory + Sag 98.00 96.00 98.00 99.00
C23 Harmonics + Transients oscillatory + Swell 99.00 88.00 95.00 98.00
C24 Harmonics + Transients oscillatory + Sag 97.98 95.96 97.98 98.96
C25 Harmonics + Transients oscillatory + Flicker 92.93 94.00 92.93 99.00

Overall average accuracy is 98.13 % 98.57 96.20 98.41 99.33

Fig. 7. Workflow of converting PQD signals into GADF images.

J. Lin et al.



Electric Power Systems Research 252 (2026) 112352

6

submodule, a 2D-DCT was applied per channel, and the resulting fre-
quency coefficients passed through a two-layer MLP (reduction ratio r =
4) to capture higher-order, frequency-sensitive dependencies. In the
spatial attention submodule, the channel-refined features were pro-
cessed by two 7 × 7 convolutions with batch normalisation, ReLU, and
Sigmoid activation to produce an attention mask, enhancing spatially
significant regions.

3.5. Model training process

After the model was constructed, we used an AMD Ryzen 9 5900HS
CPU running at 3.30 GHz, 16 GB of RAM, and a 12 GB NVIDIA GeForce
RTX3060 GPU to train the model. Then, the fusion feature from the two
branches was trained with a batch size set to 32, a learning rate
initialized at 0.001, and the Adam optimizer employed for gradient
updates. The training performance of the proposed model under
different noise conditions, specifically at noiseless, 20 dB, 30 dB, and 40
dB SNRs, is illustrated in Fig. 8.

After 50 training epochs, the proposed framework achieved valida-
tion losses of 0.1067, 0.3345, 0.1350, and 0.0725 with corresponding
accuracies of 0.9743, 0.9046, 0.9623, and 0.9835 under noise levels of
noiseless, 20 dB, 30 dB, and 40 dB, respectively, demonstrating its
robustness across varying noise environments. Performance degradation
at 20 dB was accompanied by amarked divergence between training and
validation losses after the 19th epoch, indicating overfitting, wherein
the model captured training-specific patterns more precisely than it
generalized to unseen data. Despite this, validation accuracy continued
to improve, suggesting preserved classification capability.

Regularization techniques were introduced to enhance generalization
and mitigate overfitting under moderate noise.

4. Results and analysis

This chapter comprehensively evaluates the proposed framework,
including experimental results, comparative analyses, and ablation
studies, to demonstrate its effectiveness, robustness, and superiority
over existing methods.

4.1. Robustness to noise

Table 1 presents the classification accuracies of the proposed
framework across 25 distinct types of PQDs under four noise conditions:
noiseless, 20 dB, 30 dB, and 40 dB. The results demonstrate the model’s
robustness and high discriminative capability across single and com-
posite disturbance categories. At a noise-free condition, the average
classification accuracy reaches 98.13 %, with 11 out of 25 disturbance
types achieving 100 % accuracy. This confirms the model’s strong ca-
pacity to distinguish various PQD patterns in clean signal environments.

Under the 20 dB noise condition, the average classification accuracy
decreased to 96.20 %, which is the lowest performance among all tested
noise levels, as shown in Fig. 9. This decline indicates moderate noise
may interfere more significantly with feature extraction and general-
ization than low and high noise levels. Furthermore, the two composite
PQD types with the lowest classification accuracies under this condition
are C17 and C23, with 78.00 % and 88.00 %, respectively. Notably, both
of these disturbance types involve the swell component. This

Fig. 8. Training and validation curves under noise levels of noiseless, 20, 30, and 40 dB.

J. Lin et al.
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observation suggests that voltage swell, particularly when combined
with other dynamic disturbances, may reduce feature separability under
moderate noise. The relatively smooth and gradual swell might be more
easily masked by background noise at this level, thereby hindering the
model’s ability to effectively capture distinguishing characteristics. This
highlights the need for more refined feature enhancement or denoising
strategies when dealing with compound PQDs involving swell compo-
nents under intermediate noise conditions.

A Temporal Positional Encoding layer preceded channel attention to
embed time-dependent positional information. In the channel attention
submodule, a 2D-DCT was applied per channel, and the resulting fre-
quency coefficients passed through a two-layer MLP (reduction ratio r =
4) to capture higher-order, frequency-sensitive dependencies. In the
spatial attention submodule, the channel-refined features were

processed by two 7 × 7 convolutions with batch normalization, ReLU,
and Sigmoid activation to produce an attention mask, enhanced
spatially significant regions.

