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The majority of SARS-CoV-2 genomes obtained during the pandemic
were derived by amplifying overlapping windows of the genome (‘tiled
amplicons’), reconstructing their sequences and fitting them together.

This leads to systematic errors in genomes unless the software is both aware
of the amplicon scheme and of the error modes of amplicon sequencing.
Additionally, over time, amplicon schemes need to be updated as new
mutationsin the virus interfere with the primer binding sites at the end of
amplicons. Thus, waves of variants swept the world during the pandemic
and were followed by waves of systematic errors in the genomes, which had
significantimpacts on the inferred phylogenetic tree.

Here we reconstruct the genomes from all public data as of June 2024
using an assembly tool called Viridian (https://github.com/igbal-lab-org/
viridian), developed to rigorously process amplicon sequence data. With
these high-quality consensus sequences we provide a global phylogenetic
tree of 4,471,579 samples, viewable at https://viridian.taxonium.org. We
provide simulation and empirical validation of the methodology, and
quantify theimprovement in the phylogeny.

Ontheeve of the SARS-CoV-2 pandemic, had one commissioned a poll
of phylogeneticists on whether their methods were adequate for cur-
rent public health needs, the overall response would have been in the
affirmative. At that point, most people were analyzing relatively small
datasets (n<5,000), usually carefully curated and generally studied
by people working closely with those obtaining and processing the
clinical samples, or indirectly, via national public health organiza-
tions. Data were usually small and clean, and there was limited urgency.
One year later, all of these statements would no longer be true. The
SARS-CoV-2 pandemicplaced unprecedented strains on the genomics
and bioinformatics communities in terms of scale, turnaround time
and coordination. Inevery dimension, tools and systems were pushed
far beyond expectations. Despite significant efforts and innovations,
numerous steps in the process (from patient to global phylogenies
and dashboards) required prioritizing speed and practicality over
absolute accuracy. This was the right thing to do at the time as it ena-
bled real-time management decisions to be taken; however, as there
was no unified genome assembly or quality control (QC) process, the
end result has been that the set of SARS-CoV-2 genomes, on which
future evolutionary and vaccine analyses will be based, containalarge

number of systematic errors*”. The goal of this study is to re-assemble all
publicly available SARS-CoV-2 raw sequence datawith asingle analysis
workflow to remove the majority of these errors, thereby building a
higher quality phylogenetic tree for all our benefit.

Unlike the sequencing of bacterial genomes after culture (where
the details of sequencing and assembly can stay the same over rea-
sonably long periods) the specifics of viral sequencing and assembly
during the pandemic had to keep changing, as we describe below. This
resulted in a myriad of inconsistencies across the globe and errors in
consensus sequences. A fundamental constraint on sequencing of
SARS-CoV-2was the fact that viralload in patient samples was generally
very low and highly variable, as aresult of which the most common way
tosequence was viatiled amplicons (as had been carried out previously
forotherviruses®). Here, the genomeis divided into overlapping ‘tiles’,
each of whichisindependently PCR-amplified, guided by PCR primers
ateither end of the tile. That this was possible at all was thanks to two
things: the early release of the genome sequence** and Quick’s® rapid
production ofaset of primers, the first ‘ARTIC’ (acronymreferringtoa
consortium) primer scheme. A feature of any tiled amplicon schemeis
that, asthe virus evolves, eventually mutations within primer binding
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Fig.1| Assemblers which wrongly default to the reference base in the absence
of data cause reversions in the phylogeny. a, Cartoon phylogeny built from
perfect genomes, with leaves colored by genotype at a specific position X
(purple, ancestral base; green, derived base). Just one mutation at this site, shown
asawhite star, isneeded to explain the data. b, Cartoon showing the effect of
assembly software assuming that agenome s identical to the reference genome
when there are no data; here the amplicon containing position X is dropped in
the lowest-but-one genome on the tree, creating one lone purple leaf. The tool
whichinfers the phylogeny looks for a parsimonious explanation for this color
distribution, and concludes it was caused by a mutation (white star) followed by
a‘reversion’back to the ancestral base (red star). Errors in assembly caused by
reference-bias tend to create enrichments of reversions. ¢, Part of the current
UShER SARS-CoV-2 phylogeny, colored by genotype at genome position 22813
(spike codon 417). Blow-up shows multiple reversions back to the ancestral
purple. Anonexhaustive set of artifactual mutations (such as reversions,
unreversions and re-reversions) are shown with red stars, where thereis a flip
back and forth from green to/from purple.

sites will lead to failed amplification of the associated tile, creating
gapsinthe genome sequence data (‘dropouts’). This is to be expected
and necessitates the development of an updated scheme with new
primers; however, as shown in Supplementary Fig. 1, many genome
assembly software pipelinesimplicitly made the false assumption that
in the absence of data (no reads from an amplicon) one should infer
thesequence asbeing that of the reference genome, whichin the case
of SARS-CoV-2 s also the ancestral sequence. Thus, at various points
duringthe pandemic, researchers analyzing the phylogeny would find
asudden crop of genomes ‘reverting to the ancestor’.
InFig.1aweshow partofatree with theleaves colored to show what
base that genome has at a specific position (purple for the ancestral
base and green for the derived (new) base caused by amutation shown
as a white star). One single mutation explains that data. In Fig. 1b,
we show the impact of wrongly assigning the ancestral base at the
lowest-but-oneleaf (fourth purple down). Here, the most parsimonious
way to explain thisis with asecond mutation (red star) ‘reverting’ back
totheancestral purple.InFig. 1c we show part of the global SARS-CoV-2
phylogeny hosted at taxonium.org (accessed 9 April 2024), zoomed
in to show where Omicron branches from the ancestor. Leaves are
colored by the genotype of genome position 22813 (codon 417) in the
spike gene (again purple is ancestral). In the blow-up we see within
the green (Omicron) clade, a striking spray of purple that does not sit
cleanlyinany subclade. Patternslike this, caused by systematic assem-
bly errors, have been previously shown to occur in the SARS-CoV-2
phylogeny'. Such errors can have a considerable effect on our infer-
ences about the underlying biology—in this case, K417N is a muta-
tion that affects antibody escape’ and systematic errors like this can

