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Addressing pandemic-wide systematic 
errors in the SARS-CoV-2 phylogeny
 

The majority of SARS-CoV-2 genomes obtained during the pandemic 
were derived by amplifying overlapping windows of the genome (‘tiled 
amplicons’), reconstructing their sequences and fitting them together.  
This leads to systematic errors in genomes unless the software is both aware 
of the amplicon scheme and of the error modes of amplicon sequencing. 
Additionally, over time, amplicon schemes need to be updated as new 
mutations in the virus interfere with the primer binding sites at the end of 
amplicons. Thus, waves of variants swept the world during the pandemic 
and were followed by waves of systematic errors in the genomes, which had 
significant impacts on the inferred phylogenetic tree.

Here we reconstruct the genomes from all public data as of June 2024 
using an assembly tool called Viridian (https://github.com/iqbal-lab-org/
viridian), developed to rigorously process amplicon sequence data. With 
these high-quality consensus sequences we provide a global phylogenetic 
tree of 4,471,579 samples, viewable at https://viridian.taxonium.org. We 
provide simulation and empirical validation of the methodology, and 
quantify the improvement in the phylogeny.

On the eve of the SARS-CoV-2 pandemic, had one commissioned a poll 
of phylogeneticists on whether their methods were adequate for cur-
rent public health needs, the overall response would have been in the 
affirmative. At that point, most people were analyzing relatively small 
datasets (n < 5,000), usually carefully curated and generally studied 
by people working closely with those obtaining and processing the 
clinical samples, or indirectly, via national public health organiza-
tions. Data were usually small and clean, and there was limited urgency. 
One year later, all of these statements would no longer be true. The 
SARS-CoV-2 pandemic placed unprecedented strains on the genomics 
and bioinformatics communities in terms of scale, turnaround time 
and coordination. In every dimension, tools and systems were pushed 
far beyond expectations. Despite significant efforts and innovations, 
numerous steps in the process (from patient to global phylogenies 
and dashboards) required prioritizing speed and practicality over 
absolute accuracy. This was the right thing to do at the time as it ena-
bled real-time management decisions to be taken; however, as there 
was no unified genome assembly or quality control (QC) process, the 
end result has been that the set of SARS-CoV-2 genomes, on which 
future evolutionary and vaccine analyses will be based, contain a large 

number of systematic errors1,2. The goal of this study is to re-assemble all 
publicly available SARS-CoV-2 raw sequence data with a single analysis 
workflow to remove the majority of these errors, thereby building a 
higher quality phylogenetic tree for all our benefit.

Unlike the sequencing of bacterial genomes after culture (where 
the details of sequencing and assembly can stay the same over rea-
sonably long periods) the specifics of viral sequencing and assembly 
during the pandemic had to keep changing, as we describe below. This 
resulted in a myriad of inconsistencies across the globe and errors in 
consensus sequences. A fundamental constraint on sequencing of 
SARS-CoV-2 was the fact that viral load in patient samples was generally 
very low and highly variable, as a result of which the most common way 
to sequence was via tiled amplicons (as had been carried out previously 
for other viruses3). Here, the genome is divided into overlapping ‘tiles’, 
each of which is independently PCR-amplified, guided by PCR primers 
at either end of the tile. That this was possible at all was thanks to two 
things: the early release of the genome sequence4,5 and Quick’s6 rapid 
production of a set of primers, the first ‘ARTIC’ (acronym referring to a 
consortium) primer scheme. A feature of any tiled amplicon scheme is 
that, as the virus evolves, eventually mutations within primer binding 
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lead to misinterpretation. However, although one can use a reversion 
count as a metric of whether we suspect there are assembly problems, 
reversions are not always errors. For example, SARS-CoV-2 has a C-to-T 
mutation bias8,9 (strictly a C-to-U, as it is an RNA virus, but we convert 
to DNA space for phylogenetics), so if you have a T to C mutation on 
a phylogenetic branch leading to a large clade, you may expect to see 
multiple reversions back to T in that clade.

There are several other possible technical artifacts that can arise 
(for example, primer dimers10, interactions between amplicons11 or 
primers binding in noncanonical sites12), which should be expected 
and handled, otherwise additional errors will result. Unfortunately, 
these errors often correlated with individual sequencing centers, which 
themselves correlated with local prevalence of particular lineages at 
particular times. In addition, where amplicon dropout was incomplete, 
the likelihood of wrongly imputing the reference genome at a particular 
position becomes a function of decreasing amounts of sample RNA, 
creating a false relationship between genotype and viral load13.

Because of amplicon dropouts, as the pandemic progressed and 
sequential waves of variants of concern (VOCs) arose, the ARTIC primer 
scheme was updated multiple times to restore amplification, as well 
as a slew of alternative options (for example, Midnight14, AmpliSeq 
(Thermo Fisher Scientific) and VarSkip; https://github.com/nebiolabs/
VarSkip). Each VOC wave brought mutations in primer bindings sites 
leading to amplicon dropouts, and a subsequent wave of artifacts in 
genomes as these were mishandled (Fig. 2). New amplicon schemes 
were then introduced, and gradually taken up, solving previous drop-
out problems, but also followed by smaller waves of new artifacts in the 
genomes, sometimes caused by primers not being correctly trimmed 
and being incorporated into assemblies. It is no exaggeration to say 
that since this issue was first raised2, thousands of person-hours of time 
have been spent manually looking through trees and genomes trying 
to decide whether strange phenomena are artifacts or not. Some of us 
(R.C.D. and A.H.) have been maintaining the global phylogenetic tree 
of SARS-CoV-2 since 2021 (ref. 15), and the only way we have been able 
to maintain the integrity of the tree has been to (1) completely mask 
150 nucleotide positions in the genome, as they are systematically too 
often wrong to ever be trusted, and (2) systematically mask (ignore) 
certain mutations on specific branches of the tree. As artifacts ebbed 
and flowed, and were discovered by analysts, the masking had to be 
updated (Fig. 2 and Supplementary Fig. 2). After the mammoth global 
efforts to sequence and collate these SARS-CoV-2 genomes, the rich-
est dataset of any pathogen to date, it is critical to now reprocess and 
clean these data, providing a firm foundation for future discoveries.

As of June 2024, there were approximately 6 million SARS-CoV-2 
raw sequence datasets deposited in the European Nucleotide Archive 
(ENA)/Sequence Read Archive (SRA), very few of which had metadata 
recording the primer scheme and the assembly pipeline used (data 
from COG-UK being a notable but geographically localized exception). 
In this paper we will describe our amplicon-aware assembly and QC 
processes, with which we reprocessed these genomes and measured 
the improvements in the genomes and phylogeny, and provide these 
data as a resource for the whole community.

Results
We set out to reprocess all available SARS-CoV-2 sequence read data, 
generating new consensus genomes through an assembly workflow 
designed for tiled amplicon schemes with a rigorous QC process, and 
thereby build a global phylogeny that minimizes the need for masking 
unreliable parts of the genome and tree.

To this end, we created Viridian, an efficient amplicon-aware 
assembler to consistently handle Illumina, Oxford Nanopore and Ion 
Torrent reads. As publicly shared sequence data do not generally have 
metadata logging the primer scheme used, Viridian first identifies the 
amplicon scheme from the input reads. In light of this, with knowledge 
of where primers bind, it then makes consensus sequences for each 

sites will lead to failed amplification of the associated tile, creating 
gaps in the genome sequence data (‘dropouts’). This is to be expected 
and necessitates the development of an updated scheme with new 
primers; however, as shown in Supplementary Fig. 1, many genome 
assembly software pipelines implicitly made the false assumption that 
in the absence of data (no reads from an amplicon) one should infer 
the sequence as being that of the reference genome, which in the case 
of SARS-CoV-2 is also the ancestral sequence. Thus, at various points 
during the pandemic, researchers analyzing the phylogeny would find 
a sudden crop of genomes ‘reverting to the ancestor’.

