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Abstract

The widespread deployment of machine learning (ML) across critical domains such as healthcare,

transport, and smart grids has increased dependence on automated decision-making, exposing these

systems to potential exploitation by adversaries. ML models are highly susceptible to adversarial

perturbations, including intentional input manipulations that can alter model performance. Among

these, data poisoning attacks are particularly evolving as there are enormous ways to corrupt training

data to distort underlying behaviour and undermine system reliability. Furthermore, the risks of data

poisoning attacks increase with the dependence on public datasets.

Data poisoning attacks have been extensively explored in the context of deep learning (DL) models;

however, traditional ML, especially multiclass models, remains underexplored in assessing vulnerabil-

ities and defences. Consequently, most mitigation strategies are limited to DL and are designed for

specific algorithms or attack models. For example, adversarial training is effective for gradient-based

models but less effective for traditional models as they do not rely on gradient optimisation. These

limitations enable adversaries to exploit defences through new attack vectors, thereby complicating

the security of ML systems. Moreover, limited defences for traditional ML keep these models vulner-

able to such attacks.

This thesis analysed the security of traditional ML under data poisoning attacks implemented with

limited adversarial capabilities and knowledge and analysed limitations of existing defences, subse-

quently introducing an enhanced mitigation strategy. The manipulations to training datasets are

analysed through comprehensive deep behavioural analysis, identifying the change in model char-

acteristics, the impact of increasing poisoning levels and their relationships. Furthermore, a new

multiclass poisoning attack is proposed by exploiting a common outlier characteristic of ML models,

called Outlier-Oriented Poisoning (OOP) attack. This attack leveraged the examination of multi-

class ML under limited adversarial capabilities. These studies revealed how data poisoning alters

the learning dynamics of the model and its characteristics. Insights from this analysis informed the

development of SecureLearn, a behaviour-informed, attack-agnostic mitigation solution combining

enhanced data sanitisation with a novel feature-oriented adversarial training (FORT) approach to

improve model resilience against data poisoning.

This thesis examined SecureLearn by proposing a 3D evaluation matrix. Experimental results of this

study demonstrated that SecureLearn effectively enhanced the security and robustness of multiclass

ML across random forest (RF), decision tree (DT), gaussian naive bayes (GNB) and neural networks,

confirming its generalisability beyond algorithm-specific defences. SecureLearn consistently main-

tained accuracy above 90%, recall and f1-score above 75%, and reduced the false discovery rate to

0.06 across all evaluated models against three distinct poisoning attacks. For RF models, Secure-
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Learn maintained a minimum recall of 84.19% and f1-score of 81.54% at 20% poisoning level with

the OOP attack. For DT models, the minimum recall is 78.20% and f1-score is 7.80%. However, it is

observed that SecureLearn is less effective in enhancing the resilience of GNB models trained with the

MNIST dataset. GNB models trained with the MNIST dataset, SecureLearn maintained the recall

at a minimum of 57% with f1-score of 56%. In the context of neural networks, SecureLearn achieved

at least 97% recall and f1-score against all selected poisoning attacks. The adversarial robustness of

models, trained with SecureLearn, improved with an average accuracy trade-off of only 3%.
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Chapter 1. Introduction

The challenge of extracting knowledge and patterns from the data is older than the developed field

of machine learning (ML) (Rosenbloom et al., 1985). However, with the evolution of time, the

complexities of the data have increased with more dimensions and variability. In response to these

complexities, researchers have developed algorithms to autonomously identify intricate patterns and

correlations within data rather than relying only on human brains and explicit programming. Fur-

ther improvements to these autonomous algorithms allow digital systems to learn independently for

decision making and have developed a field called ML (Cohen, 2025).

Such advances in automating digital systems are especially relevant in fields requiring high accuracy

and fairness, such as medical diagnostic applications (Murugan et al., 2021), autonomous vehicle sys-

tems (Sasmono et al., 2021), cybersecurity solutions (Chalé and Bastian, 2022), and financial systems

(Qiao and Beling, 2016), making ML algorithms a more suitable solution. It is a powerful tool to

analyse complex data and enable businesses and researchers to make accurate predictions, leading to

innovative solutions and increased efficiency by identifying hidden patterns in the data. Its growing

importance stems from the availability of computational resources, large datasets, and efficient algo-

rithms.

The fundamental ML algorithms are known as traditional ML, which includes the baseline algorithms,

such as support vector machines (SVM), random forest (RF) and neural networks (NN) as percep-

tron. However, the increasing complexities of the problems and further advancements in ML have

developed modern ML called deep learning (DL), which typically extends NN to advanced algorithms

such as convolutional neural networks (CNN) and recurrent neural networks (RNN) (Wang et al.,

2021b).

Irrespective of the algorithms, the ML model can be developed in two settings: binary and multiclass

models. When the application problem is defined across two groups, the model is developed in bi-

nary settings. Conversely, when the prediction problem is defined across more than two groups, the

model is developed in multiclass settings. Multiclass models are useful in various applications, such as

healthcare diagnostics and autonomous driving. However, they are associated with certain challenges

that need to be addressed for successful application development. One of the major challenges in this

regard is the equal distribution of data within different groups in the given dataset, which enables the

model to learn each group equally, where an unequal distribution can introduce unfairness in their

predictions (Del Moral et al., 2022). These complexities should be addressed to develop a robust and

fair ML model.
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1.1 Machine Learning Security

The prevalent use of ML in almost every digital application makes it an attractive target for adver-

saries to attack these models and harm the integrated systems. Attacks on the security of ML are

called adversarial attacks. Unfortunately, the literature has highlighted many adversarial ways of

attacking the model security at different development phases and breaching ML systems (Hu and Hu,

2020). Adversaries can harm it in various aspects, including exploiting privacy (Shafee and Awaad,

2021), security (Goldblum et al., 2020), robustness (Dunn et al., 2020), fairness (Xue et al., 2023),

and accountability (Ghosh et al., 2022) of the model. The study of these attacks and countermeasures

against these attacks is called adversarial machine learning (AML).

Adversarial attacks that manipulate training data of the ML model development are known as data

poisoning attacks. With the increasing complexities of the autonomous systems, the need for large

training data is becoming a significant challenge, and one way to address this challenge is to use

publicly available datasets (Zhou et al., 2017). However, reliance on public datasets increases the risk

of adversarial manipulations, which can compromise the security of the model. One common form

of data poisoning is the label-flipping attack (Yerlikaya and Şerif Bahtiyar, 2022), (Paudice et al.,

2018b), where the labels of randomly selected data points are altered to degrade model integrity.

For instance, in an intrusion detection system (IDS) trained on the public CIC-IDS-2017 dataset, an

adversary may change the labels of 10 percent of the data points, causing the model to misclassify

certain intrusive instances as normal. Additionally, a substantial number of mislabeled data points

can induce overfitting, resulting in a breach of availability. Another significant threat is the breach

of confidentiality. During model training, an adversary may introduce targeted data points that the

model memorises, enabling the extraction of confidential information during inference. These consid-

erations underscore the necessity to enhance ML security to ensure resilience against data poisoning

attacks. The details of these attacks and their types are discussed in Section 2.2 in Chapter 2. Ir-

respective of attack types and approaches that adversaries applied to ML model development, these

attacks mainly harm model performance in one of the five aspects highlighted in Fig. 1.1.

The first aspect is privacy, where the adversary tries to extract confidential information about the

training data or learned parameters from the trained model (Shi et al., 2020). Privacy attacks can

be mitigated with privacy preservation (Truex et al., 2019) and differential privacy (Zhang et al.,

2020) solutions. However, these solutions imply various performance tradeoffs, such as adding noise

to the training samples, which may decrease the model’s performance. Conversely, various adversarial

attacks successfully exploited these mitigations (Paracha et al., 2024b). This is an active research

area in the domain of AML, where researchers are developing solutions, toolkits, and processes to

enhance the privacy preservation of ML while preserving their performance.
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Figure 1.1: Fundamental aspects of secure and trustworthy machine learning

The next important aspects are the security and robustness of ML (Tian et al., 2024), where the ad-

versary can manipulate the training or testing datasets to undermine the decision mechanism of the

model. For example, the adversary can manipulate the dataset labels (Paracha et al., 2024a), which

may confuse the model to misinterpret the dataset and reduce the expected performance. Other

than that, manipulated data points can be injected to disturb the data distributions (Jagielski et al.,

2021) or some important dataset features can be perturbed, which can shift the decision boundaries

(Paracha et al., 2025a) of the model and ultimately harm the confidence. Defending against these

attacks is a complex challenge, since distinguishing adversarial perturbations from legitimate varia-

tions is inherently difficult.

Accountability and fairness can also be exploited with adversarial attacks (Mehrabi et al., 2021).

For example, autonomous medical diagnostic applications should be fair in their decisions and not

discriminate against specific responses or data groups. The adversarial attack can change the data

distribution, making it imbalanced between different subsets or groups. This biased data can train

biased and unfair models, which can reflect in their predictions. Various studies highlighted that

adversarial attacks have successfully exploited the accountability of ML models (Farinu, 2025).

Of these aspects, this thesis focuses on the security and robustness of ML models against data poi-

soning attacks. The security of ML aims to protect the model from malicious activities and external

inference that compromises its confidentiality, integrity and availability (Sagar and Keke, 2021). The

robustness of ML aims to overcome the adversarial noise or errors generated in the dataset, such as

misplaced features or missing feature values, and how they can impact the statistical computation of

the model performance (Yu et al., 2025). Numerous studies highlighted successful poisoning attacks

on secured ML models (Lu et al., 2024), (Das et al., 2024) that breached the security or robustness
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of ML models. Achieving adversarial security and robustness is a significant challenge. To achieve

security and robustness from adversarial attacks, there is a pressing need to understand adversarial

perturbations and distinguish them from normal data. It is formulated with similar objectives to

model generalisation across a given domain, which can be achieved by ignoring irrelevant features.

For example, receiver email in spam detection classifiers or source ports in IDS. Thus, the aim is to

generalise over the underrepresented classes or invariant data. Developing strong resilience is still

a challenge as the attack surface is evolving. There is a need to think about the next level of un-

derstanding algorithm architectures and training processes, rather than only generalising over the

domains.

To achieve the aim of secure and robust ML, this thesis focuses on classification models, namely sup-

port vector machines (SVM), random forest (RF), decision tree (DT), gaussian naive bayes (GNB),

k-nearest neighbors (KNN) and neural networks with perceptron and multilayer perceptron (MLP).

These models are developed under binary and multiclass settings. Furthermore, the scope of the

thesis is defined for the grey-box data poisoning attacks, following the assumptions that training

datasets can be publicly accessible and an adversary can manipulate datasets and develop surrogate

models; however, no model settings are known to the adversary.

1.2 Problem Background

The existing literature has predominantly studied data poisoning attacks and their mitigations in

deep learning (DL) models; however, few studies have explored data poisoning in traditional ML,

particularly in multiclass models. Traditional multiclass ML is significantly useful for developing

multimodal applications with predefined feature datasets and limited computational resources, such

as intrusion detection systems (IDS), healthcare diagnostics, and cyber threat intelligence applica-

tions. Therefore, the analysis and strengthening of the security of such models is important to defend

integrated systems. Studying multiclass ML alongside DL and binary models provides an in-depth

understanding of ML security against data poisoning attacks.

Furthermore, existing studies have explored data poisoning impact, considering performance metrics

including accuracy, precision, recall and f1-score. However, it is also important to analyse the dis-

ruption in the underlying decision mechanism of the model when trained with a poisoned dataset.

Understanding these changes helps develop strengthened and attack-agnostic mitigations against such

attacks, which may defend ML from various data poisoning attacks.

1.3 Problem Statement

Data poisoning attacks manipulate the training dataset of ML models, leading to degraded model

performance (Chillara et al., 2024) or enabling backdoors (Saha et al., 2020). These manipulations



1 CHAPTER 1. INTRODUCTION 20

can be achieved by perturbing dataset labels, poisoning dataset features, or injecting poisoned data

points into the dataset. For example, metapoison (Huang et al., 2020), class-oriented poisoning attack

(Zhao and Lao, 2022b), and clean-label poisoning attack (Zhang et al., 2023) successfully poisoned

ML systems. Though various mitigation solutions are provided in the literature to secure ML, new

attacks have successfully exploited such mitigations Paracha et al. (2024b), Koh et al. (2021), Kuppa

and Le-Khac (2020). These successful exploitations highlight the complex problem of securing ML

models from data poisoning attacks.

The core challenge behind this problem is to analyse vulnerabilities in ML models. The prevalence

of ML models opens doors for adversaries to manipulate them in various ways, which makes it

difficult to determine to what extent the outcomes of ML should be trusted. Various research studies

proposed data poisoning against deep neural networks, specifically in the computer vision domain

Ahmed et al. (2022), Salama et al. (2023), Wei et al. (2022), Su et al. (2019); however, traditional

models are explored to a limited extent, particularly multiclass models, which are overlooked in

the literature. Moreover, existing analysis techniques do not completely identify these underlying

vulnerabilities. Existing studies assess data poisoning attacks from the performance aspects of the

models, which do not answer the underlying changes in their training and decisions. Studying the

underlying changes against poisoned training provides an understanding of model vulnerabilities

and identifies relationships between model characteristics and the impact of data poisoning attacks.

These understandings help develop strengthened defences against such attacks. Therefore, there is

an urgent need to develop enhanced analysis processes for the detailed ML examination in various

settings. These analyses should focus on analysing the behavioural changes in the ML model and

their impact on the performance of the model.

Additionally, most data poisoning attacks are developed under the assumption of full adversarial

capabilities and complete knowledge of the target system Zhang et al. (2023), Zhao and Lao (2022b),

Zhu et al. (2023b). Evaluating the effectiveness of these attacks under limited adversarial knowledge

and capabilities is essential for assessing their practicality against real-world systems, which are often

not fully accessible to adversaries. The real-world impact of attacks under such constraints is still a

complex challenge.

Following the challenges mentioned above, the unified problem is to develop attack-agnostic and

security-by-design solutions that secure ML not only from specifically identified poison but from

evolving threats in this domain. Current solutions are often tailored to specific attacks or algorithms

Xu et al. (2021), You et al. (2019), Ma et al. (2021b), which limits their applicability to novel poisoning

methods. For example, adversarial training (Tu et al., 2021) is designed for neural networks that

utilise gradient learning and do not generalise to traditional ML models. Therefore, there is a need

to investigate and analyse how poisoned models behave under limited adversarial capabilities. Such
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analysis will inform the development of effective mitigation strategies that secure ML models against

evolving poisoning attacks across diverse applications.

1.4 Research Aim and Objectives

To address challenges outlined in the problem statement, this thesis aims to develop a robust

behaviour-informed solution to mitigate data poisoning attacks in multiclass ML and improve the

generalisability and robustness of the model. The intended objectives to fulfill the aim of this re-

search are given as follows.

� To explore the impact of data poisoning attacks under limited knowledge and adversarial capa-

bilities. This exploratory analysis is conducted against six classification models, in binary and

multiclass settings. This study analyses the impact of poisoning and investigates the limitations

of existing mitigations against these attacks.

� To develop an improved defence solution to enhance the security of the multiclass ML against

data poisoning attacks. The proposed solution is an attack-agnostic mitigation that secures the

model by understanding underlying behaviours and decision mechanisms, irrespective of attack

vectors. .

� To develop the evaluation mechanism to assess the effectiveness of the proposed security so-

lution for ML. The proposed mechanism evaluates the mitigation solution by comparing its

effectiveness against existing solutions and data poisoning attacks for various ML models.

1.5 Research Questions

Following the above research objectives, this study considers several factors to understand the security

of ML by answering the following research questions (RQ).

� What are the security vulnerabilities in ML algorithms that are exploited by adversarial attacks

and their impact on real-world applications? It is important to understand the realistic threats

to ML models. A model being attacked likely provides strong incentives to the adversary.

However, it is crucial to understand what capabilities of the attacker are required to devise an

attack when limited knowledge and access to the model are provided.

� What are the potential risks, impact and consequences of data poisoning attacks? Poisoning

impact varies based on the domain of applications and adversarial capabilities. Following ques-

tion 1, there is a pressing need to understand how successful and impactful the attack is under

limited adversarial capabilities for cybersecurity and healthcare applications. Suppose the tar-

geted application is developed for the learning of primary school students. In that case, the
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impact of poisoning is considerably lower. However, if the application is developed for cancer

diagnosis, it may result in loss of human life, and thus represent a high impact of poisoning

attacks.

� What are the limitations of existing solutions in mitigating data poisoning attacks? The third

question addresses the limitations of existing mitigations against data poisoning attacks by

analysing them across various attack vectors for traditional models. It also examines the impact

of data poisoning on changing the underlying decision mechanism and characteristics of binary

and multiclass models and assesses whether existing solutions address these behavioural changes.

1.6 Thesis Contributions

Following the above research questions, the contributions of this thesis are as follows:

� This study conducts a deep behavioural analysis of poisoned binary and multiclass models to

analyse the change in their decision capabilities and identify relationships between poisoning

impact and individual characteristics of models. These characteristics include the number of

support vectors in SVM, the number of trees in RF, and the changing dataset distributions.

This analysis also identified a range of poisoning levels that have a high impact on degrading

the model’s performance. (Paracha et al., 2024a)

� This study analyses the effectiveness of multiclass poisoning attacks under limited adversarial

capabilities. To analyse multiclass poisoning, a novel outlier-oriented poisoning (OOP) attack

is proposed that disturbs the decision boundaries of the model by perturbing outliers. Following

the OOP attack, this analysis has also strengthened the results of the deep behavioural analysis

by strengthening its outcomes of the identified poisoning levels and highlighting the impact of

various dataset structures on multiclass poisoning. Moreover, the efficacy of the OOP attack is

examined against a well-known mitigation solution called adversarial training, highlighting its

ineffectiveness in securing traditional multiclass models; however, it has improved the resilience

of neural networks. (Paracha et al., 2025a), (Paracha et al., 2024b), (Paracha et al., 2025c)

� This study proposes an attack-agnostic two-layer defence, SecureLearn, to secure multiclass

models against data poisoning attacks by understanding their training fundamentals. Secure-

Learn proposes an improvised data sanitisation with an additional layer of feature-oriented ad-

versarial training (FORT), to secure ML reactively and proactively against poisoning attacks.

(Paracha et al., 2025b)

� This study proposes a 3D evaluation matrix to evaluate SecureLearn from three orthogonal

dimensions comprehensively. The 3D evaluation matrix assesses the solution against various
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data poisoning attacks and compares it with existing mitigation solutions, including multiple

data sanitisation and adversarial training mechanisms.

The conceptual alignment of research objectives, research questions and thesis contributions is given

in Fig. 1.2.
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Figure 1.2: The conceptual alignment of research objectives, research questions and thesis contribu-
tions

1.7 Thesis Organisation

Following the above-mentioned contributions, the organisation of this thesis is given as follows.

Chapter 2 In this chapter, a detailed background of supervised ML, concepts of adversarial ML and

its attack types is provided. Following the background, a comprehensive state-of-the-art analysis is

conducted with a quantitative review to understand the threat landscape of adversarial ML, followed

by a comprehensive literature review built on the adversarial attack types. This background and

literature review form the basis of all the subsequent chapters. This work is discussed in Paracha and

Arshad (2024), Paracha et al. (2024c).

Chapter 3 In this chapter, deep behavioural analysis of poisoned models is conducted under limited
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adversarial capabilities and knowledge. This analysis studies how poisoned training shifts their de-

cision boundary and how poison impacts individual characteristics of each algorithm. For example,

how does the feature importance score change with data poisoning, or what is the relationship be-

tween the number of trees in the RF algorithm and increasing poisoning level? This analysis provides

a detailed understanding of how data poisoning attacks manipulate the decision mechanism of ML

models, providing insights into enhancing defence mechanisms against these attacks. This work is

presented in (Paracha et al., 2024a).

Chapter 4 In this chapter, a new data poisoning attack is introduced that manipulates the feature

space of multiclass models by perturbing outliers. This attack is implemented with limited adversarial

capabilities and knowledge to examine the efficacy of new attacks under limited adversarial capabil-

ities and knowledge. This chapter also examines the effectiveness of existing mitigation solutions to

secure traditional multiclass models. This work is published in Paracha et al. (2025a), Paracha et al.

(2024b), Paracha et al. (2025c).

Chapter 5 This chapter proposes an attack-agnostic two-layer defence called SecureLearn to secure

multiclass models from data poisoning attacks. It presented a new formulation of data sanitisation

and FORT adversarial training that enhances the adversarial robustness of classification models. Fol-

lowing that, a 3D evaluation matrix is proposed to analyse the efficacy of SecureLearn and existing

similar solutions from three different aspects. This work is submitted to IEEE Transactions on In-

formation Forensics and Security.

Chapter 6 This chapter concludes all the previous chapters, summarises the key achievements and

contributions to defence in each chapter.
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Chapter 2. Machine Learning Security - Background

and State-of-the-Art Attacks and Countermeasures

2.1 Introduction

This chapter introduces the background and key concepts related to supervised ML algorithms, adver-

sarial ML, and adversarial attack types, followed by a state-of-the-art analysis of adversarial attacks

and their countermeasures. This chapter addresses RQ 1 by offering a comprehensive analysis of the

severity, impact, and consequences of adversarial attacks. It also provides insights to guide future

research. The objective 1 of the thesis is fulfilled from a theoretical perspective by examining adver-

sarial attacks and mitigation techniques. The analysis considers adversarial knowledge, goals, and

capabilities. It classifies and compares attack types and highlights the limitations of current solutions.

The background section describes fundamental characteristics and training mechanisms of supervised

ML algorithms. It discusses the formation of decision boundaries in both binary and multiclass

contexts. This section also introduces adversarial machine learning and outlines the primary attack

types. It connects these attacks to various phases of machine learning development and attack sur-

faces. The attack surface is defined as a set of points, features, or components that the attacker can

exploit and harm the system (Zeng et al., 2019). This section establishes the conceptual foundation

for the following chapters.

Next, this chapter presents the state-of-the-art analysis of adversarial attacks and their countermea-

sures in ML. The analysis examines the literature using a two-step approach based on prior work

Paracha et al. (2024c), Paracha and Arshad (2024). First, a bibliometric analysis is conducted to

analyse research trends across four dimensions of publication types and languages, publication cita-

tions, annual publications and keywords analysis, followed by a qualitative literature review based

on a comprehensive methodology. This bibliometric analysis provides insights into the evolution of

adversarial ML and evaluates its research impact on various domains.

Following the bibliometric analysis, a qualitative literature review critically evaluates adversarial at-

tacks and their countermeasures to identify research gaps. This review is organised around four

types of adversarial attacks: poisoning, evasion, model inversion, and membership inference. These

correspond to the training, testing, and deployment phases of model development. The analysis as-

sesses the feasibility of attacks across eight dimensions, such as machine learning algorithm, exploited

vulnerability, and attack type. Mitigation strategies are also examined for each attack category.
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2.2 Background

In this section, the training process of each selected algorithm is discussed to understand their decision

mechanisms. This understanding will later help determine the adversarial attack methods and how

these attacks can disturb the ML decision processes and affect their performance.

2.2.1 Machine Learning

Machine learning refers to a mathematical model that learns patterns from the given data to perform

tasks autonomously without providing explicit input. The core goal is to approximate the mapping

function f : X → Y by minimising the loss L(f(x), l) to predict the correct output l where l ∈ Y .

Generally, larger data improves performance, as the model can capture complex patterns (Taherdoost,

2022). ML is categorised into three main types, discussed below.

Supervised learning is a type of ML development where the dataset is labeled with a predefined

number of groups (Taherdoost, 2022). This type of learning is useful for task-driven problems where

the ground truth is available in the form of dataset labels. The dataset is divided into training and

testing instances. The training dataset is used to train the model, which is trained to recognise features

and their corresponding labeled groups. Then the test dataset is used to assess the predictions of

the trained model by comparing predicted labels with the test dataset labels. Supervised learning is

categorised into two types: classification and regression. Supervised classification learning is used for

categorical predictions with a predefined number of groups in an application, and regression learning

predicts continuous values as its outcomes.

The next ML type is unsupervised learning, where the unlabeled dataset is provided for the model

development (Balevi and Gitlin, 2017). This learning is aligned with the data-driven tasks for which

no fixed number of groups or labels is provided in the dataset. In this type of learning, the model

identifies features in the dataset to determine patterns. Clustering is the most common type of

unsupervised learning, where the training process identifies unique clusters within the dataset.

The third type of ML development is reinforcement learning, also known as agent-based learning

(Nguyen and Han, 2023). This type of learning emphasises feedback from humans, following rewards

and punishments. In this learning, the model is iteratively trained and assessed to reach a predefined

goal by continuing good practices and receiving penalties for incorrect predictions. Agent learning is

a common type of reinforcement learning, used for training robots. Of these approaches, this thesis

focuses on the security of supervised classification ML against data poisoning attacks, following

two settings: binary and multiclass classifications, and it interchangeably uses supervised ML for

classification learning throughout the thesis.
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2.2.2 Supervised Machine Learning

In classification ML, the problem involves organising the data into distinct categories or outputs.

The model learns patterns from the dataset to distinguish specific entities and predict their classes

or labels. Consider a training dataset D = {(xi, li)}ni=1 where xi is the input feature of the dataset,

known as an independent variable, and li is the target label, which is the dependent variable.

During training, the model learns patterns from the dataset D and associates them with their labels

or classes. Once trained, it is tested on a previously unseen dataset. The model predicts the correct

labels, which are later evaluated against the ground truth (Gil-Fournier and Parikka, 2021). A fun-

damental consideration in model development is that the training and testing sets are assumed to be

drawn from the same underlying data distribution, meaning they share similar statistical properties.

If the model demonstrates expected results during testing, as measured by performance metrics such

as accuracy, recall, and f1-score, it indicates that the model effectively generalises over patterns in

the data. Following successful testing, the model can be deployed in real-world applications. The

development process of the supervised ML model is illustrated in Fig. 2.1. The supervised classifiers

are additionally divided into parametric and non-parametric models based on how they learn their

mapping functions.

Data gathering data engineering and
dataset formulation

query

query

query

training
dataset

testing
dataset

ML model
training

ML model
testing

ML model
deployed

users

Figure 2.1: The development process of a supervised machine learning model, illustrating all phases
of the development, starting from data gathering to model deployment

Parametric models follow a training process that develops their decision boundaries by learning

a fixed, pre-defined number of configuration parameters θ that characterise the model’s complexity

(Guého et al., 2020). This process aims to learn underlying patterns from training examples until

the configuration parameters are estimated in a way that reduces classification errors. Therefore, the

trained model can classify new data in the relevant class. On the other hand, non-parametric models

develop their decision mechanisms by capturing the relationship between various dataset features.

These models rely on the structure of the training data at inference time rather than summarising it

into a fixed number of parameters. These models predict without making strong assumptions about
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specific data distribution. Conclusively, parametric models are computationally efficient but may

underfit to evolving distributions or complex patterns. Conversely, non-parametric models are highly

flexible to capture dynamic patterns within the provided data (Shi and Wang, 2021).

This thesis selected six supervised parametric and non-parametric algorithms, i.e., Support Vector

Machines (SVM), Random Forest (RF), Decision Tree (DT), Gaussian Naive Bayes (GNB), K-Nearest

Neighbors (KNN), and Multilayer Perceptron (MLP). Next, the binary and multiclass classification

settings of the model development are explained in Sections 2.2.2.1 and 2.2.2.2, followed by the

development process for each of the selected algorithms.

2.2.2.1 Binary Classification The simplest classification type in supervised ML is binary clas-

sification, where the model categorises instances into two classes. In this type of classification, the

labels are typically encoded as 0 (false) or 1 (true). For example, in a spam detection classifier, an

instance is either classified as spam or not spam. Similarly, in a skin cancer diagnostics application, a

skin lesion is either detected as cancerous (true) or benign (false). Let D = {(xi, li)}ni=1 be a dataset

consisting of two classes where dataset features are denoted with x ∈ X and labels are denoted as

l ∈ {0, 1}. The model learns with a mapping function f : X → Y to separate classes in a given

dataset. The trained model uses the learned function to classify new instances in a class. If the

predicted probability exceeds 0.5, the instance is assigned to the positive class.

2.2.2.2 Multiclass Classification Multiclass classification assigns each instance to one of m

possible classes, where m > 2. For instance, in a skin cancer diagnostics application, the model

may classify lesions as melanoma, melanocytic nevus, or basal cell carcinoma, rather than simply

distinguishing between cancerous and benign cases. Multiclass classifiers accommodate multinomial

categorisation by supporting more than two classes as needed. For example, in the same diagnostic

context, if a lesion exhibits characteristics that overlap between benign and melanoma, an additional

category, such as intermediate melanoma, can be adjusted to enable more nuanced diagnostic decisions

and treatment. The classifier is trained on a multiclass dataset D = {(xi, li)}ni=1, where x ∈ X and

l ∈ {0, 1, 2, ...,m− 1}. The mapping function f for multiclass classification is defined in Eq. 2.1.

li = argmax f(xi) (2.1)

2.2.3 Support Vector Machines

Support Vector Machine is a non-parametric algorithm that aims to construct optimal decision

boundaries, known as hyperplanes, to separate dataset classes. Considering a training dataset

Dt = {(xi, li)}ni=1 where x ∈ X are dataset features and l ∈ Y are the class labels. To train an

SVM model on the given dataset, the decision function is optimised to identify decision boundaries.



2 CHAPTER 2. MACHINE LEARNING SECURITY - BACKGROUND AND

STATE-OF-THE-ART ATTACKS AND COUNTERMEASURES
29

The general formulation of the decision function is given in Eq. 2.2.

f(x) = sign(wT .ϕ(x) + b) (2.2)

where w are weight vectors, ϕ(x) denotes the feature mapping function that maximises the margin

between classes by mapping features to an n-dimensional space, and b is the bias. The goal is to find

the optimal value of w and b to identify optimal decision boundaries. The data points nearest to

decision boundaries are known as support vectors. Support vectors are crucial for defining decision

boundaries, as they determine the position of the hyperplane to separate classes. This algorithm is

inherently a binary classifier, where l ∈ {0, 1}; however, it can be extended to multiclass classification.

To handle the separation between non-linear data, SVM includes a soft margin controlled by the

regularisation parameter, allowing flexibility to some misclassification while maximising the margin.

There are two approaches for developing a multiclass SVM: the one-vs-one (OvO) and the one-vs-rest

(OvR) approach. One-vs-one develops a binary classifier between each pair of classes, and one-vs-

rest develops a binary classifier for each class versus the rest. The SVM models are widely used

in developing cybersecurity applications such as intrusion detection and spam classification due to

their effectiveness in handling high-dimensional data. A three-class SVM is illustrated in Fig. 2.2,

demonstrating the decision boundaries between classes with support vectors highlighted in red.

Figure 2.2: A trained support vector machines model developed with a dataset comprises three classes.
The support vectors of this model are highlighted in red, which influenced the decision boundaries
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2.2.4 Decision Tree

Decision Tree is a non-parametric algorithm used for both binary and multiclass classification. It

develops a hierarchical tree-like structure that separates the feature space into regions associated

with dataset classes. The algorithm follows a greedy, top-down approach to build a classification tree

by selecting features that maximise the class homogeneity at each tree node. The tree recursively

splits the dataset using a divide-and-conquer learning mechanism to minimise the impurity. The

optimal split is estimated with an impurity measure such as the Gini Index, Log Loss, or Entropy.

Given a training dataset Dt = {(xi, li)}ni=1 where x represent features and l are the dataset labels, the

objective at each node N is to identify the optimal feature that minimises impurity at child nodes,

given a threshold t. Let the data at node m be denoted by Nm with nm data points. Mathematically,

the data is partitioned intoN left
m andNright

m at each node θ(f, tm) consists of a feature f and threshold

tm, such that:

N left
m (θ) = {(x, l)|xf ≤ tm}

Nright
m (θ) = Nm\N left

m

(2.3)

Then, the quality of each split is calculated with the impurity (loss) measure L, given in Eq. 2.4.

G(Nm, θ) =
nleft
m

nm
L(N left

m (θ)) +
nright
m

nm
L(Nright

m (θ)) (2.4)

such that, the optimal loss is given in Eq. 2.5 until the maximum allowable depth is reached where

nm < min datapoints or nm = 1.

θ∗ = argmin G(Nm, θ) (2.5)

Following training, the effectiveness of the model is evaluated by testing it on the classification of

unseen data. While DT is capable of handling complex, non-linear data, it is prone to overfitting

when developed in full depth. Fig. 2.3 highlights the decision surface in a decision tree.