The noticeable performance degradation at 20 dB can be attributed
to combined feature masking and generalization difficulty. As shown in
Fig. 8(b), the divergence between training and validation losses after the
19th epoch indicates a tendency toward overfitting under moderate
noise conditions. Moreover, Table 1 reveals that disturbance types
involving voltage swell (C17 and C23) suffered the largest accuracy
decline, dropping to 78 % and 88 %, respectively. This can be explained
by the relatively smooth and gradual characteristics of swell, which are
more easily masked by moderate background noise, especially when
compounded with other disturbances such as flicker or transients. In
contrast, at noiseless the model learns strong anti-noise patterns, while

Fig. 9. Confusion matrix of classification results under 20 dB noise.

Fig. 10. GADF-transformed two-dimensional feature maps under 20 dB noise: (a) C17 (Flicker + Swell) and (b) C18 (Flicker + Sag).

J. Lin et al.
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at 30–40 dB the original disturbance features remain clearly distin-
guishable. The intermediate 20 dB condition thus represents the most
challenging regime.

The performance degradation at 20 dB SNR can be more clearly
understood by examining specific misclassification cases. As shown in
Table 1, disturbance type C17 (Flicker + Swell) achieved the lowest
recognition accuracy, dropping to 78 %. Within the validation set, 12
samples of C17 were incorrectly classified as C18 (Flicker+ Sag). Fig. 10
presents the GADF-transformed two-dimensional feature maps of C17
and C18, respectively. Both images exhibit strong diagonal and sym-
metric patterns, with periodic oscillations distributed across the feature
space. The subtle differences lie mainly in the oscillatory bands’ local-
ized wave intensity and orientation. However, under 20 dB noise, these
differences are significantly blurred, resulting in highly similar spatial
structures.

This observation supports our earlier explanation that moderate
noise levels, unlike extreme or weak noise, produce a particularly
challenging condition in which smooth or gradually varying features are
masked without completely dominating the signal. The confusion

between C17 and C18 demonstrates how overlapping temporal–fre-
quency signatures reduce separability in the learned feature space.

4.2. Comparison with existing methods

Table 2 compared the proposed model with other methods regarding
accuracy, recall, precision, F1-score, and the number of PQD categories.
The proposed model achieves the best overall performance, with 98.13
% accuracy, 99.14 % recall, 98.26 % precision, and a 98.33 % F1-score.
Notably, this performance is achieved on a dataset encompassing 25
distinct types of PQDs, reflecting a broader and more complex classifi-
cation task than other methods.

URPM-CWT+MCFFN achieved 97.65 % accuracy and recall on 28
PQD types but remained slightly inferior to the proposed model.
SWT+AlexNet attained 96.05 % accuracy on 15 types, with lower recall
and precision and no reported F1-score. Improved ResNet with attention
yielded 96.40 % precision and 96.38 % F1-score on 20 types but lacked
accuracy data, limiting comparability. EfficientNet performed worst,
with 84.72 % accuracy and an F1-score of 86.00 on eight types,
underscoring its limited suitability for complex multi-class PQD tasks.

4.3. Ablation experiment

Fig. 11 compares four signal feature extraction methods, namely
GADF, Gramian Angular Summation Field (GASF), Continuous Wavelet
Transform (CWF), and STFT, for classifying ten single PQDs under
noiseless with identical model settings. GADF achieved the best per-
formance with an average accuracy of 99.38 %, reaching 100 % in six
categories and only minor declines in C6 to 98.00 % and C7 to 97.88 %.
GASF ranked second at 98.09 % but dropped to 91.00 % in C10. In
comparison, CWF and STFT recorded lower average accuracies of 94.61
% and 93.57 %, with significant decreases in C9 to 81.62 % and C10 to
80.80 %, indicating limitations in capturing certain temporally localized
features.

As evidenced by the results in Table 3, visual transformation
methods such as GADF and GASF consistently outperform traditional
time–frequency analysis techniques like CWT and STFT in single PQD
classification under noiseless noise. Specifically, GADF achieved an
average accuracy of 99.38 %, whereas CWF and STFT were limited to
94.61 % and 93.57 %, respectively, with pronounced performance
degradation in categories such as C9 and C10. This advantage arose
because visual transformations embedded temporal dependencies and
phase relationships into structured two-dimensional images, producing

Table 2
Comparison with existing methods.