In Fig. 1a we show part of a tree with the leaves colored to show what 
base that genome has at a specific position (purple for the ancestral 
base and green for the derived (new) base caused by a mutation shown 
as a white star). One single mutation explains that data. In Fig. 1b, 
we show the impact of wrongly assigning the ancestral base at the 
lowest-but-one leaf (fourth purple down). Here, the most parsimonious 
way to explain this is with a second mutation (red star) ‘reverting’ back 
to the ancestral purple. In Fig. 1c we show part of the global SARS-CoV-2 
phylogeny hosted at taxonium.org (accessed 9 April 2024), zoomed 
in to show where Omicron branches from the ancestor. Leaves are 
colored by the genotype of genome position 22813 (codon 417) in the 
spike gene (again purple is ancestral). In the blow-up we see within 
the green (Omicron) clade, a striking spray of purple that does not sit 
cleanly in any subclade. Patterns like this, caused by systematic assem-
bly errors, have been previously shown to occur in the SARS-CoV-2 
phylogeny1. Such errors can have a considerable effect on our infer-
ences about the underlying biology—in this case, K417N is a muta-
tion that affects antibody escape7 and systematic errors like this can 
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Fig. 1 | Assemblers which wrongly default to the reference base in the absence 
of data cause reversions in the phylogeny. a, Cartoon phylogeny built from 
perfect genomes, with leaves colored by genotype at a specific position X 
(purple, ancestral base; green, derived base). Just one mutation at this site, shown 
as a white star, is needed to explain the data. b, Cartoon showing the effect of 
assembly software assuming that a genome is identical to the reference genome 
when there are no data; here the amplicon containing position X is dropped in 
the lowest-but-one genome on the tree, creating one lone purple leaf. The tool 
which infers the phylogeny looks for a parsimonious explanation for this color 
distribution, and concludes it was caused by a mutation (white star) followed by 
a ‘reversion’ back to the ancestral base (red star). Errors in assembly caused by 
reference-bias tend to create enrichments of reversions. c, Part of the current 
UShER SARS-CoV-2 phylogeny, colored by genotype at genome position 22813 
(spike codon 417). Blow-up shows multiple reversions back to the ancestral 
purple. A nonexhaustive set of artifactual mutations (such as reversions, 
unreversions and re-reversions) are shown with red stars, where there is a flip 
back and forth from green to/from purple.
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amplicon by building a partial-order alignment graph of the reads using 
Racon16, an approach that will detect indels more robustly than one 
based on pileups. Viridian then merges the per-amplicon consensuses 
into a single consensus and calls variants. To evaluate the confidence of 
each position in this consensus, it remaps the reads to the consensus, 
identifies unsupported positions, and using this, finally outputs a 
high-quality sequence that has low-quality bases masked. The empha-
sis throughout is on minimizing errors, in particular where amplicon 
primers bind, producing a consensus sequence where all unmasked 
positions should be correct.

We performed three evaluations of Viridian against two exist-
ing ARTIC workflow implementations: ARTIC-ILM (for Illumina) and 
ARTIC-ONT (for Nanopore) (Methods). The data used were (1) simu-
lated data; (2) a ‘truth set’ of 67 runs from 27 isolates with known results; 
and (3) a larger dataset (n = 12,287, ‘Early Omicron’) from multiple 
countries in Africa from November 2021 to March 2022 that includes 
the emergence of the Omicron variant.

Primer scheme identification
We first evaluated our method for identifying primer schemes (Methods)  
using two datasets where we knew the correct primer scheme; these 
consisted of 8,000 simulated genomes and 67 curated truth genomes. 
There were zero errors. We then used 2,341,118 Illumina and 122,410 
Oxford Nanopore samples where the ENA/SRA metadata had an ARTIC 
primer scheme version entry of 3 or 4, and compared to the call from 
Viridian (Supplementary Table 1). There was 99.7% agreement for  
Illumina and 98.2% for Oxford Nanopore samples. A manual inves-
tigation of a subset (n = 20) of the discordances concluded that the 
remaining errors were likely metadata errors in the ENA/SRA; in 19 of 20 
cases, the pileups were categorical that Viridian was correct, and in the 
remaining one, the data were inconclusive (Supplementary Text 3 and 
Figs. 3–7). Note that both the truth set and the ENA/SRA data contain 
samples where tagmentation during the library preparation caused 
fragmented reads, confirming that the method worked there too.

Simulations
We simulated a SARS-CoV-2 tree of 8,000 genomes, including 
single-nucleotide polymorphism (SNP) errors in primers and ampli-
con dropouts. Illumina and Nanopore reads were simulated from each 
genome, from simulated amplicons using the ARTIC v.4 scheme. To eval-
uate the accuracy of resulting consensus sequences from ARTIC-ILM, 
ARTIC-ONT and Viridian, a novel pipeline was developed called CTE 
(COVID truth evaluation; Methods), which evaluates each consensus 
sequence using the truth to classify each position in the genome as 

correct or as an error. Results were highly consistent across all tools 
and amplicon schemes (Supplementary Table 2a–d). For Illumina 
data, ARTIC-ILM called all 395,799 SNPs and Viridian called 395,795 
SNPs. With Nanopore data, ARTIC-ONT called 394,152 SNPs and  
Viridian 395,748. The ‘missed’ SNPs were called as Ns, not as reference 
bases, except for one Nanopore SNP called as heterozygous by Viridian. 
Although there were overall very few errors, ARTIC-ONT had notably 
more indel errors than Viridian (54 ARTIC compared to zero Viridian 
errors; Supplementary Table 2c,d).

Empirical truth dataset
The tools were compared on a truth dataset of 67 high-quality sequenc-
ing runs from 28 samples, comprising a mix of Illumina and Nanopore 
reads and ARTIC (v.3, v.4 and v.4.1) and Midnight amplicon schemes. 
The ‘truth’, including all expected SNPs in all runs, was determined by 
manual inspection of reads mapped to the reference genome. Similarly 
to the simulations, all tools performed well, with few errors (Supple-
mentary Tables 3 and 4), and Viridian performing better with respect to 
indels on Nanopore data (43 ARTIC errors compared to 1 Viridian error; 
Supplementary Table 4e,f). Across the whole truth set there was a total 
of 1,696 SNPs, of which Viridian called 1,688 and ARTIC-ILM/ONT called 
1,689. ARTIC-ILM/ONT had 1,989,650 correct reference calls, and Virid-
ian 1,988,410. Missed SNPs and differences in reference calls were due to 
masking with Ns. We measured the peak RAM and total CPU time of each 
truth set run. Viridian had mean peak RAM usage of 444 MB and mean 
CPU time of 154 s, whereas ARTIC-ILM and ARTIC-ONT used 1.45 GB of 
RAM and took 366 s, and 1.80 GB of RAM, and took 561 s, respectively 
(Supplementary Table 5 and Supplementary Fig. 8).

African ‘Early Omicron’ dataset
Next, we evaluated our own empirical dataset, sequenced and assem-
bled at the Centre for Epidemic Response and Innovation in South 
Africa, with samples from November 2021 to March 2022, including 
VOCs Alpha, Beta and Delta, and also encompassing the emergence 
of the Omicron variant. The 12,287 samples were from South Africa 
(n = 8,645), Angola (n = 957), Mozambique (n = 619), Mauritius (n = 488), 
Malawi (n = 480), Cameroon (n = 344), Zimbabwe (n = 333), Ethiopia 
(n = 232), Uganda (n = 102) and Namibia (n =83) (and four with unknown 
country), and include Illumina (n = 9,935) and Nanopore (n = 2,352) 
runs, using either ARTIC (n = 11,070 including v.3.4 and 4.1) or Midnight 
(n = 1,217) amplicon schemes (Supplementary Table 6). Each sample 
was processed with Viridian and ARTIC-ILM/ARTIC-ONT as appropri-
ate, and the results compared to our original assemblies17 which have 
previously been shared to the UShER18,19 SARS-CoV-2 phylogeny via 
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Fig. 2 | Timeline of the SARS-CoV-2 pandemic from December 2019 to July 2023.  
Selected events relating to problems with sequencing and consensus calling, 
labeled a–e. Releases of ARTIC primers schemes (v.1, 2, 3, 4, 4.1 and 5.3.2) are 
marked with green triangles. a, Primer dimers cause amplicon dropouts10 and 
28% of GISAID30 sequences deposited in September 2020 have at least one gap 

of length at least 200 bp (ref. 31). b, A 9-bp deletion in the primer binding region 
of ARTIC v.3 amplicon 73 causes missing data32. c, Dropouts causing artifacts 
at spike 95 and 142 (ref. 13). d, ARTIC v.4 roll out triggers artifactual mutations 
in some pipelines12. e, Omicron samples cause ARTIC v.4 amplicon dropout, 
triggering the update to ARTIC v.4.1 (ref. 33).
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GISAID. We scanned all positions in all consensus assemblies for ‘hard 
errors’, where the majority of the reads disagreed with the consensus 
(for example, the consensus called an A but most reads say G; Methods). 
We found systematic positional errors (which were specific to primer 
scheme and sequencing technology) in the original consensuses and 
the ARTIC-ONT assemblies. The errors were substantially reduced in 
the ARTIC-ILM workflow although some did remain. By contrast the 
errors were almost completely removed by Viridian. This is summarized 
in Fig. 3a, showing errors across the genome and total error counts and 
sites with errors. Depending on the dataset, total Viridian errors ranged 
from 31 to 86, whereas ARTIC had 219–2,148 errors, and the original 
assemblies 1,069–10,909 (Fig. 3b and Supplementary Table 7). The total 

number of positions in the genome where at least one sample had one 
error followed a similar pattern (Fig. 3c and Supplementary Table 7).