2.2.5 Random Forest

Random Forest is a non-parametric ensemble learning algorithm that combines multiple decision

trees. Each tree is developed following bootstrap samples from the dataset, using the underlying split

criteria of the decision tree algorithm. These bootstrapping and random subsampling mechanisms

help reduce the correlation and improve generalisation in the model. At each node, a random subset of

features is selected to determine the best split and introduce diversity in the RF model. This process

improves the performance and controls overfitting by aggregating the predictions of all trees. In RF,

each tree is constructed using the same splitting criteria described in Section 2.2.4. Let T1, T2, . . . Tn

represent decision trees that are aggregated to develop an RF classifier. For classifying the ith instance
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Figure 2.3: A trained decision tree model developed with a dataset comprises three classes. The
decision surface of the decision tree is illustrated between three classes of the dataset with some
overfitting between class 2 and class 3

xi, the function to predict its class label is given in Eq. 2.6. The class label is determined through

majority voting.

f(x) = mode(T1(x), T2(x), ..., Tn(x)) (2.6)

where the mode returns the most frequent class among all trees. By combining predictions from

decorrelated trees, this process controls the overfitting of the model.

RF inherently supports the development of both binary and multiclass classification. In binary

classification, the model predicts between two classes following the decision function f(x)→ l ∈ {0, 1}

and for multiclass classification, it follows the decision function f(x)→ l ∈ {0, 1, 2, ...,m− 1} across

more than two classes. Fig. 2.4 illustrates the decision boundaries created by an RF model trained

on a three-class dataset, highlighting how RF splits the feature surface.

2.2.6 K-Nearest Neighbor

K-Nearest Neighbors is a non-parametric, lazy-learning algorithm that classifies based on the majority

votes of the nearest data points in the training dataset. As a lazy-learning algorithm, it stores

the complete dataset without performing any explicit model training and computes predictions at

inference time. KNN follows the principle of the nearest neighbors and finds a predefined number k of

nearest neighbors to predict the class of the test instance (Zhang et al., 2017). The model calculates

the distance between the test instance and training data to identify the k nearest neighbors. This
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Figure 2.4: A trained random forest model developed with a dataset of three classes. The decision
surface between three classes is illustrated

distance is measured using a distance algorithm such as Euclidean, Manhattan, or Minkowski, with

the Euclidean distance as the default method. The voting process of KNN is sensitive to the noisy

data points, which can shift the predictions. The majority voting can be inaccurate due to mislabeled

data points among k-neighbors, particularly when k is small, which introduces high variance. The

prediction mechanism is given in Eq. 2.7.

f(x) = argmax

k∑
i=1

I(li = c) (2.7)

where I is the indicator function, c is the possible class label of the test instance and yi is the class

label from ith neighbors. Fig. 2.5 highlights a decision boundary of a KNN applied to a dataset with

three classes.

2.2.7 Gaussian Naive Bayes

Gaussian Naive Bayes is a parametric algorithm that applies a naive assumption of conditional in-

dependence of all features in the dataset given a class. It also applies bayes theorem that calculates

the posterior probability of a class label, for a data point, given specific feature values. Extending

naive bayes with the assumption of conditional independence and probability estimations of features,

GNB assumes that the dataset features follow a gaussian distribution given a class. GNB is inherently

applicable to multiclass settings. Therefore, GNB applies to both binary and multiclass classification.
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Figure 2.5: A trained k-nearest neighbors model developed with a dataset of three classes is given,
showing the decision surface of each class

In supervised ML, let li be the class to be predicted for xi instance given its features in n-dimensional

vector (v1, v2, . . . vn) such that naive bayes probability estimation is given in Eq. 2.8.

l̂ = argmax P (l)Πn
j=1P (xj |l) (2.8)

For xi, the class probability f(x) is predicted with Eq. 2.9.

f(x) =
1√
2πσ2

li

exp(− (xj − µli)
2

2σ2
li

) (2.9)

Fig. 2.6 illustrates the conditional distribution of GNB on a three-class dataset, estimated with Eq.

2.9.

2.2.8 Neural Networks

Neural networks is a parametric algorithm inspired by the human brain to learn complex, non-linear

patterns in the provided data. In supervised ML, NN learns training data by approximating the

mapping function f : Rn → Rm where n denotes the dimensionality of the input features and m

represents the number of output classes. This algorithm is designed in layers that comprise neurons,

and each neuron applies a linear transformation followed by a non-linear activation function. Given

x ∈ Rn as an input, the mapping function with weights w and bias b, given in Eq. 2.10 to compute

the output.

z = actf(w.x+ b) (2.10)
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Figure 2.6: A trained gaussian naive bayes model developed with a dataset of three classes showing
the decision boundaries of each class with some overlapping between class 2 and class 3

where z denotes output of a hidden layer, f denotes predictions at an output layer, and actf is the

activation function. The general structure of NN is shown in Fig. 2.7, illustrating an interconnected

network of layers where preceding layers influence each layer.

Figure 2.7: A trained multilayer perceptron model developed with a dataset of three classes showing
the decision surface of the classes

A perceptron is the simplest NN form with one layer, used for binary classification, where a step

function is employed as actf to predict l ∈ {0, 1}. Further, an NN can be extended to multiclass

classification by developing a multilayer perceptron (MLP), which comprises more than one layer in

the network. MLP employs a non-linear activation function, such as ReLU, in intermediate layers,

followed by the softmax function actf at the output layer. These activation functions calculate pre-
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diction confidence and output the class label with the highest confidence. These non-linear functions

allow MLP to learn non-linear patterns in the data.

2.2.9 Adversarial Machine Learning

Adversarial machine learning is the study of attacks in ML and the countermeasures against them.

The attacks against these models are implemented with maliciously crafted inputs called adversarial

examples which mislead the performance of the model. Formally stating AML attacks in supervised

ML as: Supervised ML is about teaching machines to solve classification problems defined with a map-

ping function f : X → Y where in AML, adversarial examples x′ are developed by perturbing x to

generate manipulated output l′. Given a perturbed dataset D′ = (x′
i, l

′
i)

n
i=1, the classification function

f(x′) = l′ and l′ ̸= l such that x′ is generated as x+ ϵ = x′ where ϵ is the perturbation.

The concept of adversarial attacks was first defined by Biggio et al. (2011) and Vidnerová and Neruda

(2016), explaining these attacks on an SVM classifier. With this concept, the development pipeline of

ML is found to be vulnerable to adversarial attacks, which can be attributed to various methods such

as flipping labels, augmenting additional features in the dataset, and with the recent advancements

in generative AI, adversarial queries can also be developed to manipulate ML/AI models. Since their

discovery in 2011 to date, researchers have developed various types of adversarial exploits that have

shown successful attacks on training (Chen et al., 2021), testing (Merzouk et al., 2022) and deploy-

ment (Zhu et al., 2023a) phases of the model.

To better understand adversarial attack mechanisms, a taxonomy is defined as shown in Fig. 2.8, of

adversarial attacks taking into account the development phases of ML. Adversarial attacks are mainly

divided into four types of data poisoning, evasion, inversion and inference attacks. This chapter will

go through each attack type, explaining it in detail with its mechanism, evolution and formulation in

subsequent sections.

In an orthogonal dimension, various adversarial capabilities or settings are studied in designing these

attacks based on their knowledge. The highest level of capabilities is provided with complete knowl-

edge of the ML model to the adversary, known as the white-box attack (Patterson et al., 2022). The

second level of capabilities is provided with the grey-box attack (Wang et al., 2021a), where some

knowledge of the model or dataset is provided to the adversary. For example, the adversary only

knows the modality or the distribution of the dataset to devise an attack; however, the underlying

settings of the target system are unknown to the adversary. And the lowest level of capabilities is

provided with a black-box attack (Yu and Sun, 2022) where the target system is completely unknown

to the adversary or may only know the name of the algorithm or dataset used to develop the system.

For example, in an attack development, only the algorithm is known, but the dataset and target set-

tings are completely unknown to the adversary. It is important to note that black-box and grey-box
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capabilities overlap and are used interchangeably (Vivek et al., 2018). The next section will explain

each attack type, explaining its concept and development in the context of supervised ML.

ML attack types

ML knowledge attack
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ML model data
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ML models

ML types

Machine Learning
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learning models
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Figure 2.8: Taxonomy of adversarial machine learning attack types

2.2.9.1 Data Poisoning Attack A data poisoning attack is an adversarial attack that manipu-

lates the training dataset of the model to corrupt the development process (Baker et al., 2024). The

attack surface of the data poisoning attack is shown in Fig. 2.9. A data poisoning attack can be

devised either to degrade the overall model performance, called an availability attack (Zhao and Lao,

2022a), or to alter the classification at specific inputs, called an integrity attack (Carlini and Terzis,

2021). The attacker can carry out data poisoning attacks in two ways. First, the poison may manip-

ulate labels in the dataset, detaching features from their respective classes, known as label poisoning

(Gupta et al., 2023b). Second, the poison may perturb features of the dataset, leaving labels in their

original form, known as clean label poisoning (Jagielski et al., 2021). Consider D = (xi, li)
n
i=1 as the

clean dataset that is manipulated with malicious input and modified to D′ = (x′
i, l

′
i)

n
i=1 to maximise

the classification errors of the decision function C(.) at test time. One crucial consideration in data
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poisoning attacks is that poisoned instances in the dataset closely resemble clean instances to avoid

detection.

Data gathering data engineering and
dataset formulation
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Figure 2.9: Poisoning attack surface in machine learning model development process - Poisoning
machine learning attack

2.2.9.2 Evasion Attack An evasion attack is an adversarial attack that perturbs test inputs

to manipulate the classification results during testing (Biggio et al., 2013). The attack surface for

evasion attack is shown in Fig. 2.10. An evasion attack aims to manipulate the model’s sensitivity

to perturbations in test inputs by identifying a path that maximises loss in the input space. In this

way, it forces the model to generate incorrect classifications while leaving the trained model and the

training dataset intact. Consider a dataset D = {(xi, li)}ni=1 that is divided into training dataset Dt

and test dataset Dtest that is manipulated with perturbation x′ = x+ϵ such that D′
test = {(x′

i, l
′
i)}ni=1,

so that the perturbed test input x′ is classified with an incorrect output l′ ̸= l.

2.2.9.3 Model Inversion Attack A model inversion attack is an adversarial attack in which the

adversary steals or learns the confidential configuration parameters of the trained model to uncover the

private information or replicate the model (Usynin et al., 2023). For example, in a facial recognition

system, an attacker provides a face image to the model to assess its output confidence for a specific

class or label associated with that image. In this way, the attacker reconstructs the image for a

targeted label or identifies the model parameters by interpreting the output confidence. The attack

surface for the inversion attack is given in Fig. 2.11. Let C(.) be the decision function that provides the

class label l, where, with an inversion attack, the attacker calculates loss in the confidence predicting

y. Mathematically, it is given in Eq. 2.11.

argmin L(C(x), y) (2.11)
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Figure 2.10: Evasion attack surface in machine learning model development process - Evasion machine
learning attack
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Figure 2.11: Model inversion attack surface in machine learning model development process - Model
inversion machine learning attack

2.2.9.4 Membership Inference Attack A membership inference attack (Qiu et al., 2020) is an

adversarial attack in which the attacker seeks to answer the question:

Is the input x̂, given to classification function f(x̂) = y, a member of the training dataset for the

targeted modelM?

Generally, an ML model behaves differently on the training dataset compared to unseen data, which

is why a difference in training accuracy and test accuracy is observed. Fig. 2.12 illustrates the attack
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surface for membership inference attacks. Considering this behaviour, the primary objective of a

membership inference attack is to exploit differences in model predictions and identify whether x is

part of the training dataset. In this way, the attacker can infer whether specific inputs were part of

the training data for the targeted model. Let f(.) be the classification function, where x̂ is the input

and y is the output. Then the objective is to reconstruct D = {(x̂, y)}ni=1.

Data gathering data engineering and
dataset formulation

query

query

query

training
dataset

testing
dataset

ML model
training

ML model
testing

ML model
deployed

adversary

Attack surface - membership inference attack

users

structured 
queries

querying
modelmodel

output

structured 
queries

identify inference

Figure 2.12: Membership inference attack surface in machine learning model development process -
Membership inference machine learning attack

2.3 State-of-the-Art Analysis

2.3.1 Methodology

A detailed literature review is conducted following eight dimensions to analyse and compare adversar-

ial attacks. The methodology for the state-of-the-art analysis is given in Fig. 2.13. The peer-reviewed

Examining victim Examining attacker Threat analysis

Analysis
phase II

Analysis
phase III

Analysis
phase I End

Exploited vulnerability

Machine learning
algorithm

Attacker's knowledge

Attacker's goalsAttack type

Attack severity and
impact Threat model

Targeted feature

Figure 2.13: Research methodology of the state-of-the-art analysis
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and conference papers, published in or after 2017, are selected for this literature review to assess ad-

versarial attacks on the latest ML models and systems, developed with updated technologies and

practices. The papers selected either focus on AML attacks or mitigation solutions against AML

attacks to provide technical insights into the attack development.

Machine learning model/algorithm In this literature review, firstly, the ML algorithm/model

included in the selected papers is analysed to study technical interpretations of the attack design. It

is considered an influential factor in identifying the design and complexity of adversarial attacks. It

also highlights the vulnerabilities of individual ML algorithms.

Exploited vulnerability Next, the exploited ML vulnerabilities are examined in detail, which helped

develop the attack vector to manipulate ML models. This dimension technically assesses the attack

success against the targeted system.

Attack type Further to the analysis of the ML algorithm/model and the exploited ML vulnerability,

the adversarial attack type is examined to assess the attack surface of adversarial attacks. The attack

types included are poisoning, evasion, model inversion, and membership inference attacks. Analysing

existing studies based on these attack types explains the practicality, implications, and comparison

of these attack types against ML systems.

Attacker’s knowledge The literature review also explored the attacker’s knowledge to deepen the

understanding and examine the impact of the knowledge and capabilities of the adversary in de-

veloping adversarial attacks. The knowledge levels can be set between zero, partial, and complete

knowledge of the targeted system. It helps analyse the impact of attacks from existing studies and

compare the complexity and implications of each adversarial attack, as it is considered an important

benchmark when designing these adversarial attacks.

Attacker’s goals The next significant dimension is the detailed synopsis of the adversary’s goals and

objectives set with the devised attack. The consequences of the adversarial attack can be understood

by analysing the intention and goals of the adversary.

Threat model The threat model is analysed under which the attack has been developed. The

adversarial capabilities and access to the target system have been studied to analyse the practical

feasibility of the attack.

Attack severity and impact After analysing adversarial attacks with the above dimensions, the

attack severity is determined by studying the outcomes, as discussed in publications. Analysing the

attack severity will provide us with grounds to study the complexities and practical implications of

adversarial attack types.

Exploited feature The exploited feature of the model is determined for each attack to understand

the vulnerabilities in ML models and their development processes.
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2.3.2 Literature Review

This chapter proposed an in-depth and comparative analysis based on four major adversarial attack

types on ML. To analyse various adversarial attack vectors in detail, each attack vector is examined

based on attack type, exploited features, adversary, its capability and knowledge, and the impact of

the attack vector on the victim model or algorithm. This study is the first literature analysis that

examines existing works according to eight dimensions. A hierarchical summary of articles studied

for attack analysis is given in Fig. 2.14. A detailed analysis of the examined attacks is provided

in Sections 2.3.2.1 to 2.3.2.4. Attack vectors are analysed following eight dimensions, given in the

methodology.

adversarial attack
types

poisoning attack

evasion attack

model inversion
attack

membership inference
attack

 F. A. Yerlikaya et al., 2022
 M. Jagielski et al., 2020
 A. Demontis et al., 2019
 C. Zhu et al., 2019
 M. Jagielski et al., 2018

 H. Bostani et al., 2022
 Md. A. Ayub et al., 2020
 Y. Shi et al., 2017

 T. Titcombe et al., 2021
 M.  Khosravy et al., 2021

 Q. Zhang et al., 2020
 Z. He et al., 2019
 S. Basu et al., 2019
 U. Aïvodji et al., 2019

 J. Jia et al., 2019
 Y. Zou et al., 2020

 J. Chen et al., 2021
 M. Zhang et al., 2021

 D. Gibert et al., 2023
 H. Yan et al., 2023

 Z. Zhu et al., 2023

 Plant et al., 2024
 Nazary et al., 2025

 Ain et al., 2025
 Koball et al., 2025

 Li et al., 2025
 Bao et al., 2025

 He et al., 2025
 Tao et al., 2025

Figure 2.14: State-of-the-art - AML attack types

2.3.2.1 Data Poisoning Attacks Poisoning the dataset is possible in two approaches. The first

approach is to disrupt the labeling strategy of the victim model, known as the label poisoning attack

(Gupta et al., 2023a) and the second is the perturbation of features, where the adversary manipulates
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the features of the dataset, leaving the label integrated, known as a clean-label poisoning attack

(Zhao and Lao, 2022a). The existing literature provides several approaches to implement data poi-

soning attacks, considering the attack surface defined for data poisoning in ML development. The

comparison of existing studies is given in Table 2.1. Yerlikaya and Şerif Bahtiyar (2022) designed two

Table 2.1: Analysis of poisoning attacks

Reference Machine
learning
model/
algorithm

Attack
type

Exploited
vulnerabil-
ity

Attacker’s
knowledge

Attacker’s
goals

Attack sever-
ity and im-
pact

Defined
threat
model

Targeted fea-
ture

Nazary
et al.
(2025)

OpenAI
LLM

Emotional
attack,
neighbor
borrow-
ing, chain
attack

inject
poisoned
words to
change
emotional
intensity

white-box at-
tack

promote
and demote
recommenda-
tions

no model
per-
for-
mance

Plant
et al.
(2024)

BERT,
RoBERTa,
ALBERT,
Distil-
BERT,
BERTeus,
EIB-
ERTheu,
IXAm-
BERT,
Rober-
taEUSCrawl

label-
flipping
attack

probabilistic
approach
to change
class labels

black-box at-
tack

reduce model
performance

large pre-
trained
models may
be more ro-
bust than ML
models

no model perfor-
mance

Yerlikaya
and Şerif
Bahtiyar
(2022)

SVM,
SGD,
Logistic
regression,
Random
forest,
Gaussian
NB, K-NN

random
label and
distance-
based label
flipping
attacks

poisoning
dataset by
changing
class labels
with two
effective
strategies

white-box at-
tack

reduce per-
formance
(accuracy) of
the system

KNN and
Random
forest algo-
rithms are
not much
affected by
label poison-
ing attacks

no model accu-
racy

Jagielski
et al.
(2021)

Convolution
neural net-
works

subpopulation
attack

poisoned
cluster is
integrated
as sub-
proportion
of training
dataset

gray-box at-
tack

misclassification
targeted at-
tack

Subpopulation
attacks are
difficult to
detect and
mitigate
specifically
in non-linear
models

yes test time pre-
diction

Demontis
et al.
(2018)

SVM
classifier,
Logistic,
Ridge,
SVM-RBF

training
time poi-
soning
attack

reduced
gradient
loss with
poisoned
data points
in trans-
ferable
setting

white-box,
black-box
attacks

violate
model’s
integrity and
availability

poisoning
attacks are
more ef-
fective on
models with
large gra-
dient space
and high
complexity

yes model avail-
ability

Zhu
et al.
(2019b)

Deep
Neural
networks

feature
collision
attack,
convex
polytope
attack

feature
space with
perturbed
training
samples

gray-box at-
tack

over fit tar-
get classifier
with poisoned
dataset

Turning
dropout dur-
ing training
with poisoned
data enhance
transfer-
ability of
poisoning
attack in
deep neural
networks

yes test time mis-
classification

Jagielski
et al.
(2018)

Linear re-
gression

statistically
based re-
gression
points
poisoning
genera-
tion with
flipped
labels

distinguishing
legitimate
and poi-
soned
regression
points with
minimal
gradient
loss

mean and
co-variance
dependent
gray-box
attack

misclassification
of the system

residual
filtrating
mitigates
poisoning
attack on
Linear regres-
sion

yes model accu-
racy

label-flipping attacks to perturb six ML algorithms with four datasets. The attacks were designed

to poison binary classifiers and reduce model performance. Jagielski et al. (2021) proposed an ML

poisoning attack called the Subpopulation attack. This attack injected a poisoned cluster into the
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dataset to evade detection of poisoned data points. Existing security techniques, such as training

a regression model (TRIM), activation clustering, reject on negative impact (RONI), and spectral

signatures, were found to be ineffective against a subpopulation data poisoning attack. In the study

(Demontis et al., 2018), the poisoning and evasion attacks on ML are designed to highlight their trans-

ferability during both the training and testing phases of model development. Demontis et al. (2018)

highlighted the risk of transferring poison from the surrogate to the victim model. A gradient-based

optimisation framework is developed to transfer the poison that alters the gradient of input samples

in both training and testing datasets. It empirically analysed the security vulnerabilities in transfer

learning and identified major factors that breach integrity, making poisoning and evasion attacks

successful in transferring between surrogate and victim ML models. These factors are the attacker’s

optimisation objectives, gradient alignment of surrogate and target models, and model complexity.

Zhu et al. (2019b) also demonstrated the transferability of poisoning attacks in ML by implementing

polytope attacks in deep neural networks. They explained the impact of clean-label poisoning attacks.

They highlighted the successful poisoning with 50% performance degradation with 1% poisoning of

the training dataset. The convex polytope attack is implemented on various deep neural networks as

case studies in this research, highlighting the efficacy and consequences of data poisoning attacks in

transfer learning. Their study confirmed the reliability and effectiveness of a convex polytope attack,

comparing it with a feature collision attack. It also demonstrated the successful transferability of the

convex polytope attack in a black-box setting where the adversary does not know the dataset of the

victim model and still achieves almost the same results as when the adversary has a 50% overlap with

the target dataset. In conclusion, the research discussed above has formulated improvements in the

transferability of poisoning attacks by turning on the dropout rate and implementing convex polytope

objectives in multiple layers of neural networks. This research underscores the need to secure ML,

specifically neural networks, from poisoning attacks in various adversarial settings.

The research by Jagielski et al. (2018) particularly focuses on the security vulnerabilities and de-

fense solutions related to linear regression. It focuses on poisoning linear regression models with

gradient-based optimisation and statistical attack strategies. Their study introduces a new optimisa-

tion framework to poison linear regression in a gray-box attack setting, evaluating the limitations of

existing attacks. It also proposed a statistical poisoning attack to maximise the loss by introducing

poisoned points at the edges of the decision boundary. This attack exploits secure regression models.

However, TRIM has been proposed, proving to be more effective in mitigating poisoning attacks in

the linear regression model but ineffective against subpopulation attacks, thus proving the severity

of the poisoning attack in adversarial settings.
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2.3.2.2 Evasion Attacks Attacking the ML model at test time is known as an evasion attack.

This attack aims to mislead the model by perturbing the test data (Ayub et al., 2020). The ultimate

objective of this attack is to manipulate the testing input to undermine the integrity of models during

testing. Malware Generative Recurrent Neural Network (MalRNN) is a deep learning-based approach

designed to conduct evasion attacks on ML-based malware detection systems (Ebrahimi et al., 2020).

MalRNN evades three malware detection systems, which demonstrates the effectiveness of evasion

attacks. Moreover, these attacks highlight the importance of reliable security solutions to mitigate

vulnerabilities in ML against evasion attacks. A comparison of evasion attacks is given in Table 2.2.

Malware classifiers are also vulnerable to adversarial attacks. In the study by Bostani and Moonsamy

(2021), a test-time attack is developed on an Android malware classifier to disrupt its classification

outcome. The attack presented in this paper was a black-box attack that extracts opcodes using the

n-grams strategy from disassembled Android application packages (APKs) and manipulates benign

samples into malicious ones through a random search technique. This attack was tested on five mal-

ware detectors. It demonstrated the effectiveness of a test-time attack that evades the ML model and

caused misclassification during testing. As a result, ML-based malware detectors, including Drebin,

Detection malware in Android (MaMaDriod), with an accuracy of 81% and 75%, respectively, and

others failed to detect malicious Android applications.

Similarly, the Jacobian-based saliency map attack (JSMA) also demonstrated the stealthiness of the

evasion attack. JSMA was developed using a multi-layer perceptron for IDS. The goal is to achieve

targeted misclassification, where the adversary intends to classify malware traffic in network intrusion

detection systems (NIDS) as benign. The experimental analysis followed a white-box setting to devise

this evasion attack, achieving a maximum accuracy drop of approximately 29% using the TRabID

2017 dataset. Hence, it demonstrated the malicious approach to threatening ML applications in cy-

bersecurity, subsequently highlighting the test-time security vulnerabilities in neural networks.

The sensitivity of evasion and causative attacks is examined against DL models, proposed in (Shi and

Sagduyu, 2017). This examination helps understanding the security vulnerabilities in deep learning

models. This research devised an adversarial perturbation approach and tested it with text and image

datasets. Initially, an evasion attack was conducted, followed by an exploratory attack aimed at in-

ferring the trained classification model and extracting its private tuning parameters. The exploratory

attack was a black-box query-based attack that replicates the victim model following the obtained

query outputs. In the replicated model, this attack was extended by poisoning test labels to mislead

the deep learning model through an evasion attack.

2.3.2.3 Model Inversion Attacks The objective of this attack is to disrupt the privacy of ML.

Model inversion attack is a type of attack in which an adversary tries to steal the developed ML model
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Table 2.2: Analysis of evasion attacks

Reference Machine
learning
model/
algorithm

Attack
type

Exploited
vulnerabil-
ity

Attacker’s
knowledge

Attacker’s
goals

Attack sever-
ity and im-
pact

Defined
threat
model

Targeted fea-
ture

Koball
et al.
(2025)

decision
tree, ran-
dom forest,
adaptive
boosting,
isolation
forest

label per-
turbation
to mislead
classifica-
tion

white-box
attack

test-time per-
formance de-
crease

yes leaf nodes of
the model

Ain et al.
(2025)

Fused
Truncated
DenseNet,
Fused
Swish-
ReLU
Efficient-
Net,
Efficient-
capsule
Net, Reg-
ularized
Forensic
Efficient
Net

statistical
distraction
pipeline

gradient
perturba-
tion

black-box at-
tack

evade deep-
fake detector

deepfake
detector are
susceptible
to evasion
attack

no brightness of
the localised
masked area

Gibert
et al.
(2023)

Generative
adversarial
networks

query-free
feature-
based
attack

perturbed
features in
executable

black-box at-
tack

evade ML
detector with
malicious
executable

ML-detectors
are vulner-
able to be
evaded with
query-free
attacks

no victim detec-
tion decision

Yan
et al.
(2023)

Logistic
regression,
SVM, NB,
Decision
tree, RF,
xgBoost,
ANN, En-
semble
model

label-based
evasion
attack

poisoned
labeled
samples

black-box at-
tack

transfer
adversari-
ally crafted
samples to
evade

transfer-
based evasion
attack is a
serious threat
to ML and
DL

no test time pre-
cision

Bostani
and
Moon-
samy
(2021)

ML-based
malware
detector

n-gram
based at-
tack on
malware
classifier

transform
malware
samples
into be-
nign with
n-gram
based in-
cremental
strategy

black-box
attack with
model query
access

misclassification
of android
malware
detector

DNN are
more affected
by evading
surrogate
models com-
paring to
linear SVM
classifier

yes test time pre-
diction

Ayub
et al.
(2020)

multi-layer
perceptron
network

Jacobian-
based
saliency
map attack

iterative
approach
to insert
perturba-
tion near
sensitive
feature
of benign
samples

white box at-
tack

misclassify
malicious
sample as
benign in IDS

multi-layer
perceptron
can be ex-
ploited with
evasion at-
tack with
minimal
model’s
knowledge

no test time pre-
diction

Shi and
Sagduyu
(2017)

näıve bayes
classifier

evasion
attack
with feed-
forward
neural
networks

feed poi-
soned
samples
with DL
score under
computed
attack
region

exploratory
black-box
attack

misclassify
test data
samples

controlled
perturbations
to labels and
classification
boundary
may limit
adversarial
impact on DL

yes model avail-
ability

by replicating its underlying behaviour, querying it with different datasets. An adversary extracts

the baseline model representation through a model inversion attack and can regenerate the training

data to replicate the model. The comparison of the selected studies is provided in Table 2.3. Usynin

et al. (2023) designed a framework for a model inversion attack on a collaborative ML model and

demonstrated its effectiveness. Their study also highlights the impact of model inversion attacks on

transfer learning models.

The research paper (He et al., 2019) experimentally demonstrated a privacy attack during inference
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Table 2.3: Analysis of model inversion attacks

Reference Machine
learning
model/
algorithm

Attack
type

Exploited
vulnerabil-
ity

Attacker’s
knowledge

Attacker’s
goals

Attack sever-
ity and im-
pact

Defined
threat
model

Targeted
feature

Li et al.
(2025)

VGG16,
ResNet50,
IR50-SE,
AlexNet

gradient
perturba-
tion on
entropy
loss

gradient of
images

white-box at-
tack

GAN transfer
learning

model inver-
sion attacks
have lim-
ited efficacy
against GAN
models

no dataset
samples
privacy

Bao
et al.
(2025)

FaceNet64,
ResNet-
152,
VGG16

generative
MI attack,
knowledge-
enriched
distri-
butional
MI attack,
reinforcement-
learning-
based
black-box
MI attack,
boundary-
repelling
MI attack

latent
probability
distribu-
tion

black-box at-
tack, white-
box attack

identify pri-
vate data
within op-
timal latent
probability
distribution

identifies
model private
training data
samples

no training
dataset
samples

Titcombe
et al.
(2021)

split neural
networks

model
inversion
attack on
distributed
ML

steal
interme-
diate/dis-
tributed
data from
nodes in
transfer
learning

black box at-
tack

invert in-
termediate
stolen data
into input
format

Model inver-
sion attacks
are effective
and depen-
dent on input
dataset

yes model in-
terception

Khosravy
et al.
(2021)

deep neural
networks

images
reconstruc-
tion with
MIA

regenerate
model by
intercept-
ing private
data of
victim
model by
gathering
output

gray-box at-
tack

inverted
model and
developed
duplicate

ML is un-
der serious
threat of
MIA attack
with partial
knowledge of
system

no model pri-
vacy

Zhang
et al.
(2020)

deep neural
networks

stealing
victim’s
model
classes

sample re-
generation
helps to
determine
private
data of
victim’s
model
classes

white box at-
tack

developed
surrogate
model similar
to the target

ML model
can be in-
verted even if
secured with
differential
privacy

yes model pri-
vacy

He et al.
(2019)

deep neural
networks

Inverse-
Network
attack
strategy

used un-
trusted
participant
in collab-
orative
system

black box,
white box
and query-
free inversion
attacks

extract in-
ference data
with an
un-trusted
adversarial
participant in
collaborative
network

Privacy-
preservation
is challenging
to achieve in
split DNN

yes model pri-
vacy

Basu
et al.
(2019)

deep neural
networks

generative
adversarial
network
approach

extracted
output
from tar-
geted
network
with gen-
erative
inference
details

white-box at-
tack

extract model
class/infer-
ence details
by replicating
generative
adversarial
network

machine
learning can
be inverted
with genera-
tive samples

no model
accuracy

Aı̈vodji
et al.
(2019)

deep neural
networks

query
based gen-
erative
adversarial
network

extract
model de-
tails by
interpret-
ing queried
outputs

black box at-
tack

Breach pri-
vacy of
Convolu-
tional neural
networks
(CNN)

differential
privacy is
not much
effective to
mitigate MIA
on machine
learning

no model pri-
vacy
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in collaborative ML and argued that a single malicious participant could infer the target system

and steal its confidential information. This attack is successful in all three settings of complete

knowledge, zero knowledge, and a query-free attack setting. The confidential tuning parameters

were extracted using a regularised maximum likelihood estimation technique in which the adversary

followed the Euclidean distance estimation and identified the optimal sample with the least variation.

In conclusion, this research highlighted the potential of inference attacks that require attention to be

mitigated to ensure privacy preservation of deep learning. Basu et al. (2019) demonstrated privacy

issues in ML algorithms by inverting a deep neural network (DNN) with a model inversion attack.