Method PQD
No.s

Performance

Accuracy
(%)

Recall
(%)

Precision
(%)

F1-
score
(%)

Proposed model 25 98.13 99.14 98.26 98.33
URPM-
CWT+MCFFN
[22]

28 97.65 97.65 97.72 98.00

SWT and AlexNet
[23]

15 96.05 97.06 96.31 –

Improved ResNet
and attention [24]

20 – 96.37 96.40 96.38

EfficientNet [25] 8 84.72 84.33 90.00 86.00

Fig. 11. Comparison of signal-to-image transformations (GADF, GASF, CWT,
STFT) for 10 single PQDs under noiseless.

Table 3
Classification accuracy of single PQDs under noiseless using different signal feature extraction methods.

Clean ( %) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

GADF 100.00 100.00 100.00 100.00 100.00 98.00 97.88 99.00 98.99 100.00 99.38
GASF 100.00 100.00 100.00 100.00 100.00 96.00 97.96 99.00 96.97 91.00 98.09
CWF 97.98 97.00 89.59 100.00 97.00 87.00 98.98 100.00 81.62 97.00 94.61
STFT 97.00 93.27 85.73 100.00 96.04 89.53 100.00 98.04 95.31 80.80 93.57

Table 4
Ablation study of different modules under varying noise levels.

Method Accuracy ( %) Parameters
(M)

Latency
(ms/

sample)Noiseless 20 dB 30 dB 40 dB

GADF-
Swin T-
TFSGAM

98.57 96.20 98.41 99.33 0.45 167

GADF-
Swin T

95.54 93.92 95.48 96.35 0.09 158

GADF-
TFSGAM

95.67 92.84 94.38 95.42 0.36 160

GADF-
GAM

91.47 89.63 90.92 92.06 0.35 155
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distinctive diagonal and symmetric patterns that aligned with the
intrinsic characteristics of PQDs. Such structured representations facil-
itated more effective feature extraction by advanced computer vision
models, enabling them to capture multi-scale spatial correlations and
subtle variations even under noisy conditions. In contrast, traditional
decomposition approaches suffered from resolution trade-offs and noise
sensitivity, often leading to redundant or insufficient feature represen-
tations. These findings provided a conceptual explanation for the su-
periority of visual transformations, highlighting their potential as a
robust foundation for intelligent PQD recognition.

For the ablation experiments, the Swin Transformer branch was
configured with a single encoder layer and four self-attention heads,
which was consistent with the base model. The TFSGAM branch was
implemented with a two-layer MLP in the channel attention submodule,
using a reduction ratio r = 4. These fixed configurations ensure that
differences among GADF-Swin T, GADF-TFSGAM, and the combined
model are attributable to the presence or absence of the respective
modules, rather than changes in hyperparameters.

Table 4 presents an ablation study of the Swin Transformer,
TFSGAM, and the baseline GAM under noiseless, 20, 30, and 40 dB. The
complete model achieved the highest accuracies of 98.57, 96.20, 98.41,
and 99.33 %, confirming strong noise robustness. Removing TFSGAM
reduced accuracy, showing that while the Swin Transformer captures
local features, global attention is essential for modelling long-range and
frequency-sensitive dependencies. Using only TFSGAM slightly lowered
accuracy compared to the full model but outperformed the Swin-only
variant in low-noise conditions, highlighting its role in enhancing
global feature representation. The baseline with GADF and the original
GAM performed worst, with accuracies between 91.47 % and 92.06 %,
indicating the limited capacity of the standard attention mechanism
without the proposed enhancements.

To further assess the efficiency–accuracy trade-off, Table 4 reports
the classification accuracy under different noise levels, the number of
trainable parameters, and the average inference latency of each variant.
The results show that the complete GADF-Swin T-TFSGAM model re-
quires 0.45 M parameters and achieves a latency of 167 ms/sample,
which is slightly higher than the lighter variants such as GADF-Swin T
(0.09 M, 158 ms/sample) and GADF-TFSGAM (0.36 M, 160 ms/sample).
However, this modest increase in complexity is accompanied by signif-
icant accuracy gains across all noise levels, particularly under chal-
lenging 20 dB conditions. These findings confirm that the proposed
architecture balances accuracy and efficiency, making it suitable for
real-time PQD recognition tasks.