Assembly and evaluation of the global data
We processed all Illumina, Nanopore and Ion Torrent SARS-CoV-2 
sequencing runs from the ENA/SRA as of 2 March 2023, keeping all 
3,960,704 that passed QC (Methods) and produced a consensus 
sequence using Viridian. We also obtained all matching entries from 
GenBank, giving an ‘intersection set’ of 3,311,456 samples with both 
a Viridian and GenBank consensus sequence. We then built a tree of 
each of these three datasets (all 3,960,704 Viridian sequences, Inter-
section/Viridian (the Viridian assemblies of the intersection set), and 
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Fig. 3 | Errors in consensus sequences from the ‘Early Omicron’ African 
dataset, split by sequencing technology and amplicon scheme. a, Plots show 
the percentage of consensus sequences with an error, taking the maximum 
value in windows of length 50 bp. Error here is defined as where the consensus 
sequence has an A/C/G/T call, the read depth passes Viridian’s default filters 

(Methods) and the reads support a different A/C/G/T call. Results are shown for 
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workflows. b, Total errors called by each method, summarizing the data shown in 
a for each dataset. c, Total number of sites with at least one error.
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Intersection/GenBank (the GenBank assemblies of the intersection 
set)) using MAFFT20 and UShER (reverting deletions to the ancestral 
sequence and excluding insertions; Methods). Supplementary Fig. 9 
provides an overview of how the samples were processed to make the 
trees. Note that these trees:

	(1)	 are built from unmasked consensus genomes, unlike the current 
UShER global SARS-CoV-2 phylogeny, which pre-masks a list 
of ‘problematic sites’ in the genome where the community has  
determined assemblies may be unreliable, and

	(2)	do not have any forcible masking of particular mutations on  
the branches of specific VOCs, unlike the current public SARS- 
CoV-2 tree.

To assess the improvement in accuracy of a tree built from Viridian 
sequences, we next compared the Viridian and GenBank intersection 
set trees.

Ns and Pango assignment. A scatter-plot comparing the number of 
Ns in the Viridian versus GenBank assemblies (Supplementary HTML 
file) showed very little correlation, and a strong enrichment of points 
where there were many more Ns in the Viridian assembly—n = 1,604,389 
(53.4%) of GenBank assemblies had no Ns, compared to n = 1,197,638 
(39.8%) of Viridian assemblies. There were more Ns in the GenBank 
assembly for 9% of samples versus 49% samples with more Ns in the Vir-
idian assembly; of those samples with more Ns in the Viridian assembly, 
29% had zero Ns in the GenBank assembly. This is consistent with the 
known issue that for some software pipelines, portions of the refer-
ence sequence had been used to fill in dropouts for a large number of 
sequences, and this effect alone will have been a significant cause of 
reversions in the tree. Nevertheless, analysis at the lineage level using 
Pangolin showed very strong agreement, with only 0.98% (n = 29,475) 
of samples having discordant assignments. Of the mismatches, the 
majority (77%) were parent–child, with Viridian assembly the child 
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(more specific) in 60% of those. Only 0.01% (n = 287) mismatched at 
the variant level. No Viridian assembly was ‘unassigned’, compared 
to 87 of the GenBank assemblies. Analysis of the results by collection 
date, country, technology and primer scheme revealed no category 
enriched for disagreements.

Indel calls. In samples where Viridian and GenBank assemblies result 
in the same Pangolin variant, indel calls are generally concordant and 
either very dominant or very rare; the mean discordance across indels 
for each variant was less than 1% for all variants except Zeta (1.1%), Lamba 
(1.4%), Omicron BA.3 (5.7%) and Theta (33%), which all had low number of 
sequences in this dataset (n ranging between 6 and 107). The character-
izing insertion of TAC after position 21990 (S:YY144-145TSN) in Mu is an 
exception, found in 90% of Viridian assemblies but only 60% of GenBank 
assemblies. In samples where Viridian/GenBank have mismatched WHO 
variant calls, we see fewer indels per sample in GenBank versus Viridian 
(Supplementary HTML File). Notable differences at variant-defining indel 
sites; in particular, for samples assigned Delta for the Viridian assembly 
and Omicron for the GenBank assembly, we see two Delta-defining indels 
that are present in the Viridian assemblies, but absent in the GenBank 
assemblies. We show in Supplementary Fig. 10 those positions where 
there is discordance between Viridian and GenBank.

Reversions. One of the key signals of artifactual problems used dur-
ing the pandemic, was finding positions in the genome (or branches 
of the tree) with very large numbers of reversions. We therefore used 
Matutils15 and custom scripts to count the number of reversions in 
both trees, and plot this in two ways. In Fig. 4a, we show one minus the 
cumulative density function of reversions in the two trees, showing 
that the Viridian tree has far fewer positions with many reversions. 
To understand which positions are problematic, in Fig. 4b we show 
a scatter-plot comparing number of reversions at each position of 
the genome, in the Viridian and GenBank trees, with a blow-up of the 
central region in Fig. 4c. The main issue for phylogenetic analysis is 
positions with large numbers of reversions, so we care more about the 
graph away from the origin. We see that apart from a handful of posi-
tions far to the right and below the line y = x, all positions have fewer 
reversions in the Viridian tree. In other words, a smaller set of positions 

can be masked in the Viridian tree than in the GenBank tree to greatly 
reduce the number of reversions. For example, the GenBank tree has 
63 positions with 200 or more reversions, while the Viridian tree has 
only 20. Supplementary Fig. 11 shows the specific example of genome 
position 22813 (introduced earlier in Fig. 1), comparing the current 
UShER global phylogeny with the Viridian tree.

Improved accuracy of lineage growth rate estimates. We ran PyR0, a 
hierarchical Bayesian regression model that measures growth rates of 
SARS-CoV-2 lineages using genetic, temporal and geographical data21. 
When we ran this model on the Viridian tree, precision improved more 
than threefold on average compared to running the model on a Gen-
Bank tree. B- and BA-descended lineages had the largest decrease in the 
uncertainty of their growth rate measurements (Fig. 5). Improvements 
in precision occurred while maintaining accuracy. Supplementary 
Figs. 12–14 provide more detail.

Final global tree and masking
We updated our global sample list to include data from the ENA/SRA 
as of 28 June 2024, making a final global tree of the Viridian consensus 
sequences containing 4,471,579 samples. Tree construction was carried 
out, as is normal with UShER, by batching the samples, and then alter-
nating adding a batch to the tree and optimizing the tree. In the process 
of doing this, we noted how the order in which samples were passed to 
UShER had a very significant effect on the deep structure of the tree. Pass-
ing them in in random order resulted in the initial tree being constructed 
with recombinant genomes, resulting in considerable misplacement of 
the VOCs. We determined that the best approach was first to construct 
a tree with samples with no missing data, passed in in temporal order, 
then to add lower quality samples later (Methods). After constructing the 
tree, we masked positions in the problematic -sites set, which includes 
highly homoplasic sites in addition to sites previously observed to be 
reversion-prone in SARS-CoV-2, and masked 31 reversions that occurred 
200 or more times in the tree (this choice of 200 allowed us to exclude 
position 11083, which is highly homoplasic and one of the first problem-
atic sites), but did not include 23040 where there have been true rever-
sions multiple times in Omicron. After masking to remove artifactual 
reversions and highly homoplasic sites, we ran matOptimize22, which 
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when based on either the Viridian or GenBank tree. a,b, The same data are 
represented in two ways; each point represents one lineage. a, Plot shows the 
difference in s.d. of posterior density of relative growth rate estimate Δ logR (s.d. 
using the Viridian tree minus s.d. using the GenBank tree). Negative values here 
show that on average, the Viridian tree yields lower uncertainty than the GenBank 
tree. b, Plot shows the s.d. of the posterior density of relative growth rate 

estimate Δ logR based on the GenBank tree (left) and Viridian tree (right). The 
median s.d. of strain growth rate using the GenBank tree is 2.967, while the 
median s.d. using the Viridian tree is 0.859. This difference is statistically 
significant (P = 2.85 × 10−411, two-sided paired t-test; test statistic is 55, degrees of 
freedom is 2,120). Box-plots show first and third quartiles (lower and upper 
boundaries of box) and whiskers are set to the farthest point that is within 
1.5 × the interquartile range from the box. Legend labels denote parent lineage.
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rapidly searches the tree for opportunities to reduce the total number 
of mutations in the tree by performing branch moves that group similar 
sequences together, thus maximizing parsimony.

Given the size of the tree, it would not be possible to use classical 
Felsenstein bootstrapping to measure phylogenetic uncertainty, so 
instead we use SPRTA23, a method that shifts from assessing confi-
dence of clades/groupings of taxa to instead looking at confidence 
of evolutionary histories (whether a lineage evolved from a specific 
other lineage or not). Supplementary Fig. 15 shows a histogram of 
confidences of nodes in the tree (raw data in Supplementary Table 8). 
We provide a second version of the phylogeny in a supplementary 
file, storing the SPRTA uncertainty information as metadata within 
file such that it can be detected by the taxonium viewer and explored 
interactively (screenshots in Supplementary Fig. 16). The user can ask 
taxonium to show low-support nodes, or for a specific node, to see what 
alternative places in the phylogeny they might equally well be placed 
(Supplementary Fig. 16b).