This research study implemented the model inversion attack on a facial recognition system and

extracted the class representation of the model. The attack developed in this research had only

baseline knowledge of the target system. The attacker employed a generative adversarial network

to create input samples and invert the victim model, highlighting the effectiveness of generative AI

in inverting the model. Another framework called generative adversarial model inversion (GAMIN),

developed by U. Aivodji and others (Aı̈vodji et al., 2019), was also based on generative adversarial

networks. It created adversarial images to query the targeted model and extract its details through

comparative output resemblance. The threat disclosed with adversarial networks is that even without

prior knowledge of the system under attack, the adversary can extract its confidential parameters

and reconstruct the model. Khosravy et al. (2022) also developed a model inversion attack on a deep

neural network-based face recognition system. It was a gray-box attack in which the adversary had

partial knowledge of the system under attack, including model structure and parameters. This attack

extracted the model configurations by reconstructing images based on the confidence scores provided

by the targeted model, hence inverting the targeted CNN model. In conclusion, all the mentioned

attacks emphasise the privacy-preservation of ML, which is a primary consideration in constructing

trustworthy and resilient AI/ML that resists adversarial attacks.

2.3.2.4 Membership Inference Attacks A membership inference attack is another privacy

attack that infers the victim model and extracts its training data, privacy settings, and model pa-

rameters. In this type of attack, the adversary has access to query the victim model under attack

and can analyse the output gathered from the queried results. The adversary can regenerate the

training dataset of the targeted adversarial ML model by analysing the gathered queried results. The

Membership inference attack (MIA) is another privacy risk to ML and DL models. The comparison

of selected MIA attacks is given in Table 2.4. Zou et al. (2020) comprehensively studied membership

inference attacks in deep learning models under transfer learning and achieved 95% accuracy in de-

termining whether the input instance belonged to the training dataset. These attacks were developed

for three different transfer learning modes as part of this research. When the adversary had access to
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Table 2.4: Analysis of membership inference attacks

Reference Machine
learning
model/
algorithm

Attack
type

Exploited
vulnerabil-
ity

Attacker’s
knowledge

Attacker’s
goals

Attack sever-
ity and im-
pact

Defined
threat
model

Targeted fea-
ture

He et al.
(2025)

LLaMA2-
13B,
Falcon-7B,
Pythia-
6.9B,
OPT-6.7B

label-only
MIA attack

token-level
semantic
similarity

black-box at-
tack

label-only
MIA attacks
are designed
for the fine-
tuning phase
of LLM

label-only
MIA attacks
are highly
effective in
inferring
fine-tuning
LLMs

yes personalisation
of LLMs with
fine-tuning
tokens

Tao and
Shokri
(2025)

Multilayer
Perceptron

hyperparameters
range fol-
lowing the
reference
model

black-box
attack

identify
training
dataset

MIA attack
infer accurate
data within a
defined range

no hyperparameter
range

Zhu
et al.
(2023d)

multi-layer
perceptron

MIA on
sequential
recom-
mendation
system

surrogate
and
shadow
models are
designed
to extract
recommen-
dations

black-box at-
tack

infer user
recommenda-
tions

inferring
sequential
recommen-
dations leads
to provide
personalised
details

yes dataset infer-
ence

Chen
et al.
(2020)

Lasso re-
gression,
CNN

MIA with
shadow
model

shadow
model is
used to
mimic
ground
truth

white box at-
tack

retrieve con-
fidential
details of
target model

differential
privacy mit-
igates MIA
compromis-
ing accuracy
of model

no model infer-
ence

Zhang
et al.
(2021)

neural
networks-
based
recom-
mendation
system

inference
attack to
extract
user-level
details

adversarial
model is
developed
with theft
users’
private
data

black box at-
tack

retrieve pri-
vate details
of victim
model

Popularity
randomisa-
tion is effec-
tive against
MIA in rec-
ommender
system

yes model pri-
vacy

Zou
et al.
(2020)

deep neural
networks

transfer
learning
based
black-box
attack

no privacy-
preserved
in transfer
learning
model

black box at-
tack

infer training
model details
with three
formulated
attacks

transfer
learning is at
serious threat
of MIA

yes model infer-
ence

Jia et al.
(2019)

neural net-
work

MIA
against
binary
classifier

interpret
output
confidence
score to
manipu-
late model
details

black-box at-
tack

retrieve
private train-
ing data of
classifier

existing so-
lutions are
subject to
the dataset
used in the
classifier

no dataset infer-
ence
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the teacher model, they targeted the trained student model and inferred the teacher model’s dataset

using the student model. Zou et al. (2020) implemented a surrogate model based on ResNet20 con-

volutional neural networks with derived and student datasets to infer the membership inference of

the victim model. This attack vector was effective in demonstrating the capability of membership

inference attacks to compromise privacy, even with limited access or information about the victim

model. Another potential privacy attack is mentioned in (Zhang et al., 2021), where the attacker

targeted an automated recommender system using a membership inference attack. This is a zero

knowledge attack. Their attack posed a serious privacy threat to the recommender system’s sensitive

user data, which adversaries can reveal using a query-based attack. In this context, the inference

attack is characterised by three recommender algorithms: item-based collaborative filtering, a latent

factor model, and neural collaborative filtering. A shadow model was implemented to mimic the

victim’s training dataset, which ultimately puts its privacy at risk.

Various mitigation techniques are also proposed to secure ML models from the adversarial attacks

mentioned above. Many existing solutions are primarily attack-agnostic or algorithm-focused. While

they may secure models from specific attacks, they might fail against new attacks. The proposed

security solutions in the literature have various limitations that must be addressed to maintain the

integrity of ML, ensuring that AI/ML remains secure and trustworthy. A hierarchical description of

the mitigation techniques analysed in this study, based on adversarial attack types, is presented in

Fig. 2.15. A detailed analysis of existing security solutions based on adversarial attack types is given

as follows:

2.3.2.5 Mitigating Data Poisoning Attacks

Data Sanitisation Data sanitisation is one of the prominent mitigation techniques against data poi-

soning attacks, which preprocesses training datasets and removes erroneous or poisoned data points.

Nevertheless, this process may reduce the size of the dataset, leading to underfitting in model devel-

opment. Venkatesan et al. (2021) proposed a solution to overcome the limitations of data sanitisation

by creating random training data subsets to train an ensemble of ten classifiers to balance the poi-

soning effect and dataset size. This mechanism reduces poisoning effects in NIDS by 30%. Similarly,

another data sanitisation derivative is applied to malware detection systems to mitigate clean-label

poisoning attacks (Ho et al., 2022b). This approach is an enhancement provided in (Venkatesan et al.,

2021). Further, the study (Paudice et al., 2018b) proposed another approach to label sanitisation to

reduce the impact of overfitting and underfitting. However, P. W. Koh and others (Koh et al., 2021)

proposed three sophisticated poisoning attacks by introducing cluster-based poisoning that breached

the sanitisation solutions highlighted above.

RONI is also a derivation of data sanitisation proposed by Chan et al. (2018a), which removes poi-
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Mitigation strategies -
AML attacks

mitigating poisoning
attack

mitigating 
evasion attack

mitigating model inversion
and membersip inference

attacks

  data sanitization

  Adding adversarial
noise to data samples

  Adversarial training

  Model hardening

  Adversarial training

  Model hardening

 Differential privacy
and sparsity

 Probability randomization

 S. Venkatesan et al., 2021
 Samson Ho et al., 2022
 A. Paudice et al., 2018
 P. W. Koh et al., 2021

 P. PK Chan et al., 2018

 T. Y. Liu et al., 2023

 Z. You et al., 2019

 J. Lin et al., 2022

 M. Jagielski et al., 2018

 G. Tao et al., 2022
 G. Apruzzese et al., 2020

 M. Pawlick et al., 2020

 G. Apruzzese et al., 2020
 E. Anthi et al., 2021

 J. Chen et al., 2020
 H. Phan et al., 2020
 Q. Zhang et al., 2020
 M. Strobel et al., 2022

J. Jia et al., 2019

 Region-based
classification

 X. Cao et al., 2017

 U. Ahmed et al., 2022
 H.Rafiq et al., 2022

K. Pan et al., 2023

 Pre-training Z. Chen et al., 2023a
Z. Chen et al., 2023b
Z. Yang et al., 2023

Figure 2.15: State-of-the-art of mitigation techniques - AML attack types

soned data samples by analysing their negative impact on classification accuracy. However, it also

leads to underfitting issues that reduce the flexibility and increase false negatives at test time.

Adding Adversarial Perturbation Training the ML model with an adversarially developed dataset

allows the trained model to identify poisoned samples at test time. Liu et al. (2023) have boosted the

immunity of the model by adding specifically crafted noise samples in the dataset during training,

which is effective against bulls-eye polytope, gradient masking and sleeper agent attacks. Another

study (You et al., 2019) has introduced adversarial noise into the intermediate layer of CNN to miti-

gate FGSM attacks.

Adversarial Training Training an ML model with adversarial data samples allows it to be resilient

against poisoning attacks. TRIM is one of the techniques used to adversarially train models with

a residual subset of a dataset with a minimum error rate. Jagielski et al. (2018) have designed

and experimented with this TRIM algorithm against adversarial poisoning attacks against the linear

regression algorithm to solve optimisation problems. This approach has reduced the error rate to
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approximately 6%. It performs robustly compared to Random sample consensus (RANSAC), a data

sanitisation derivative. Whereas, TRIM and RONI security techniques failed against the subpopula-

tion attack developed in (Jagielski et al., 2021).

Model Hardening Another innovative technique to mitigate poisoning attacks is model hardening,

in which the model is trained until it leads to large class distances where it should not accept outliers.

This technique makes it challenging for an adversary to poison the model. Tao et al. (2022a) proposed

a model hardening mechanism with additional training to increase the class distances and challenge

the label-flipping attack. The study (Apruzzese et al., 2020a) hardens the random forest algorithm

to mitigate the poisoning impact on an IDS. Moreover, it can also help mitigate backdoor attacks

against neural networks. It reduces misclassification up to 80%, but it is still only effective against

label-flipping backdoor attacks.

2.3.2.6 Mitigating Evasion Attacks

Adversarial Training Adversarial training is a prominent mechanism to mitigate evasion attacks

in ML. A particular dataset part is intentionally poisoned to lessen the test time evasion and make

the model adversarially robust (Pawlicki et al., 2020). It allows the victim to be aware of adversarial

samples if injected at test time to detect and defend itself if attacked by an adversary. Ahmed et al.

(2022) proposed adversarial training by classifying adversarial and normal data samples, followed by

centroid-based clustering of features and calculating the cosine similarity and centroid of the image

vector. The research (Rafiq et al., 2023) trains independent models to reduce fabricated classification

attacks and (Lin et al., 2022) secures against Carlini and Wagner and FGSM attacks.

Model Hardening The hardening ML model also applies to developing a wall of security in ML

against adversarial attacks at test time. Evasion attacks are also mitigated with the help of a training

model until they reach the state of hardening, which activates the model to evade adversaries and

mitigate attack impact. Adversarially crafted samples are intentionally injected during the ML model

training to evade the system until it reaches the state of hardening, making the victim model resilient

and robust. These poisoned input data samples evade the system and are then marked as poisoned

in the system to identify similar patterns if injected by the adversary at test time. Apruzzese et al.

(2020b) have introduced a similar strategy to mitigate evasion attacks in botnet detection systems

by deep reinforcement learning. They have developed an agent based on deep reinforcement learn-

ing capable of generating adversarial samples to evade the targeted botnet. Then, including these

adversarially generated samples into the targeted system marked as malicious to make the model un-

derstand the pattern of adversarial samples if attacked during test time, whereas the research study

(Anthi et al., 2021) used model hardening to secure an ML-based IoT system. A threshold is specified

that trains the model properly with the legitimate and illegitimate datasets, which makes the botnet
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detector robust against evasion attacks.

Region-based Classification Cao and Gong (2017) have designed a classification mechanism based

on region rather than individual sample points. The researchers provided this technique based on the

assumption that the adversarial points lie near the classification boundary. A hypercube-centered

classification approach is determined by omitting single-point-based classification at test time to

reduce the impact of adversarial points.

2.3.2.7 Mitigating Model Inversion and Membership Inference Attacks

Differential Privacy and Sparsity To preserve the privacy of ML models, one of the profound

solutions is differential privacy. It makes it difficult for the adversary to analyse the output and

extract the victim’s confidential information. Chen et al. (2020) have used differential privacy applied

with stochastic gradient descent on Lasso and CNN neural networks to preserve genomic data privacy.

Phan et al. (2020) improve DNN robustness by implementing differential privacy with the logarithmic

relation between the privacy budget and the accuracy of the targeted model. They have empirically

analysed genomic data for phenotype prediction with a white-box attack. However, Zhang et al.

(2020) improves differential privacy by implementing it at the class and sub-class level, proving the

minimal probability of model inversion attack at the dataset only. Class and sub-class level differential

privacy is more effective and robust than simple record-level differential privacy, providing more

Euclidean distance between original and inverted data samples. However, it is tested with neural

networks only with the Face24 and MNIST datasets. Also, this type of differential privacy requires

high computational resources, whereas the study (Strobel and Shokri, 2022) highlights trade-offs of

data privacy and assuring its trustworthiness. Pan et al. (2023) implemented differential privacy

to mitigate privacy attacks and data leaks against generative adversarial networks. Whereas, the

floating-point attack mentioned in (Jin et al., 2022) has invalidated differential privacy implemented

to preserve the privacy of ML models.

Probability RandomisationAdversarial privacy attacks, specifically membership inference attacks,

target ML classifiers and infer input datasets by interpreting the confidence score and probability of

the queried output. Adding noise to the output or intentionally interrupting the confidence probability

score leads to the privacy preservation of ML, preventing adversaries from inferring confidential

details of the victim model. Membership inference guard (MemGuard) (Jia et al., 2019) is one of

the solutions designed to preserve the privacy of ML models against membership inference attacks

by adding randomised noise to each of the score vectors with a specified probability of accuracy loss,

and makes ML-based binary classifiers resilient to mitigate membership inference attacks. However,

the solution is only tested for securing neural networks under the black-box attack settings.

Pretraining Chen et al. (2023) have proposed a model-preserving framework to preserve the security
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of deep learning models while training models by combining model parameters and training data.

Chen and Pattabiraman (2023) have introduced a new framework to pre-train an ML-based model

to preserve privacy by enforcing less confidence in the queried results between members and non-

members. Z. Yang and others (Yang et al., 2023) have introduced another model to statistically

in-distinguish the confidence scores of members and non-members.

2.4 Research Gaps in the State-of-the-Art

This state-of-the-art study reveals that data poisoning attacks are primarily examined in computer

vision tasks using image datasets Ghosh et al. (2022), Zhong et al. (2020), Su et al. (2019). However,

analysing poisoning impact in other domains focusing on traditional models such as RF, DT, and

GNB is also important as these models are used in various real-world applications and often preferred

when working with limited or unprocessed datasets Dixit et al. (2018), Sasmono et al. (2021), Kamath

et al. (2018). Also, these models are a baseline for the advanced ML, such as neural networks for DL;

therefore, understanding their poisoned behaviours helps improve mitigations for both ML and DL

models.

In particular, traditional multiclass models have received limited attention in studies of data poi-

soning attacks Paracha et al. (2025a), Paracha et al. (2024b). Multiclass models play a critical role

in addressing complex, multifaceted problems Lee et al. (2021), Rahman et al. (2023), Adarsh and

Jeyakumari (2013). Analysing data poisoning attacks against these models provides a comprehensive

understanding of poisoning impact under various development settings.

In addition, existing literature highlighted that most studies evaluate data poisoning attacks using

standard performance metrics, including accuracy, recall, f1-score, and adversarial success rate to

assess their impact Chen et al. (2021), Lu et al. (2024), Jagielski et al. (2018). However, it is crucial

to understand how data poisoning alters the underlying decision mechanisms of these models, which

is a limitation of existing work. Such deep analysis provides an understanding of the changing char-

acteristics of the model, which helps improve and strengthen security-by-design solutions. Another

identified limitation is that most studies have developed data poisoning attacks with full knowledge

and capabilities of adversaries, whereas understanding their feasibility under constrained adversarial

capabilities highlights their effectiveness and practicality against real-world applications.

Conversely, this analysis identifies several limitations in existing mitigation strategies for data poi-

soning attacks. A primary issue is that most solutions are either attack-specific or algorithm-specific.

For instance, adversarial training (Ho et al., 2022a) is predominantly applied to deep neural networks,

leveraging gradient loss during training, which restricts its applicability to models such as RF and

GNB that do not utilise gradient-based optimisation. Evaluating the effectiveness of such methods

remains unexplored in traditional models. Similarly, data sanitisation (Venkatesan et al., 2021) was
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developed for network intrusion detection systems (NIDS), but its dependence on domain-specific

thresholds limits its generalisability.

This thesis seeks to address these research gaps with a systematic evaluation of traditional ML models

by first proposing deep behavioural analysis in Chapter 3, followed by evaluating the effectiveness of

multiclass data poisoning attacks under limited adversarial capabilities in Chapter 4. Following this

structural analysis, this thesis proposes an attack-agnostic and security-by-design solution in Chapter

5 to enhance the resilience and reliability of multiclass models.

2.5 Summary

This chapter presented a comprehensive state-of-the-art analysis of existing efforts in the domain

of ML security. Following a detailed literature analysis, this chapter attempted to provide a good

reference to researchers to gain insights into the domain of AML and understand the limitations

of existing mitigation techniques against adversarial attacks. This chapter provided a systematic

understanding of vulnerabilities across various threats, forming the baseline for evolving attacks and

solutions. This chapter answered the RQ 1 from the theoretical aspects with this state-of-the-art

analysis. Furthermore, this chapter analysed the security vulnerabilities in ML models under different

adversarial capabilities and threat models to highlight the significance of such attacks. For example,

data poisoning attacks are identified as a significant threat to training pipelines that can also be

extended to initiate other attacks, such as inference attacks that leverage data poisoning. Moreover,

existing mitigations are reviewed, revealing that most of the solutions are attack-specific solutions

that are designed for specific attack vectors or applicable to limited datasets, domains, or systems.

These solutions secure models from one attack, but adversaries can attack the model using another

technique. The answer to RQ 1 is extended in the next chapter to practically analyse the security

vulnerabilities of data poisoning attacks with limited adversarial knowledge and capabilities. .
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Chapter 3. Investigating Machine Learning Behaviour

Against Data Poisoning Attacks

3.1 Introduction

Chapter 2 covers the foundational concepts of ML and state-of-the-art adversarial attacks, including

poisoning, evasion, inversion, and inference attacks. It highlights that ML models are inherently

flexible and adaptive, making them vulnerable to adversarial manipulations. Among these attacks,

data poisoning stands out for its practicality and prevalence. This chapter investigates fundamental

threats posed by data poisoning attacks. While existing studies have typically explored these attacks

with performance metrics, such as reduced accuracy or increased adversarial success rates, this study

conducted a deep behavioural analysis. This study examined changes in learning dynamics, includ-

ing altered model characteristics and shifted decision boundaries, to reveal how poisoning affects the

decision mechanisms of individual models. This chapter answers RQ 1 by analysing how the under-

lying behaviour of ML models changes with the poisoned training. It also begins to answer RQ 2

by analysing the severity and impact of data poisoning attacks under limited adversarial capabilities.

This chapter proposes a behavioural analysis to assess these changes and practically fulfill the ob-

jective 1 of the research. It interprets the variance in the ML model with poisoned training. It also

compares the change in individual characteristics of models at varying poisoning levels to analyse

their impact on the model training.

During the model training, the ML model develops a dynamic classification mechanism that lever-

ages these models to understand the nature of new data and classify it. Such proliferation of ML

models and their dynamic classification mechanism render their security fundamentals to the security

of systems underpinned by them. Several poisoning techniques are available in the literature, such

as (Geiping et al., 2020; Koh et al., 2022). Further, various sophisticated attacks are formulated

to poison ML algorithms. Some of its successful examples are convex-polytope (Zhu et al., 2019b),

label-flipping (Yerlikaya and Şerif Bahtiyar, 2022), bullseye-polytope (Aghakhani et al., 2021) and

poison frog (Shafahi et al., 2018).

These data poisoning attacks manipulate training datasets in two ways. Firstly, the adversary can

perturb features of the training dataset so that ML models misinterpret this data and wrongly develop

their classification mechanism. Secondly, data poisoning attacks manipulate the classification labels

of the training dataset, which blurs the decision boundaries of models. Data poisoning attack has a

serious impact on various real-life applications, such as deceiving breast cancer diagnosis applications

(Das et al., 2024), skin cancer diagnosis applications (Paracha et al., 2024b), and IoT-enabled smart

city systems (Zhu et al., 2023c). To better mitigate these data poisoning attacks, it is significant to
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understand the manipulated behaviour of these poisoned ML models.

Security analysis of ML algorithms has received significant attention in recent years, focusing on

poisoning and other adversarial attempts. Specifically on data poisoning attacks, various research

papers have conducted an empirical analysis of the performance of ML algorithms (Yerlikaya and Şerif

Bahtiyar, 2022; Aryal et al., 2022). But these attempts do not provide the technical understanding of

change in their classification behaviour and why data poisoning attacks are successful in corrupting

their decision mechanisms, which is attempted for the first time in this research. The contributions

of this chapter are given as follows:

� This chapter conducts a thorough behavioural analysis of ML classification algorithms against

a label-flipping attack to analyse the correlation between the percentage of poisoned data and

the impact on classification accuracy.

� This chapter analyses the impact of data poisoning on the design of ML algorithms and high-

lights sensitive factors for each algorithm.

� This chapter analyses the behaviour and impact of data poisoning on classification results with

a noisy dataset. This chapter subsequently studied the impact of anisotropic features and

imbalanced dataset distribution.

3.2 Related Work

This chapter first understands the fundamentals of data poisoning attacks, existing attack vectors,

mitigating solutions, and the limitations of these solutions. Keeping ML models secure and integrated

is a potential and active research challenge. Poisoning attacks, which involve contaminating datasets,

pose significant risks to the integrity and confidentiality of ML systems. Notable examples of poison-

ing attacks are rethinking Label-Flipping (Xu et al., 2022), geometric algorithms for KNN poisoning

(Centurion et al., 2023), and subpopulation data poisoning attack (Jagielski et al., 2021). These

attacks have effectively compromised the integrity and intruded into the targeted models. However,

there is a pressing need to understand the differential responses of these models to poisoning tech-

niques.

Poisoning attacks are increasingly endangering the reliability and accessibility of ML models. May-

erhofer and Mayer (2022) have polluted a featured-extraction system developed with convolutional

neural networks (CNN) and evaluated the effectiveness of poisoning attacks against it. Zhang et al.

(2023) have fooled deep neural networks (DNN) by integrating manipulated features into them. Fur-

ther studies, such as (Zhu et al., 2019b; Shafahi et al., 2018) manipulated ML with features set

perturbation while Zhu et al. (2022) showed how specifically altered pixels could mislead classifiers.

In another study (Chen et al., 2022), perturbed labels are proved to help insert a backdoor in ML
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with a success rate of 98%. A brief comparison of existing similar work with this study is given in

Table 3.1. Further Table 3.2 extends the analysis presented in Table 3.1, including a comparative

analysis of this approach with existing data poisoning studies, highlighting the impact on performance

of individual algorithms. This work aims to interpret the analytical reasoning of different supervised

ML algorithms and their response to various poison levels. Although some research studies, such as

(Yerlikaya and Şerif Bahtiyar, 2022; Aryal et al., 2022; Dunn et al., 2020), have conducted empirical

analysis to show the performance degradation of ML, they fall short in explaining why models trained

on identical datasets with the same poisoning rates exhibit divergent performance behaviours. Ad-

dressing this gap forms a central part of the contribution. Many existing research studies investigated

the integrity violation and shift in ML decision-making, either deterministically or indiscriminately.

However, the urge is to study the underlying model design that reveals poison differently for each

ML algorithm and so to interpret its explainability against poisoning.

To distill ML models from the detrimental effects of poisoning attacks, a variety of mitigation strate-

Table 3.1: Comparative analysis with existing similar studies that provides an empirical analysis of
poisoning attacks on machine learning along with their objectives/focus to conduct empirical analysis

S.No. Source Datasets used Attack
settings

Focus

1 Yerlikaya and
Şerif Bahtiyar
(2022)

Instagram fake spammer gen-
uine accounts, botnet de-
tection, android malware/be-
nign permissions, breast can-
cer wisconsin

White box
attack

Practical implication of data poisoning

2 Aryal et al. (2022) Malware detection Black box
attack

Impact of data poisoning on Malware
detection

3 Dunn et al. (2020) ToN-IoT, UNSW-NB15 - Impact of data poisoning on smart IoT
systems

4 This Be-
havioural Anal-
ysis

BotDroid, CIC-IDS-2017,
CTU-13, UNSW-NB15

Black box
attack

Factual study to identify factors affect-
ing the performance of each ML algo-
rithm with data poisoning

Table 3.2: Performance analysis with existing similar studies analysing the impact of poisoning attacks
on machine learning models

S.No. Source Performance Metrix Model performance
SVM RF DT KNN GNB Perceptron

1 Yerlikaya and Şerif Bahtiyar (2022)
Accuracy 69.33 68.16 - 74.08 56.83 -
Precision - - - - - -
F1-score 71.33 67.34 - 74.2 51.65 -

2 Aryal et al. (2022)
Accuracy 78.58 96.54 96.54 87.41 - 75.16
Precision 74.45 93.04 93.54 82.48 - 68.58
F1-score 73.51 95.9 95.88 85.12 - 72.57

3 Dunn et al. (2020)
Accuracy - 79.22 - - 73.11 76.91
Precision - 79.22 - - 74.9 70.01
F1-score - - - - - -

4 This Behavioural Analysis
Accuracy 48.5 77.02 62.5 64.56 47.5 71.2
Precision 48.3 58.79 58.56 63.29 62.1 71.2
F1-score 61.5 60 57.4 61.04 61.04 62.79

gies have been developed. A data sanitisation against an adversarial label-flipping attack is proposed

in (Chan et al., 2018a). This method begins with random dataset clustering to train the model on
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subsets of a dataset and then sanitises data points, taking into account the complexity of the data and

its impact on model performance. Adversarial training Geiping et al. (2021), Tao et al. (2021), Qin

et al. (2023) is also an effective technique to allow ML models to proactively learn poisoned patterns

to guard against poison if injected. A brief overview of the discussed mitigation techniques is given

in Table 3.3.

Where Drews et al. (2020) proposed an antidote to verify the robustness of a decision tree against

Table 3.3: Detailed synopsis of relevant existing defence solutions against data poisoning attacks along
with the parameter targeted to develop mitigation strategy and algorithms on which the respected
proposed solutions are experimented

Research paper Mitigation technique Exploited feature Experimented
algorithm

Chan et al.
(2018a)

Data sanitisation with cluster training Dataset features com-
plexity vector

SVM

Baracaldo et al.
(2017)

Data segmentation and filtering using
provenance feature

Provenance feature SVM, Logistic Re-
gression

Paudice et al.
(2018a)

Training classifiers for individual dataset
classes and calculate outliers with Empir-
ical Cumulative Distribution Function

Dataset outliers Linear classifiers

Geiping et al.
(2021)

Adversarial training to maximise adver-
sarial loss to detect poisonous data points

No explicit feature is
exploited

Neural networks

Tao et al. (2021) Adversarial training to mitigate delusive
attacks with different data distributions

Robust and non-robust
features in data distri-
butions

Neural Networks

Qin et al. (2023) Adversarial training with data augmenta-
tion in unlearnable examples to maximise
error

No explicit feature is
exploited

Neural Networks

data poisoning attacks. Although these solutions are effective, they lack generalisability. In particu-

lar, the main contribution of this research study is to provide a rigorous examination of supervised

ML behaviour against poisoning attacks. On a large scale, none of the studies have yet highlighted

the reasons behind the different responses of ML algorithms when trained with the same poison levels.

3.3 Behavioural Analysis

This chapter proposes a behavioural analysis as the study of understanding the change in the clas-

sification behaviour of supervised models by implementing a data poisoning attack. The poison is

implemented at various levels in order to analyse the behavioural changes at certain classification

metrics such as feature importance score, decision boundary, k-neighbors, and individual algorithm

properties. This deep behavioural analysis is conducted for six ML algorithms, analysing poisoning

impact and correlation between poisoning levels and classification accuracy. Adopting an empiri-

cal approach, this analysis highlightes the practical feasibility of data poisoning, comprehensively

analysing factors of individual algorithms affected by poisoning.

Real-World Detection Applications Although various mitigations have been proposed, this chap-

ter discussed their limitations in Section 3.2. Given these limitations, this chapter conducts a be-
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havioural analysis of poisoned intrusion and botnet detection systems in binary classification settings

to understand the change in behaviour of detection mechanisms with poisoned training.

As digital systems evolve, cybersecurity applications have become essential in protecting data and

infrastructure. These applications support various security-critical scenarios such as malware detec-

tion (Brown et al., 2024), intrusion detection (Wang et al., 2020), automated firewalls (Al-Haijaa and

Ishtaiwia, 2021), and biometric recognition (Jhong et al., 2020). Among these, an intrusion detec-

tion system (IDS) monitors system behaviour or network traffic to detect anomalies caused by cyber

attacks. It helps strengthen system security by detecting anomalous traffic and notifying the admin-

istration of potential threats. However, if adversaries evade IDS, attacks may compromise systems

undetected.

The widespread use of open standards such as TCP/IP, ethernet, and web technologies allows digi-

tal systems to connect with enterprise networks, enabling interoperability and external connectivity.

Nonetheless, this expands the threat surface, increasing the number of attacks and their sophisti-

cation. Significant incidents, such as the Mirai attack (Sinanović and Mrdovic, 2017), have been

reported that use robot networks, known as botnets, to launch more sophisticated intrusions. Some

prominent methods are distributed denial-of-service (DDoS) attacks, spam distribution, and data

theft, known as botnet attacks.

Intrusion and botnet detection systems can be implemented using various methods, of which the

simplest is the signature-based approach. It compares incoming requests to the database of known

attacks, though it may fail to detect previously unseen attacks. To overcome this limitation, a data-

driven approach is followed that derives rules by observing behaviour, for example, data mining

techniques (Awajan, 2023).

Instead of developing signatures, the patterns in the given data are modelled to identify deviations

from normal behaviour by using statistical techniques. These are known as prediction-based ap-

proaches, which can be implemented with ML algorithms. Training these detection systems with ML

algorithms makes them adaptive to predict complex structured intrusions and zero-day attacks.

The training process of ML algorithms is vulnerable to data poisoning attacks, which can be ex-

tended to these systems. The first step is to understand the fundamentals of datasets to enable the

behavioural analysis of these systems.

3.4 Fundamentals of Training Datasets

This section discusses fundamental concepts of ML training that are considered in the following

behavioural analysis. In supervised ML, a dataset D = {(xi, li)}ni=1 is a collection of structured data

where each data instance is known as a data point. Each data point consists of a set of features xi,

representing measurable attributes from real-world observations and a corresponding label li. For
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example, in an intrusion detection application, the features can be the source of the input, contents,

and port, and the label indicates if an email is an intrusion(1) or not an intrusion(0). A dataset D is

characterised by various properties that describe its complexity, structure, interconnections between

features, class alignment, and outliers, described as follows:

3.4.1 Dataset Size and Distribution

The dataset size, represented by n samples in a dataset D, influences the learning capability and

generalisability of an ML model. It allows the model to learn the underlying data distribution.

According to the law of large numbers, the empirical risk Pn(D) converges to the expected loss as

the dataset size n increases, given in Eq. 3.1.

Pn(D) =
1

n

n∑
i=1

L(f(xi), li) (3.1)

where L(., .) is the loss function. In an ideal dataset, all the classes or labeled data points are of equal

size. However, when an adversary perturbs the dataset through label poisoning or altering certain

features, these manipulations often change the data distribution. The changed data distribution

enables the model to learn classes of variable size, which may lead to model bias. For example,

consider training a binary classifier for IDS where the adversary manipulates the labels of 10% of

intrusion (1) data points, changing them to normal (0). Therefore, the model may fail to learn

intrusion characteristics completely, resulting in an increased false negative rate for various intrusions.

However, it is interesting that the behavioural analysis observed different effects of the same data

poisoning attack on different IDS. Also, the behavioural analysis observed a non-linear correlation

between various poisoning levels and their impact on the targeted system. Thus, it is crucial to

investigate the correlation between dataset size and data poisoning.