4.4. Discussion

A paired T-test analysis was conducted to further quantify the trade-
off between accuracy improvements and architectural modifications by
comparing the full GADF-Swin T-TFSGAM model with its ablated
counterparts across four noise levels. Each comparison was based on
four paired observations, giving a degree of freedom of 3. The statistical
results are summarized in Table 5. Compared with GADF-Swin T, the
proposed model achieved an average improvement of 2.8050 %, with a
T value of 15.921, a P value of 5.39×10− 4, a standard error of 0.176, and
a 95 % confidence interval of [2.245, 3.365], clearly demonstrating a
highly significant difference. Against GADF-TFSGAM, the improvement
was 3.5500 % (T = 13.592, P = 8.61×10− 4, standard error = 0.261, 95
% CI = [2.719, 4.381]), again confirming the superiority of the

integrated framework. The largest margin was observed against GADF-
GAM, where the improvement reached 7.1075 % (T = 36.236, P =

4.62×10− 5, standard error = 0.196, 95 % CI = [6.484, 7.731]). The
confidence intervals excluded zero in all cases, providing strong statis-
tical evidence that the observed gains are not incidental.

These results indicate that while Swin Transformer and TFSGAM
contribute independently to improved classification, their integration
yields the most substantial benefits. Notably, the comparison between
GADF-TFSGAM and GADF-GAM shows a 3.5575 % improvement,
highlighting that TFSGAM is the most critical module in enhancing the
recognition of power quality disturbances. This is attributable to
TFSGAM’s explicit modeling of temporal continuity, frequency-domain
sensitivity, and symmetrical characteristics inherent in PQD signals,
which are not fully exploited by conventional attention mechanisms.
The superior performance of the full model thus arises from the com-
plementary strengths of Swin Transformer’s local feature extraction and
TFSGAM’s domain-specific global representation, resulting in robust
and interpretable classification across diverse noise conditions.

The effectiveness of TFSGAM can be explained by aligning its design
with the physical characteristics of PQDs. Let the input feature map be
denoted as F0 ∈ RC×H×W, obtained from the GADF encoding of voltage
waveforms. The GADF representation preserves the original signal’s
phase relations and periodic structures through its skew-symmetric
property, which is essential for distinguishing events such as har-
monics, flicker, and transients. To ensure that disturbance duration and
onset information are retained, a temporal positional encoding is added:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

FT = F0 + Pt

Pt(i,2k) = sin
(

i
τ2k/d

)

Pt(i,2k+ 1) = cos
(

i
τ2k/d

)
(10)

where i is the temporal index, d is the feature dimension, and τ is the
wavelength. This ensures that the model captures temporal continuity,
vital for differentiating PQDs with similar shapes but different onsets or
durations. PQDs are also characterized by distinctive frequency com-
ponents. TFSGAM employs a two-dimensional discrete cosine transform:

C(u, v) = α(u)α(v)
∑H− 1

i=0

∑W− 1

j=0
FT(i, j)cos

(
π(2i+ 1)u

2H

)

cos
(

π(2j+ 1)v
2W

)

(11)

where (0) = 1/
̅̅̅̅
H

√
, α(u> 0) =

̅̅̅̅̅̅̅̅̅
2/H

√
. The DCT coefficients represent

the spectral energy distribution, which is then aggregated into low, mid,
and high frequency bands. The band energies are passed through a
multilayer perception to generate frequency weights wc. Physically,
these weights correspond to emphasizing flicker envelopes and voltage
swells (low frequency), oscillatory transients (mid frequency), and
inverter-induced harmonics (high frequency). GADF-encoded PQD im-
ages inherently exhibit diagonal or mirror-like symmetry due to the
periodicity of electrical waveforms. To exploit this property, a mirror
operator is defined as:

M(FT)(i, j) = FT(H − 1 − i,W − 1 − j) (12)

A composite input is constructed as Z = [FT ,M(FT),FT − M(FT)]. Then
apply 7× 7 convolution and sigmoid function to obtain spatial mask A,
highlighting the regions where symmetry has been disrupted. These

Table 5
Paired T-test results comparing GADF-Swin T-TFSGAM with ablated models.