Effect on evolutionary and epidemiological analysis
The primary aim of this study is to provide a high-quality resource 
(assemblies and phylogeny), with less ‘ad hoc masking’, with the inten-
tion that it reduces systematic error and noise in downstream work of 
others. We give two example applications.

First, to estimate the effect of the reduced number of sequence/
assembly artifacts in the Viridian assemblies on epidemiological analy-
sis, we used geographic metadata for each sample and a pandemic-scale 
cluster estimation algorithm (matUtils, Cluster-Tracker24), to compare 
the number of inferred unique SARS-CoV-2 viral introductions in each 
country using the GenBank and Viridian data (Supplementary Table 9). 
The expectation would be that removing artifactual errors would 
reduce the number of small clusters, caused by errors pushing genomes 
out of the larger clusters they truly belong in, creating artificial ‘intro-
ductions’. We found, for every country except Slovakia, there were 
more inferred introductions with the GenBank assemblies. The effect 
is more pronounced in highly sampled geographic regions, especially 
the USA (15,026 versus 13,626 introductions and 7,281 versus 6,676 
singleton clusters for GenBank versus Viridian; Supplementary Fig. 17). 
As predicted, we see fewer small introductions with Viridian, and at the 
far right (note log scales) the very largest clusters are slightly larger.

Second, we quantified the extent to which the higher quality 
assemblies would affect estimates of differing mutational spectra of 
different VOCs25. In all cases the spectra were very similar (that is the 
effect was limited), but interestingly in Alpha there had been an odd T 
> A context (labeled with an arrow in Supplementary Fig. 18a) that was 
elevated above all others with the August 2022 UShER tree, which was 
gone in the Viridian data (Supplementary Fig. 18b). The difference in 
G > T mutations that had been observed previously between Omicron 
and non-Omicron is still very much present (Supplementary Fig. 19), 
confidence intervals (shown as error bars) do not always overlap the 
x = y line, so there are minor differences in the exact values, but the 
overall trend and conclusions are unchanged.

Discussion
The pandemic was met with an unprecedented globally distributed 
sequencing effort that imposed substantial challenges for comparing 
and jointly analyzing data produced by thousands of labs with hetero-
geneous sampling, molecular, bioinformatic and analysis protocols. 
In particular, the downstream effect of using multiple variable-quality 
genome assembly workflows, inconsistent QC criteria and the inevitable 
coevolution of virus and amplicon schemas, led to systematic errors 
in genomes, and therefore the phylogeny.

Here we present Viridian, a fast, low-resource viral assembly tool 
specifically designed for tiled amplicon data and use it to produce a 
high-quality sequence dataset of all publicly deposited SARS-CoV-2 
data from January 2020 through to June 2024. With this we were able 

to build a much higher quality phylogenetic tree, needing less masking, 
than the current phylogeny.

We hope for three outcomes. First, that this resource will provide 
a valuable substrate for detailed methodological, evolutionary and 
epidemiological analyses. This has already happened, with de Maio 
et al. developing new methods for handling mutation rate variation and 
sequencing errors in large phylogenies26. Second, that Viridian itself 
will prove useful, providing a significant improvement for Nanopore 
(and marginal for Illumina) compared to the ARTIC workflow, and a 
standardized single workflow and output format for Illumina, Nanop-
ore and Ion Torrent. Third, that in future epidemics or pandemics, the 
tools and ideas from this paper will serve to reduce the amount of time 
spent poring over trees and trying to distinguish artifact from biology. 
Viridian will work for tiled amplicon sequencing of nonsegmented 
viruses where a consensus is the desired output (not in circumstances 
where multiple strains should be identified) and a single reference can 
be used. In other words, situations where there is limited structural 
variation or hypervariability, such as a particular outbreak or a recent 
zoonosis (such as SARS-CoV-2). Successful Viridian testing on 181 mpox 
samples using the data from Chen et al.27 (Supplementary Table 10) is 
described in Supplementary Text 11 and Supplementary Figs. 20–23.

We note that a similar approach (amplicon-by-amplicon assem-
bly followed by remapping for QC) has been previously used for HIV 
(https://github.com/neherlab/hivwholeseq?tab=readme-ov-file
#1-mappingfiltering-sample-by-sample). An alternative approach, 
more robust to handling hypervariable regions, is to do amplicon 
assembly followed by de novo scaffolding of amplicons without use 
of a reference. This method was implemented in the tool Lilo, used for 
African Swine Fever Virus28.

Despite all this, bioinformatic methods can only go so far. QC 
within a single laboratory is relatively easy, especially if one can use 
molecular protocols, such as negative controls and using synthetic 
spike-ins29; however, maintaining quality levels from distributed 
sequencing and assembly on a national and global scale is much harder. 
Our approach (uniform reprocessing) is actually the simplest, provid-
ing the raw data remains available; however, it is not a viable approach 
mid-pandemic when there is barely enough time to keep up with incom-
ing data. We therefore advocate for improved standardization (and 
adoption) of metadata around sampling, assembly and QC, and also 
multinational ‘simulations’ of pandemics to better prepare for integrat-
ing data from different pipelines.

As the data in the ENA/SRA is heavily biased toward a few 
high-income countries (especially the USA and UK), we realized that 
it was important to increase the geographical breadth of our dataset. 
Our team submitted pre-existing raw sequence data to the ENA/SRA 
from Argentina, Austria, Germany, Ghana, India, the Netherlands, 
South Africa, Singapore and Sri Lanka. The worldwide distribution 
of samples is shown in Supplementary Figs. 24 and 25 (raw data are in 
Supplementary Table 11). It has been a privilege to work together to pro-
duce these high-quality resources for the benefit of all, which was only 
possible because raw sequence data were deposited in the ENA/SRA.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Viridian pipeline
The main stages of the assembly process are to identify the ampli-
con scheme; sample the reads per amplicon; generate a consensus 
sequence by overlapping a consensus built for each amplicon; deter-
mine variants by aligning the consensus to the reference sequence; 
mask low-quality bases using read mapping to the consensus; and 
output a final masked consensus sequence. An overview of the pipeline 
is shown in Supplementary Fig. 26.

Amplicon scheme identification. The amplicon scheme is automati-
cally identified from the reads, from the built-in set of schemes (users 
can optionally add their own): AmpliSeq (v.1); ARTIC (v.3, 4.1, 5.3.2_400, 
5.2.0_1200)34; Midnight 120014; and VarSkip (v.1a-2b; (https://github.
com/nebiolabs/VarSkip).

The reads are mapped to the reference genome (default 
SARS-CoV-2 MN908947.3) using minimap2 (ref. 35) with options -x 
map-ont (Nanopore) or -x sr (Illumina/Ion Torrent). SAMtools36,37 
is used to make a sorted by coordinate and indexed BAM file, which 
by default is deleted at the end of the run but can be kept using the 
option –keep_bam. This BAM file is parsed using pysam (https://github.
com/pysam-developers/pysam) to determine read depth across the 
genome and which amplicon scheme is the best match to the reads. 
Mappings flagged as secondary or supplementary are ignored. If reads 
are paired, then only proper read pairs are used. The pipeline is stopped 
at this stage if (by default) less than half of the genome has more than 
20× read depth.

For each amplicon scheme under consideration, a normalized 
score is calculated based on the positions of mapped fragment ends. 
Throughout, ‘fragment’ means the mapped portion of an unpaired 
read, or the leftmost to rightmost mapping coordinates of a proper 
read pair. The idea is that fragment end mapping positions are expected 
to stack up at the left end of left primers and the right end of right 
primers, as the reads are from amplicon sequencing. The score is an 
overall measure of how close the fragment ends are to the primer ends.

At each position in the genome, the number of fragments with 
leftmost mapped end at that position is counted. These counts are 
used to score each amplicon scheme separately in turn (Supplementary 
Fig. 27). For each position in the genome, the distance to the nearest 
left end of a left primer in the scheme is found, moving to the left of that 
position. For example, if there is a left primer at position 100–130, then 
(assuming no other primers in this region), position 103 would have a 
distance of 3 (Supplementary Fig. 27a). Then at that position, we find 
how many fragments had their left end mapped at that position, and 
add that number to a counter of nearest distances. For example, if there 
were 20 fragments with left end at position 103, then 20 would be added 
to the counter for distance 3. The process is repeated similarly for right 
primers: for each position in the genome, the distance to the nearest 
right end of a right primer is found, moving to the right of that position 
(Supplementary Fig. 27a,b). The end result is a count of mapped frag-
ment ends at each distance from a primer (Supplementary Fig. 27b,c).

The distance is normalized by taking the distance as a percent of 
the mean amplicon length for the scheme, and the count of fragment 
ends is normalized by taking the percent of total fragment ends. The 
results are binned, so that for each integer i in the range 0−100, we know 
the percent of fragments f(i) ending normalized distance in the interval 
[i, i + 1) from a primer. The score is defined as

100
∑
i=0

( f(i) − i).