3.4.2 Feature Correlation

In supervised ML, feature correlation refers to a statistical relationship between two features in a

dataset, usually measured with Pearson correlation for a linear relationship or monotonic relation-

ship with Spearman correlation. High feature correlations can introduce redundancy, potentially

increase model complexity, and impair feature importance scores. For example, it may degrade the

performance of GNB, which assumes conditional independence of features, and such correlations may

undermine the posterior probabilities. In hierarchical models like DT, strong feature correlation may

lead to redundant splits, potentially increasing model variance and risk of overfitting. While low

feature correlation is generally beneficial in linear and probabilistic models, the model should be

evaluated under the specific context of the use case.
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For example, consider training an IDS with a decision tree algorithm on a dataset where two features,

xi and xj , are highly correlated. Since a decision tree uses greedy split based on information gain, it

may select one over the other and learn the noise and specifics of training data rather than under-

standing underlying patterns that may introduce overfitting. In adversarial settings, data poisoning

may disrupt feature correlations to manipulate the structure of the dataset. Thus, understanding the

disruption introduced by data poisoning helps strengthen mitigations against it. On the other hand,

it is also important to examine how different dataset structures and feature correlations influence

data poisoning, which also helps improve mitigation solutions.

3.4.3 Dataset Outliers

Dataset instances that deviate significantly from the original distribution are known as outliers. Out-

liers may introduce training errors and increase classification loss. It particularly impacts distance-

based models, such as KNN and SVM, which classify data based on distances. For example, it can

shift the decision boundary between two classes in SVM, which relies on data points, known as sup-

port vectors, that are closest to the margin. When an outlier lies near the margin, it becomes a

support vector that can distort the hyperplane between two classes and reduce the model’s gener-

alisability. Conversely, it minimally impacts hierarchical-based models, such as decision trees and

random forests, because these models follow greedy splits based on feature importance scores rather

than calculating distances between features. Biggio et al. (2011) disrupted the dataset features and

generated outliers in it, thereby degrading the model’s performance. Therefore, it is essential to un-

derstand how data poisoning generates outliers in training data and how these outliers affect models

with various poisoning attacks under similar adversarial settings.

3.5 Approach to Behavioural Analysis

This approach is formulated on an untargeted attack with an underlying assumption that the ad-

versary does not know any internal model settings and data distribution. The label-flipping attack

is implemented because it is the simplest and popular attack, used in many research papers(Jebreel

et al., 2024),(Mengara, 2024), in data poisoning and to keep the attack settings simple to understand

models’ behaviour clearly.

The attacking procedure is developed on a practical examination of data poisoning on ML classi-

fication models. An experimental study is conducted to analyse the impact of data poisoning on

individual ML algorithms. The goal is to highlight optimal levels of poisoning that are difficult to

interpret and lead to significant performance degradation in classifiers. Data poisoning is imple-

mented by flipping labels randomly from 5%-25% of the dataset. The dataset is split with 75%-25%,

where 75% of the data is used for training and 25% of the data is used for testing, as the ML model
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accurately learn with atleast 75% of the dataset (Song et al., 2017). This analysis is significant in

understanding the poisoning behaviour for developing profound mitigation solutions that proactively

secure ML models from existing and novel attacks.

This chapter aimed to specifically study the correlation between the granular impact of poisoning

on the performance of ML algorithms. It also studied the correlation between data poisoning and

feature relations in the dataset. This analysis employs six supervised ML algorithms: Support Vector

Machines (SVM), Decision Tree (DT), K-nearest neighbors (KNN), Random Forest (RF), Gaussian

naive Bayes (GNB), and Perceptron. These algorithms are selected to cover all the baseline classifi-

cation methods in ML. This helps analyse different classification behaviours in ML with four distinct

datasets (BotDroid (Seraj, 2022), UNSW-NB15 (David, 2018), CTU-13 (Malik, 2022), and CIC-IDS-

2017 (Chenthan, 2023)). These datasets are selected as they distinct in their structure, size and

feature correlation.

3.5.1 Attack Method

The fundamentals of the attack method have been interpreted to poison binary ML classifiers in black-

box attack settings. Definitions of the attack method and evaluation metrics to measure the poisoning

effects and analyse behaviours of ML algorithms are also provided. The architectural overview of

the attack model is given in Fig. 3.1, representing the attacked and clean model development and

defining the analysis criteria. Steps 1-9 are given in Fig. 3.1, highlighting the attack development
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Figure 3.1: Architectural overview of the attack model, developed for conducting behavioural analysis

flow. Step 1 is the dataset selection, step 2 defines the poisoning levels to poison datasets, step

3 is the implementation of the label flipping attack on datasets with the defined poisoning levels,

and step 4 defines algorithms to be considered for analysis. Steps 5 and 6 are the development of

poisoned and cleaned models subsequently. Steps 7-9 define the analysis criteria. The objective of

this research study is the behavioural analysis of poisoned ML algorithms. Binary classifiers are

intended to be poisoned following the algorithm described in Algorithm 1. Each algorithm is audited

to identify individual factors that are affected by dataset manipulation. The attack is developed in
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black-box settings with a notion of generalisation to poison labeled datasets to degrade the classifier’s

performance. The sub-definitions of the attack are given as follow.

Algorithm 1 Poisoning Algorithm

Datasets used are: UNSW-NB15, BotDroid, CTU-13, CIC-IDS-2017
Dt ← Training dataset
D′ ← Poisoned dataset = []
Dr ← subset of Training dataset
Record← Dt(xi, li) is the instance in dataset Dt with features x an label l at position i
∆L← Poisoning level = [0%, 5%, 10%, 15%, 20%, 25%]
for poison ∈ ∆L do

Select Dr of length poison from Dt

for Record ∈ Dr do
if Record not in D′ then

if li equals 0 then
li = 1

else
li = 0

end if
end if
D′ ← Record

end for
end for

Poison Penetration Considering poison L = [5%,10%,15%,20%,25%], of training dataset, developed

with algorithm ARFlip as given in Alg 1 to manipulate data points xi, by changing its label and

generating poisoned data points x′
i, to disrupt ML model M is given in Eq 4.7.

M ′
θ = training(M(x′), x′ = ARFlip(Do,∆L)) (3.2)

which allows us to factorise poisoned model for behavioural analysis as given in Eq 3.3.

PPen = factorizing(M ′
θ) (3.3)

where M ′
θ ∈ [SVM, DF, RF, KNN, GNB, Perceptron] and factorizing is the interpretation method

of analysing individual parameters affected with poison.

Performance Degradation Here, the test time performance statistics are calculated at each poi-

soning level to statistically analyse degradation as given in Eq. 3.4.

PDeg =

n=1∑
i

Li→j(AAcc(M
′
j) < AAcc(M

′
i))

and PDeg ∝
1

AAcc(M ′
j)
∝ FPR(M ′

j)

(3.4)

where PDeg is the performance degradation, injected with poison Li → j at each incremental level

from i to j. AAcc is accumulated as the accuracy of the poisoned model M ′ whereas FPR is the
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rate at which the poisoned model predicted falsified positive outcomes. The poison is injected with

a minimum 5% poisoning rate, leading to a maximum of 25%, at a scale of 5. Binary classifiers

are developed with four benchmarked datasets consisting of network traffic, described in Section

3.5.2, following the purpose of providing a precise and granular study, to put forward analytical

reasons of how and why the performance of every algorithm is affected differently. For example,

the performance (accuracy, precision, recall, f1-score) of DT, KNN, and RF is degraded linearly.

Whereas the performances of neural networks are continuously fluctuating. The ablation study is

given in Section 3.6.

3.5.2 Experimental Datasets

A rigorous ML analysis is conducted, developing intrusion detection classifiers with four benchmarked

datasets, namely UNSW-NB15 (David, 2018), CIC-IDS-2017 (Chenthan, 2023), CTU-13 (Malik,

2022), and BotDroid (Seraj, 2022). UNSW-NB15 is based on captured network traffic with nine

attacks included in it. It contains a total of 48 features containing packet-level information that

enables us to conduct a detailed analysis for intrusion detection. Aligning it for binary classification,

the records are classified into benign and malignant. BotDroid is the next dataset included, which

comprises 45 features in total, and is encoded with one-hot encoding. CTU-13 is also included to

develop a binary IDS classifier in this study which is developed to capture real-time traffic in thirteen

different scenarios. and CIC-IDS-2017 is the last dataset included as part of this analysis. A brief

description of all datasets is mentioned in Table 3.4. For the appropriate visualisation and features

correlation in the dataset, the dataset complexity has been reduced to N dimensions with PCA, as

given in Eq. 3.5.

Dimentionality Reduction = PCA(n components = N) (3.5)

And, for features structure and understanding, Gaussian Mixture Models(GMM) have been used.

Table 3.4: Dataset description used to perform data poisoning on machine learning algorithms

S.No. Dataset No. of
features

No. of
instances

Description

1 UNSW-NB15 48 82332 Dataset comprises of nine network intrusion attacks
2 BotDroid 45 1367 Dataset with limited instances, focusing BotDroid
3 CTU-13 57 92212 Captured with real time network traffic for BotDroid
4 CIC-IDS-

2017
78 692703 Dataset consists of network packets

The visual dataset representation can be seen in Fig. 3.2. BotDroid dataset is the most appro-

priately distributed dataset with aligned features and minimal distortion(outliers) as shown in Fig.

3.2(a). Whereas UNSW-NB15 contains anisotropic features with asymmetric relation for which an

uneven and elongated distribution is highlighted with sharp peaks at one axis in Fig. 3.2(d). However,
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(a) Features correlation in BotDroid dataset (b) Features correlation in CIC-IDS-2017 dataset

(c) Features correlation in CTU-13 dataset (d) Features correlation in UNSW-NB15 dataset

Figure 3.2: Gaussian mixture model visualisation of features relationship in dataset with principal
component analysis reduction. Legend shown in (a) applies to all

Fig. 3.2(b) shows a symmetric correlation between some features, including a few with anisotropic co-

variance, with some overlapping outliers for CIC-IDS-2017. Fig. 3.2(c) although reflecting an uneven

distribution, also contains some symmetric features with isotropic covariance. Conclusively, datasets

with different characteristics help us in providing a profound behavioural analysis of ML against a

data poisoning attack.

The individual characteristics of baseline ML models are assessed with cybersecurity benchmarked

datasets in binary classification data poisoning settings. This study selected four cybersecurity ap-

plication datasets for analysing data poisoning against security-critical applications. Also, these

datasets consist of various features, sizes, and features correlation that help understand the classi-

fiers’ behaviour from various perspectives.

3.6 Experimentation Results and Analysis

Following this approach and attack method, a deep behavioural analysis of six ML algorithms is

conducted, trained with four datasets of varying sizes and structures. The accuracy, precision, recall,

f1-score, and false positive rate are plotted against incrementing poisoning levels, as shown in Fig.

3.3 to Fig. 3.8. The experimentation results and analysis are given as follows.
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(a) Poisoning support vector machines with Bot-
Droid dataset

(b) Poisoning support vector machines with CIC-
IDS-2017 dataset

(c) Poisoning support vector machines with CTU-
13 dataset

(d) Poisoning support vector machines with
UNSW-NB15 dataset

Figure 3.3: Performance analysis of support vector machines with consistent poisoning

(a) Poisoning random forest with BotDroid
dataset

(b) Poisoning random forest with CIC-IDS-2017
dataset

(c) Poisoning random forest with CTU-13 dataset (d) Poisoning random forest with UNSW-NB15
dataset

Figure 3.4: Performance analysis of random forest with consistent poisoning

3.6.1 Optimal Poisoning Level

The results of the behavioural analysis first used to examined the impact of various poisoning levels

on the underlying decision mechanisms of the models. This examination enable us to identify limits



3 CHAPTER 3. INVESTIGATING MACHINE LEARNING BEHAVIOUR AGAINST DATA

POISONING ATTACKS
67

(a) Poisoning gaussian naive bayes with BotDroid
dataset

(b) Poisoning gaussian naive bayes with CIC-IDS-
2017 dataset

(c) Poisoning gaussian naive bayes with CTU-13
dataset

(d) Poisoning gaussian naive bayes with UNSW-
NB15 dataset

Figure 3.5: Performance analysis of gaussian naive bayes with consistent poisoning

(a) Poisoning k-nearest neighbors with BotDroid
dataset

(b) Poisoning k-nearest neighbors with CIC-IDS-
2017 dataset

(c) Poisoning k-nearest neighbors with CTU-13
dataset

(d) Poisoning k-nearest neighbors with UNSW-
NB15 dataset

Figure 3.6: Performance analysis of k-nearest neighbors with consistent poisoning

of the optimal poisoning levels. This identification will contribute to further research in enhancing

testing scenarios, threat modelling and mitigation solutions against data poisoning attacks. The
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(a) Poisoning decision tree with BotDroid dataset (b) Poisoning decision tree with CIC-IDS-2017
dataset

(c) Poisoning decision tree with CTU-13 dataset (d) Poisoning decision tree with UNSW-NB15
dataset

Figure 3.7: Performance analysis of decision tree with consistent poisoning

(a) Poisoning perceptron with BotDroid dataset (b) Poisoning perceptron with CIC-IDS-2017
dataset

(c) Poisoning perceptron with CTU-13 dataset (d) Poisoning perceptron with UNSW-NB15
dataset

Figure 3.8: Performance analysis of perceptron with consistent poisoning

analysis is given as follows.

Data poisoning of 10-15% is identified as optimal poisoning levels whilst analysing the models’ per-

formances. From the results, a sudden drift is visible between 10% ≤ ∆L ≤ 15% of data poisoning
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whereas ∆L = 5% has put a negligible impact and ∆L > 15% make algorithms over-fit. KNN trained

with BotDroid dataset has the highest accuracy decrease of 15.48%, as shown in Fig. 3.6. Following

the fact that it classifies based on the principle of information gain analysing maximum features sim-

ilarities from the closest points. The attack randomly poisoned data points, which manipulate the

relationship of the underlying features in the KNN model, making its decision boundary rough and

irregular at ∆L = 15%, as shown in Fig. 3.9. However, DT is the most affected algorithm, with an

Figure 3.9: Change in decision boundary of k-nearest neighbors with 15% dataset poisoning

average accuracy degradation of 14.42% and degradation score of 4.33% at ∆L = 25%, irrespective

of datasets. Table 3.5 presents the change in feature importance score, for poisoned DT, making im-

portant features anomalous, degrading its performance, specifically for less noisy BotDroid dataset.

Table 3.5: Features importance score - Decision tree where ∆L = (0%, 10%, 15%)

Dataset
Clean Dataset Poisoned Dataset ∆L = 10% Poisoned Dataset ∆L = 15%

Feature1 Feature2 Feature3 Feature1 Feature2 Feature3 Feature1 Feature2 Feature3

BotDroid 0.90 0.07 0.02 0.61 0.20 0.18 0.60 0.22 0.18
UNSW-NB15 0.43 0.29 0.22 0.33 0.34 0.32 0.33 0.34 0.32

CTU-13 0.19 0.32 0.49 0.26 0.34 0.40 0.26 0.34 0.39
CIC-IDS-2017 0.40 0.33 0.26 0.36 0.33 0.31 0.36 0.33 0.31

Table 3.6: Features importance score - Support vector machines where ∆L = (0%, 10%, 15%)

Dataset
Clean Dataset Poisoned Dataset ∆L = 10% Poisoned Dataset ∆L = 15%

Feature1 Feature2 Feature3 Feature1 Feature2 Feature3 Feature1 Feature2 Feature3

BotDroid 0.53 0.80 0.23 0.42 0.80 0.40 0.18 0.98 0.03
UNSW-NB15 0.81 0.56 0.10 0.72 0.32 0.61 0.30 0.72 0.61

CTU-13 0.13 0.50 0.85 0.06 0.52 0.84 0.38 0.21 0.89
CIC-IDS-2017 0.07 0.99 0.11 0.53 0.69 0.47 0.45 0.79 0.39

Further analysis interpreted that parametric algorithms including SVM, GNB, and Perceptron, are

less affected by data poisoning when dataset features are symmetric and become saturated when ∆L ≥
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15%. But these algorithms become sensitive and over-fitted when dataset features are asymmetric and

∆L ≥ 15%. For example, the margin score of SVM is minimally changed from 0.0017 to 0.0013 when

∆L=10% and 15% respectively. Features importance scores of SVM are also minimally affected

by poisoning as given in Table 3.6 where features space is reduced following Eq 3.5. So poisoned

and cleaned SVM classifiers follow the same importance of features for making classification decisions

except for the UNSW-NB-15 dataset for which Feature1 with the highest importance score has become

an anomaly at ∆L = 15%, due to irregular features relations. Explaining further, SVM in Fig. 3.3(b)

and GNB in Fig. 3.5(b) shows a high decrease of 35.14% in accuracy with 74% of increment in false

positive rate but simultaneously, recall also increases to 33.1% between poisoning rate of 20-25%,

highlighting over-fitting of the models. This study also calculated the class probabilities of poisoned

GNB to interpret their classification decision as given in Table 3.7 which has a minimal impact on its

classes, leading to no change in its decisions. Conclusively, Perceptron losses its accuracy to 50.98%

Table 3.7: Analysing class probabilities of gaussian naive bayes with poisoned dataset

Dataset
Clean Dataset ∆L = 10% ∆L = 15%

Class0 Class1 Class0 Class1 Class0 Class1

BotDroid 0.55 0.45 0.54 0.46 0.52 0.48
UNSW-NB15 0.45 0.55 0.46 0.54 0.47 0.53
CTU-13 0.57 0.43 0.56 0.44 0.54 0.46
CIC-IDS-
2017

0.64 0.36 0.61 0.39 0.58 0.42

with the BotDroid dataset at ∆L = 25% followed by DT, whose accuracy is reduced to 42.74% with

the UNSW-NB15 dataset. Also, an interesting relation between poison and dataset noise is revealed

where ∆L 1
∝ Dataset Noise and working as a catalyst at ∆L = 25%. So, ∆L between 10%-15%

are identified as optimal and effective poisoning rates, particularly affecting KNN followed by DT

however minimally penetrating SVM and GNB. The variance of the trained models is given in Fig.

3.10(a) to 3.10(d). Whereas, the adversarial success rate (ASR) of these poisoned models is given in

Tables 3.8 to 3.11.

Table 3.8: Adversarial success rate with BotDroid dataset

Algorithm ∆L = 5% ∆L = 10% ∆L = 15% ∆L = 20% ∆L = 25%

SVM 0.2 0.29 0.31 0.31 0.33
DT 0.097 0.13 0.22 0.35 0.33
RF 0.025 0.065 0.15 0.21 0.22
KNN 0.01 0.021 0.16 0.19 0.33
GNB 0.2 0.29 0.31 0.31 0.33

Perceptron 0.055 0.11 0.24 0.25 0.52
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(a) Variance of poisoned models with BotDroid
dataset

(b) Variance of poisoned models with CIC-IDS-2017
dataset

(c) Variance of poisoned models with CTU-13
dataset

(d) Variance of poisoned models with UNSW-NB15
dataset

Figure 3.10: Variance analysis of trained models with consistent poisoning. Legend shown in (d)
applies to all

Table 3.9: Adversarial success rate with UNSW-NB15 dataset

Algorithm ∆L = 5% ∆L = 10% ∆L = 15% ∆L = 20% ∆L = 25%

SVM 0.034 0.071 0.10 0.12 0.15
DT 0.12 0.16 0.27 0.35 0.39
RF 0.03 0.06 0.11 0.22 0.28
KNN 0.0074 0.02 0.1 0.17 0.22
GNB 0.034 0.071 0.10 0.12 0.15

Perceptron 0.063 0.4 0.39 0.33 0.08

3.6.2 Vulnerable Parameters

Following the analysis of optimal poisoning levels, this behavioural analysis contributes to analyse vul-

nerable parameters of individual ML algorithms against data poisoning attacks. Understanding the

relationship between data poisoning and individual algorithms help develop strong resilience against

such attacks which are independent of attack.

This behavioural analysis study individual factors affecting the selected poisoning attack to study the

behaviour of individual algorithms. Overall, DT and KNN are prone to data poisoning. DT comprises

a tree data structure following a probabilistic approach to structure decision nodes, whereas this at-

tack initiates a wrong features split that supports misleading classification by manipulating feature

importance as shown in Table 3.5. The feature space of datasets has been reduced for simplicity
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Table 3.10: Adversarial success rate with CTU-13 dataset

Algorithm ∆L = 5% ∆L = 10% ∆L = 15% ∆L = 20% ∆L = 25%

SVM 0.06 0.08 0.07 0.09 0.06
DT 0.07 0.16 0.28 0.36 0.39
RF 0.01 0.03 0.18 0.21 0.35
KNN 0.009 0.02 0.16 0.26 0.35
GNB 0.06 0.08 0.07 0.09 0.06

Perceptron 0.07 0.12 0.19 0.09 0.03

Table 3.11: Adversarial success rate with CIC-IDS-2017 dataset

Algorithm ∆L = 5% ∆L = 10% ∆L = 15% ∆L = 20% ∆L = 25%

SVM 0.03 0.33 0.03 0.007 0.36
DT 0.06 0.14 0.30 0.36 0.39
RF 0.001 0.02 0.08 0.20 0.27
KNN 0.003 0.02 0.18 0.29 0.33
GNB 0.03 0.33 0.03 0.007 0.36

Perceptron 0.03 0.26 0.17 0.02 0.34

with PCA reduction following Eq. 3.5. Also, a direct relation between poisoning and performance

degradation has been analysed. KNN is non-parametric and groups data based on feature similar-

ities, making it highly susceptible to poisoning. This attack changes the feature space of the part

of the dataset, which disrupts the decision boundary and degrades its performance. Whereas, an

inverse relation is identified between the number of neighbors and poisoning level, where increasing

k-neighbors normalises the poisoning effects on the KNN classifier, given in Table 3.12.

Table 3.12: Analysing k-neighbors affecting k-nearest neighbors accuracy with ∆L = (0, 10, 15, 25)%

Poison Level k=3 k=5 k=10 k=15

BotDroid

∆L = 0% 97.54 96.80 96.92 96.68
∆L = 10% 95.94 96.80 96.31 96.68
∆L = 15% 83.78 90.05 95.57 94.47
∆L = 25% 69.28 70.76 87.22 88.69

CTU-13

∆L = 0% 97.80 97.55 96.94 96.55
∆L = 10% 95.06 96.52 96.78 96.50
∆L = 15% 87.13 90.90 94.54 95.95
∆L = 25% 72.0 76.14 83.68 87.52

UNSW-NB15

∆L = 0% 81.57 81.17 80.92 80.71
∆L = 10% 79.85 80.36 80.63 80.63
∆L = 15% 74.17 76.46 79.06 80.04
∆L = 25% 64.48 66.85 70.19 74.62

CIC-IDS-2017

∆L = 0% 99.61 99.57 99.49 99.42
∆L = 10% 96.21 98.84 99.42 99.41
∆L = 15% 88.70 92.93 96.79 98.91
∆L = 25% 73.49 78.06 87.09 90.43

Because by inverting data labels, decision boundaries are getting blurred resulting in disjunctive

classes split and hence more affected with poison. Whereas, SVM and GNB follow parametric learning

to develop an optimal hyperplane and the parameters values and then become saturated, which makes

it independent of dataset size and robust to poisoned data when ∆L ≥ 15%. In Table 3.13, the
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Table 3.13: Analysing support vector machines margin score for different datasets with ∆L =
(0, 10, 15)%

Dataset ∆L = 0% ∆L = 10% ∆L = 15%

BotDroid 0.008 0.00047 0.006
CTU-13 0.000007 0.00002 0.0000003

UNSW-NB15 0.00010 0.00015 0.000019
CIC-IDS-2017 0.00003 0.000015 0.000018

Table 3.14: Analysing one-to-one relation between poison and various parameters of ML algorithms

Algorithm Algorithmic Parameters Relation to ∆L

SVM
Margin score Minimal impact

Decision boundary Minimal impact
Features importance score Minimal impact

DT
Features importance score High impact
Asymmetric features space High impact

KNN
Decision boundary High impact

k-neighbors Inverse impact

GNB
Decision boundary Minimal impact
Class probabilities Minimal impact

RF No. of trees Inverse impact

Perceptron Weights High impact

minimum margin scores of cleaned and poisoned SVM classifiers have been calculated to analyse the

change in their decision boundary, which shows minimal change with little to no impact on their

decision formulation. Also, looking at Fig. 3.3(a) and Fig. 3.3(c), SVM classifiers performance

becomes saturated at ∆L ≥ 15% for BotDroid and CTU-13 datasets. But for UNSW-NB15 and CIC-

IDS-2017 which comprises anisotropic features, SVM becomes sensitive and over-fit when ∆L ≥ 15%,

leading to inappropriate and continuous fluctuations in their learning parameters as shown in Fig.

3.3(b) and Fig. 3.3(d). A very similar behaviour is visible for GNB and Perceptron can be seen in

Fig. 3.5 and Fig. 3.8.

(a) Poisoning perceptron with CIC-IDS-
2017 dataset

(b) Poisoning perceptron with UNSW-
NB15 dataset

Figure 3.11: ROC curve of perceptron with consistent poisoning
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(a) Poisoning gaussian naive bayes with
CIC-IDS-2017 dataset

(b) Poisoning gaussian naive bayes with
UNSW-NB15 dataset

Figure 3.12: ROC curve of gaussian naive bayes with consistent poisoning

3.6.3 Imbalanced Data Distribution

The behavioural analysis also determine the link between various structures of the datasets and

the impact of data poisoning attacks on the poisoned model. This understanding allows strengthen

threat models and testing and analysing ML against data poisoning attacks. Data poisoning is highly

impacted on DT followed by KNN, irrespective of dataset noise and imbalanced data distribution as

shown in Fig. 3.7 and Fig. 3.6, respectively. Whereas, interpreting Fig. 3.4, Random Forest (RF)

is found to be most effective and resilient against data poisoning attacks although a non-parametric

algorithm. Because RF makes decisions calculating the mean from all of its trees, which normalises

the data poisoning effects. However, particularly for intrusion detection, KNN is immune to poison

specifically at 10% although a high drift in performance can be seen at 25% dataset poisoning. Fig.

3.13 provides an overview of the change in dataset distribution when labels are attacked with the label-

flipping attack at different poisoning levels. Looking at classification performances in Fig. 3.11(a)

and Fig. 3.11(b), dataset noise and asymmetric features correlating with poison making Perceptron

sensitive to classify intrusions resulting in an unstable classifier. For parametric algorithms i-e. SVM,

GNB, and Perceptron, poison in an erroneous dataset works as a catalyst for performance disruption.

For example, Fig. 3.12(a), Fig. 3.12(b) and Fig. 3.11(a) shows a significant decrease in TPR

concurrently increasing FPR with 10% poisoned dataset for GNB and Perceptron, respectively. From

this analysis, Table 3.14 provides a relative impact of ∆L on individual parameters of ML algorithms.

Implications of the behavioural analysis and its future directions are given in Section 3.7.
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(a) Label distribution with poisoned Bot-
Droid dataset

(b) Label distribution with poisoned CTU-
13 dataset

(c) Label distribution with poisoned
UNSW-NB15 dataset

(d) Label distribution with poisoned CIC-
IDS-2017 dataset

Figure 3.13: Analysing change in dataset distribution Ddis with label poisoning using kernel density
estimation function at an incremental poison levels ∆L=(0%, 10%, 15%, 25%). Legend shown in (d)
applies to all

3.7 Implications of Behavioural Analysis

This behavioural analysis helped strengthen the explainability of the model by understanding the

change in behaviour of the model when trained with a poisoned dataset. The shifts in decision

boundaries of the models are analysed, the change in their individual characteristics with varying

poisoning levels and the impact of various features correlations in poisoning models. The implications

of the deep behavioural analysis are provided as follows:

3.7.1 Improving Mitigations

Extending Table 3.3, data sanitisation and adversarial training are the two most effective techniques

to safeguard against data poisoning attacks. Adversarial training is developed with the gradient

of the data point which is effective for neural networks only. It can not enhance the security of
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baseline ML models including SVM, DT, RF, GNB, and KNN. However, data sanitisation filters

the dataset’s ambiguity to clean the classifier’s training by removing doubtful dataset features or

outliers. These sanitisation techniques are limited to be developed on the dataset features only. None

of the techniques focus on the classifiers’ inherent parameters and their development mechanisms.

Furthermore, Cinà et al. (2023) highlighted the limitations of existing mitigation techniques and the

importance of the generalisability of ML models. Another research study (Paracha et al., 2024b)

experimentally proved the limitations of adversarial training in security baseline models. Considering

these limitations, it is important to understand the underlying decision model development and the

impact of poisoned data points on it.

To enhance the security of ML models and their generalisability against data poisoning, it is crucial to

study the behaviour of the inherent characteristics of the models. The results highlighted potentially

vulnerable parameters of individual algorithms and their susceptibility to poisoning at various levels.

Also, highlighting the most pervasive poisoning levels allows the development of potential security

solutions in this regard. Including this behavioural analysis in data sanitisation and in setting model

parameters will better generalise the model. Also, this behavioural analysis will help strengthen the

explainability of the model’s decision. Considering future research directions, the behavioural analysis

will be highly effective in developing adversarial training techniques for baseline ML models other

than perceptron. Conclusively, the results of this chapter are discussed in Section 3.8.

3.8 Discussion and Limitations

There are various solutions proposed in existing literature to mitigate data poisoning attacks such as

data sanitisation (Chan et al., 2018a), data filtration based provenance features to remove poisoned

data points (Baracaldo et al., 2017), or mitigating poisoning impact by detecting outliers (Paudice

et al., 2018a). Almost every solutions designed mechanism to improve the performance of the given

model though none has provided a mechanism to understand hopw poisoned data points are changing

the underlying classification mechanisms of the model. To develop strong and resilience mitigation

mechanisms, it is important to understand the changing behaviour and capabilities of ML models

with various types of data poisoning attacks. The deep behavioural analysis provides an in-depth un-

derstanding of how poisoned training can change the underlying decision mechanisms of ML models.

This research provides a further detailed synopsis of technical uncertainties in the model’s decisions

created with a poisoned dataset to help strengthen mitigation solutions. As the model’s decision

mechanisms are underexplored in existing solutions, ML models are still susceptible to new data poi-

soning attacks that can breach existing mitigations such as data sanitisation or adversarial training,

as highlighted in Section 3.7.

To understand the changing behaviour of ML models trained with poisoned datasets, a deep be-
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havioural analysis is conducted to analyse the impact of poisoned data on the decision mechanisms

of the models. This analysed the change in the decision boundaries of the model, identified how the

poisoned data is impacting individual characteristics of the model and what are the optimal poisoning

levels up to which the poison has a high impact and is difficult to detect. This study also analysed

the relationship between data poisoning attacks and various structures of the datasets to understand

the impact of poison with varying datasets.

The results highlight certain affected factors with label poisoning, analysing individual ML algo-

rithms. Such as segregating nodes hierarchy development in DT and RF, misplacing data points in

KNN and SVM, and probability misinterpretation in KNN and GNB. Overall RF is resilient to data

poisoning because it may create more hierarchical nodes within its trees with poisoned data points,

averaging their prediction probabilities dilutes misclassification. Although DT is the most affected

algorithm because flipped labels make it difficult to disjoint nodes considering features. Also, the

results showed that a 10%-15% poisoned dataset is more impacting whereas, after 25% poisoning, the

sensitivity of a model is getting increased.

These results highlight that noise in the dataset works as a catalyst for data poisoning. The more

noisy the dataset, the more adverse impact can be achieved in performance degradation against

classification results because it filters poison (intentional noise) from dataset noise. Also, non-linear

features in the dataset help poison to better penetrate the classifiers. Whereas, cleaning datasets and

feature engineering can help mitigate data poisoning in this scenario.

Based on the results and implications of the deep behavioural analysis, this study has been extended

to further understand the adversarial impact of data poisoning attacks with novel data poisoning

attacks. A new data poisoning attack has been proposed, which exploits a significant characteristic of

ML models called outliers. This deep behavioural analysis helped define a threat model with limited

adversarial capabilities to experiment the outlier poisoning attack in Chapter 4 then extended it to

identify the impact of the attack on security-sensitive applications.

This thesis has conducted a deep behavioural analysis of supervised ML models; however, this analysis

can be applied to assess other ML and DL models where practitioners need to analyse the resilience

of ML against data poisoning attacks. It is also helpful in auditing training time mitigations against

data poisoning attacks.

This behavioural analysis is limited to the practical implication and analysis of supervised classi-

fication algorithms for binary classifiers. This limitation helps to provide a detailed and thorough

technical study of supervised ML classifiers and their parameters that are affected by poisoning. Un-

supervised ML can not be covered in this research as this study focused on label poisoning and has

contributed to analysing decision boundaries of classifiers and resultant metrics, including accuracy,

precision, f1-score, and recall. For the in-depth analysis, the variance and ASR of the baseline models
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are also examined and compared with the benign models to understand the disrupted behaviours.