Methods Average difference T value P value Standard error 95 % confidence interval of difference

GADF-Swin T 2.8050 % 15.921 5.39×10− 4 0.176 [2.245, 3.365]
GADF-TFSGAM 3.5500 % 13.592 8.61×10− 4 0.261 [2.719, 4.381]
GADF- GAM 7.1075 % 36.236 4.62×10− 5 0.196 [6.484, 7.731]
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regions physically correspond to non-ideal behaviors, such as residual
DC offset, phase imbalance, or composite PQD. The overall TFSGAM
output can be expressed as:

Fout(i, j, c) = A(i, j)⋅(wc⋅(F0(i, j, c)+Pt(i))) (13)

Where F0(i, j, c) represents the raw GADF-derived features that cap-
ture phase relations, Pt(i) preserves temporal order and disturbance
duration, wc emphasizes frequency bands associated with PQD spectral
signatures, and A(i, j) highlights symmetry-breaking regions related to
waveform distortion or composite disturbances.

This formulation indicates that TFSGAM is underpinned by empirical
effectiveness and theoretical consistency. The incorporation of temporal
encoding, frequency weighting, and symmetry masking is directly
aligned with the intrinsic physical characteristics of PQDs, thereby
enhancing the model’s robustness and interpretability in disturbance
classification.

5. Experiment validation

This chapter comprehensively validated the proposed framework
through real-world measurement data and simulated scenarios,
demonstrating its effectiveness, generalization capability, and practical
feasibility for intelligent power quality disturbance recognition.

5.1. Real-world data validation

To validate the proposed approach on real-world data, the IEEE
Power and Energy Society (PES) power quality disturbance dataset,
comprising seven disturbance types each represented by 1536 data
points sampled at 256 points per cycle [26], was employed. Following
data cleaning and normalization using the dplyr and caret packages in R,

the model achieved an overall identification accuracy of 96.74%, shown
in Table 6, confirming its reliability and practical applicability for
real-world power quality monitoring.

5.2. Simulation data validation

To further verify the generalization performance of the proposed
GADF-Swin T-TFSGAM under experimental signals, this study used
MATLAB/Simulink to simulate and model power quality disturbances
[27].

Fig. 12 depicts five simulation models specifically developed to
represent distinct power quality disturbances (PQDs). Model 1 is a line
fault simulation encompassing various fault scenarios such as single
line-to-ground, double line-to-ground, line-to-line, three-phase, and
multi-stage faults. Model 2 emulates capacitor bank energization,
capturing the voltage oscillatory transients associated with capacitor
switching events typically employed for power factor correction. Model
3 represents a three-phase nonlinear load scenario in which a six-pulse
three-phase rectifier was used to simulate voltage sags and the intro-
duction of harmonic components. Model 4, the electric arc furnace
model, is designed to reproduce the flicker disturbances commonly
induced by arc furnace operation. Model 5, known as the lightning
impulse model, simulates impulsive transient events from lightning
strikes near transmission lines.

The experimental evaluation was conducted in a controlled envi-
ronment to ensure reproducibility and comparability of the reported
inference latency. As summarized in Table 7, the hardware platform
consisted of a Windows 10 (64-bit) operating system equipped with an

Table 6
Real-world validation on the IEEE PES dataset.

Types Identification accuracy ( %) Average accuracy ( %)

C4 96.00

96.74

C11 94.83
C12 94.36
C13 100.00
C16 92.00
C23 100.00
C24 100.00

Fig. 12. Simulation models for generating PQD scenarios in MATLAB/Simulink.

Table 7
Hardware and software environment used in model training and
inference.

Hard/Soft ware Version or setting value

OS Win10 64bit
CPU AMD Ryzen 9 5900HS
GPU RTX 3060
RAM DDR4 16GB×1
Python 3.9.7
Torch 2.3.0

Batch size 32
Learning rate 0.001
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AMD Ryzen 9 5900HS CPU, an NVIDIA RTX 3060 GPU, and 16 GB of
DDR4 RAM. The software stack included Python 3.9.7 and PyTorch
2.3.0. During inference, a batch size of 32 was adopted to measure the
per-sample latency, while the learning rate during model training was
set to 0.001.

One thousand samples were generated for each simulated PQD type,
with results in Table 8 showing an average classification accuracy of
98.37 %, indicating strong reliability and generalization in simulated
environments. The average inference time per sample was 169 ms, well
below the 200-millisecond real-time threshold [28]. This confirms that
the proposed framework delivers high accuracy and low latency and is
suitable for practical power quality monitoring and disturbance
diagnosis.