This is similar to calculating the area between the observed fragment 
counts and the line y = x (Supplementary Fig. 27d), but negative values 
are allowed. The maximum possible score for perfect reads is 5,050, 
because f(i) = 100 for all i and the score is then

100
∑
i=0

(100 − i) = 5,050.

Intuitively, a scheme that matches the reads will have fragment 
ends close to the primer ends, resulting in an initial steep curve. Con-
versely, a scheme that is not related to the reads should approximately 
follow the line y = x. Therefore, measuring the divergence from the y = x 
line provides a reliable measure of how well the scheme and reads agree. 
Supplementary Fig. 27d shows cartoons of a matching and nonmatch-
ing scheme, and Supplementary Fig. 28 for a real example output by 
Viridian. Viridian chooses the scheme with the highest score; however, 
if the best score is less than 250, or less than double the second-best 
score, then the run is stopped and the sample is considered to be failed. 
For context, ERR8959196, shown in Supplementary Fig. 28, had best 
score of 4,290 and second-best score of 464. The default cutoffs, scores 
seen in simulated reads and in the empirical truth dataset are discussed 
in more depth in the supplementary material (Supplementary Tables 12 
and 13 and Supplementary Figs. 29 and 30).

Read sampling. Once the amplicon scheme is known, reads are sam-
pled to a target depth of (by default) 1,000× for each amplicon, or 
using all reads for an amplicon if the mean depth is less than 1,000×. 
If a fragment matches to more than one amplicon, then it is assigned 
randomly to one of the amplicons (the random number generator is 
seeded so that results are deterministic).

Within an amplicon, where there is more than one left primer (and 
similarly in the following description for right primers), the number of 
fragments supporting that primer is counted. Here, support is counted 
as the left fragment end being within 5 bp of the start of the primer. A 
primer is excluded from the remainder of the pipeline if it is supported 
by fewer than 20 fragments. The exception is that if no left primers for 
the amplicon have support, then all left primers are kept. The result 
is an inferred amplicon scheme, consisting of a subset of the original 
primers from the chosen scheme.

Each fragment is assigned to a left and right primer pair within 
its designated amplicon. These are chosen by taking the rightmost 
left primer and leftmost right primer that contain the fragment. In 
summary, at this point in the pipeline we have a set of reads for each 
amplicon with mean coverage 1,000× (or lower if there were not enough 
reads sequenced for an amplicon). Where an amplicon has more than 
one left and/or right primer, the set of reads is further split into sets 
for each primer pair.

Assembly. A consensus sequence is generated using a separate module 
called cylon (https://github.com/iqbal-lab-org/cylon). The overall 
method is to generate a consensus for each amplicon, overlap these 
consensus sequences into contigs, then scaffold against the refer-
ence sequence to output a final consensus sequence for the genome 
(Supplementary Fig. 31). It takes the inferred amplicon scheme (as 
described in the previous section) and a set of sampled reads for each 
amplicon. Reads are further sub-sampled for each amplicon from the 
1,000× reads, with a target depth of (by default) 150× for Illumina and 
250× for Nanopore or Ion Torrent.

A consensus sequence is generated for each amplicon by itera-
tively running Racon16 until no more corrections are made, up to a 
maximum of ten runs. As Racon uses a partial-order alignment graph 
around the reference, this is a more reliable method of assembling 
sequence that contains indels than using mapping/pileup. If the input 
reads are paired, then each read pair is merged where possible using 
NGMerge38 before running Racon. During testing, merging read pairs 
was found to improve the accuracy of Racon. In each Racon iteration, 
reads are mapped using minimap2 with options -x map-ont (Nano-
pore) or -x sr (Illumina/Ion Torrent). Racon options –no-trimming 
–window-length W are used, where W is the length of the amplicon 
plus 100 to avoid any erroneous indels at window ends. If no sequence 

http://www.nature.com/naturemethods
https://github.com/nebiolabs/VarSkip
https://github.com/nebiolabs/VarSkip
https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
https://github.com/iqbal-lab-org/cylon


Nature Methods

Resource https://doi.org/10.1038/s41592-025-02947-1

is returned from Racon, then the amplicon is classed as failed. The 
sampled reads are mapped back to the consensus sequence and all 
positions with less than 5× depth are masked with Ns. If the result-
ing sequence is shorter than 30 bp or has more than 50% Ns then the 
amplicon is failed.

Once there is a consensus sequence for each amplicon, adjacent 
amplicons are merged. First, amplicons are mapped to the reference 
genome using minimap2, and those with no mapping in the correct 
orientation are classified as failed and removed. If there is a perfect 
sequence match of at least 10 bp between adjacent amplicons, it is used 
to join them. Otherwise, if the minimap2 match coordinates imply that 
adjacent amplicons overlap (the reference positions overlap), then 
those matches are used. Finally, if the minimap2 matches do not have 
overlapping reference positions—for example, if one or both of the 
amplicons have a truncated consensus sequence—then a contig break 
is placed between the two amplicons.

Note that the start and end of the consensus sequence from each 
amplicon is excluded by this overlapping method, meaning that unre-
liable regions of consensus sequences that were inferred from reads 
starting or ending with primers are excluded. The only exception to this 
is where an amplicon is dropped, the next amplicon will include primer 
sequence; however, this is masked later in the QC stage. The amplicon 
overlapping is repeated for each adjacent pair of amplicons, stitching 
together a consensus sequence.

Once all possible adjacent amplicons have been merged, the result 
is one or more contig(s). When there is more than one contig, the posi-
tion in the reference of each contig is determined using nucmer from 
the MUMmer software package39. The contigs are scaffolded, putting 
an estimated number of Ns between them based on the mapping coor-
dinates. As there could be insertions or deletions in the sample, this 
number of Ns is not reliable, but it is corrected during the next stage.

Variant calling. Variants are called with respect to the reference 
genome using the function make_truth_vcf from the tool vari-
fier40. This globally aligns the cylon consensus sequence to the ref-
erence genome to identify variants. As the amplicon schemes do not 
cover the complete reference genome, false-positive deletions are 
excluded from the start and end of the genome using the options –
global_align_min_coord, –global_align_max_coord to restrict 
to coordinates within the amplicon scheme. Gaps in the consensus 
(that is, strings of Ns) are corrected to be the same length as the corre-
sponding portion of the reference sequence using the option –sani-
tise_truth_gaps. These incorrect lengths can arise from failed 
amplicons, where the amplicon overlapping algorithm cannot always 
determine the exact gap length. For Nanopore and Ion Torrent reads, 
indels of length 1 or 2 are removed from the consensus sequence using 
the option –indel_max_fix_length 2. This removes false-positive 
indels caused by the error model of those technologies, at the cost 
of excluding real calls; however, in most cases any true-positive call 
that is removed will be masked later in the QC and masking stage of 
the pipeline.

The end result of this stage is a VCF file of variants, a consensus 
sequence with consistent gap lengths and the alignment of the refer-
ence and consensus sequences.

QC and masking. During read sampling to 1,000× read depth per 
amplicon, each fragment (read pair or single unpaired read) is allo-
cated to a left and right primer, by taking the smallest primer range 
that spans the entire fragment. For each amplicon and each primer 
pair within that amplicon, all reads for that primer pair are mapped 
to the consensus sequence using minimap2 (with the same options as 
the original run of minimap2) and then pileup is run to gather cover-
age statistics. Keeping the reads partitioned in this way means that at 
each genome position, the results from one pileup run can be counted 
as either inside a primer (‘bad’ coverage) or not inside a primer (‘good’ 

coverage). This is outlined in Supplementary Fig. 32. Pileup is calculated 
using the pileup function from pysam with the stepper option set to 
samtools, and ignore_overlaps and compute_baq set to False.

Pileup results are aggregated at each position in the consensus 
sequence. This is used with the reference genome/consensus sequence 
alignment to output a tab-delimited report with read depth details at 
each position (split into separate counts for good and bad coverage). 
The good coverage is used to generate a masked consensus sequence, 
where untrustworthy positions are replaced with Ns. If the majority of 
reads disagree with the consensus position, or fewer than 20 reads in 
total agree with the consensus, then it is masked. At positions where 
there is evidence of more than one allele (by default an allele is counted 
as present if is supported by at least 20% of reads) then the consensus 
base is replaced with an ambiguous IUPAC code (for example, ‘R’ to 
mean ‘A’ or ‘G’).

Output files. The final masked consensus sequence is written in FASTA 
format, plus other files with additional information. Plots of read depth 
across the genome and scheme identification scoring are made. All QC 
results are written to a tab-delimited file with one position per row, 
including detailed read depth information. A log file in JSON format 
is written, with a high-level results summary section that includes all 
command line parameters, run time, version information and con-
sensus sequence statistics. It also contains detailed information such 
as the multiple sequence alignment (MSA) between the reference and 
consensus, amplicon details (such as chosen primers and number of 
matching reads) and genome-wide read depth statistics.