This chapter only focused on the baseline ML models, which are the foundation of complex deep

neural networks and advanced models. Regression algorithms are also out of the scope of this study.

However, this behavioural analysis can be extended to multiclass classifiers, which is a limitation of

this chapter. Furthermore, it is important to conduct this behavioural analysis in security-sensitive

applications with real-world case studies for a rigorous analysis. Chapter 4 addresses this limitation

and conducts a detailed study of analysing data poisoning impact in multiclass classification models.

3.9 Summary

This chapter highlighted an important aspect of understanding the impact of data poisoning attacks

on the decision mechanisms of the ML model. For achieving this purpose, a deep behvaioural analysis

of six classification algorithms is conducted to analyse poisoning impact on the classification behaviour

of these models and their characteristics. The results of this chapter strengthen the answer to RQ

1 by providing practical understanding to analyse security vulnerabilities of ML exploited by data

poisoning attacks. This chapter extended the answer to RQ 1 by experimenting data poisoning

attacks in realistic attack settings by providing minimal knowledge of the targeted system to the

adversary. This chapter also addressed RQ 2 by highlighting potential risks of data poisoning to

ML applications with limited adversarial capabilities and the impact of poisoning in such scenarios.

The deep behavioural analysis identified the optimal poisoning levels that have a high impact on the

model and are difficult to detect. Furthermore, the relationships between varying data structures

in the dataset, the correlation of features in the dataset and the impact of data poisoning are also

determined. The technical insights are provided that 10%-15% poisoning to the dataset is optimal

whereas less than 10% has minimal impact and more than 25% introduces sensitivity and 50% of

data poisoning leads to overfitting. Different behaviours towards performance degradation of ML

algorithms are also highlighted and put forward the facts that technically interpret why DT is the most

affected algorithm against poisoning whereas RF is resilient to it. The impact of data poisoning when

the training dataset is imbalanced and its features are anisotropic is also examined, and is concluded

that anisotropic or asymmetric features serve as catalysts to data poisoning between 10%-20% of

poisoning level, whereas they increased the sensitivity of the models, specifically of neural networks.

Chapter 4 continues to answer RQ 2, to assess data poisoning impact, severity and consequences

in security-sensitive applications and extend the behavioural analysis in such applications. These

insights will help develop strong mitigation mechanisms and security by design solutions to secure

ML models from existing data poisoning attacks as well as from the evolving threats and new data

poisoning attacks.
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Chapter 4. Further Exploring Novel Outlier-Oriented

Poisoning (OOP) Attack in Multiclass Machine Learn-

ing

4.1 Introduction

This chapter proposes an Outlier-Oriented Poisoning (OOP) attack to analyse the implications of new

data poisoning attacks under limited adversarial capabilities. The OOP attack perturbs a common

characteristic of ML called outliers to manipulate the feature space of multiclass models to anal-

yse changes in learning dynamics. The previous chapter conducted behavioural analysis of binary

classifiers, which is now extended to multiclass classifiers in this chapter. This chapter completes

the answer to RQ 2 to analyse the impact and consequences of data poisoning attacks in real-world

applications. With the development of the OOP attack, the objective 2 of designing and developing

new data poisoning attacks is achieved. This chapter also begins to answer RQ 3 by analysing the

limitations of existing mitigation solutions and exploiting adversarially trained models with OOP

poisoning.

Prior research, such as Baker et al. (2024), Das et al. (2024), Tian et al. (2024), mostly focuses on

poisoning availability and integrity attacks against DL and binary classification models. However,

data poisoning attacks against traditional multiclass classifiers have been explored to a limited ex-

tent. In general, there are three approaches to data poisoning attacks. Firstly, label poisoning Liu

et al. (2022), Shahid et al. (2022), Aryal et al. (2022) perturbs the labels of the dataset to manipu-

late training datasets. Secondly, clean-label poisoning Zhu et al. (2019a), Aghakhani et al. (2021) is

typically generated by solving one or more optimisation problems, such as bi-level optimisation Ma

et al. (2021a), Russo and Proutiere (2021) or gradient descent optimisation (Sanchez Vicarte et al.,

2020) to craft and inject poisoned data points into the model. Thirdly, the existing dataset can be

manipulated with feature perturbation. However, multiclass poisoning attacks are explored mostly

against DL models.

MetaPoison (Huang et al., 2020) solves a bi-level optimisation problem with meta-learning to craft

poison against neural networks. It is practically implemented against the Google Cloud AutoML API

and extended for experimentation on multiclass neural networks. While MetaPoison demonstrates

effective poisoning in neural networks, its reliance on meta-learning makes it less generalisable to

traditional ML classifiers. Subpopulation data poisoning (Jagielski et al., 2021) injects a perturbed

cluster into the dataset. Its efficacy is highlighted with a variety of neural networks with multiple

datasets. Another research study (Muñoz-González et al., 2017) proposed a gradient poisoning at-
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tack and extended their experimentation from binary classification to multiclass classification. This

research focuses on experiments with the poisoning availability of the targeted subclass in neural

networks.

Furthermore, limited work is provided in the literature that analysed the poisoning impact on real-

world applications, developed with traditional ML classifiers. Such limitations are highlighted in

Section 2.4 in Chapter 2. To address these limitations, this chapter conducted two case studies of

analysing the poisoning impact with a novel data poisoning attack in real-world applications. The

experimentation results of these case studies provide us with an understanding of how data poisoning

impacts such applications and their consequences and real-life impacts.

Given the limitations, this chapter assesses the effectiveness of novel data poisoning attacks in mul-

ticlass settings to inform the development of improved mitigation strategies. While most existing

research on multiclass poisoning focuses on neural networks, this study examines six supervised ma-

chine learning algorithms: SVM, DT, RF, KNN, GNB, and Neural Networks using a Multilayer

Perceptron (MLP). These algorithms represent a comprehensive baseline of classification methods.

Poisoning levels are set ranging from 5% to 25% in 5% increments to assess model behaviour under

varying attack intensities, following the approach in (Paracha et al., 2024a). The analysis identifies

key parameters of each algorithm that are sensitive to poisoning, determines optimal poisoning rates,

and quantifies performance degradation in terms of accuracy and model-specific characteristics. The

main contributions of this chapter are outlined below.

� A new OOP attack is developed, as a novel label poisoning attack to introduce misclassification

in multiclass ML. This attack is formulated based on the label perturbation of the most distant

data points from the decision boundaries of the multiclass classifier.

� A thorough behavioural analysis of multiclass classifiers is performed, analysing the correlation

between different poisoning levels and the performance degradation of classifiers.

� The OOP attack is implemented against real-world applications, analysing the impact of poison-

ing in such systems. Following the poisoning of these applications highlighted the limitations

of existing security techniques in mitigating data poisoning attacks, particularly focusing on

traditional multiclass models.

4.2 Related Work

Existing literature highlights a significant number of poisoning attacks that harm the integrity and

availability of ML models. Such as Zhao and Lao (2022b) proposed a class-oriented poisoning attack

to introduce misclassification for a targeted dataset class. Similarly, Carlini and Terzis (2021) high-

lighted a security threat of poisoning and backdoor attacks against multiclass ML with only 0.0001%
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of data poisoning. They have introduced misclassification during model training to overfit, which

increases errors during testing. Alarab and Prakoonwit (2023) have developed a poisoning attack

using a Monte-Carlo algorithm against deep learning multiclass models to analyse their classification

uncertainties. Pantelakis et al. (2023) have evaluated the performance disruption of IoT-based mul-

ticlass models against JSMA, FGSM, and DeepFool attacks, highlighting the effectiveness of these

attacks in poisoning multiclass models. Other prominent poisoning attacks are Suya et al. (2021),

Mayerhofer and Mayer (2022), Saha et al. (2020). Table 4.1 highlights existing studies that exper-

Table 4.1: Analysing existing studies against the behavioural analysis with outlier-oriented poisoning
attack

Research paper ML model Dataset Effective poi-
soning level

Model degradation and variance at:

Various poisoning
levels

Various classes

Zhao and Lao
(2022b)

LeNet-5, Vgg-9,
ResNet-50

MNIST,
CIFAR-10,
ImageNet

✗ ✗ ✗

Carlini and
Terzis (2021)

ResNet-50, Trans-
former language
model

Conceptual
Captions

✗ ✗ ✗

Alarab and
Prakoonwit
(2023)

LEConv, CNN Cora, MNIST ✗ ✗ ✗

Pantelakis et al.
(2023)

DT, RF, KNN,
MLP

IoTID20 ✗ ✗ ✗

OOP Attack SVM, DT, RF,
GNB, KNN, MLP

IRIS, MNIST,
ISIC

✓ ✓ ✓

imented with data poisoning attacks with various DL and ML models. It is crucial to understand

the behaviour of the underlying baseline models and their sensitivity against poisoning attacks. This

investigation helps us better mitigate poisoning, not only focusing on their performance but also on

their underlying classification mechanisms. Following the discussed attacks, this chapter focuses on

manipulating outliers to disrupt the feature spaces of the multiclass models, discussed in Section

4.5.1. This study has shown the efficacy and effectiveness of the attack on six ML algorithms at

various poisoning levels.

Limited techniques are provided in the literature that are generalisable and effective in mitigating

poisoning effects against traditional multiclass models. McCarthy et al. (2023) proposed a hierarchi-

cal learning mechanism to secure the network traffic attack classification model. Hossain and Oates

(2024) developed a solution to detect backdoor poison in deep neural networks by extracting, relabel-

ing, and classifying features with a tensor decomposition method. They have experimented with their

mitigation solution on MNIST, CIFAR-10, and TrojAI datasets. Curie (Laishram and Phoha, 2016)

is the method proposed to mitigate poisoning attacks against SVM. They introduced an additional

feature dimension to map labels with features that help segregate poisoned data points with flipped

labels from the normal data points.



4 CHAPTER 4. FURTHER EXPLORING NOVEL OUTLIER-ORIENTED POISONING (OOP)

ATTACK IN MULTICLASS MACHINE LEARNING
82

Melacci et al. (2021) have experimented with the effectiveness of incorporating domain knowledge

into the neural networks, in detecting adversarial data points added in the model training. They have

experimented with their solution on neural networks with CIFAR-100, ANIMALS, and PASCAL-Part

datasets. None of the above solutions is generalisable to both ML and DL models. To strengthen

mitigation solutions, it is important to understand how poisoning affects the underlying classification

behaviours of these models. Therefore, this chapter assesses multiclass classifiers under poisoning

attacks to identify their key characteristics affected by poison and reveal their relationships with

injected poison.

4.3 Threat Model

A grey-box threat model is developed to evaluate the OOP attack in real-world applications. In this

threat model, the goals of poisoning multiclass ML models are defined under the limited knowledge

and capabilities of the adversary. This study aims to design the OOP attack that manipulates the

decision boundaries of multiclass classifiers and to evaluate their susceptibility to data poisoning

attacks. The analysis is further extended to assess the effects of this novel poisoning technique

in real-world applications that incorporate adversarial training defense. The limitations of existing

adversarial training are described in Chapter 2, noting that these approaches have primarily been

applied to DL models and require evaluation on traditional classification models. The targeted

applications in this research include an image classification system, a skin cancer diagnostics system,

and an industrial 5G network system. The following metrics are used for comprehensive evaluation

and analysis.

� Baseline metrics: Accuracy, precision, recall, f1-score, and false positive rate

� Robustness metrics: Model variance and adversarial success rate

� Feature-sensitivity metrics: Feature importance score

� Algorithm-specific metrics: KNN k neighbors, SVM margin, and GNB class probabilities

4.3.1 Attack Surface and Goals

The attack surface considered is the training pipeline, where the adversary aims to corrupt the feature

space of the model by injecting perturbed outliers. The goal is to analyse the susceptible character-

istics and impact of novel data poisoning against a benign and adversarially trained model, and the

impact of data poisoning in real-world applications. By disturbing the training data, the adversary

seeks to induce systematic misclassification and degrade model reliability in practical deployments.
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4.3.2 Attacker Knowledge

A realistic scenario is developed to analyse model susceptibility and impact against data poisoning

attacks. This scenario considers a grey-box knowledge attack, where only the dataset and algorithm

family are known to the adversary. The model is inaccessible with no known configurations or

parameters. This assumption is considered following the training of ML models with publicly available

datasets, which can be accessible to the adversary.

4.3.3 Attacker Capability

This threat model follows limited adversarial capabilities where the target model is inaccessible to the

adversary. In this way, the adversary develops surrogate models to implement data poisoning attacks

and manipulate training datasets. To implement the threat model, three scenarios were developed to

study data poisoning against multiclass models in supervised ML. The details of these scenarios are

given in Section 4.3.5 and Section 4.3.6.

4.3.4 Outlier-Oriented Poisoning Attack

This study adopts a practical approach to design the attack strategy under the assumption that

the adversary Adv does not know the underlying settings of the targeted model M and the dataset

distribution. The OOP attack mechanism is illustrated in Fig. 4.1. The OOP attack develops

surrogate models to identify and perturb the most distant data points in each class of the model.

After identification, the OOP attack changes the class of the selected data points to manipulate

the feature surface of the classes in the ML model to misalign decision boundaries and decrease

classification performance.

Three datasets—IRIS, MNIST, and ISIC—each with three, ten, and four classes, respectively,

were used to assess this attack. The OOP attack is formulated as an end-to-end poisoned training

setting, where only the datasets are known to the adversary. Surrogate models Ms are developed and

trained to craft poisoned data points x′ with perturbed class labels l′ at different poisoning levels

∆L. Poisoning levels ranged from 5% to 25% at a scale of 5%. The OOP attack initiates multiclass

poisoning by calculating the data points at maximum distance from hyperplane and changing their

classes l′.

With this outlier perturbation, benign feature spaces were manipulated by misplacing outliers in

them. The goals are to assess the performance degradation of individual algorithms and to analyse

the behaviour of multiclass models under the OOP attack. For the dataset manipulation with the

OOP attack, let x ∈ D be the distanced data point that is perturbed by manipulating its label l to

increase the loss of the model L with change γ in multiclass decision boundaries bc following model
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Figure 4.1: The architectural overview of Outlier-oriented poisoning attack

training T as:

L(M,D′) = γ = ∆bc(T (M,D′)) (4.1)

4.3.5 OOP Attack Against Adversarially Trained Skin Cancer Diagnostics

The OOP attack is extended under the assumptions of a weak adversary Adv to deceive an adversar-

ially trained skin cancer diagnostic application. The application is trained using the public ProveAI

version of the ISIC dataset, which contains four classes. The OOP attack poisons this public dataset

with ∆L = 10%, which is then used to train the diagnostic application.

The diagnostic is secured with adversarial training and implemented with the FGSM attack. Fur-

ther details of the training approach are given in Section 4.7.1. This attack scenario is novel in two

aspects. Firstly, the OOP poisoning against secured traditional models is analysed in non-complex

settings. Previously, the adversarial training is implemented and tested primarily on neural networks.

Secondly, it analyses the effects of dataset poisoning on the diagnostic model, implemented with three

ML algorithms in multiclass settings.

Consider an ML model M(D; θ) with a classification skin lesion dataset D and θ as configuration

parameters. This model M(D; θ) is trained to make it resilient against data poisoning attacks, using

75% dataset for training and 25% for testing. Mathematical notation of the secured training of a

diagnostic application is given in Eq. 4.2.

Madv(D; θ) = minMSEM [maxL(f(x+ δ), l)] (4.2)
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Table 4.2: Configurations of the models

S.No. Model Model Configurations

1 SVM decision function shape=’ovo’, ker-
nel=’poly’, degree=3, C=1

2 RF criterian=’log loss’, n estimators=9,
max depth=4

3 MLP penalty=’elasticnet’, alpha=0.0001,
max iter=1000

where Madv(D; θ) is the adversarially trained model, MSEM is the mean square error of the model

under testing, L is the loss of the model, δ is the FGSM-based perturbation added to individual data

sample x and l is the original label of the data sample x. The OOP attack generates poisoned data

D′ to corrupt the model training T of Madv(D
′; θ). The mathematical notation of poisoned training

is given in Eq. 4.3.

M ′
adv = T (M(D′; θ)) (4.3)

where, T is the training process of the model andD′ is the poisoned dataset. The model configurations

θ for all the algorithms are given in Table 4.13.

4.3.6 OOP Attack Against Industrial 5G Networks

The adversary Adv is considered as weak, meaning the network configurations and parameters are

unknown to it. ML models are developed to manage the spectrum sharing between 5G and 802.11ax

networks using a data-driven approach. By targeting the training dataset D of these ML models,

the spectrum sharing process is poisoned. The OOP attack is implemented to poison the spectrum

dataset. The OOP attack is implemented with poisoning levels ∆L = 10%, 15%and20%. Following

this threat model, the impact of data poisoning in a time-sensitive spectrum sharing application is

analysed as a diverse industrial use case.

4.4 Case Study Selection Rationale

The selection of skin cancer diagnostic and industrial 5G private network applications aligns with

the objective to assess the impact of data poisoning in real-world applications. These case studies

were chosen based on the criticality of decision outcomes, susceptibility to poisoned training and

availability of datasets and deployment environments to enable practical assessment. Following the

research gaps of the thesis, given in Section 2.4 in Chapter 2, these assessments address the limitations

of assessing data poisoning in traditional multiclass ML.

The adversarially trained skin cancer diagnostic application utilises the SkinCheck application,

enabling assessment of the OOP attack in a practical context. This study specifically addresses the

research gap of evaluating the effectiveness of adversarial training in securing traditional ML models.
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This case study highlights the risks associated with data poisoning, particularly its impact on missed

diagnoses of actual skin cancer cases.

The second case study examines an industrial 5G network in collaboration with the 5G networks team

at Birmingham City University. This network, developed for a material recycling facility, is used

to optimise network resources and assess vulnerability to OOP attacks. While data poisoning has

been studied in the image domain, it is still underexplored in networking applications, particularly

in Industry 4.0, associated with multiclass ML. To respond to research gaps, this study leverages the

analysis of risks in high-yield production environments and evaluates how data poisoning influences

latency, throughput, and contention windows in demanding industrial processes.

4.5 Approach to OOP Attack

This section details the approach of designing and evaluating the OOP attack. It first discussed the

attack method, followed by describing datasets, attack settings and evaluation metrics.

4.5.1 Attack Method

Instinctively, the training dataset is poisoned with the OOP attack to disrupt ML performance at

validation. The OOP attack algorithm is given in Alg. 2. This attack manipulates the class labels

of the most distant data points from their class boundaries, manipulating the feature space of the

classes and misleading classification predictions. To perturb the training dataset, the adversary

develops the surrogate model, as no access to the targeted model is provided. The OOP attack is

implemented using six surrogate multiclass models: SVM, RF, DT, GNB, KNN and MLP, following

default configurations for non-linear datasets. The SVM is developed using a polynomial kernel with

the default degree and regularization parameters of 3, and the MLP is trained using the RELU

activation. However, the other four models support multiclass non-linear classification in default

configurations. The class probability is the model confidence in classifying an instance against each

class in GNB model. The surrogate models are developed to calculate outliers following the Alg.

3. The Alg. 4 distinctly calculates the farthest outliers from decision boundaries for the given ML

model to maximise classification errors. To identify decision boundaries for individual models, the

algorithm is described in Alg. 4.

4.5.2 Experimental Datasets

The OOP attack is implemented on multiclass classifiers using three multiclass datasets: IRIS,

MNIST, and ISIC. The reason for selecting these datasets is their varying sizes and structures, where

IRIS is a small dataset, MNIST is very large, and ISIC is medium-sized with varying feature corre-

lation and number of classes. The dataset characteristics are provided in Table 4.3. By employing
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Algorithm 2 OOP Poisoned Model Generation

Datasets: IRIS, MNIST, ISIC, datasets
Inputs: Training Dataset D, Poison level ∆L
Outputs: Poisoned Model M ′

c

Initialise: D ← Training dataset
∆L← Poisoning level ∈ [0%, 5%, 10%, 15%, 20%, 25%]
Mconf ← [SVM,DT,RF,GNB,KNN,MLP ]
D′ ← Poisoned dataset = []
Ddist ← subset of Training dataset
while len(D′) ≤ ∆L do

Set index i = max(Ddist)
Set data point xi = D[i]
if xi not in D′ then

Set l = Class(xi)
Update l = li; where li ̸= c
Update Class(x′) = li

end if
D′ ← (x′, l′)
Set Ddist[i] = 0

end while
D′

ctrain = split(D′, 0.75)
M ′ = train(Mconf , D

′
train)

return M ′

Algorithm 3 Surrogate Model Development

Datasets: IRIS, MNIST, ISIC datasets
Inputs: Training Dataset D, Model Configuration Mconf

Outputs: Surrogate Trained Model Msurr

Initialise: D ← Training dataset
Mconf ← [ Support Vector Machines (SVM) = Config(kernel=’poly’, degree of polynomial func-
tion=3, regularisation parameter=3),
Decision Tree(DT) = Config(criterion=’gini’, splitter=’best’)
Random Forest(RF) = Config(n estimators=3, criterion=’gini’)
K-Nearest Neighbors (kNN) = Config(n neighbors=5, weights=’uniform’)
Gaussian Naive Bayes (GNB) = Config(var smoothing=1 ∗ 10−9)
Multilayer Perceptron (MLP) = Config(activation=’relu’, solver=’adam’)]

for config in Mconf do
Msurr(config) = initialise(Msurr, config)
Msurr(config) = training(Msurr(config), D)

end for
return Msurr(config)

the OOP attack across datasets with differing structures, a comprehensive analysis is conducted of

how data poisoning influences feature correlations, class numbers, and dataset sizes within multiclass

contexts. The visual datasets representation with the GMM is given in Fig. 4.3, highlighting their

features correlation. Fig. 4.3(a) illustrates that certain features within the IRIS dataset are strongly

interdependent, whereas the complete dataset is not in a linear relation. However, MNIST is found

to be a highly dense dataset with strong features relations as visualised in Fig. 4.3(b). The ISIC

dataset, shown in Fig. 4.3(c), displays a non-linear relationship with significant outliers, indicative of

substantial noise levels. The statistical correlations of datasets are highlighted in Table 4.4. Features
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Algorithm 4 Calculating Distances from Decision Boundaries

Inputs: Surrogate Models Msurr, Training Dataset D
Outputs: Calculated distances of Models distM
Initialise: distM = [distSVM , distDT , distRF , distGNB , distKNN , distMLP ]
x← Model data points
Msurr = [MSVM ,MDT ,MRF ,MGNB ,MKNN ,MMLP ]
if Msurr == MSVM then

for xi ∈MSVM do
distSVM [xi]← decisionfunction(xi,MSVM )

end fordistM [SVM ] = xi

end if
if Msurr == MDT then

Clftree = MDT .tree
for xi ∈ D do

dist[xi]← calculate depth(xi, Clftree)
end for
dist[DT ] = xi

end if
if Msurr == MRF then

for clfx ∈MRF do
Clftree = clfx.tree
for xi ∈ D do

dist[xi]D = calculate depth(xi, Clftree)
end for

end for
distM [RF ] = avg(dist[x1]D, dist[x2]D, ...dist[xn]D)

end if
if Msurr == MKNN then

for xi ∈ D do
dist(xi)neighbors = MKNN .kneighbors
distM [KNN ]← argmax(distance(xi)neighbors)

end for
end if
if Msurr == MGNB then

Da, Db = split(D, 2)
for i ∈ [Dca , Dcb ] do

j = −i+ 1
for xi ∈ D[i] do

Class(xi) = predictprobability(D[j],MGNB)
loglikelihood← log(Class(xi))
distance(xi)← distance(argmax(Class(xi), axis = 1))

end for
end fordistM [GNB] = distance(xi)

end if
if Msurr == MMLP then

for xi ∈MMLP do
distM [MLP ]← decisionfunction(xi,MMLP )

end for
end if
return distM

in the MNIST dataset are highly associated with a p-value of 0.0141, highlighting direct proportion-

ality between its features. A low statistical significance is shown in the IRIS datasets with a p-value

of 0.07, and the p-value of the ISIC dataset is 0.2396. In contrast, a negative Spearman correlation

coefficient highlights a negative linear correlation between its features with a high noise ratio. Further
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Table 4.3: Dataset description used for experimentation with outlier-oriented poisoning attack

S.No. Dataset No. of
features

No. of
Classes

No. of instances

1 IRIS 4 3 170
2 MNIST 784 10 70,000
3 ISIC 20 4 603

(a) Features correlation in IRIS dataset (b) Features correlation in MNIST dataset

(c) Features correlation in ISIC dataset

Figure 4.2: Gaussian mixture model visualisation of features relationship in the dataset with PCA
reduction

analysis of the importance of features correlation and the impact of dataset noise for the OOP attack

is given in Section 4.6.

Table 4.4: Statistical correlation of features in the dataset

S.No. Dataset Spearman Correlation p-value

1 IRIS 0.123888 0.0791
2 MNIST 0.009282 0.0141
3 ISIC -0.014311 0.2396

4.5.3 Attack Settings

Surrogate models for each algorithm is initialised and trained them with selected datasets. The

distances of each data point are calculated from the decision boundary for each class to manipulate

those far from the decision boundaries. Consider T is the model training process with poisoned
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dataset D′ and PM is the function of performance measure, the objective function of the attack

method is given in Eq. 4.4 whereas, θ is the measure of distance of data points from the decision

boundaries. Mathematical notation of θ is given in Eq. 4.5.

argmin PM(M(x′, l′); θ)) (4.4)

s.t. θ = argmax d⃗(bc, (x, l)) (4.5)

Also, D′ is the poisoned dataset manipulated at various poisoning levels ∆L where the notation of

dataset poisoning is given in Equation 4.6.

D′ =

n→∆L∑
i=1

f(D(xi, li),∆L)

where; Xlc ̸= X ′
lc

(4.6)

where, f is the function of manipulating labels, (x, l) is the clean data point, (x′, l′) is the poisoned

data point with l′.

Let poisoning levels ∆L = [5%,10%,15%,20%,25%] manipulate model training by disturbing class-

level decision boundaries bc with notation given in Alg 2. Let f be the function to poison the dataset

D′ at ∆L poisoning level. M ′ is the poisoned model trained with a dataset having manipulated data

points (x′, l′) as given in Eq. 4.7. This allows us to analyse the model behaviour and change in

decision boundaries as given in Eq. 4.8

M ′ = T (M,D′)

where; D′ = f(D(x, l),∆L)

(4.7)

ModDis = ∆b(M ′) (4.8)

where M ′ is the poisoned model developed for algorithms [SVM, DF, RF, KNN, GNB, MLP] and ∆b

is the change in decision boundaries. To conduct a statistical analysis of the performance degradation

of multiclass models and the variance in test-time classification across different poisoning levels, the

correct classification rate is defined in Eq. 4.9.

CCR =

∑n
i=1 f(Nc, Cci(M

′
ci(Dt(xi, li))))∑n=1

i=0 Nc

and f(Nc, C(Dt(x, l))) =


true if (x, l) ∈ Class c

false otherwise

(4.9)
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where, f is the function of classification, Xt is the data point from the validation dataset Dt, Nc is

the total number of data points in Class c, C(.) is the class estimator and CCR is the non poisoned

classification rate.

The OOP attack is conducted against multiclass classification models to assess the poisoning impact

on multiclass ML performance. For the performance evaluation and analysis of the impact of poisoning

availability attacks in multiclass models, poisoned models are evaluated by analysing how many

outliers successfully intrude themselves in wrong classes, which is the False Positive Rate(FPR)

of the model where the model fails in classifying the correct class. However, where the poisoned

outliers remain disjointed in the incorrect classification classes and model availability is intact, is

the Accuracy(Acc), and where the outliers are unsuccessful in intruding the multiclass decision

boundaries is the Precision of the model against OOP attack. Recall in the evaluation is the

quantification where a model can segregate dataset classes and keep the decision boundaries intact.

Variance(Var) reflects how the model’s behaviour changes when its parameters or dataset change.

Considering f(Nc, C((x, l))) is the classification function as given in Eq 4.10, the evaluation metrics

are mentioned in Eq 4.11, 5.17, 4.13, 5.18 and 4.15.

f(Nc, C((x, l))) =


true if (x, l) ∈ Class c

false otherwise

(4.10)

FPR =

∑n
i=0 ftr(Nc, C(x′

i, l
′
i))∑n

i=0 f(Nc, C(x′
i, l

′
i)) ∧

∑n
i=0 f(Nc, C(xi, li))

where ftr(Nc, C(x′
i, l

′
i)) ∈ D′

and f(Nc, C(x′
i, l

′
i)) ∈ D′

and f(Nc, C(x, l)) ∈ D

(4.11)

where D is the clean dataset, Nc is the total number of data points in Class c, and D′ is the poi-

soned dataset with changed class labels of the farthest data points. ftr(Nc, C(x′, l′)) are poisoned

data points with perturbed labels and classified as false positives(FP) and ffs(Nc, C(X ′
tri)) are false

negative(FN) data points.

Acc =

∑n
i=0 ffs(Nc, C(xi, li)) ∧

∑n
i=0 ftr(Nc, C(xi, li))

((x, l) ∈ D) ∧ ((x′
i, l

′
i) ∈ D′)

(4.12)
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Prn =

∑n
i=0 ftr(Nc, C(xi, li))∑n

i=0 ftr(Nc, C(xi, li)) ∧
∑n

i=0 ftr(Nc, C(x′
i, l

′
i))

where ftr(Nc, C(x′
i, l

′
i)) ∈ D′

(4.13)

Rcl =

∑n
i=0 ftr(Nc, C(xi, li))∑n

i=0(ftr(Nc, C(xi, li))) ∧
∑n

i=0(ffs(Nc, C(x′
i, l

′
i)))

where ffs(Nc, C(x′
i, l

′
i)) ∈ D′

(4.14)

V ariance(σ) =
1

Nc

n∑
i=0

(f(Nc, C(xi, li))− µ(f(Nc, C(x′
i, l

′
i))))

2 (4.15)

4.6 Experimentation Results and Analysis

The objective is to analyse the behaviour of multiclass models and answer questions about how the

characteristics of these models are affected and what their relationship is with the poison. What are

the optimal poisoning levels ∆L and the effects of changing poisoned data distributions? What is

the effectiveness and persistence of data poisoning with the OOP attack and its impact on model

validation performance (specifically accuracy)? And quantifying and analysing model variance σ at

test-time classification at different poisoning levels ∆L.

4.6.1 Effects on Multiclass Classification

The baseline results of the OOP attack are given in Fig. 4.3 to Fig. 4.8, where validation accuracy,

precision, recall, f1-score and FPR are plotted against poisoned training with maximum poisoning level

∆L = 25%. These results indicate that the KNN algorithm is particularly vulnerable, experiencing the

most significant accuracy disruption with a maximum decrease in accuracy (λ) = 40.35 at ∆L = 25%

with an increase in FPR=31.6% from FPR=2.7%, shown in Fig. 4.6(a). This vulnerability stems from

KNN being a non-parametric algorithm that relies on the proximity of data points to determine class

features. Table 4.5 highlight that the number of nearest neighbors found to be inversely proportional

to ∆L, reducing the attack success rate 15.79% to 2.76% for the IRIS dataset by changing k=3 to

k=15. Fig. 4.6(c) demonstrates high ASR when KNN is trained with the ISIC dataset, decreasing

its validation accuracy to 63% with FPR=28.25%. From Table 4.5, increasing the number of nearest

neighbors decreases ASR from 3.97% to 3.31% with ∆L = 25%.

The GNB is the second most affected algorithm with a decrease in validation accuracy from 92.98%

to 56.14% and an increase in FPR from 5.68% to 32.49% at 0% ≤ ∆L ≤ 25%, for the IRIS dataset,

given in Fig 4.5. Interestingly, the GNB model is failing with the OOP attack at ∆L = 15% where
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it’s precision ≤ 0 where a lower impact can be seen with MNIST and ISIC datasets. Further

analysis reveals the change in the importance of classes, leading to misclassification, with changing

class probabilities at poisoning levels, given in Table 4.6, whereas the class probability is the model

confidence in classifying an instance against each class.

The attack manipulates the gaussian probability measures, making the highest probability class an

anomaly and vice versa for the IRIS dataset. However, minor changes are visible for MNIST and

ISIC datasets with no change in classes ranking at 0% ≤ ∆L ≤ 15%. This analysis also highlights

that GNB is the most affected algorithm when trained with a dataset with fewer classes.