5.3. Scalability and real-world applicability

The framework achieved an average per-sample inference latency of
169 ms when evaluated with batch size B = 32. To analyze scalability
under high sensor density, wemodel the batch processing time as T(B) =

T0 + kB, where T0 is the fixed overhead and k is the compute cost per
sample. The average latency per sample within the batch is L(B) =

T(B)
B =

T0
B + k, and the effective samples per second is TPS(B) = B

T(B) =
1

k+T0
B
×

1000. Calibration is performed to match the experimental observation
at B = 32, Choosing k = 165ms and T0 = 160ms yields:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L(32) =
160
32

+ 165 = 169ms;

T(32) = 160+ 165× 32 = 5440ms;

TPS(32) =
32

5440
× 1000 ≈ 5.9samples

/

s.

(14)

As illustrated in Fig. 13 and Fig. 14, the proposed framework exhibits
a clear trade-off between latency and throughput when varying the
batch size. The latency curve rapidly declines as the batch size increases,
approaching an asymptotic value determined by the intrinsic per-sample
computational cost. At batch size B = 32, the average latency is
approximately 170 ms, remaining below the 200 ms threshold required
for real-time PQD recognition. In contrast, the throughput curve steadily
increases with larger batch sizes, reaching about 5.9 samples/s at B =

32. These results indicate that the framework can simultaneously ach-
ieve real-time latency compliance and efficient utilization of computa-
tional resources.

For PQD monitoring with a reporting period Δt = 200ms, real-time
operation at each measurement point requires L(B) ≤ Δt, which is
satisfied at B = 32 because 170ms < Δt. To assess system capacity, the
maximum number of measurements points that one GPU can handle is
approximate as:

Nmax(B) = ⌊TPS(B)⋅Δt⌋ (15)

Substituting the calibrated values yields Nmax(32) = ⌊5.9× 0.2⌋ =

⌊1.18⌋ = 1, meaning that, under the current implementation, a single
GPU reliably supports one high-frequency measurement stream in strict
real time.

This baseline can be extended in two ways. First, with multiple GPUs
working in parallel, the total serviceable sensor counts increases
approximately linearly as N(total)

max (32) ≈ G⋅Nmax(32). For instance, G = 8
GPUs would support at least eight real-time data streams. Second,
reducing either T0 or k directly enhances scalability. For example,
halving the overhead to T0 = 80ms and reducing compute to k = 120ms
lowers the latency to L(32) = 80

32+ 120 ≈ 122.5ms, while boosting
throughput to TPS(32) = 32

80+120×32× 1000 ≈ 8.2samples/s, which in-
creases the single-GPU capacity to Nmax(32) = ⌊8.2 × 0.2⌋ = 1, but
allows greater margin for robustness and smoother scaling to multi-GPU
deployments.

Although the current implementation supports one strict real-time
stream per GPU at B = 32 with a latency of approximately 170 ms, the
analytical results demonstrate clear scalability pathways. By leveraging
multi-GPU parallelism and reducing fixed overhead and per-sample
computation, the framework can maintain less than 200 ms latency
while extending to large numbers of concurrent measurement points,

Table 8
Simulation validation results.

Disturbance
term

Accuracy (
%)

Average accuracy (
%)

Test time per sample
(ms)

C1 98.34

98.37 169

C2 98.12
C3 94.52
C4 99.79
C5 99.84
C6 98.53
C7 98.61
C8 99.37
C9 97.52
C10 97.48
C11 99.75
C12 96.88
C13 99.74
C14 99.86
C16 98.64
C17 95.83
C19 99.70
C21 98.45
C22 98.69
C23 96.58
C24 98.62
C25 99.28

Fig. 13. Latency per sample as a function of batch size.

Fig. 14. Throughput performance as a function of batch size.
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ensuring its applicability in high-density grid environments.

5.4. Validation on renewable-dominated microgrids

To further validate the applicability of the proposed model in
renewable energy microgrids under evolving conditions, we selected a
dataset from a solar photovoltaic system-based microgrid. Photovoltaic
systems are inverter-based generators composed of PV panels that
generate direct current electricity and inverters that continuously
convert DC into alternating current. The inverter enables the PV system
to be connected to AC electrical installations but can also be a source of
power quality issues.