Simulated data
We developed a Snakemake41 pipeline to simulate tiled amplicon 
sequencing with PCR artifacts, to compare the assembly accuracy of 
Viridian to the Connor Laboratory (https://github.com/connor-lab/
ncov2019-artic-nf) and Epi2me laboratories (https://github.com/
epi2me-labs/wf-artic) ARTIC Nextflow workflows. First, to get a realistic 
tree ‘shape’ truth assemblies are simulated from a reference genome 
and reference phylogeny15 using PhastSim42 and obtained truth variant 
calls using varifier40. The primer sequences of the ARTIC v.4 amplicon 
scheme are then mapped to the truth assembly of each sample using the 
aln command of bwa43 to get the start and end positions of each ampli-
con and check for sequence mismatches in primer binding regions. If 
one or more mismatches are identified, one of two possible PCR arti-
facts are simulated with equal probability: either the primer sequence 
containing the mismatch is replaced with the reference sequence, or 
the amplicon is assigned a read depth of 0. Random amplicon dropout 
is simulated with probability 0.001 and the sequencing depth of all 
other amplicons is drawn from a normal distribution (μ = 500, s.d. 20). 
Reads are then simulated from each amplicon at the selected sequenc-
ing depths using ART44 for Illumina and Badread45 with –identity 
94,98.5,3 for Nanopore. The reads of each amplicon are aggregated 
such that there is one FASTQ of Illumina and one of Nanopore reads per 
sample and the reads are assembled using the Connor lab pipeline and 
Viridian workflow for Illumina and Epi2me labs pipeline and Viridian 
workflow for Nanopore. Finally, a new tool called COVID truth evalua-
tion (CTE; https://github.com/iqbal-lab-org/covid-truth-eval), which is 
described in detail later, was used to generate TSV files that summarize 
the assembly accuracy for each tool.

Empirical truth set
Combined nasal and oropharyngeal specimens were identified during 
routine sequencing at Oxford University Hospitals NHS Foundation 
Trust as part of Pillar 1 national surveillance in the UK. Specimens 
were selected representing the Pango lineages B, B.1, B.1.1.7, B.1.1.7 
(E484K), B.1.214.2, B.1.351, B.1.525, B.1.617.2, B.28, BA.1, P.1 and P.2. These 
were retrieved and cultured at the University of Oxford, generating 
abundant virus stocks. RNA from these virus stocks was sequenced 
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using Illumina and Oxford Nanopore instruments with both ARTIC and 
Oxford Nanopore Technologies (ONT) Midnight protocols, in addition 
to sequence-independent single primer amplification, forming the 
dataset deposited in ENA projects PRJEB50520 and PRJEB51850 (ref. 
46). Sequencing was performed at the University of Oxford except 
where otherwise stated below.

Viral culture. Vero cells were maintained in DMEM high-glucose 
medium supplemented with 1% fetal bovine serum, 2 mM GlutaMAX, 
100 IU ml−1 penicillin–streptomycin and 2.5 μg ml−1 amphotericin B 
at 37 °C, 5% CO2 in a humidified atmosphere before inoculation with 
200 μl of throat swab fluid. Cells were then incubated at 37 °C, with daily 
monitoring for cytopathic effects. When cytopathic effects reached 
80%, virus-containing supernatants were collected through centrifu-
gation at 3,000 rpm at 4 °C and stored at −80 °C in single-use aliquots. 
Virus titers were quantified by a focus-forming assay on Vero cells. 
Spike genes were sequenced to verify protein sequence integrity. Ref. 
47 provides more details.

Extraction. Viral RNA was extracted from 200 μl and 400 μl volumes of 
Coplan viral transport medium on the KingFisher Flex system (Thermo 
Fisher) using the MagMAX Viral/Pathogen II Nucleic Acid Isolation kit 
(IVD). Two wash steps were incorporated and extracts were eluted  
in 50 μl.

PCR. PCR tests were performed by Oxford University Hospitals NHS 
Foundation Trust using two PCR assays: Altona RealStar (targeting E 
and S genes; Altona Diagnostics) and Thermo Fisher TaqPath assay 
(targeting S and N genes, and ORF1ab; Thermo Fisher).

Sequence-independent single primer amplification. Viral RNA was 
extracted as described above then complementary DNA was prepared 
using a SISPA approach48. In brief, first RNA was reverse-transcribed 
with SuperScript III Reverse Transcriptase (Life Technologies) using 
Sol-Primer A (5′-GTTTCCCACTGGAGGATA-N9-3′)49. Then 5 μl of cDNA 
and 1 μl (100 pmol μl−1) primer B (5′-GTTTCCCACTGGAGGATA-3′) were 
added to a 50-μl reaction using AccuTaq LA (Sigma), according to the 
manufacturer’s instructions. PCR conditions were 98 °C for 30 s, fol-
lowed by 30 cycles of 94 °C for 15 s, 50 °C for 20 s, and 68 °C for 5 min, 
and a final step of 68 ∘C for 10 min. Amplified cDNA was purified using 
a 1:1 ratio of AMPure XP beads (Beckman Coulter) and quantified using 
the Qubit High Sensitivity dsDNA kit (Thermo Fisher Scientific).

SISPA Oxford Nanopore sequencing. SISPA products were sequenced 
following a previously described protocol50 using ONT native barcod-
ing (EXP-NBD104) and ligation sequencing (SQK-LSK109) kits with 
R9.4.1 flow cells.

ARTIC v.3 Illumina sequencing. Libraries were prepared using the 
NEBNext ARTIC SARS-CoV-2 Library Prep kit, following standard pro-
tocol with cDNA Amplicon and Ligation Bead Clean-ups (v.3.0 7/21). 
Manual library normalization was performed to ensure even sample 
coverage, based on the library’s DNA concentration and average size, 
as measured by the Qubit (Thermo Fisher Scientific) and 2200 TapeSta-
tion (Agilent Technologies). Paired-end sequencing was performed 
using the MiSeq reagent kit v.2, with 2 × 250 bp, and one water control 
on each run. NEBNext Multiplex Oligos for Illumina (96 Unique Dual 
Index Primer Pairs) were used.

ARTIC v.4.1 Illumina sequencing. Libraries were sequenced at the Uni-
versity of Northumbria following the ARTIC V4.1 CoronaHiT-Illumina 
protocol51, using an Illumina NextSeq 550.

ARTIC v.3 Oxford Nanopore sequencing. Sequencing was performed 
using the ARTIC LoCost protocol and v.3 primers using R9.4.1 flow 

cells. Final library concentration was quantified by the High Sensitivity 
dsDNA kit Qubit (Thermo Fisher Scientific).

ONT Midnight Oxford Nanopore sequencing. Libraries were pre-
pared using ONT Midnight RT-PCR Expansion kits (EXP-MRT001) and 
rapid barcoding (SQK-RBK110.96), following manufacturer protocols. 
R9.4.1 flow cells were used.

Manual curation. All reads were mapped to the reference genome 
MN908947.3 using minimap2 with the -x preset map-ont for Nanopore 
reads and sr for Illumina. A sorted BAM file was made using samtools 
sort. This was used to make an unfiltered set of variant calls by piping 
the output of samtools mpileup into bcftools call -vm. Each 
sample was curated manually, using Artemis52 to view the mapped reads 
and infer a truth set of variant calls. Although the unfiltered calls from 
bcftools were used as a guide, the whole genome for every sample was 
inspected for variant calls. In rare cases where the Nanopore and Illu-
mina reads disagreed at a position, it was flagged as ‘unknown’. The VCF 
files and metadata are available at https://github.com/iqbal-lab-org/
covid-truth-datasets.

Consensus accuracy evaluation
The accuracy of results of the simulated data and truth set were evalu-
ated using a new tool CTE. It can evaluate either a VCF file of variant 
calls, or a consensus sequence, by comparing it with a ‘truth’ consen-
sus sequence. If the input is a VCF file, the consensus sequence to be 
evaluated is made by applying the variants to the reference sequence. 
It makes a MSA of the consensus, truth, and reference sequences using 
MAFFT20. Each position in the genome is classified by comparing the 
base calls of the MSA, to verify the accuracy of the consensus sequence. 
The most common case is that the truth nucleotide is equal to the 
reference nucleotide, and the consensus also called the reference 
nucleotide. The possibilities for the truth are a reference call, ‘homozy-
gous’ SNP (that is, A, C, G or T, which is different from the reference), 
‘heterozygous’ SNP (that is, a mix of A, C, G, T), indel, dropped ampli-
con or an N. Although rare, an N is used when the truth is unknown, as 
described above in the manual curation section. The possibilities for 
the consensus call are the same, except each nucleotide call could be 
correct or incorrect (the same as or different from the truth nucleo-
tide). CTE reports the total count of each combination seen in the 
input sample.