Table 4.5: Analysing k-neighbors affecting k-nearest neighbors accuracy with ∆L = (0, 10, 15, 25)%

Dataset Poison Level k=3 k=5 k=10 k=15

IRIS

∆L = 0% 94.73 97.50 97.36 97.36
∆L = 10% 89.47 97.36 97.30 94.73
∆L = 15% 81.57 92.10 94.73 92.10
∆L = 20% 78.94 84.21 94.60 94.60

MNIST

∆L = 0% 98.16 97.55 96.94 96.55
∆L = 10% 92.41 96.52 96.78 96.50
∆L = 15% 89.44 90.90 94.54 95.95
∆L = 25% 85.34 76.14 83.68 87.52

ISIC

∆L = 0% 80.79 82.11 70.19 77.48
∆L = 10% 77.48 77.48 66.88 74.17
∆L = 15% 76.15 74.17 68.87 76.13
∆L = 25% 76.82 74.07 64.90 74.17

Table 4.6: Analysing class probabilities of gaussian naive bayes with the poisoned dataset

Dataset Dataset
Class

Clean
Dataset

∆L = 10% ∆L = 15%

IRIS
Class 0 0.33 0.36 0.38
Class 1 0.35 0.25 0.33
Class 2 0.31 0.37 0.27

MNIST

Class 0 0.09 0.09 0.09
Class 1 0.11 0.11 0.11
Class 2 0.09 0.09 0.09
Class 3 0.10 0.10 0.10
Class 4 0.09 0.10 0.09
Class 5 0.08 0.09 0.09
Class 6 0.09 0.09 0.09
Class 7 0.10 0.10 0.10
Class 8 0.09 0.09 0.09
Class 9 0.09 0.10 0.10

ISIC

Class 0 0.76 0.69 0.64
Class 1 0.05 0.08 0.10
Class 2 0.02 0.04 0.07
Class 3 0.14 0.17 0.17

Whereas the OOP attack has minimally disrupted DT, resulting in λ values of 31.6 for IRIS,

15.18 for MNIST, and 17.88 for ISIC at ∆L = 25%. Table 4.7 demonstrates the change in features

importance scores with dataset poisoning, where feature1 scores (0.90, 0.39) remain highest for IRIS
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and MNIST. But feature1 (0.36) with the highest importance score for ISIC becomes anomalous,

making anomaly feature2 (0.37) the most important feature at ∆L = 15%, degrading its classification.

The RF algorithm demonstrates relative robustness, with its FPR converge to ≈ 2% with an overall

accuracy decrease to 61.25% from 87% for the ISIC dataset and FPR converge to ≈ 9% for the

MNIST dataset with accuracy of 82.38% at ∆L = 25% as shown in Fig. 4.4. Because RF follows

the ensemble approach and classifies averaging decisions from all of its trees, which normalises the

poisoning effects in this case. The change in features importance scores for RF is given in Table

4.10, where features ranks remain the same for IRIS and MNIST, but for ISIC highest ranked feature

dropped to rank two at ∆L = 15% poisoning. Lastly, SVM and MLP are also not found to be very

sensitive to the OOP attack. For SVM, features ranks remain intact, given in Table 4.8, except for

ISIC, where feature3 (0.39) importance score reduces to (0.33) at ∆L = 15%, making it an anomaly.

A lower impact is visible on MLP from Fig 4.8, with this attack, except at ∆L = 15% where it is

failing for the IRIS dataset.

Table 4.7: Features importance score - Decision tree where ∆L = (0%, 10%, 15%)

Dataset
Clean Dataset Poisoned Dataset ∆L = 10% Poisoned Dataset ∆L = 15%

Feature1 Feature2 Feature3 Feature1 Feature2 Feature3 Feature1 Feature2 Feature3

IRIS 0.90 0.00 0.02 0.87 0.008 0.11 0.79 0.07 0.12
MNIST 0.39 0.34 0.26 0.39 0.33 0.27 0.39 0.32 0.28
ISIC 0.36 0.28 0.35 0.28 0.38 0.32 0.32 0.37 0.30

Table 4.8: Features importance score - Support vector machines where ∆L = (0%, 10%, 15%)

Dataset
Clean Dataset Poisoned Dataset ∆L = 10% Poisoned Dataset ∆L = 15%

Feature1 Feature2 Feature3 Feature1 Feature2 Feature3 Feature1 Feature2 Feature3

IRIS 0.90 0.02 0.08 0.78 0.05 0.15 0.86 0.10 0.02
MNIST 0.40 0.16 0.43 0.34 0.23 0.42 0.36 0.21 0.42
ISIC 0.33 0.27 0.39 0.30 0.22 0.47 0.32 0.33 0.33

Table 4.9:
Analysing support vector machines margin score for different datasets with ∆L = (0, 10, 15)%

Dataset ∆L = 0% ∆L = 10% ∆L = 15%

IRIS 0.005 0.01 0.001
MNIST 0.0000011 0.00000022 0.00000027
ISIC 0.01 0.003 0.003

4.6.2 Effects of Poisoning Rates

The analysis is extended to study the effects of consistently increasing poisoning rates on multiclass

models with the OOP attack. The aggregated results, given in Fig. 4.3 to Fig. 4.8, show over-fitting?

No. These results demonstrated that the classification accuracy of multiclass classifiers has maximum

disruption when the training dataset is poisoned with the OOP attack at ∆L = 10%, irrespective of
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Table 4.10:
Features importance score - Random forest where ∆L = (0%, 10%, 15%)

Dataset
Clean Dataset Poisoned Dataset ∆L = 10% Poisoned Dataset ∆L = 15%

Feature1 Feature2 Feature3 Feature1 Feature2 Feature3 Feature1 Feature2 Feature3

IRIS 0.66 0.15 0.17 0.58 0.19 0.22 0.52 0.22 0.25
MNIST 0.39 0.34 0.26 0.39 0.33 0.27 0.39 0.32 0.27
ISIC 0.31 0.35 0.34 0.31 0.36 0.32 0.34 0.33 0.32

(a) Poisoning support vectore machines with IRIS
dataset

(b) Poisoning support vector machines with
MNIST dataset

(c) Poisoning support vector machines with ISIC
dataset

Figure 4.3: Performance analysis of support vector machines with consistent poisoning

datasets. An inverse relationship is observed between the number of classes in the dataset and the rate

of performance degradation. For the MNIST dataset, from Fig. 4.3(b) to Fig. 4.8(b), the ten dataset

classes have a steady decrease in performance. Whereas classifiers trained with the IRIS dataset,

with three dataset classes, have high fluctuation in performance, followed by ISIC with four classes.

The least percentage of data poisoning is more effective on parametric models. The 10% poisoning

has a steady and practical impact on parametric models, whereas 15% poisoning leads to impractical

effects. From Fig. 4.5(a) and Fig. 4.8(a), parametric models, with minimum no. of classes, are

failing at 15% poisoning. But, ∆L = 15% is very effective for non-parametric models. Conclusively,

10% ≤ ∆L ≤ 15% are the optimal poisoning rates for multiclass models, where ∆L > 15% shows an

impractical success.
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(a) Poisoning random forest with IRIS dataset (b) Poisoning random forest with MNIST dataset

(c) Poisoning random forest with ISIC dataset

Figure 4.4: Performance analysis of random forest with consistent poisoning

(a) Poisoning gaussian naive bayes with IRIS
dataset

(b) Poisoning gaussian naive bayes with MNIST
dataset

(c) Poisoning gaussian naive bayes with ISIC
dataset

Figure 4.5: Performance analysis of gaussian naive bayes with consistent poisoning

4.6.3 Model Sensitivity to Poison

The sensitivity of the poisoned model is investigated by analysing the relationship between model

variance and ASR. Table 4.11 illustrates the variance in ML models in response to the OOP attack.
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(a) Poisoning k-nearest neighbors with IRIS
dataset

(b) Poisoning k-nearest neighbors with MNIST
dataset

(c) Poisoning k-nearest neighbors with ISIC
dataset

Figure 4.6: Performance analysis of k-nearest neighbors with consistent poisoning

(a) Poisoning decision tree with IRIS dataset (b) Poisoning decision tree with MNIST dataset

(c) Poisoning decision tree with ISIC dataset

Figure 4.7: Performance analysis of decision tree with consistent poisoning

This attack significantly increased the sensitivity of all tested models, with GNB exhibiting the

highest sensitivity. Its variance leads to 0.8 at ∆L = 10%, for the IRIS dataset, almost equivalent

to DT, where it fails. Similarly, 0.10 variance increases for KNN at ∆L = 15%, highlighting its high
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(a) Poisoning multilayer perceptron with IRIS
dataset

(b) Poisoning multilayer perceptron with MNIST
dataset

(c) Poisoning multilayer perceptron with ISIC
dataset

Figure 4.8: Performance analysis of multilayer perceptron with consistent poisoning

sensitivity and the effectiveness of the OOP attack. RF and DT are proven to be less sensitive to

this attack. Interestingly, on average, models trained with MNIST and ISIC are also less affected by

the poisoning attack compared to models trained with the IRIS dataset, with high impact.

Further analysis is conducted on the dataset distribution to ascertain its impact on data poisoning

and performance degradation in models. Fig. 4.9 shows the change in data distribution with the

OOP attack at 0% ≤ ∆L ≤ 25%. The findings suggest that balanced datasets with a larger number

of classes tend to mitigate the effects of poisoning on model performance, particularly in terms of

model accuracy. In contrast, imbalanced and noisy datasets work as catalysts and boost the poisoning

effects of this attack, leading to an impractically high decrease in performance, such as for the ISIC

dataset, as shown in Fig. 4.9(c). This analysis identifies relationships between various classification

characteristics and subsequent rates of data poisoning, as given in Table 4.12.
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Table 4.11:
Model variance at different poisoning levels

Dataset Algorithm Clean Dataset ∆L = 10% ∆L = 15%

IRIS

SVM 0.33 0.36 0.57
RF 0.62 0.60 0.63
GNB 0.65 0.73 0.68
KNN 0.81 0.82 0.91
DT 0.59 0.68 0.78
MLP 0.65 0.69 1.45

MNIST

SVM 8.33 8.06 7.97
RF 8.24 7.69 7.71
GNB 11.25 12.68 12.74
KNN 8.36 8.37 8.38
DT 8.33 7.81 8.02
MLP 8.31 8.38 8.31

ISIC

SVM 1.33 0.97 1.36
RF 1.11 1.17 1.32
GNB 1.27 1.66 1.19
KNN 0.31 0.37 0.27
DT 0.31 0.37 0.27
MLP 1.52 1.48 1.59

Table 4.12:
Analysing one-to-one relation between poison and various parameters of machine learning algorithms

Algorithm Algorithmic Parameters Relation to ∆P

SVM
Margin score Minimal impact

Decision boundary Minimal impact
Features importance score Minimal impact

DT
Features importance score Minimal impact
Asymmetric features space High impact

KNN
Decision boundary High impact

k-neighbors Inverse impact

GNB
Decision boundary High impact
Class probabilities High impact

RF No. of trees Inverse impact
Features importance score Minimal impact

MLP Weights High impact
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(a) Data distribution of IRIS dataset with OOP
attack

(b) Data distribution of MNIST dataset with
OOP attack

(c) Data distribution of ISIC dataset with OOP
attack

Figure 4.9: Data distribution with OOP attack
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4.7 Case Study 1: OOP Attack Against Adversarially Trained Skin Can-

cer Diagnostics

The ML systems have seen wide adoption in healthcare, providing proficiency in handling complex

decision-making tasks and optimising their diagnostic processes efficiently. Skin cancer is a severe

disease with a high frequency rate. Due to its potential seriousness and prevalence, an early diagno-

sis is crucial for its treatment. Traditional diagnosis requires biopsy and visual examination, which

is time-consuming and subject to human error. In this context, ML tools show promising results.

These models can handle various data types and ensure efficient and optimised diagnosis capability

compared to manual processing.

On the other hand, data poisoning Lu et al. (2023), Wei et al. (2023) can poison the ML model’s

dataset and harm the victim model’s diagnosis mechanism. Various solutions are provided in the

literature to mitigate such data poisoning attacks, including data sanitisation (Paudice et al., 2018b),

ensemble learning (Ahmed et al., 2022), and adversarial training (Tao et al., 2021). Adversarial train-

ing is one of the prominent solutions through which the ML model is trained with a combination of

cleaned and poisoned data samples to allow the model to understand the patterns of the poisoned

data. This mechanism makes the model resilient and enables it to surpass similarly poisoned dataset

samples if injected.

However, adversarial training can be breached with novel data poisoning attacks Wen et al. (2023),

Tao et al. (2022b). This study leverages the capabilities of the OOP attack and analyses its ef-

fectiveness against adversarial training. Another important consideration of this case study is that

adversarial training is mostly analysed to secure DL models, as discussed in Section 2.4 in Chapter 2,

whereas this case study analysed the significance of adversarial training on the traditional multiclass

models in non-complex settings. The contribution of this case study 1 is to conduct a thorough

analysis of the OOP attack against adversarially trained multiclass SVM, RF, and MLP models.

4.7.1 Attack Model

A grey-box approach is followed to poison the adversarially trained skin cancer application, developed

in multiclass model settings. The attack model comprises four steps as given in Fig. 4.10. The details

of each stage of the attack model are given as follows.

Attack Generation Generating appropriate data poisoning attacks, the poisoning level of 10% is

set for the complete dataset to achieve a maximum effectiveness of the data poisoning against adver-

sarially trained models. Following research (Paracha et al., 2024a), 10%-15% of dataset poisoning is

the most effective poisoning level. Subsequently, following the threat model, the OOP attack is im-

plemented and set the dataset=ISIC dataset, and algorithm=targeted model algorithm with different
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Figure 4.10: Overview of the attack model - Analysing efficacy of outlier data poisoning attack against
adversarially trained models for skin cancer diagnosis

Table 4.13: Configurations of the models

S.No. Model Model Configurations

1 SVM decision function shape=’ovo’, ker-
nel=’poly’, degree=3, C=1

2 RF criterian=’log loss’, n estimators=9,
max depth=4

3 MLP penalty=’elasticnet’, alpha=0.0001,
max iter=1000

configurations.

Dataset Poisoning At the dataset poisoning stage, the data poisoning attack with the ISIC dataset

is implemented and generated a poisoned version of the dataset, implemented with simple baseline

algorithms: SVM, RF, and MLP.

Adversarial Training Using the baseline line algorithms for SVM, RF, and NN, the wrapper

models were developed for each baseline model to accommodate adversarial training with the tensor-

formatted dataset. The cleaned dataset D is distributed dict(D) into training and testing with a

75%-25% percentage. The algorithm to perform the adversarial training of the baseline model is

given in Alg. 5.

Model Poisoning Access to the victim model that is adversarially trained to be resilient against

data poisoning, the model is evaluated against an outlier data poisoning attack (Paracha et al., 2025a)

to assess the reliability of the adversarial training to secure baseline ML models. Furthermore, the

experimentation highlighted that adversarially trained baseline ML models are highly affected by

data poisoning attacks. The attack model implementation is given in Alg 6.

4.7.2 Experimentation Results and Analysis

The experimentation is conducted following two different dataset distributions. 75%-25% dataset

distribution is followed to develop the resilient models with adversarial training and for performance

analysis. Whereas, the adversary follows 80%-20% dataset distribution to poison the dataset. This

setup allowed us to assess how data poisoning deceives the skin cancer diagnostic application even

when the adversary follows a different data distribution. This case study analyses the resilience of
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Algorithm 5 Adversarial Training of Baseline ML Model

training epochs = 15
pert epsilon = 0.1
batch size = 4
procedure adversarial training(x train,y train,model)

N = length(y train)
▷ X train is the training dataset and y train are the training dataset labels

optimiser = SGD Optimiser(model.parameters(), lr = 0.1)
model← training state
for epoch in 1,2 . . . training epochs do

perm = random permutation(N)
sum loss = 0
for i in 1,2 . . . batch size do

data sample = x train[perm[i : i+ batch size]]
data sample label = y train[perm[i : i+ batch size]]
gradient(optimiser) = 0 ‘
output = squeeze(model(data sample))
weight = squeeze(model.weight)
loss = mean(clamp(output,−1, 1))
loss = loss+ 0.01 ∗ (weight.t()@weight)/2.0
loss gradient = gradient(loss)
stepper(optimiser)
data grad = gradient(data sample)
x adv = FGSM ATTACK(data sample,

epsilon,
data grad)

▷ FGSM attack is one of the principal data poisoning attacks
adv train x = merge(x train,X adv)
adv train y = merge(y train, y adv)

end for
end for
train(model, adv train x, adv train y) ▷ performing adversarial training of the model

end procedure
return model

the models, their variance, and the impact of the OOP attack against traditional ML. This study

assesses the limitations of adversarial training against novel data poisoning attacks.

The performance of the adversarially trained models is evaluated against their poisoned versions. Fig.

4.11 highlights the decrease in model accuracy when trained with the poisoned dataset compared to its

counterpart. Data poisoning attack shows its effectiveness against adversarially trained ML models.

The results highlighted that adversarial training profoundly secured neural networks against new data

poisoning attacks, whereas it does not work against other baseline models. Adversarially trained SVM

and RF models are vulnerable to data poisoning. Table 4.15 provides the test-time accuracy, precision,

recall, f1-score, and false positive rate of cleaned and poisoned models with poisoning rate ∆L = 10%.

From these results, SVM is the most affected model with the highest decrease in test time accuracy

of around 50%; however, the accuracy of the neural networks model only decreased to 2%.

This analysis is extended to study the effects of data poisoning on each dataset class. The test time

dataset comprises 151 instances in total, from which the biggest class is Benign(Non-cancerous),
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Algorithm 6 Poisoned Training Of The ML Model

Inputs: ISIC Training Dataset = DISIC

Outputs: Poisoned Model = M ′
SVM , M ′

RF , M
′
NN

Initialise: Wrapper Model = WM ,
Neural Networks Module (module = torch.nn.Module),
Number of Dataset Classes (Nc = 4)
Poison Level (∆L = 10%),
Adversarial Training (Advt = Adv(Attack = FGSM)),
Poisoning Attack = Attackoutlier
algorithms = [’SVM’, ’RF’, ’NN’]

for alg in algorithms do
Mwrapper = WM (module, alg)← size(DISIC), num classes)

end for
Dtrain, Dtest = split dataset(DISIC , train size = 75%, test size = 25%)
X train tensor = inst to tensor(Dtrain)
y train tensor = inst to tensor(labels(Dtrain))
Mwrapper ← Train SVM(X train tensor, y train tensor,Mwrapper, FGSM Attack)
D′

ISIC = Attackoutlier(DISIC ,Mwrapper, poison = 10%)
D′

train, D
′
test = split dataset(D′

ISIC , train size = 80%, test size = 20%)
X poisoned tensor ← inst to tensor(D′

train)
y poisoned tensor = inst to tensor(labels(D′

train))
M ′

wrapper ← Train Mwrapper(X poisoned tensor, y poisoned tensor,Mwrapper, FGSM Attack)
return M ′

wrapper

having 115 samples and Indeterminate/malignant is the smallest class of 5 samples only. Table

4.14 provides the class-level test time misclassification rate with 10% training time poison.

Figure 4.11: Model accuracy - Decrease in model’s performance with data poisoning attack

This study investigated the relationship between model variance and the data poisoning attack at

∆L = 10%. Fig. 4.13 illustrates an increase in model variance and attack success rate with poisoned

training. MLP has shown the lowest variance increase of 0.02, whereas SVM exhibits high sensitivity

against a data poisoning attack with a variance of 1.15. Consequently, RF is a stable model with the
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Table 4.14: Misclassification rate for each dataset class

Model Dataset Benign=
115

Malignant=
24

Indeterminate/
Benign=7

Indeterminate/
Malignant=5

Misclassification
Rate

SVM Cleaned ISIC 3 24 5 1 0.22
RF Cleaned ISIC 5 20 6 1 0.21
MLP Cleaned ISIC 2 24 6 1 0.21
SVM Poisoned ISIC 24 25 5 1 0.36
RF Poisoned ISIC 63 13 2 0 0.51
MLP Poisoned ISIC 27 14 6 1 0.31

Table 4.15: Classification results of adversarially trained models

Model Accuracy Precision Recall F1-
score

FPR

Clean SVM 74.5 30.35 29.62 29.88 21.06
Poisoned
SVM

36 29.60 28.08 27.78 24.63

Clean RF 80 52.81 28.72 27.87 22.77
Poisoned RF 58.2 23.87 26.15 22.82 23.53
Clean MLP 72 52.55 26.27 24.48 24.25
Poisoned
MLP

70.1 50.05 26.63 23.91 24.23

Figure 4.12: Model’s false discovery rate - Increase in the false diagnosis rate of the models when
trained with the poisoned dataset

least variance of 0.28 for its cleaned version, increasing to 0.60 with poisoned training. Overall, the

highest impact of poisoning is visible on the SVM model.

This research examined the impact of the outlier data poisoning attack on the decisions of the indi-

vidual models by taking random samples. It analysed the change in the confidence scores of randomly

taken samples from the poisoned models and their impact on the application of healthcare diagno-

sis. Results of change in diagnosis confidence can be seen in Fig. 4.14 to Fig. 4.16. From these

results, the least disruption of 0.1/0.86 prediction confidence for the Benign(Non-cancerous) sample

is shown from the poisoned MLP model. Whereas, training time poisoning is shifting a Benign(Non-

cancerous) sample to a Malignant(Cancerous) with a slight change in confidence that is 0.2/0.55

from Benign(Non-cancerous) to Indeterminate/Benign, in Fig. 4.14. However, a complete change in
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the diagnosed class confidence of 100%, for the poisoned SVM model, as seen in Fig. 4.15. Conclu-

sively, adversarial training is effective in making neural networks resilient against novel data poisoning

attacks, whereas it is ineffective for other baseline ML models, RF, and SVM in this research.

Figure 4.13: Model variance - Sensitivity of the models against data poisoning attack

Figure 4.14: Random forest poisoned sample 1 - Analysing change in confidence score with poisoned
training
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Figure 4.15: Support vector machines poisoned sample 1 - Analysing change in confidence score with
poisoned training

Figure 4.16: Multilayer perceptron poisoned sample 1 - Analysing change in confidence score with
poisoned training
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4.8 Case Study 2: OOP Attack Against Industrial 5G Private Network

The technological industrial revolution, known as ”Industry 4.0”, is receiving steady adoption across

a wide range of industries. These industrial transformations are driven by digital transformation,

enabled by advanced connectivity, artificial intelligence, and robust computing. ML is playing a vital

role in developing, managing and optimising the systems and networks in Industry 4.0. Given the

enabling capabilities of these technologies and the significance of their application in different sectors,

the impact of cyber security threats and the consequential effect on industrial outputs can not be

overemphasised.

This study explores the performance disruption and impact of data poisoning within an industrial

context, with a use case of a material recycling facility (MRF). The work presented in (Baiyekusi et al.,

2024), showed the value of applying an ML-based approach in spectrum sharing within industrial

MRF settings. In this research paper, the authors have highlighted the significance of unlicensed

spectrum in 5G networks (5G NR-U) and IEEE 802.11ax networks. By analysing the flexibility

limitations of using these networks in industrial use cases, they proposed an ML-based data-driven

approach to calculate the optimal performance metrics in shared unlicensed bands between these

networks. Despite the usefulness of these ML models, they are found to be highly vulnerable to

various adversarial attacks Sharma et al. (2019), Tu et al. (2021). Data poisoning attack Li et al.

(2024), Wang et al. (2023) is one of these attacks which poison the training dataset of ML models

and transmit poison to these cellular networks. However limited research is provided to study the

impact of data poisoning on unlicensed shared spectrum networks in industrial scenarios.

This case study leverages the implementation of a novel multiclass data poisoning attack, based

on the multi-network scenario adopted in (Baiyekusi et al., 2024), to poison the data-driven model

predictions in 5G NR-U and 802.11ax shared spectrum networks. With this experimentation, the

effectiveness and impact of multiclass data poisoning in an industrial scenario were analysed. Four

supervised models: SVM, RF, DT and MLP were selected. The contribution of this case study is to

analyse the impact of a novel poisoning attack in an industrial 5G private network and evaluate the

efficacy and impact of data poisoning in 5G and 802.11ax WIFI shared-spectrum networks.

4.8.1 Attack Model

This case study describe the scenario of the MRF. The MRF consists of a network of conveyor belts

through which the recycled wastes are moved through the facility to be sorted by robotics arms. The

robotic arms are equipped with cameras that feed the edge server with live video of moving waste

materials. Object detection is performed at the edge server using computer vision, and the robotic

arm selects any material of interest to be separated and recycled. Due to stringent data rates and
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delay requirements, the network performance needs to be optimal and stable, otherwise, this could

significantly impact MRFs operations negatively. The robotic arms are connected to the edge server

via the 5G NR-U network. The 5G NR-U network offers resilience in data rates and delay through

its error correction handling scheme. For monitoring purposes, the MRF is also equipped with digital

display boards which offer visualisation of operations. This displays also offer live feed from CCTV

around the MRF. The network traffic to the digital display screens have lesser priority but still re-

quired to function at an acceptable level. These digital display boards are connected to the edge

server through the 802.11ax network. Given, the coexisting scenario of both 5G NR-U and 802.11ax,

the ML-based spectrum sharing technique proposed in (Baiyekusi et al., 2024), ensures each network

maintains expected performance based on the number of nodes contending over the channel and the

expected data rates.

The ML-based spectrum sharing scheme proposed in (Baiyekusi et al., 2024) is predicated based on

Figure 4.17: Material recycling facility scenario - A network of conveyor belts

5G NR-U and 802.11ax and operates relatively similar channel access schemes. The channel access

scheme follows an arbitration process where transmission over the channel is made after channel sens-

ing is performed and a random backoff period has been observed. The random variable for the backoff

period is selected using a uniform distribution, which ideally offers fairly similar channel access to

all nodes contending for transmission over the channel. The ML-based spectrum scheme proposed

enables estimation of the number of nodes contending over the channel in a mixed technology scenario

and adjusts the contention window for each node based on the network it is transmitting over i.e.

either 5G NR-U or 802.11ax.

Experimental Dataset This case study has extended the dataset, developed in the research paper

(Baiyekusi et al., 2024). This dataset is developed in MATLAB. This dataset is created with various

on-networks devices in the range of 8-40 at a scale of 8. These devices are sharing the network spec-

trum of 5G NR-U and 802.11ax networks. Onboarding different devices on different range between
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8-40, data rates and bandwidth of these devices is calculated under various transmission time and

transmission delay. Transmission time and transmission delay is set to 5ms, 6ms, 8ms and 10ms.

Data rates and bandwidth of these devices are measured at different contention stages for both 5G

NR-U and 802.11ax networks. The contention stages to five states from 1-5 with a minimum 32 ≤

contention rate ≤ 2n and n is in the range of 6-10 at the scale of 1. The details of the dataset

properties are given in Table 4.16.

Attack Method In this case, the dataset captured in real-time from the 5G network is poisoned.

Table 4.16: Properties of the shared-spectrum 5G NR-U and 802.11ax dataset

S.No. Dataset Property Property Description

1 No. of nodes Number of devices on network
2 Contention stage Wait after transmission frame
3 Data rate Data rates based on transmission

time
4 Transmission delay Delay transmitting data

Following the threat model, only access to the dataset is provided to poison without providing any

other knowledge of the target system. The details of the attack method are given as follows.

The OOP attack on the shared-spectrum 5G NR-U and 802.11ax networks dataset is implemented

to structure a successful attack within an industrial 5G private network. Considering realistic attack

settings, the attack in a grey-box scenario is implemented without leveraging the adversary to access

the target model. Only dataset access is provided to the adversary; therefore the attack is imple-

mented based on surrogate models to poison the dataset. The mathematical notation of developing

surrogate models Ms is given in Eq 4.16.

Ms = T (M(D; θ),∆L) (4.16)

where, D is the 5G private network dataset, θ are the model configurations and poisoning level

∆L = (10, 15, 20)%. The surrogate model Ms allows the adversary to develop the poisoned datasets

D′. The mathematical notation for developing D′ is given in Eq 4.17.

D′ =

n→∆L∑
i=1

fp(fl′([max d⃗(xi)], l
′
i),∆L) (4.17)

where, fl′ is the function of manipulating the label l of the targeted data point x and changing it

to a new label l′, fp is the function of developing poisoned dataset D′ with a dependent function

fl′ with poisoning level ∆L = (10, 15, 20)%. fl′ is the function of updating the label of the farthest

data point in the dataset. Consequently, by providing the poisoned dataset to the ML model, the
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Figure 4.18: Mean data-rate poisoning performance results for multilayer perceptron showing perfor-
mance across multiple nodes and contention window stages

shared-spectrum network is poisoned.

By implementing the OOP attack, the ML model has misclassified contention rates which subse-

quently manipulate data rates and transmission rates, leading to a disruption in the network. With

this network poisoning, the impact of data poisoning attacks on 5G and 802.11ax shared-spectrum

networks is evaluated at various poisoning levels. Overall, it shows a high impact on the optimised

shared-spectrum network implemented with SVM followed by DT. Furthermore, Section 4.8.2 gives

an in-depth analysis of the experimentation results.

Figure 4.19: Mean delay poisoning performance results for multilayer perceptron showing performance
across multiple nodes and contention window stages
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Figure 4.20: Mean data-rate poisoning performance results for other models showing performance
across multiple nodes and contention window stages

Figure 4.21: Mean delay poisoning performance results for other models showing performance across
multiple nodes and contention window stages

4.8.2 Experimentation Results and Analysis

The performance of various poisoned ML models against multiclass data poisoning in a shared-

spectrum private 5G network is assessed to analyse their performance against cleaned models. Fig.

4.22 highlights the decrease in model accuracy with the OOP data poisoning attack. A linear decrease

is visible on the test time accuracy of models with an increase in data poisoning level ∆L where

10% ≤ ∆L ≤ 20% at a scale of 5. SVM is the most affected model and MLP has minimal effects of

data poisoning. Further, Fig. 4.23 highlights an abrupt change in the false discovery rate of models

where RF and DT are highly disrupted at ∆L = 20% and SVM and MLP show the highest error

rates at ∆L = 15%. Overall, SVM has shown the highest poisoning effects with a decrease of 6.6%

accuracy and MLP proved to be more stable against data poisoning with 2.9% accuracy decrease at

∆L = 20%.

The network performance results shown in Fig. 4.20 to Fig. 4.21 highlight the impact of the data
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Figure 4.22: Decrease in model accuracy with data poisoning attack

Figure 4.23: Increase in model false discovery rate with data poisoning attack

poisoning attack. The data rates and transmission delay constitute the main metrics for evaluating

the impact on performance. Fig. 4.20 shows a heatmap of the impact of the poisoning attack on

the MLP model on NR and WiFi data rates in light of their severity. It can be seen that 5G NR-U

is more impacted. This may be due to 5G NR-U network’s slightly better modulation and coding

scheme (MCS) and less management data overheads. Consequently, the impact of the poisoning

attack is more noticeable for 5G NR-U when node numbers and contention windows are wrongly

estimated. Given the industrial scenario being evaluated, the robotic arms operate over the NR

networks. The wide variations with smaller nodes, e.g. 16 and 24 nodes, indicate a significant impact

on the performance of the robotic arms across the recycling centre. For instance, a drop in data rates

by 8.7Mbps for each robotic arm will lead to significant degradation in the operations of the robotic

arm and potentially reduce the MRF’s output. From a delay perspective, the 802.11ax network shows

a more negative impact of the poisoning attack. The delay reflects more on 802.11ax due to additional

overheads for data transmission; hence, any wrong estimation of the number of nodes and contention

window will further impact the delay profile and performance of the 802.11ax network.
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4.9 Discussion and Limitations

A novel grey-box attack is formalised to attempt poisoning multiclass models, describing their effi-

cacy and analysing the factors affecting their classification behaviour. Although several adversarial

poisoning techniques are proposed in the literature, limited experimentation is provided on multiclass

classifiers. Existing research papers Steinhardt et al. (2017), Chen and Koushanfar (2023), Hayase

et al. (2021), Weerasinghe et al. (2021) proposed solutions that focus on discrete data set features and

detect outliers to lessen poisoning effects. The attack has taken the outliers into the feature space that

effectively poisoned the model. Following this, certain factors affecting individual algorithms were

highlighted and effective levels of poisoning for parametric and non-parametric multiclass models

were also determined. These results showed that a 10% poisoning rate shows the highest performance

degradation for parametric models and 15% for non-parametric models. At these optimal poisoning,

a lower level of model sensitivity is analysed, which does not allow the model to over-fit, highlighting

the efficacy of the OOP attack.