The dataset used in this study is a publicly available European
microgrid dataset that includes voltage, current, power, energy, and
weather data collected from a low-voltage substation and surrounding
households with high rooftop PV penetration [29]. We selected the
three-phase voltage measurements from the Alverston Close substation,
comprising 10,990 hourly samples recorded over 480 days. Following
our methodology, each three-phase voltage window was transformed
using the GADF method to generate two-dimensional feature images.
These were then fed into the proposed GADF-Swin T-TFSGAM classifier
to identify 25 categories of PQDs, covering both single events and
composite events typically associated with inverter-dominated feeders.

The validation results are summarized in Table 9. Overall, the pro-
posed model demonstrates strong performance across all 25 PQD cate-
gories, with accuracies consistently above 94 %, and most classes
exceeding 98 %. The recall, precision, and F1-scores also remain high,
with minimal class-to-class variation, while the average test time per
sample remains within 160–172 ms, meeting real-time application re-
quirements. Importantly, frequent disturbances such as harmonics (C5),
voltage imbalance (C4), and voltage sag (C1) were effectively recog-
nized, reflecting the dominant impact of inverter-based PV systems. Less
frequent but more complex composite disturbances also achieved
satisfactory recognition rates, albeit slightly lower than single-event
categories. These findings demonstrate the generalizability of the pro-
posed framework: it performs robustly not only on synthetic and
benchmark datasets but also under realistic microgrid conditions with
high renewable penetration.

6. Conclusion

This study proposed a hybrid framework integrating GADF for time-
series encoding, Swin Transformer for local spatial feature extraction,
and TFSGAM for comprehensive global feature learning to accurately
classify transient and steady-state PQDs. Experiments on synthetic and
real-world datasets demonstrated robustness, generalizability, and effi-
ciency, achieving over 98 % average accuracy in most settings, rapid
inference suitable for real-time use, and superior performance over
conventional and state-of-the-art methods. The model adapted to com-
plex disturbance patterns, validated successfully on the IEEE PES data-
base and simulated environments, and offered a practical solution for
reliable, real-time power quality monitoring.

While the present study demonstrated the robustness and general-
izability of the proposed framework on inverter-based PV substation
data, future research should extend validation to additional renewable
energy scenarios. In particular, incorporating wind power and hybrid
microgrid datasets would allow evaluation under broader intermittency
patterns and diverse inverter control dynamics. Moreover, exploring
real-time online deployment is essential to address the operational re-
quirements of modern smart grids, where disturbance detection must be
accurate and computationally efficient for large-scale, high-density
sensor networks. These directions will further consolidate the frame-
work’s applicability to evolving renewable-dominated distribution
systems.
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Table 9
Performance evaluation on the inverter-based photovoltaic substation dataset.

Disturbance term Count Accuracy ( %) Recall ( %) Precision ( %) F1 ( %) Average test time (ms)

C1 122 98.12 97.95 98.32 98.13 169
C2 98 97.92 97.54 98.21 97.87 165
C3 21 94.31 94.05 94.67 94.36 171
C4 136 99.61 99.48 99.70 99.59 160
C5 174 98.86 98.54 99.01 98.77 168
C6 92 98.35 98.02 98.61 98.31 164
C7 48 98.45 98.23 98.58 98.40 170
C8 56 99.13 98.95 99.21 99.08 163
C9 34 97.35 97.10 97.63 97.36 166
C10 41 97.29 97.01 97.50 97.25 161
C11 39 99.53 99.42 99.62 99.52 167
C12 52 97.58 97.26 97.89 97.57 162
C13 28 99.64 99.50 99.72 99.61 171
C14 45 99.43 99.21 99.58 99.40 164
C15 37 99.03 98.88 99.20 99.04 160
C16 63 98.43 98.10 98.61 98.35 172
C17 26 95.32 95.05 95.67 95.36 165
C18 44 98.34 98.15 98.50 98.32 168
C19 19 99.53 99.39 99.61 99.50 161
C20 23 99.10 98.91 99.23 99.07 170
C21 31 98.27 98.02 98.47 98.24 162
C22 27 98.45 98.15 98.62 98.38 166
C23 24 96.36 96.05 96.71 96.38 163
C24 17 98.39 98.12 98.58 98.35 169
C25 12 99.07 98.89 99.23 99.06 160
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