Dropped amplicons are known in the truth data; however, they 
must be estimated from the consensus sequence that is under evalu-
ation. As tools can use different methods to mask a nucleotide or an 
entire amplicon, defining a position with an N as part of a dropped 
amplicon, or simply masked, is ambiguous. CTE uses the minimum 
possible range of coordinates we would expect to be Ns if an amplicon 
is dropped, ranging from one past the end of the previous amplicon to 
the position before the start of the next amplicon. If a run of Ns contains 
this range of coordinates for a given amplicon, then it is considered 
as dropped in the sequence under evaluation. Hence there is some 
ambiguity between ‘called as N’ and ‘dropped’ when interpreting the 
output of CTE.

Africa dataset
The Africa dataset comprises a total of 12,287 samples, each of 
which has a ‘GISAID’ assembly, and either Illumina (n = 9,935) or ONT 
(n = 2,352) sequencing reads, with primer schemes ARTIC v.3 or 4, or 
MIDNIGHT-1200 (Supplementary table 6). All samples were processed 
with Viridian and ARTIC-ILM/ONT, producing a consensus sequence. 
Systematic positional errors were then identified using Viridian, which 
was run on each consensus sequence from Viridian and ARTIC-ILM/
ONT using the option –force_consensus. This skips the de novo 
consensus building stage, instead using the provided assembly. The 
final QC stage is run as normal, which provides a method to evaluate the 
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input assembly. In particular, positions where the consensus sequence 
is not supported by reads can be identified. Figure 3a was generated 
using the branch of the Viridian code https://github.com/martinghunt/
viridian/tree/qc_plots.

Global dataset
Metadata for all sequencing runs with taxon ID 2697049 were down-
loaded using the ENA portal query https://www.ebi.ac.uk/ena/portal/ 
api/search?result=read_run&query=tax_id=2697049&fields=all&li 
mit=10000000 on 2 March 2023. These runs were filtered to only keep 
those with library_strategy equal to AMPLICON, library_source 
equal to VIRAL RNA, host empty or equal to homo sapiens, and 
instrument_platform one of ILLUMINA, OXFORD_NANOPORE or ION_
TORRENT. The resulting 5,288,952 sequencing runs were downloaded 
using either prefetch/fasterq-dump from the SRA-toolkit (https://
github.com/ncbi/sra-tools) or enaDataGet (https://github.com/enase-
quence/enaBrowserTools). They were processed with Viridian, with 
4,395,655 passing its QC requirements and producing a consensus 
sequence. These were further filtered for quality, requiring no more 
than three ‘heterozygous’ base calls (none of A, C, G, T, N) and no more 
than 5,000 Ns. The N count was taken from the consensus sequence 
after aligning to the reference using MAFFT, as described in the Trees 
section later. A further round of filtering was applied based on requir-
ing a reliable date for each sequencing run, using where available the 
collection date from the ENA/SRA, COVID-19 Genomics UK Consortium 
(COG-UK) and GISAID. Runs with no collection date from any source 
were removed. Where dates conflicted for a given sample, the order of 
preference used was the date with highest resolution, then COG-UK, 
GISAID and finally ENA/SRA. At this stage, there were 3,960,704 runs, 
which is the set of runs used to compare with GenBank sequences (see 
next paragraph). Finally, the data were updated on 28 June 2024, adding 
all new runs that passed the same QC requirements, making a total of 
4,484,157 consensus sequences.

All GenBank genomes were downloaded on 23 May 2023 using 
the Datasets tool (https://github.com/ncbi/datasets) with parameters 
download virus genome taxon SARS-CoV-2. The genome and 
metadata files (genomic.fna.gz, data_report.jsonl.gz) were 
extracted from the downloaded zip file. Genomes with host taxon 
ID (‘host’ → ‘taxId’) 9606 (human), were kept. The genomes were 
matched to sequencing runs from the ENA/SRA using the run acces-
sion. Only GenBank genomes that matched to a single run that also 
belonged to the set of 3,960,704 Viridian consensus sequences (from 
the initial data obtained on 2 March 2023) were kept. This resulted in 
an ‘intersection set’ of 3,006,407 runs with both a Viridian consensus 
sequence and GenBank genome.

Primer scheme validation
As the COG-UK metadata includes the ARTIC primer scheme version, 
we used their project PRJEB37886 (included in the global dataset) to 
validate the scheme calls from Viridian. The ARTIC primer scheme ver-
sion used was obtained from the SRA metadata using efetch (https://
www.ncbi.nlm.nih.gov/books/NBK179288/) to download metadata 
for experiments in batches using the options -format xml -db sra 
-input ids.txt, where ids.txt is the name of the file containing a 
list of experiment accessions. The primer scheme version was extracted 
for each experiment from the value of the artic_primer_version tag 
in the EXPERIMENT_ATTRIBUTES section of the XML data. Each efetch 
command was attempted twice (failures were common), resulting 
in a total of 2,485,169 primer scheme calls from ENA/SRA metadata. 
We then restricted to Illumina and Nanopore samples that passed 
Viridian (the 4,395,655 samples described earlier), and only included 
ENA/SRA primer scheme values of 3/ARTIC v3 for ARTIC v.3 and 
4/4.1alt/ARTIC v4 for ARTIC v.4. This was a total of 2,341,118 samples.

Discordant samples for manual inspection were chosen by taking 
all Illumina samples with ENA/SRA scheme v.3 and Viridian scheme 

v.4, sorting by run accession, and taking five equally spaced runs from 
the list. The same method was used for Illumina with ENA/SRA v.4 and 
Viridian v.3, and then similarly for Oxford Nanopore samples, totaling 
20 samples for manual inspection. Reads were mapped using mini-
map2 with the option -a to make SAM output, and the preset -x of sr 
(Illumina) or map-ont (Nanopore). A sorted BAM file was made using 
SAMtools, and then manually inspected with Artemis.

Trees
Trees were built using MAFFT and UShER18 and visualized with taxo-
nium53. Each sequence was aligned to the reference using MAFFT with 
the option –keeplength to force the alignment to be the same length 
as the reference genome, by only allowing gaps in the query sequence. 
The alignment was modified by forcing any gaps in the query sequence 
to be the same as the reference sequence. The resulting sequences were 
batched into sets of size 100,000. A VCF file was made for each batch 
with faToVcf, with the option -includeNoAltN. A tree was built by 
adding each batch in turn using usher-sampled and the option –
sort-before-placement-3. The final tree was optimized with the 
UShER command matOptimize and the options -m 0.000000001 
-r 8 -T 20. Finally, the taxonium input file was generated using the 
script usher_to_taxonium from taxoniumtools53. The processing of 
input sequences to obtain taxonium input was implemented in a pipe-
line called Ushonium (https://github.com/martinghunt/ushonium).

To maintain an accurate tree structure, we ordered the samples 
by first using the samples with zero N or heterozygous calls, sorted by 
collection date. Then the remaining samples were used, again sorted 
by collection date. An exception to the date ordering was the 12,953 
samples (3,876 of these were in the intersection set of 3,006,407 sam-
ples) where the GISAID date was given priority over other sources, 
which were added at the end instead of using the date. Using the high-
est quality consensus sequences first meant that UShER did not have 
to impute any ambiguous positions in any sequences. Sorting in date 
order meant that recombinant genomes (which emerged later in the 
pandemic) were not added to the tree too early, as they could be placed 
in an incorrect clade and then cause structural errors.

The global Viridian tree was built in two stages. A first version of 
the tree was built from the runs up to the 2 March 2023, using the order 
described above (highest quality and earliest collection date first). 
Positions in the problematic-sites set (https://github.com/W-L/Prob-
lematicSites_SARS-CoV2) were masked globally in the tree, and 31 rever-
sions found to occur at least 200 times in the tree were also masked 
globally (all masked positions are listed in Supplementary Table 14). 
matOptimize was run following the masking to join branches that had 
been split by the masked substitutions or reversions. This tree was 
used as a starting point to update using the second batch of data from 
28 June 2024, with the same ordering method. The problematic-sites 
positions were masked in new sequences before they were added to 
the tree. After the new sequences were added, in addition to masking 
the 31 reversions that occurred at least 200 times in the first version 
of the tree before masking, we added branch-specific masking for 
regions in BA.1 and BA.2.86 in which mafft misinterprets a deletion and 
insertion in close proximity as a series of substitutions. Positions 6513, 
6515, 22195, 22197-8, 22202 and 22204 were masked in the BA.1 branch. 
Positions 21610, 21612-3, 21615-7, 21619-21, 21624-7, 21629, 21632, 21637 
and 21639-41 were masked in BA.2.86. matOptimize was run after mask-
ing. 12,578 duplicate runs were removed from the tree that came from 
shared samples, to make a final tree with 4,471,579 unique samples/
runs. We note that there are only 14 duplicate runs in the intersection 
tree, which were not removed.