Implementing the OOP attack, this chapter conducted a deep behavioural analysis of multiclass ML,

identifying factors affecting the confidence of models. From these results, GNB and KNN are found

to be highly affected by this poisoning attack, whereas DT and RF are less affected models. Manipu-

lating the outliers class label, class probabilities of GNB, and proximity distance calculation of KNN

are highly disrupted.

These results highlighted that the dataset size and number of classes are inversely proportional to

poisoning effects. Whereas, an accelerating impact of an imbalanced dataset on model poisoning.

Imbalanced classes in multiclass datasets help penetrate poison in the model effectively, to an extent.

Also, a fundamental relation between dataset noise and data poisoning is found where dataset noise

works as a catalyst towards poisoning, but becomes impractical with poisoning level > 15% with

unrealistic performance degradation.

Following these results, two case studies were conducted to examine the impact of OOP poisoning in

real-world applications. In this first case study, the efficacy of adversarial training is studied against

data poisoning attacks in two traditional ML models in non-complex settings. Various literature

studies Shi et al. (2018), Lu et al. (2024) experimented data poisoning against adversarially trained

models mostly on DL models, including many complex Convolutional Neural Networks(CNN). This

case study analysed how data poisoning, if 10% poison is injected, impacts adversarially trained

SVM, RF, and MLP in their simplified forms. These results showed that SVM is highly vulnerable

to data poisoning and adversarial training does not work on SVM and RF, as expected. However, is

significant in making MLP resilient.

These results highlighted that after implementing adversarial training with the FGSM attack, the
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integrity of the MLP model is intact and is not affected by data poisoning attacks. In contrast, the

model integrity of the SVM model is breached. The test time prediction variance of the SVM model

is significantly high when trained with a cleaned dataset of 0.9 and a higher variance of the model

is calculated when trained with 10% poisoned dataset reaching 1.15. Whereas, RF and MLP have

significantly lower variance compared to SVM. Because the attack is implemented perturbed outliers

and RF is resilient to outliers, in general, this leads to a lesser impact on the RF model.

Trustworthiness and robustness of smart healthcare applications should be of the highest priority.

The results highlighted a major impact of data poisoning that worsened the diagnosis mechanism of

these applications. The results of this case study highlighted the need to secure the traditional ML

models that provide good results in the diagnosis of diseases at an early stage. But these models are

the target of adversaries who try to spoil these security-sensitive applications.

Next, the impact of OOP poisoning in 5G industrial testbed network is analysed. The results from

this study show the impact of data poisoning on a private 5G NR-U and 802.11ax network. It is clear,

depending on the level of poisoning, data poisoning introduces instability in the network, causing the

network to perform differently from how it is designed to operate. Hence, the attack can significantly

degrade the performance and consequently the industrial output, making it not fit for purpose. The

results show a high impact of data poisoning in violating the integrity of advanced networks. Data

poisoning against four ML models is evaluated, implemented for network optimisation. This analysis

highlighted that data poisoning has minimal impact on the MLP at all three poisoning levels, whereas

the highest disruption in the integrity of SVM can be seen. Fig. 4.20 shows the highest impact on

SVM with a value of -2.9 NR data rates transmission with 16 nodes, and similarly, Fig. 4.21 highlights

a maximum transmission delay of -0.016 and -0.017 for SVM with 16 and 32 nodes, respectively. Also,

Fig. 4.22 shows a continuous decrease in performance for SVM, RF, and DT irrespective of their

design, highlighting the efficacy of data poisoning on wireless networks.

This chapter is limited to the analysis of classification algorithms which can be extended to the re-

gression algorithms. With this limitation, the factors affecting classification behaviours and their

confidence in this poisoning attack were analysed. Also, comparing this attack with existing attacks

from the literature helps demonstrate the efficacy of the OOP attack which is also out of the scope

of this chapter.

4.10 Summary

This chapter extends the answer to RQ 2 to highlight risks, impact, and consequences of novel

data poisoning attacks in real-world applications in multiclass settings. It analyses the behaviour of

multiclass models developed for real-world applications, identifying individual characteristics of the

algorithms against OOP data poisoning to understand how the decision process can be compromised
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in multiclass classifiers. It also addresses RQ 3 by highlighting the limitations of adversarial training in

securing traditional ML models against data poisoning attacks and the need for improved mitigation

solutions to secure ML models from poisoning attacks.

This chapter examines the consequences and impact of data poisoning in healthcare and Industry 4.0

network applications, emphasizing the necessity for robust and generalisable security solutions that

would be applicable to both ML and DL models. This examination assessed individual algorithms

against the OOP attack, identifying their key vulnerabilities in their characteristics. These results

and limitations of existing mitigation solutions enable us to propose an improved attack-agnostic

solution in the next chapter. Such a solution will address the limitations of existing adversarial

training mechanisms and is adaptable to both ML and DL models.
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Chapter 5. SecureLearn: Improvised Machine Learn-

ing Defence

5.1 Introduction

Chapters 3 and 4 demonstrates the effectiveness of data poisoning attacks in binary and multiclass

classification models and highlight the limitations of existing defences against these attacks. Chapter

3 determined the underlying changes in the learning dynamics with poisoned training, whereas Chap-

ter 4 emphasised the impact of data poisoning by exploiting a training characteristic of ML. These

findings highlight the need to develop an attack-agnostic solution, securing models from evolving

data poisoning attacks. This chapter answers RQ 3 and proposes an attack-agnostic solution called

SecureLearn and analyses the limitations of existing solutions to mitigate data poisoning attacks and

highlights the effectiveness of the proposed mitigation solution as an attack-agnostic defence. By

answering RQ 3 , it fulfills objectives 3 and 4. Objective 3 is achieved with the task of proposing a

robust and generalised solution and objective 4 is aligned with proposing a novel mechanism called

the 3D evaluation matrix. Previously, no such matrix was proposed in the literature to assess defence

solutions thoroughly across various dimensions. The 3D evaluation matrix evaluates the defensive

capabilities of SecureLearn from three dimensions: data poisoning attacks, data sanitisation, and

adversarial training, across three attacks and two existing defences.

Existing literature highlights several techniques, such as Meng et al. (2022), Tao et al. (2021), to

mitigate data poisoning attacks; however, these are largely attack-specific or algorithm-specific. For

example, the research study (You et al., 2019) added a noise layer in neural networks to regularise

the adversarial noise in these models. However, this approach does not apply to other models, like

SVM, RF, and DT, as they do not comprise layers of nodes in their architecture. Similarly, adver-

sarial training is one of the solutions that improves the adversarial robustness of DL models and

does not applies to traditional models. The experimentation, presented in Section 4.7 in Chapter

4, highlighted the limited effectiveness of adversarial training in securing traditional models. These

limitations highlighted the need for a generalised solution that is independent of the model archi-

tecture and capable of countering current and evolving threats. Therefore, this chapter proposes an

attack-agnostic solution, SecureLearn, to mitigate data poisoning attacks in multiclass ML.

SecureLearn offers an enhanced data sanitisation that combines the fundamental principles of near-

est neighbor voting strategy to correct data labels, followed by calculating the statistical deviations

of each data point to detect and correct anomalies. Furthermore, SecureLearn introduced a new

approach of feature-oriented adversarial training (FORT) influenced by a common characteristic of

feature importance score of ML to identify important data points to generate adversarial examples
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for training.

A 3D evaluation matrix is proposed in this chapter to thoroughly assess SecureLearn, following three

orthogonal dimensions: data poisoning attack, data sanitisation and adversarial training. The exper-

iments are conducted on four ML algorithms: RF, DT, GNB and MLP, trained with three differently

structured datasets: IRIS (Fisher, 1936), MNIST(Deng, 2012), USPS (Hull, 2002). Selecting these

algorithms allows this study to cover most classification models. SecureLearn is evaluated against

three distinct data poisoning attacks and compared with two state-of-the-art mitigations, highlight-

ing the better performance and generalisation of SecureLearn over others. The contributions of the

chapter are given as follows.

� SecureLearn is the first defence solution that works against all types of data poisoning attacks

and is adaptable for traditional classification models and neural networks. SecureLearn provides

defence with minimal defender capabilities, without requiring prior knowledge of attacks and

configurations of the targeted model.

� This chapter proposes a new adversarial training mechanism called FORT as a component of

SecureLearn, enhancing the adversarial robustness of traditional multiclass ML, including neural

networks. The results show that FORT improves the adversarial robustness of the model with a

minimal trade-off between accuracy and robustness, i.e., the accuracy is decreased < 3%, while

enhancing the adversarial robustness.

� This chapter proposes a new 3D evaluation matrix to comprehensively evaluate SecureLearn

against three data poisoning attacks and compare it with two existing defences Chan et al.

(2018b), Paudice et al. (2018b). The evaluation is set up for four types of ML models trained

with three distinct datasets. The results highlight that SecureLearn has outperformed other

mitigations and is effective against all selected attacks for all models.

5.2 Related Work

5.2.1 Existing Multiclass Poisoning

Data poisoning attacks showed success in perturbing traditional ML in multiclass settings. The

Outlier-Oriented Poisoning (OOP) attack (Paracha et al., 2025a), discussed in Chapter 4, manipulated

the feature space by exploiting outliers and successfully poisoned six ML models. The research paper

(Biggio et al., 2012) introduced a label flipping attack to perturb dataset labels, which can be extended

to multiclass ML. Jagielski et al. (2021) introduced a subpopulation poisoning that injects a cluster of

poisoned points in a dataset. Pantelakis et al. (2023) poisoned multiclass IoT networks with JSMA,

FGSM, and DeepFool attacks and evaluate performance disruption.
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5.2.2 Limitations of Existing Defences

Various defences are proposed in the literature to secure ML and DL models from data poisoning

attacks. Such as the research (Peri et al., 2020) developed a deep k-NN to remove clean label poison

by detecting falsified data points with k-neighbours. Deep k-NN defence is experimented against

feature collision and convex polytope in deep neural networks. Paudice et al. (2018b) used the k-

NN algorithm to mitigate label poisoning in binary SVM. Carnerero-Cano et al. (2023) computed

the limitations of hyperparameters to resist data poisoning impact on DNN models. Barreno et al.

(2008) has given the concept of reject on negative impact to remove affected data points, which is

extended in (Chan et al., 2018b) to filter poisoned data from the given dataset.

Adversarial training is useful in improving the adversarial robustness of ML/DL models. In Ho et al.

(2022a), Tao et al. (2021), Shafahi et al. (2020), adversarial training is implemented to improve the

robustness of models against data poisoning attacks. However, these adversarial training methods are

experimentally limited to neural networks and DL models because it is designed following gradient

learning of the model at each iteration of training, which does not apply to traditional models, which

do not follow gradient learning, and so makes adversarial training ineffective in securing traditional

ML models.

Conclusively, some attack-agnostic solutions have been proposed in the literature; however, these

are designed to secure DL models. A few solutions are proposed to secure traditional ML, mostly

improving the robustness of binary models, whereas no prominent solution is proposed for multiclass

ML. SecureLearn is the first attack-agnostic solution, designed to secure multiclass ML against data

poisoning attacks. It is also adaptable to DL and binary models and effective against various afore-

mentioned attacks. A brief comparison of existing solutions with SecureLearn is provided in Table

5.1, highlighting that existing solutions have either proposed data sanitisation or adversarial training,

where data sanitisation solutions are experimented on binary ML models and adversarial training is

experimented with only DL models.

Table 5.1: Summary of existing similar defences against data poisoning attacks proposed in various
settings

Research paper Data Sanitisation Adv. Training ML model Model Settings

Chen et al. (2021) ✓ ✗ GAN, CNN and LASSO Binary and Multiclass DNN
Paudice et al. (2018b) ✓ ✗ Stochastic Gradient Descent Binary ML
Chan et al. (2018b) ✓ ✗ SVM Binary ML
Barreno et al. (2008) ✓ ✗ SVM Binary ML
Shafahi et al. (2020) ✗ ✓ ResNet and InceptionV1 Multiclass DNN
Tao et al. (2021) ✗ ✓ VGG-16, VGG-19, ResNet-18, ResNet-50 and DenseNet-121 Multiclass DL
SecureLearn ✓ ✓ DT, RF, GNB, MLP Multiclass ML
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5.3 SecureLearn Overview

The problem of poisoning the training dataset is defined as follows: Dc represents the clean dataset,

while D′
c denotes the poisoned substitute in the dataset. The combined dataset is defined as Do =

Dc ∪ D′
c. SecureLearn relies on the general observation that the poisoned dataset tricks the model

training to classify differently from the clean dataset, resulting in performance degradation. Therefore,

SecureLearn identifies anomalies and misalignments in the features and labels to sanitise the dataset.

Since no ground truth is provided, SecureLearn aims to sanitise Do to correct data points and align

features by identifying outliers in each dataset class and updating class labels by averaging the labels

of nearest neighbouring data points. Furthermore, it quantifies the drift in features in each data point

and filters those that exceed limits from the normalised dataset. Additionally, SecureLearn enhances

the adversarial robustness of the model through FORT training to increase the reliability against new

attacks. The complete process of SecureLearn is illustrated in Fig. 5.1. The algorithm of SecureLearn

is provided in Alg. 7.

As an attack-agnostic solution, SecureLearn determines and relabels the uncertain data points in the

dataset, regardless of being poisoned or outliers, whereas it safeguard mislabeling by calculating the

average confidence of the neighbour data points following Eq. 5.1. Its efficacy is limited to generalised

scenarios, which can be extended and integrated in specialised applications.

Algorithm 7 SecureLearn Mitigation Mechanism

Input: Training Dataset Do, perturbation limit ε, feature importance scores: F
Initialise: b=0.001, c=0.01, nearest neighbours (k)=7
for xi ∈ Do do

d = min(k, dist(xi, x))
li = avg(xi, d)
Dsan ← (xi, li)

end for
for xi ∈ Dsan do

Compute δi following Eq. 5.5
if δ < |g| then

Dsan ← (xi, li)
end if

end for
if M == MGNB or MMLP then

F ← argmax Probability(Dsan)
end if
if then(M == MRF or MDT ):

F ←
∑L

i=1 fi(1− fi)
end if
for (xi ∈ Dsan) and (fi ∈ F ) do

Dadv ← E(x,y)∼Do
[L(M, (xi + (c ∗ sign((fi ∗ xi) + b)))

end for
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Figure 5.1: Architectural overview of SecureLearn illustrating a two-layer approach to secure the
training pipeline of a machine learning model

5.3.1 Improvised Data Sanitisation

The data sanitisation module of SecureLearn comprises two parts: relabeling the data points with

corrupted labels in Do and removing anomalies to produce a sanitised dataset Dsan. The relabeling

mechanism is defined as:

Dsan = {(x, l)|x ∈ Do}

and li =


li if C(xi, li) < γ

l if C(xi, li) ≥ γ

(5.1)

where C(x, l) is the label confidence of neighbouring data points, li is the existing label of the

data point xi, l is the new label with the highest confidence received from the nearest data points.

The confidence limit is defined as γ ≥ 40% neighbouring votes, following an incremental majority

voting approach (Abdulboriy and Shin, 2024). The optimal threshold for voting confidence to detect

irrelevant data points is identified using a brute force mechanism and experimented with a threshold

between 30% and 60% average of neighbouring votes. This detection mechanism identifies irrelevant

data points that may be intentionally perturbed or misaligned data points, regardless of the dataset’s

application. The calculation of the label of each data point, given in Eq. 5.1, follows the confidence
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score C(x, l) of neighbouring data points, calculated with Eq. 5.2.

C(x, l) = argmax
1

k

j<n∑
(xj ,lj)∈θ

I(lj = lc) (5.2)

where lc is the original class label, k is the number of nearest neighbours set to seven following the

kTree method given by Zhang et al. (2017), x is the data point with label l and θ is the function of

distance measure, given in Eq. 5.3.

θ = min d⃗(xi, x) (5.3)

The next step of data sanitisation is to remove outliers from the dataset. The anomalous data points

are removed from the dataset, where the deviation of the given data point exceeds the limits of the

normalised dataset distribution, following Eq. 5.4. The deviation δ is calculated with Eq. 5.5 where

µ is the mean of the dataset and the deviation limit |g| = 3 (Abdi, 2007).

Dsan = {xi ∈ Do||δ ≤ |g|} (5.4)

δ =
xi − 1

n

∑n
i=1 xi√

1
n

∑n
i=1 (xi − µ)2

(5.5)

5.3.2 Feature-Oriented Adversarial Training

After obtaining the sanitised dataset, SecureLearn aims to improve the adversarial robustness of the

model with feature-oriented adversarial training. In the literature, it is noticed that the existing

adversarial training mechanism is unable to improve the resilience of traditional ML models (Paracha

et al., 2024b) because existing approach follows the gradient-oriented training which is ineffective for

traditional models, therefore SecureLearn introduced a new method to train models, where adversarial

data Dadv is generated by augmenting data points with high feature importance score and lie near

the decision boundary. This is done by solving Eq. 5.6, followed by generating the perturbation in

Eq. 5.7.

Dadv ←− E(x,y)∼Do
[L(M, ((xi + ε), l) (5.6)

where M is the training model, L is the training loss and ε is the perturbation given in Eq. 5.7.

ε = c ∗ sign((fi ∗ xi) + b) (5.7)

where, in Eq. 5.7, fi is the feature importance score of the model M, c = 0.01 is the perturbation

constant. This constant is set following the average perturbation value, given in (Liu and Wen,

2021). xi is the data point, and b = 0.001 is the non-zero coefficient which restricted the zero output.
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Combining output of Eq. 5.1 and Eq. 5.6, the sanitised dataset Ds is given in Eq. 5.8:

Do = Dsan +Dadv (5.8)

Intuitively, the model is trained to mitigate the data poisoning effects and improve the overall per-

formance. Unlike traditional adversarial training based on gradient optimisation, FORT adds slight

perturbations to the data points that are close to the decision boundaries of the model to widen

these boundaries, making them robust to poisoning. This way, SecureLearn improves the security

and robustness of ML models against data poisoning attacks. Next, this chapter extends the threat

model, defined in Chapter 4, to evaluate SecureLearn as an effective defence.

5.4 Extended Threat Model

A threat model for this thesis is defined in Chapter 4 to study the adversarial impact of data poisoning

attacks and draw attention to evolving threats in this domain. The threat model is extended with

new attack vectors to assess SecureLearn’s efficacy in mitigating multiclass data poisoning attacks.

5.4.1 Attack Goals

This threat model defines two attacker goals to assess the effectiveness of selected mitigation solutions.

The first goal is to disrupt the model’s availability and reduce its overall performance by employing

the OOP attack (Paracha et al., 2025a) and label flipping attack (Shahid et al., 2022). The second

goal is to harm the model’s integrity by augmenting clustered poisoned data points employing the

subpopulation attack to disrupt targeted class predictions (Jagielski et al., 2021).

Consider the poisoning of supervised classification models, e.g. RF or MLP, given the dataset Do =

{(x, l)}ni=1 with data points x and labels l of class c, the attacker can manipulate the labels l′ or

the features x′ of the dataset or augment poisoned datapoints(x′, l′) into the dataset to prevent the

trained victim model from attaining the intended performance.

5.4.2 Attacker Knowledge

In this threat model, the attacker possesses limited knowledge of the targeted model M and dataset

Do. Under these constraints, all selected data poisoning attacks are formulated as grey-box attacks.

In this scenario, the attacker has a partial understanding of the dataset and model: the dataset and

algorithm names are known, but the dataset distribution, model settings, and parameters remain

unknown. Additionally, the attacker has no knowledge and access to the target system.
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5.4.3 Attacker Capability

In these experiments, the attacker has leveraged the capability to poison the training datasets. Thus,

the attacker can manipulate the training dataset in different ways. The attacker can modify labels or

features of the dataset and introduce poisoned data points into the dataset. However, this capability

is limited to injecting a maximum 20% poisoning level as the upper bound limit and a minimum 10%

poisoning as the lower bound limit. These limits are defined as the most effective poisoning limits,

as explained in Chapters 3 and 4 Paracha et al. (2024a), Paracha et al. (2025a).

5.4.4 Attack Strategy

In this threat model, three data poisoning attacks of varying attack vectors, i.e., OOP, SubP and

RLPA attacks are considered. Following these attacks in multiclass classifiers, the effectiveness of

SecureLearn is evaluated, demonstrating that it is an attack-agnostic and promising solution capable

of mitigating all the aforementioned attacks.

5.4.5 Defender Capability

The capabilities of the defender, under this threat model, are leveraged to complete access to the

dataset and the targeted model to assess selected mitigations. The data sanitisation (Paudice et al.,

2018b) assumes full access to the dataset and algorithm used. The mitigating solution (Chan et al.,

2018b) also requires full access to the model and the training data, as it compares the change in

the model’s performance for every data point in the training dataset. Conversely, SecureLearn is

exempted from these capabilities and only requires access to the dataset, assuming that the dataset

may or may ot be poisoned. This way, SecureLearn can be implemented in restricted and third-party

solutions that do not provide complete access to their systems.

5.5 Experimental Datasets

This chapter utilises three publicly available datasets: IRIS, MNIST, and USPS. The IRIS and

MNIST are extended from Chapter 4; however, the ISIC dataset is replaced with the USPS dataset,

considering that ISIC is an unbalanced dataset. These datasets differ in structure, feature correla-

tions, and number of classes. They have been widely used in studies of data poisoning attacks Drews

et al. (2020), Wang et al. (2021c), Paracha et al. (2025a) and defences Xu et al. (2021), Jia et al.

(2021), Zhang et al. (2022). The diversity of these datasets facilitates a comprehensive analysis of

the adaptability and effectiveness of defence mechanisms against various poisoning attacks.

Table 5.2 presents the structural details of these datasets. The IRIS dataset contains 150 instances

and three classes. The USPS dataset consists of scanned images of postal digits across 10 classes. In
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contrast, the MNIST dataset comprises a large collection of digital images of handwritten digits.

The statistical correlations between the features of each dataset are given in Table 5.3. The spear-

Table 5.2: Dataset description of all three datasets utilised in this study

Dataset No. of classes No. of features No. of instances

IRIS 3 4 150
MNIST 10 784 70,000
USPS 10 256 9298

man correlation highlights monotonic strength (van den Heuvel and Zhan, 2022) between dataset

features and the p-value reflects statistical significance (Di Leo and Sardanelli, 2020). A low statisti-

cal significance highlights high variability in the dataset, which may strengthen the poisoning impact.

Features in the MNIST dataset are highly associated and show high strength with a very low p-value

of 0.0141, highlighting direct proportionality between its features. However, a low to nominal statisti-

cal significance is shown in the IRIS datasets with a p-value of 0.07, and spearman correlation of 0.12

shows a weak monotonic relationship between its features. In USPS, negative spearman correlation

highlights an inverse monotonic relationship between the dataset features. In contrast, the dataset

with a p-value of 0.2397 indicates a very low statistical significance of the dataset.

Table 5.3: Features correlation in dataset to analyse interdependence between features in individual
dataset

Dataset Spearman correlation p-value

IRIS 0.1238 0.0791
MNIST 0.009282 0.0141
USPS -0.008742 0.2397

5.6 Crafting Poisoned Samples

After the attacker’s capabilities and goals are established, poisoned data points were constructed with

selected data poisoning attacks. Considering the attacks discussed in Section 5.2, the selected attacks

formulate poison from three different aspects: perturbing dataset labels, perturbing dataset features,

and augmenting perturbed data samples. The details of crafting poison with each attack are given

as follows.

5.6.1 Random Label Poisoning Attack

One of the most common and early proposed attacks against supervised models is the label poison-

ing attack Nguyen et al. (2023), Paudice et al. (2018b). Though initially proposed against binary

classifiers, it is later extended to manipulate multiclass models by randomly perturbing dataset la-

bels (Rosenfeld et al., 2020). In the random label poisoning attacks (RLPA), the computation of
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perturbations is simple. Given the poisoning limits, the labels of randomly selected data points were

changed, ensuring that the targeted label is updated to another class label. Let D′
train = {(xi, l

′
i)}ni=1

be the poisoned training dataset where li is manipulated with RLPA as:

l′i = Y/{li} (5.9)

where l ∈ Y and features xi of ith data point remains intact. Following the threat model of this chap-

ter, the poison is constrained based on the poisoning limits ∆L. The training dataset is manipulated

with Eq. 5.10.

D′
train = f(Dtrain,∆L) (5.10)

where f is the label manipulation function given in Eq. 5.12.

5.6.2 Subpopulation Poisoning Attack

The subpopulation attack (SubP) augments a poisoned cluster into the training dataset (Jagielski

et al., 2021) instead of poisoning segregated data points. The attacker selects a random class and

replicates its samples. In the next step, the attacker changes the labels of the replicated data points

to another class and augments these data points into the training dataset to generate D′ following

the perturbation function given in Eq. 5.11.

∀(x, l′) ∈ D′ (5.11)

such that l′ is generated with Eq. 5.12. Then, D′
train is given as follows.

D′
train = D′ ∪Dtrain (5.12)

5.6.3 Outlier-Oriented Poisoning Attack

This thesis proposed the OOP attack in Chapter 4. The OOP attack perturbs the feature space by

interpolating outliers of varying classes. For this perturbation, the adversarial samples are generated

by selecting the most distant data points in the dataset and changing their labels to manipulate the

feature space of the multiclass classifier and shift its decision boundaries.

Let Dtrain = {(xi, li)}ni=1 be the training dataset with O outliers, such that the OOP attack calculates

the distance vector of each data point, finding the most distant points. The distance is calculated

given Eq. 5.13.

argmax d⃗(bc, Xc) (5.13)
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where bc is the decision boundary of class c. Given the poisoning levels, ∆L defines the perturbation

limits of the number of poisoned data points. The function of manipulation is given in Eq. 5.15.

D′
train = f(O,∆L) (5.14)

such that, f implies to change label of ith data point (xi, li) with Eq. 5.15:

l′i = O/{li} (5.15)

Following these discussed attacks, the 3D evaluation matrix is proposed to thoroughly evaluate Se-

cureLearn.

5.7 3D Evaluation Matrix

This chapter proposed an innovative and comprehensive 3D evaluation matrix to evaluate defence

solutions against data poisoning attacks, particularly SecureLearn in this study. This matrix evalu-

ates SecureLearn in three dimensions and compares it with two typical defences against three data

poisoning attacks as given in Table 5.1. The 3D evaluation matrix is given in Fig. 5.2. Its dimensions

are explained as follows.

5.7.1 Dimensional Space 1

The dimensional space 1 (DS1) lies between the dimensions of data sanitisation and data poisoning

attack. Here, SecureLearn is analysed by experimenting with it against three data poisoning attacks

and by comparing it with two existing similar data sanitisation defences to highlight the effectiveness of

the data sanitisation of SecureLearn. The DS1 evaluates the strength of mitigations and their attack-

agnostic resistance to data poisoning attacks, followed by highlighting the profound performance of

SecureLearn compared to other solutions.

5.7.2 Dimensional Space 2

The dimensional space 2 (DS2) lies between the dimensions of data poisoning attacks and adversarial

training. In DS2, the effectiveness of the proposed FORT training component of SecureLearn is

evaluated against selected data poisoning attacks and analysing improvements in the adversarial

robustness of the model. In this dimensional space, SecureLearn is evaluated to distinguish between

benign and poisoned data points and assess the resilience of the model against corrupted data points

to minimise the impact on decision boundaries during training.
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conducted against the following data poisoning
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Analysis of proposed data sanitisation
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Data sanitization by P.PK Chan et al. 
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Random Label Poisoning Attack (RLPA) 

Figure 5.2: 3D evaluation matrix to evaluate SecureLearn three different aspects. The first dimen-
sion between data sanitisation and data poisoning attacks evaluates SecureLearn against selected
data poisoning attacks and compares it with existing mitigations. The second dimension between
data poisoning attacks and adversarial training evaluates FORT adversarial training of SecureLearn
against selected data poisoning attacks. The third dimension between adversarial training and data
sanitisation evaluates the overall performance of SecureLearn against selected data poisoning attacks

5.7.3 Dimensional Space 3

The dimensional space 3 (DS3) lies between the dimensions of adversarial training and data saniti-

sation. In DS3, the overall effectiveness of SecureLearn is evaluated in securing multiclass ML from

reactive and proactive data poisoning attacks. The resilience and robustness of the model are assessed

by analysing the false discovery rate of the model at varying poisoning levels against selected data

poisoning attacks. The evaluation metrics used for the assessments in this chapter are discussed as

follows.

5.8 Evaluation Metrics

To evaluate model performance in 3D evaluation matrix, the standard performance metrics: Accuracy,

Recall and F1-Score are adopted. Furthermore, the detection rate (DR), correction rate (CR) and false

discovery rate (FDR) are utilised for the detailed evaluation. The DR and CR prominently highlight

the efficacy of SecureLearn in sanitising poisoned data points and FDR highlights the strengthened

robustness of the model against poisoned training. Accuracy is the measure of correct classifications,

where the poisoned data points remain disjointed in the incorrect classes and do not affect the model’s
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availability. Recall measures correct predictions of positive classifications over all positive answers,

defining high separability. F1-score quantifies the overall defence performance, where the decision

boundaries are aligned. Let the classification function be given in Eq. 5.16, the evaluation metrics

can be found in Eq. 5.17, 5.18, 5.19.

f(C(xt)) =


true if xt ∈ Class c

false otherwise

(5.16)

where f is the classification function, xt is the data point from the test dataset Dt split from Do, and

C(.) is the class predictor. After sanitising dataset with SecureLearn, false positives(FP) is defined

as ftr(C(xti)|l′c), where l′c is the wrong class label and false negative(FN) is defined as ffs(C(xtri)|lc)

where data points are not sanitised correctly. Whereas, true positive is defined as ftr(C(xti)) and

true negative is defined as ffs(C(xtri)).

Acc =

∑n
i=0 ffs(C(xti)) ∧

∑n
i=0 ftr(C(xti))

(xt ∈ Dt)
(5.17)

Rcl =

∑n
i=0 ftr(C(xti))∑n

i=0(ftr(C(xti))) ∧
∑n

i=0(ffs(C(xti)))

where ffs(C(xti)) ∈ Dt

(5.18)

F1 scr =

∑n
i=0 ftr(C(xti)) ∗Rcl

2 ∗ {(
∑n

i=0 ftr(C(xti)) ∧
∑n

i=0 ftr(C(xti))) +Rcl}
(5.19)

Let x′ be the poisoned data point in Do, and detection of these points with SecureLearn is given in

Eq. 5.20, and setting these points in the appropriate class is shown in Eq. 5.21. After corrections,

the false discovery rate of the model is analysed with Eq. 5.22.

Detection rate(DR) =

∑n
i=0 P (x′|lc)∑n

i=0 P (x|lc) ∧ P (x′|lc)
(5.20)

Correction rate(CR) =

∑n
i=0 P (x′ → x|llc)∑n

i=0 P (x|lc) ∧ P (x′|lc)
(5.21)

False discovery rate(FDR) =

∑n
i=0 ftr(C(xti)|l′c)∑n

i=0 ftr(C(xti |l′c)) ∧ ftr(C(xti))
(5.22)
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5.9 Experimentation and Analysis

This section performed the experimental evaluation of SecureLearn using the 3D evaluation matrix.

This section answers how SecureLearn is better at detecting and sanitising different types of data

poisoning attacks. It first evaluates it in DS1 of the 3D evaluation matrix to analyse SecureLearn

against three poisoning attacks and two existing data sanitisation techniques. The results are de-

scribed in Sections 5.9.1 and 5.9.2. The evaluation of the FORT component is then conducted in

DS2 of the 3D evaluation matrix. The results show that FORT effectively enhances the adversarial

robustness of traditional ML models and neural networks against adversarial perturbations. The

results are detailed in Section 5.9.3. Following the results of DS1 and DS2, the overall effectiveness

of SecureLearn is further analysed at different poisoning levels in DS3. The relationship between

increasing poisoning levels and the resilience of SecureLearn in mitigating the poisoning impact is

identified, given in Section 5.9.4.

5.9.1 Detection and Correction Boundaries

The analysis begins by determining the detection and correction rates of each data poisoning attack,

as presented in Table 5.4. The lower bound (LB) and upper bound (UB) of DR and CR are calculated

at three defined poisoning levels using Eq. 5.20 and Eq. 5.21. Results show that SecureLearn detects

at least 50% of poisoned data in training datasets, regardless of the type of attack or dataset used in

these experiments. The minimum CR is approximately 30% for the RF model under the RLP attack,

likely due to the unpredictable placement and impact of poisoned data points in untargeted attacks.

The UB of DR and CR for SecureLearn reaches 100% against data poisoning attacks trained with

IRIS dataset for most algorithms.

SecureLearn is highly effective in sanitising the IRIS dataset, followed by the USPS dataset, com-

pared to the MNIST dataset, across all poisoning levels. These results indicate an inverse relationship

between SecureLearn’s performance and dataset size, with profound effectiveness observed in smaller

datasets. SecureLearn is generalisable across different data poisoning strategies and dataset struc-

tures, performing independently of the number of classes in the dataset.

5.9.2 SecureLearn vs Existing Sanitisation Techniques

This section evaluates the effectiveness of the data sanitisation provided by SecureLearn. Model

performance is analysed using Eq. 5.17 to Eq. 5.19, with the poisoning level set between 10% and

20%. Model accuracy after training with sanitised datasets is presented in Fig. 5.3 to Fig. 5.5. The

results of these experiments demonstrate that SecureLearn consistently outperforms other solutions

and maintains an accuracy of at least 90% across implemented data poisoning attacks. The recall
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Table 5.4: Detection and correction boundaries of machine learning models after mitigating data
poisoning attacks with SecureLearn

Algorithm Dataset
Attack

OOP Subp RLP
LB UB LB UB LB UB

RF

IRIS
DR 86.6 100 86.6 100 76.6 100
CR 80 90.9 80 91 76.6 93.3

MNIST
DR 56.3 65.5 56.3 66.3 52.4 66.3
CR 33.5 49.2 33.5 49.2 29.7 47.6

USPS
DR 87.94 89.13 56.29 65.78 50.48 62.56
CR 44.47 49 38.42 44.54 35.22 43.24

DT

IRIS
DR 83.3 93.3 83.1 92 93.3 95.4
CR 86.6 90.9 80 91 76.6 91

MNIST
DR 49.6 66.7 49.8 66.7 46.4 64.1
CR 44.69 57.88 45.1 58 44.97 55.08

USPS
DR 44.69 57.88 44.69 57.88 44.97 55.08
CR 15.98 36.93 15.98 37 18.1 34.51

GNB

IRIS
DR 100 100 100 100 80 100
CR 93.3 100 93.3 100 66.6 93.3

MNIST
DR 98.6 99.1 98.6 99.1 96 98.4
CR 94.9 95.9 94.9 95.9 92.4 95.3

USPS
DR 99.24 99.71 99.24 99.71 97.09 99.49
CR 97.63 97.99 97.63 97.99 95.53 97.99

MLP

IRIS
DR 83.3 100 83.3 100 73.3 95.4
CR 76.6 95.4 70 95.4 66.6 86.6

MNIST
DR 56.3 65.5 56.3 66.3 52.4 66.3
CR 59.33 49.2 33.5 49.2 29.7 47.6

USPS
DR 71.16 85.36 70.79 84.7 64.28 82.5
CR 59.33 78.9 59.11 79.76 51.47 76.42

and f1-score are provided in Table 5.5.

SecureLearn outperformed the mitigations proposed by Paudice et al. (2018a) and Chan et al. (2018b)

in sanitising poisoned datasets. Compared to SecureLearn, the data sanitisation method proposed

by Paudice et al. (2018a) achieved similar accuracy for DT with an average of 96%. SecureLearn

provided an average recall of 84.22% with a 3% higher f1-score. Similarly, the average accuracy for

GNB provided by Paudice et al. (2018a) is 94%, equivalent to SecureLearn; however, its recall and

f1-score are 3.69% and 3.63% lower, respectively. Furthermore, the sanitised accuracy provided by

Paudice et al. (2018a) dropped to 79% for the RLP attack and to 82% for the OOP attack when the

model is trained with the MNIST dataset.

The data sanitisation proposed by Chan et al. (2018b) is highly unstable, particularly for MLP

models. The accuracy of each model consistently decreases with increasing poisoning levels. For

example, the accuracy of MLP substantially decreases after 10% poisoning, reached approximately

52% when trained on the IRIS and MNIST datasets, and 80% when trained on the USPS dataset.

This instability arises because the method removes anomalous data points, which potentially decreases

model accuracy. However, removing such data points also reduces the dataset size, which leads to

underfitting, particularly in neural networks.
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Table 5.5: Impact of data poisoning on recall and f1-score of secured machine learning models

Metric Alg Dataset Defence
Attack

OOP Subp RLP
∆L = 10% ∆L = 15% ∆L = 20% ∆L = 10% ∆L = 15% ∆L = 20% ∆L = 10% ∆L = 15% ∆L = 20%

Recall

RF

IRIS
A. Paudice et al. 97.33 92.85 91.66 91.88 88.09 91.66 87.17 92.85 80.55
M. Barreno et al. 92.09 78.57 75.04 97.43 99.99 96.07 84.61 84.12 69.75

SecureLearn 93.73 99.99 86.53 94.87 99.99 91.88 94.87 96.96 92.09

MNIST
A. Paudice et al. 88.22 85.20 82.19 88.13 85.44 82.38 88.57 85.20 81.96
M. Barreno et al. 92.09 78.57 75.04 97.43 99.99 96.07 84.61 84.12 69.75

SecureLearn 91.31 86.63 84.19 91.34 86.61 84.38 90.76 86.30 83.40

USPS
A. Paudice et al. 91.48 89.08 81.51 90.57 88.95 81.38 91.06 87.65 80.07
M. Barreno et al. 86.84 81.14 80.50 83.26 80.35 80.40 82.85 75.96 75.86

SecureLearn 95.18 91.02 90.16 95.36 90.51 90.56 95.33 90.22 89.16

DT

IRIS
A. Paudice et al. 93.74 94.88 82.05 91.66 97.91 74.64 85.79 92.85 79.48
M. Barreno et al. 86.66 81.81 77.77 99.99 93.93 85.18 84.70 84.84 69.62

SecureLearn 97.77 97.91 88.88 95.55 94.21 84.12 95.55 94.21 83.33

MNIST
A. Paudice et al. 86.93 81.84 78.09 86.90 81.38 78.21 86.71 81.93 78.28
M. Barreno et al. 86.66 81.81 77.77 99.99 93.93 85.18 84.56 84.84 69.62

SecureLearn 85.45 85.13 78.20 85.45 84.38 78.40 85.45 84.56 77.44

USPS
A. Paudice et al. 85.67 80.39 80.63 86.14 79.60 80.41 86.27 80.12 79.61
M. Barreno et al. 81.65 74.01 80.29 81.34 79.41 80.07 73.85 62.92 79.25

SecureLearn 87.42 81.51 81.00 87.37 81.58 81.50 87.40 81.55 79.82

GNB

IRIS
A. Paudice et al. 91.11 94.11 77.77 88.88 94.11 71.96 86.11 94.11 86.11
M. Barreno et al. 85.18 84.40 85.30 92.59 94.65 94.74 90.74 86.96 94.74

SecureLearn 95.39 92.59 98.03 95.39 94.44 98.03 95.39 94.44 98.03

MNIST
A. Paudice et al. 57.12 60.34 58.98 58.39 57.78 52.72 56.49 59.48 50.50
M. Barreno et al. 85.18 84.40 85.30 92.59 94.65 94.74 90.74 86.96 94.74

SecureLearn 57.71 57.12 57.15 57.93 58.38 57.65 58.48 57.33 57.16

USPS
A. Paudice et al. 75.39 73.11 77.28 74.01 77.54 75.01 74.01 77.67 76.64
M. Barreno et al. 76.70 75.94 76.19 76.85 71.12 75.82 75.73 75.94 75.83

SecureLearn 76.97 78.16 77.50 77.34 76.80 77.23 76.57 77.93 77.26

MLP

IRIS
A. Paudice et al. 96.29 97.77 99.99 96.27 91.11 97.22 96.3 90.47 97.22
M. Barreno et al. 31.11 28.61 36.01 36.30 18.72 28.51 33.92 16.34 28.51

SecureLearn 99.90 98.01 99.90 99.99 97.98 96.96 99.99 99.90 99.99

MNIST
A. Paudice et al. 96.29 97.77 99.99 96.15 91.11 97.22 96.29 90.47 97.22
M. Barreno et al. 31.11 28.61 36.01 36.30 18.72 28.51 33.92 16.34 28.51

SecureLearn 97.93 97.45 97.05 98.08 97.82 97.37 97.32 97.60 97.25

USPS
A. Paudice et al. 96.29 82.92 83.52 96.30 81.05 79.69 96.29 81.04 82.33
M. Barreno et al. 85.56 78.9 83.52 86.10 51.47 79.69 86.04 82.33 79.20

SecureLearn 98.42 97.76 98.40 97.69 98.19 98.05 98.36 97.87 97.06

F1-Score

RF

IRIS
A. Paudice et al. 97.33 91.81 91.65 91.93 86.49 91.72 86.06 91.65 80.37
M. Barreno et al. 91.98 75.94 72.38 97.33 99.99 95.13 83.59 84.12 68.05

SecureLearn 93.73 99.99 86.58 93.88 99.99 91.94 93.88 97.40 91.98

MNIST
A. Paudice et al. 86.05 82.90 78.60 85.94 83.13 78.88 86.27 82.91 78.40
M. Barreno et al. 91.98 75.94 72.38 97.33 99.99 95.13 83.59 84.12 68.05

SecureLearn 90.90 84.46 81.54 90.91 84.39 81.78 90.31 84.11 80.65

USPS
A. Paudice et al. 91.36 88.60 80.65 90.45 88.53 80.49 91.00 87.18 78.82
M. Barreno et al. 86.47 79.05 79.47 83.26 78.42 79.23 82.85 74.38 74.84

SecureLearn 95.17 90.85 88.94 95.36 90.44 89.34 95.26 90.09 87.96

DT

IRIS
A. Paudice et al. 93.52 94.88 78.80 91.31 97.47 73.68 89.98 85.85 75.42
M. Barreno et al. 88.15 81.56 70.85 99.99 93.88 83.81 84.56 84.84 61.16

SecureLearn 97.77 97.16 89.16 94.66 94.21 83.82 95.53 94.21 82.50

MNIST
A. Paudice et al. 86.38 79.11 75.56 86.27 78.61 75.50 86.08 79.33 75.75
M. Barreno et al. 88.15 81.56 70.85 99.99 93.88 83.81 84.56 84.81 61.16

SecureLearn 84.70 84.58 75.80 84.70 83.70 75.85 84.52 83.89 74.49

USPS
A. Paudice et al. 83.12 77.46 77.40 83.48 76.58 77.03 83.79 77.18 76.06
M. Barreno et al. 79.78 70.65 76.71 79.24 76.10 76.42 71.73 60.37 75.67

SecureLearn 85.09 78.66 81.00 84.97 78.82 81.50 84.77 81.55 78.70

GNB

IRIS
A. Paudice et al. 90.89 92.77 76.31 87.77 92.77 69.88 84.56 92.77 86.46
M. Barreno et al. 82.32 83.76 84.74 91.87 94.75 94.74 91.41 86.58 94.74

SecureLearn 95.39 91.87 97.23 95.39 94.44 97.23 95.39 94.44 97.23

MNIST
A. Paudice et al. 53.35 57.86 56.42 54.81 55.09 49.86 52.64 56.94 49.19
M. Barreno et al. 82.32 83.76 84.74 91.87 94.75 94.74 91.41 86.58 94.74

SecureLearn 53.92 53.68 53.49 54.19 54.95 54.09 54.67 53.90 54.38

USPS
A. Paudice et al. 75.14 73.56 77.36 73.73 77.45 75.72 73.98 77.90 76.97
M. Barreno et al. 76.54 78.37 76.61 74.27 71.42 71.45 72.91 75.19 66.96

SecureLearn 76.79 77.77 77.47 77.20 76.62 77.33 76.55 77.59 77.14

MLP

IRIS
A. Paudice et al. 97.18 97.77 97.70 97.18 91.11 90.70 97.18 90.47 90.52
M. Barreno et al. 31.61 29.75 30.74 36.53 18.19 26.96 32.93 15.25 26.96

SecureLearn 99.90 99.87 99.90 99.99 97.06 97.07 99.99 99.90 99.99

MNIST
A. Paudice et al. 97.18 97.70 99.99 97.18 90.70 97.54 97.18 90.52 96.96
M. Barreno et al. 31.61 29.75 30.74 36.53 18.19 26.96 32.93 15.25 26.96

SecureLearn 97.96 97.46 97.06 98.08 97.84 97.39 97.34 97.61 97.26

USPS
A. Paudice et al. 86.00 81.71 82.48 85.35 80.83 80.98 87.39 80.75 80.77
M. Barreno et al. 99.99 78.9 83.52 14.96 51.47 79.69 13.88 82.33 79.20

SecureLearn 98.42 97.77 98.41 97.74 98.22 98.08 98.40 97.95 97.08
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Figure 5.3: Impact of outlier-oriented poisoning attack on accuracy of models at various poisoning
levels. The first row illustrates all models trained with the IRIS dataset, the models in the second
row are trained with the MNIST dataset, and in the third row, the models are trained with the USPS
dataset
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Figure 5.4: Impact of subpopulation attack on the accuracy of models at various poisoning levels.
The first row illustrates models trained with the IRIS dataset, the models in the second row are
trained with the MNIST dataset, and the models in the third row are trained with the USPS dataset
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Figure 5.5: Impact of random label poisoning attack on accuracy of models at various poisoning
levels. The first row illustrates models trained with the IRIS dataset, the models in the second row
are trained with the MNIST dataset, and the models in the third row are trained with the USPS
dataset

5.9.3 Analysing Feature-Oriented Adversarial Training

This section evaluated the FORT training of SecureLearn in enhancing adversarial robustness against

data poisoning attacks. The adversarial robustness of the model is analysed by assessing FDR fol-

lowing Eq. 5.22. The results are provided in Tables 5.6 to 5.9. These results highlighted that FORT

highly improved the adversarial robustness of multiclass models against all implemented data poison-

ing attacks.

These improvements are attributed to FORT’s design, which leverages feature importance scores to

guide adversarial training of ML. The adversarial samples for the training are developed by slightly

perturbing data points close to decision boundaries and with high feature importance scores. Gener-

alising over these perturbations enables the model to resist changes in its decision mechanisms with

poisoned datasets.

The results given in the Table 5.6 highlighted that FORT reduces the FDR of the RF model to 0.06

when the model is trained on the poisoned IRIS dataset with ∆L = 10%. Similarly, for the same

dataset, FDR=0.02 at ∆L = 15% and FDR=0.05 at ∆L = 20% across all attacks. Similar stability

is visible for all adversarially trained models with FORT, as shown in Tables 5.7 and 5.9, highlighting

the effectiveness of FORT.
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Table 5.6: Effectiveness of feature-oriented adversarial training on false discovery rate of random
forest after poisoning

Attack Dataset
FDR

∆L = 10% FORT ∆L = 15% FORT ∆L = 20% FORT

OOP
IRIS 0.05 0.06 0.1 0.0001 0.19 0.13

MNIST 0.02 0.01 0.16 0.14 0.21 0.16
USPS 0.09 0.04 0.15 0.08 0.2 0.09

SubP
IRIS 0.08 0.06 0.1 0.0001 0.21 0.07

MNIST 0.02 0.01 0.16 0.14 0.2 0.16
USPS 0.1 0.04 0.16 0.08 0.2 0.09

RLP
IRIS 0.08 0.06 0.09 0.01 0.27 0.07

MNIST 0.02 0.01 0.21 0.14 0.27 0.17
USPS 0.12 0.04 0.21 0.08 0.26 0.09

Table 5.7: Effectiveness of feature-oriented adversarial training on false discovery rate of decision tree
after poisoning

Attack Dataset
FDR

∆L = 10% FORT ∆L = 15% FORT ∆L = 20% FORT

OOP
IRIS 0.03 0.02 0.1 0.03 0.19 0.07

MNIST 0.15 0.14 0.19 0.14 0.26 0.23
USPS 0.15 0.11 0.21 0.19 0.27 0.2

SubP
IRIS 0.07 0.05 0.15 0.05 0.13 0.15

MNIST 0.14 0.14 0.19 0.15 0.26 0.23
USPS 0.14 0.12 0.2 0.19 0.26 0.19

RLP
IRIS 0.15 0.03 0.12 0.05 0.23 0.11

MNIST 0.19 0.14 0.25 0.15 0.33 0.24
USPS 0.19 0.12 0.26 0.19 0.34 0.22

5.9.4 Increasing Poisoning Rate

SecureLearn maintains effectiveness across all evaluated attacks, independent of increasing poisoning

levels. In this section, the analysis is extended to understand the relationship between the impact of

increasing poisoning levels and the effectiveness of SecureLearn. Following the adversarial capabilities

of the threat model, the data poisoning levels are set to 10% < ∆L < 20%. SecureLearn achieves

a minimum sanitised accuracy of 90% for all models developed with four selected algorithms, high-

lighting no significant trade-off between model accuracy and adversarial robustness. The results are

shown in Fig. 5.3 to Fig. 5.5. Data poisoning, however, impacts recall and f1-score differently for

each model. The results are given in Table 5.5. For RF models, SecureLearn stabilises these models

with a minimum recall of 84.19% and f1-score of 81.54% at 20% OOP poisoning. For DT models, the

minimum recall is 78.20% and the f1-score is 75.80%. However, it is observed that SecureLearn does

not sufficiently stabilise the GNB model trained with the MNIST dataset, as recall remains approxi-

mately 57% and the f1-score 56% across poisoning levels. In contrast, SecureLearn is highly effective

in securing MLP models, achieving a minimum recall and f1-score of 97%, which demonstrates its

potential to enhance the security of DL models. Overall, these results indicated that SecureLearn

effectively mitigates the impact of data poisoning across datasets, even as poisoning levels increase.
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Table 5.8: Effectiveness of feature-oriented adversarial training on false discovery rate of gaussian
naive bayes after poisoning

Attack Dataset
FDR

∆L = 10% FORT ∆L = 15% FORT ∆L = 20% FORT

OOP
IRIS 0.06 0.04 0.13 0.08 0.1 0.03

MNIST 0.3 0.29 0.31 0.29 0.31 0.29
USPS 0.2 0.2 0.2 0.19 0.22 0.2

SubP
IRIS 0.08 0.04 0.05 0.05 0.13 0.03

MNIST 0.29 0.29 0.32 0.28 0.3 0.28
USPS 0.2 0.19 0.2 0.2 0.23 0.19

RLP
IRIS 0.06 0.04 0.11 0.05 0.12 0.03

MNIST 0.3 0.3 0.33 0.28 0.34 0.28
USPS 0.21 0.19 0.22 0.19 0.24 0.2

Table 5.9: Effectiveness of feature-oriented adversarial training on false discovery rate of multilayer
perceptron after poisoning

Attack Dataset
FDR

∆L = 10% FORT ∆L = 15% FORT ∆L = 20% FORT

OOP
IRIS 0.07 0.02 0.04 0.02 0.15 0.05

MNIST 0.06 0.01 0.06 0.02 0.08 0.02
USPS 0.1 0.01 0.14 0.02 0.18 0.01

SubP
IRIS 0.03 0.03 0.05 0.02 0.2 0.07

MNIST 0.06 0.01 0.08 0.02 0.08 0.02
USPS 0.1 0.02 0.13 0.01 0.16 0.01

RLP
IRIS 0.03 0.0001 0.07 0.04 0.37 0.05

MNIST 0.07 0.02 0.09 0.02 0.1 0.02
USPS 0.1 0.01 0.13 0.01 0.16 0.02

5.10 Discussion and Limitations

This chapter proposed SecureLearn as a two-layer defence to mitigate data poisoning attacks and im-

prove the resilience of traditional multiclass models, including neural networks. SecureLearn proposes

an improvised data sanitisation along with a generic formulation of adversarial training, considering

a common characteristic of the feature importance score. SecureLearn is analysed and compared with

two existing solutions and three data poisoning attacks at three poisoning levels 10% < ∆L < 20%.

The results showed that SecureLearn outperformed others in improving both the security and adver-

sarial robustness of ML against various data poisoning attacks.

SecureLearn effectively enhanced the resilience of multiclass ML across RF, DT, GNB and MLP,

confirming its generalisability beyond algorithm-specific defences. For all evaluated models, Secure-

Learn consistently maintained a minimum accuracy of 90%, recall and f1-score to at least 75%, and

reduced the FDR to at least 0.06 against three distinct poisoning attacks. In the context of neu-

ral networks, SecureLearn achieved a minimum of 97% recall and f1-score against all selected data

poisoning attacks. Furthermore, the adversarial robustness of models is improved with an average

accuracy trade-off of only 3%.

Although various solutions Ho et al. (2022a), Tao et al. (2021) are provided in the literature, none
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have proposed a two-layer approach to enhance the resilience and adversarial robustness of ML. Also,

existing adversarial training mechanisms, for example, (Ho et al., 2022a) are limited to a gradient-

oriented approach, which enhances the adversarial robustness of neural networks and advanced ML

and DL models but is ineffective for traditional models, such as RF, DT and GNB models. The FORT

follows a baseline property of feature importance, this method applies to all types of ML models, in-

cluding traditional models and neural networks. The feature importance score informs the decision

criteria of the model and helps generalise the model. By adding a small fraction of perturbation

into the features with high importance, the model is taught to distinguish benign and poisoned data

points. In this way, the resilience of the ML model is improved.

The experimentation of SecureLearn is conducted under assumptions to strengthen the efficacy and

resilience of ML applications against data poisoning attacks; however, it may require additional

constraints to be adapted for sensitive data and applications. For example, it might be limited in

distinguishing between exceptional non-intrusive traffic packets and poisoned packets.

5.11 Summary

This chapter presented SecureLearn, a new attack-agnostic method to defend traditional multiclass

models from data poisoning attacks. It is a two-layer solution that secures the training pipeline of

the models by first effectively sanitising the dataset to remove poison and then improving adversarial

robustness with the FORT adversarial training. SecureLearn secures the model from existing at-

tacks and strengthens resilience against evolving attacks, hence fulfilling the aim of this thesis. This

chapter answered RQ 3 by analysing the effectiveness of SecureLearn, highlighting its strengths and

weaknesses and comparing it with existing solutions. To answer thoroughly, a new 3D evaluation

matrix is proposed that has evaluated the proposed solution from three orthogonal dimensions. The

experiments are conducted with three differently structured datasets to analyse the generalisability

of SecureLearn. SecureLearn defends against black-box and grey-box poisoning attacks without re-

quiring prior knowledge of the model and any additional dataset. SecureLearn provides robustness to

the model in a two-layer approach, with first an improvised data sanitisation and second with a new

FORT adversarial training. This way, making it an attack-agnostic and generic method that applies

to all types of classification models.
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Chapter 6. Conclusion and Future Work

The thesis proposed an attack-agnostic solution to defend multiclass ML against data poisoning

attacks. Following this aim, the thesis has answered three research questions from two aspects of

adversarial and defence standpoints. These answers provided a thorough analysis of ML security

from new perspectives and covered traditional multiclass ML, which are overlooked in the literature.

Firstly, this thesis explored various security vulnerabilities and highlighted limitations of existing

solutions, stating that most solutions are attack-specific. Furthermore, it practically explored security

vulnerabilities in traditional ML, motivated to assess the change in their learning dynamics with

poisoned training. Conclusively, this assessment contributed to identifying vulnerabilities in ML

models and their characteristics with poisoned training. These identifications helped fulfill the aim

of this research by highlighting the relationships between ML characteristics and data poisoning.

Secondly, this thesis answered what the impact and consequences of multiclass data poisoning attacks

would be under limited adversarial capabilities and knowledge to resolve a complex challenge of

analysing the practicality and risks of data poisoning attacks. The answer highlighted that data

poisoning attacks are successful and have severe consequences, even when implemented under limited

adversarial capabilities. The new attack vectors may significantly degrade their performance, leading

to a 50% decrease in accuracy and have successfully exploited adversarially robust ML models, trained

with adversarial training. This analysis practically answered the limitations of existing solutions to

defend against data poisoning attacks.

Following the above answers of ML security from an adversarial perspective, this thesis proposed a

strengthened defence called SecureLearn, inspired by the outcomes of the above analyses. SecureLearn

is a security-by-design and attack-agnostic solution that shows capabilities to mitigate various data

poisoning attacks and is adaptable to many ML models. It mitigates reactive poisoning impact by

cleaning datasets with its data sanitisation mechanism and provides proactive resilience to ML by

improving adversarial robustness through FORT training.

Conclusively, it comprehensively assessed traditional ML against data poisoning attacks through an

adversarial lens, followed by proposing an enhanced attack-agnostic solution which mitigates data

poisoning attacks, irrespective of new attack vectors and is supported in all types of ML classification

models.

6.1 Evaluate Research Objectives

Following the development of SecureLearn, an attack-agnostic solution, this thesis fulfilled the defined

research objectives. The evaluation of objectives is given as follows:

� The first objective of the thesis is explore data poisoning attacks and their impact under limited
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adversarial capabilities and knowledge. This objective is achieved in Chapter 4 by proposing

the OOP attack and implementing it under grey-box scenarios. The attack has been practically

successful and highlighted a high impact on three ML applications. Moreover, two case studies

are conducted in Chapter 4, further assessing its impact against two real-life applications and

highlighting the adverse impact of data poisoning in breaching adversarial training, a significant

resilience mechanism against data poisoning attacks.

� The second objective of the thesis is achieved in Chapter 5 by proposing SecureLearn, an attack-

agnostic defence, to mitigate data poisoning attacks in multiclass ML. SecureLearn is evaluated

against four traditional multiclass models, trained with three datasets, highlighting its efficacy

in enhancing the resilience of all selected models against three data poisoning attacks.

� The third objective of the thesis is achieved by proposing a 3D evaluation matrix to assess

SecureLearn thoroughly against data poisoning attacks and compare it with existing mitigations

in various settings. Chapter 5 provided a thorough assessment of SecureLearn in 3D evaluation

matrix and its effectiveness against three data poisoning attacks against three distinct datasets

in four multiclass models. The evaluation also compared it with two existing mitigations,

highlighting that SecureLearn outperformed others as an attack-agnostic defence in all provided

scenarios.

6.2 Contribution to Defence

Having revisited the adversarial aspect of analysing ML against data poisoning attacks, this thesis

proposed deep behavioural analysis, revealing vulnerable characteristics of individual ML models and

their relations with data poisoning attacks. Following deep behavioural analysis, this thesis designed

the OOP attack to assess the resilience of multiclass models with constrained adversarial capabili-

ties. The examination of OOP attack also strengthened the implications of behavioural analysis by

analysing the underlying behaviours of poisoned multiclass models. The contributions to defence of

these analyses are given as follows.

� Alongside the efficient development of classification systems with ML, this method allows prac-

titioners to understand algorithm-level vulnerabilities and weaknesses of ML. The practition-

ers utilise these findings to define their training methodology, pre-training assessments of the

datasets, and develop test cases for the security assessment of the trained model

� This approach enables defenders to improve the resilience of the ML by highlighting relationships

between data poisoning and individual model characteristics. It also helps design stealthy data

poisoning attacks by exploiting the characteristics of models that are sensitive to poison.
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� The security analysis of multiclass ML under limited adversarial capabilities and knowledge

helps practitioners understand the practicality and real-world impact of data poisoning attacks

against traditional multiclass models.

� This chapter also puts forward the understanding of exploiting a common ML characteristic,

called outliers, and its effectiveness in manipulating the learning fundamentals of models.

� This chapter emphasized the limitations of adversarial training in securing traditional clas-

sification models, highlighting the need to develop adaptive adversarial training mechanisms

to enhance the resilience of traditional ML algorithms, not only for DL models and neural

networks.

Following the adversarial aspect, this thesis strengthened the security and resilience of multiclass ML

against existing and evolving data poisoning attacks by proposing an improved defence, SecureLearn.

The contributions to defense made by SecureLearn are given as follows.

� SecureLearn is a step towards an enhanced mitigation that is an attack-agnostic solution and

secures multiclass models against data poisoning, irrespective of particular attacks. Practition-

ers can implement it during the model training when they are unsure about the reliability of

the dataset or to strengthen the adversarial robustness of the model against potential attacks.

However, SecureLearn is a generalised defence and may require additional safeguards to assure

particular scenarios of the applications.

� SecureLearn has provided a new approach of adaptable FORT adversarial training in traditional

ML and neural networks with a trade-off of less than 3% in accuracy and robustness. This

solution helps practitioners improve the adversarial robustness of traditional ML.

� SecureLearn is a standalone solution that does not require additional data for FORT training. It

generates adversarial training data on its own and hence reduces the overhead of Practitioners.

6.3 Limitations

Each chapter has discussed the limitations of the individual contributions. Following those, this

section presents the broader perspective of the limitations of the thesis, which could be addressed

in future work. This thesis investigated the adversarial impact and consequences of data poisoning

attacks; nonetheless, the scope of the work exclusively focused on supervised classification models,

which can be extended to investigate the impact of poisoning in regression, unsupervised and DL

models. Next, this thesis examined poisoned training of labeled datasets for the classification models,

which can be extended to study poisoning impact in unlabeled datasets. Understanding the data poi-

soning impact in other ML types will provide a more comprehensive knowledge of poisoned training,
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which ultimately helps strengthen defences against data poisoning attacks.

Furthermore, this thesis developed the analysis schemes under restricted threat models to study poi-

soning impact under limited adversarial capabilities. However, studying these poisoning implications

under various threat models of extended adversarial capabilities, enhancing adversarial goals to inject

backdoors, or inferring models beyond performance degradation enables practitioners to understand

poisoning threats more comprehensively.

Finally, this thesis assessed the adversarial attacks and existing defences in real-world applications;

however, the proposed defence can also be evaluated against real-world and security-sensitive ap-

plications to highlight its strength in securing these applications. Another limitation of presenting

SecureLearn is that it has been evaluated in a grey-box adversarial setting. The threat model can

be enhanced by analysing SecureLearn with white-box adversaries, which involve providing complete

knowledge of the targeted system to adversaries to develop more stealthy and intrinsic attacks.

6.4 Future Work

Following the contributions of the thesis, this section discusses the future directions that can be taken

as next steps to this research in the context of secure and trustworthy ML.

Chapter 3 presented a deep behavioural analysis of classification models against data poisoning, which

can be extended to explore the behaviour of regression models and unsupervised ML to deepen the

understanding of how data poisoning changes the learning fundamentals of other ML types. It should

also be explored in DL, as DL models are largely embedded in digital systems nowadays. This future

direction provides a thorough understanding of poisoning criteria to strengthen threat models, testing

use cases against data poisoning attacks. Another potential direction is to conduct the behavioral

analysis of poisoned models in real-time systems to understand poisoned behaviour in complex use

cases. The behavioural analysis can also be extended to analyse model hallucination and jailbreak

attacks by identifying changing characteristics with poisoned training.

Extending the implementation of the OOP attack, a potential future direction is to utilise it to exploit

other mitigations, such as data sanitisation and differential privacy. This direction highlights the

limitations of these mitigation solutions, providing an opportunity to improve these and strengthen

the security of ML. The OOP attack is designed for multiclass models, which can be extended to

poison multilabel models and enable practitioners to develop strong resilience against these attacks.

Exploiting outliers in the OOP attack opens directions to develop new attack vectors by exploiting

other characteristics of ML algorithms, such as exploiting the majority voting mechanism in KNN or

altering feature importance scores in RF and DT. This direction will provide detailed knowledge of

ML vulnerabilities and derive potential directions towards secure ML.

The above future directions highlight prospective work from an adversarial perspective, the other
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perspective to discuss future directions from secure ML. This thesis primarily examined adversarial

training, data sanitisation, and SecureLearn, their efficacy and limitations in classification models,

which can be analysed to secure unsupervised models and DL. This direction will also improve

SecureLearn in other types of ML. Though this thesis thoroughly evaluated SecureLearn under the 3D

evaluation matrix, which can be further extended to other attacks, including inference and backdoor

attacks. Furthermore, SecureLearn next extended to secure real-time applications as a potential

avenue to explore, and would help improve SecureLearn itself.

Another very important direction in this regard is the development of security processes and policies

for the secure development and deployment of ML models. These policies define the security principles

in various domains and applications. Following the knowledge and understanding provided in this

thesis, practitioners can develop security policies to use these models and define checklists for the

secure development of ML.
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