Measuring uncertainty in the global tree
We ran SPRTA on our tree with the Jukes–Cantor model, obtain-
ing measurements of uncertainty and alternative placements of 
nodes which correspond almost exactly to alternative equally 
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parsimonious trees. To do this, MAPLE v.0.7.2 was run with the 
options --doNotOptimiseBLengths --doNotImproveTopology 
--numTopologyImprovements doNotReroot, which prevent any 
tree improvement in MAPLE, so that the output tree is the same as 
the input tree. The option –normalizeInputBLen 0.000033 was 
used, which rescales the branch lengths to match the length unit used 
in MAPLE (expected substitution per site versus the unit of number 
of substitutions used by UShER). A JC69 model54 was used with the 
option --model JC. SPRTA was run with the option --SPRTA, while 
representing alternative placements in the output tree and metadata 
(using the option –networkOutput). The other options used were 
--largeUpdate --estimateMAT --numCores 10 --reference 
NC_045512.2.fa.

PyR0 analysis
PyR0 was run using Python v.3.10. Code is available via GitHub at https://
github.com/broadinstitute/pyro-cov?tab=readme-ov-file.

Analysis was conducted using the matched Viridian tree and Gen-
Bank tree of the intersection dataset. PyR0 estimates growth rate of line-
ages using a hierarchical regression model (see ref. 21 for details); based 
on this, the standard deviation of strain growth rate was aggregated 
across regions (countries or first-level country divisions (for example, 
state or province) if the first-level division has at least 50 samples) by 
summing region-specific standard deviations. A paired t-test was con-
ducted on the standard deviation in growth rate estimates using the Vir-
idian tree versus GenBank tree. Supplementary Manhattan plots (spike 
protein and whole genome) only show mutations that appeared in both 
Viridian and GenBank trees, and a paired t-test was conducted on the 
growth rate estimates for each mutation. An unpaired t-test was also 
conducted on the full set of mutations, including those that only appear 
in the Viridian or GenBank trees, though no statistically significant 
results were found. Accompanying each Manhattan plot (Supplemen-
tary Figs. 12 and 13) is a plot of the ratio of growth-related mutations 
to all mutations, where growth-related mutations are defined as those 
which are at least one s.d. from zero. Fisher’s exact test was performed 
to analyze the difference in proportions of growth-related mutations in 
each annotated subdomain/reading frame of the spike protein/whole 
genome (respectively). To produce Supplementary Fig. 14, rank was 
assigned according to the mean of the posterior density of the rela-
tive growth rate of a strain compared to the ancestral strain (denoted 
by R/RA) divided by the standard deviation of said posterior. ΔlogRis 
the common log of the R/RA growth rate estimate. Mutation relative 
growth rate describes the relative growth rate conferred by a mutation 
compared to no mutation.

Calculation of mutational spectra and proportions of  
G > T mutations
Mutational spectra were calculated as reported previously25. In brief, 
all mutations downstream of the corresponding lineage root node 
are identified. The contexts of these mutations are calculated in the 
genomic sequence at the start of the corresponding phylogenetic 
branch, taking into account mutations that have arisen on ancestral 
branches in the phylogenetic tree. Mutational spectra were rescaled 
by the genomic composition in the lineage root ancestor as described 
previously25. Confidence intervals on the proportion of G > T mutations 
were calculated using a Wilson score interval incorporating the calcu-
lated proportion and the number of sampled mutations.

Software versions
Package versions used for the simulations were: Snakemake (v.7.8.5)41, 
PhastSim (v.0.0.4)42, ART (v.2016.06.05)44, Badread git commit (c2bd-
cbe)45, ARTIC Illumina workflow git commit (8af5152) from https:// 
github.com/connor-lab/ncov2019-artic-nf, Epi2me wf-artic git commit 
(218aa1d) from https://github.com/epi2me-labs/wf-artic, CTE git com-
mit (9cd94b8) from https://github.com/iqbal-lab-org/covid-truth-eval, 

Nextflow (v.21.04.3)55, bwa git commit (c77ace7)43, (htslib v1.14)56, 
SAMtools (v.1.14)36, BEDTools (v.2.30.0)57, joblib (v1.1.0) from https://
github.com/joblib/joblib, numpy (v.1.22.1)58, pandas (v1.4.0)59, pysam 
(v.0.18.0) at https://github.com/pysam-developers/pysam and tqdm 
(v.4.62.3) from https://github.com/tqdm/tqdm.

The ARTIC-ILM pipeline used was git commit (8af5152) from 
https://github.com/connor-lab/ncov2019-artic-nf. The ARTIC-ONT 
pipeline used was git commit (218aa1d) from https://github.com/ 
epi2me-labs/wf-artic. Version 4.3 of Pangolin and v.1.21 of Pangolin-data 
were used for the intersection dataset. Version 1.29 of Pangolin-data 
was used on the final Viridian global tree. MAPLE (v.0.7.2) was used to 
measure uncertainty in the global tree.

Viridian (v.1.0.0 or v.1.1.0) was used to process all runs. The only 
difference between these versions is v.1.1.0 added support for unpaired 
Illumina reads. The versions of tools used by Viridian were: Cylon 
git commit (57d559a), minimap2 git commit (b0b199f), MUMmer 
(v.4.0.0rc1), NGMerge git commit (224fc6a), Racon git commit (a2cf-
cac), Varifier git commit (8bc8726). Ushonium git commit (b024320) 
was used, with dependencies MAFFT (v.7.520), UShER git commit 
(2df81ee) and taxoniumtools (v.2.0.111).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The global Viridian tree is hosted at https://viridian.taxonium.org. All 
other additional files are available from figshare and some are provided 
as supplementary tables and files. Supplementary data file on figshare 
at https://doi.org/10.6084/m9.figshare.30453716.v1 (ref. 60), which 
is a TSV file containing metadata of all 5,959,032 sequencing runs 
considered in this study. Supplementary Tables 1–14 in one xlsx file 
on figshare at https://doi.org/10.6084/m9.figshare.28987784.v2 (ref. 
61). Supplementary Table 1. Summary of counts of amplicon schemes 
in INSDC metadata and the scheme called by Viridian. Supplementary 
Table 2. Accuracy of Viridian, ARTIC-ILM and ARTIC-ONT on simu-
lated data. Supplementary Table 3. Accuracy of Viridian, ARTIC-ILM 
and ARTIC-ONT on Illumina truth dataset. Supplementary Table 4. 
Accuracy of Viridian, ARTIC-ILM and ARTIC-ONT on Nanopore truth 
dataset. Supplementary Table 5. Run times and RAM usage on the truth 
dataset. Supplementary Table 6. Metadata for the African dataset. Sup-
plementary Table 7. Counts of sites with errors in the African dataset. 
Supplementary Table 8. Confidence of nodes in the global Viridian 
tree. Supplementary Table 9. Numbers of inferred viral introductions. 
Supplementary Table 10. mpox data. Supplementary Table 11. Country 
counts in the Viridian global tree, and number of new samples since 
the tree was built. Supplementary Table 12. Viridian amplicon scheme 
scores using simulated data. Supplementary Table 13. Viridian amplicon 
scheme scores on the truth dataset. Supplementary Table 14. Positions 
masked when building the global Viridian tree. Supplementary HTML 
file on figshare at https://doi.org/10.6084/m9.figshare.25713198 (ref. 
62) comparison of Viridian and GenBank assemblies. All Viridian con-
sensus sequences that are in the global tree, split over two tar archive 
files on figshare (https://doi.org/10.6084/m9.figshare.25713225 (ref. 
63) and https://doi.org/10.6084/m9.figshare.27194637 (ref. 64)), which 
contain the sequences split over multiple xzipped FASTA files. These 
are the same batched FASTA files used when building the trees. The 
Viridian global tree of 4,471,579 sequences, in JSONL and .pb format 
on figshare at https://doi.org/10.6084/m9.figshare.27194547 (ref. 
65). The GenBank and Viridian intersection trees in JSONL and .pb 
format on figshare at https://doi.org/10.6084/m9.figshare.25713285 
(ref. 66). All other Viridian consensus sequences that are not in the 
global tree, split over two xzipped FASTA files on figshare at https://
doi.org/10.6084/m9.figshare.25713342 and https://doi.org/10.6084/
m9.figshare.27194652 (refs. 67,68). The output TSV file from Maple/
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SPRTA run on the global Viridian tree on figshare at https://doi.
org/10.6084/m9.figshare.28985573.v1 (ref. 69). The Viridian global 
tree with Maple/SPRTA data added in JSONL format on figshare at 
https://doi.org/10.6084/m9.figshare.29097608 (ref. 70).

Code availability
Viridian is freely available under the MIT license at https://github.
com/iqbal-lab-org/viridian, and code v.1.5.1 is archived at https://
doi.org/10.5281/zenodo.17257005 (ref. 71). Code used for analy-
sis and to generate figures is available at https://github.com/mar-
tinghunt/viridian-paperand is archived at https://doi.org/10.5281/
zenodo.17279235 (ref. 72).
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