lead to misinterpretation. However, although one can use areversion
count asametric of whether we suspect there are assembly problems,
reversions are not always errors. Forexample, SARS-CoV-2hasa C-to-T
mutation bias®’ (strictly a C-to-U, as it is an RNA virus, but we convert
to DNA space for phylogenetics), so if you have a T to C mutation on
aphylogenetic branch leading to a large clade, you may expect to see
multiple reversions back to Tin that clade.

There are several other possible technical artifacts that can arise
(for example, primer dimers'’, interactions between amplicons” or
primers binding in noncanonical sites'), which should be expected
and handled, otherwise additional errors will result. Unfortunately,
these errors often correlated with individual sequencing centers, which
themselves correlated with local prevalence of particular lineages at
particular times. In addition, where amplicon dropout was incomplete,
thelikelihood of wrongly imputing the reference genome ataparticular
position becomes a function of decreasing amounts of sample RNA,
creating afalse relationship between genotype and viral load”.

Because of amplicon dropouts, as the pandemic progressed and
sequential waves of variants of concern (VOCs) arose, the ARTIC primer
scheme was updated multiple times to restore amplification, as well
as a slew of alternative options (for example, Midnight™, AmpliSeq
(Thermo Fisher Scientific) and VarSkip; https://github.com/nebiolabs/
VarSkip). Each VOC wave brought mutations in primer bindings sites
leading to amplicon dropouts, and a subsequent wave of artifacts in
genomes as these were mishandled (Fig. 2). New amplicon schemes
were thenintroduced, and gradually taken up, solving previous drop-
out problems, but also followed by smaller waves of new artifactsin the
genomes, sometimes caused by primers not being correctly trimmed
and being incorporated into assemblies. It is no exaggeration to say
thatsince thisissue was first raised”, thousands of person-hours of time
have been spent manually looking through trees and genomes trying
todecide whether strange phenomena are artifacts or not. Some of us
(R.C.D.and A.H.) have been maintaining the global phylogenetic tree
of SARS-CoV-2 since 2021 (ref. 15), and the only way we have been able
to maintain the integrity of the tree has been to (1) completely mask
150 nucleotide positionsinthe genome, as they are systematically too
often wrong to ever be trusted, and (2) systematically mask (ignore)
certain mutations on specific branches of the tree. As artifacts ebbed
and flowed, and were discovered by analysts, the masking had to be
updated (Fig. 2 and Supplementary Fig. 2). After the mammoth global
efforts to sequence and collate these SARS-CoV-2 genomes, the rich-
est dataset of any pathogen to date, it is critical to now reprocess and
clean these data, providing a firm foundation for future discoveries.

As of June 2024, there were approximately 6 million SARS-CoV-2
raw sequence datasets deposited in the European Nucleotide Archive
(ENA)/Sequence Read Archive (SRA), very few of which had metadata
recording the primer scheme and the assembly pipeline used (data
from COG-UK being anotable but geographically localized exception).
In this paper we will describe our amplicon-aware assembly and QC
processes, with which we reprocessed these genomes and measured
the improvements in the genomes and phylogeny, and provide these
dataasaresource for the whole community.

Results

We set out to reprocess all available SARS-CoV-2 sequence read data,
generating new consensus genomes through an assembly workflow
designed for tiled amplicon schemes with a rigorous QC process, and
thereby build aglobal phylogeny that minimizes the need for masking
unreliable parts of the genome and tree.

To this end, we created Viridian, an efficient amplicon-aware
assembler to consistently handle Illumina, Oxford Nanopore and lon
Torrentreads. As publicly shared sequence data do not generally have
metadatalogging the primer scheme used, Viridian firstidentifies the
amplicon scheme fromthe input reads. Inlight of this, with knowledge
of where primers bind, it then makes consensus sequences for each
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Fig. 2| Timeline of the SARS-CoV-2 pandemic from December 2019 to July 2023.
Selected events relating to problems with sequencing and consensus calling,
labeled a-e. Releases of ARTIC primers schemes (v.1,2,3,4,4.1and 5.3.2) are
marked with green triangles. a, Primer dimers cause amplicon dropouts' and
28% of GISAID*° sequences deposited in September 2020 have at least one gap

Date

oflength atleast 200 bp (ref. 31). b, A9-bp deletion in the primer binding region
of ARTIC v.3 amplicon 73 causes missing data®. ¢, Dropouts causing artifacts
atspike 95and 142 (ref.13).d, ARTIC v.4 roll out triggers artifactual mutations
insome pipelines®. e, Omicron samples cause ARTIC v.4 amplicon dropout,
triggering the update to ARTIC v.4.1 (ref. 33).

ampliconbybuilding a partial-order alignment graph of the reads using
Racon'®, an approach that will detect indels more robustly than one
based onpileups. Viridian then merges the per-amplicon consensuses
intoasingle consensus and calls variants. To evaluate the confidence of
each positioninthis consensus, it remaps the reads to the consensus,
identifies unsupported positions, and using this, finally outputs a
high-quality sequence that has low-quality bases masked. The empha-
sis throughout is on minimizing errors, in particular where amplicon
primers bind, producing a consensus sequence where all unmasked
positions should be correct.

We performed three evaluations of Viridian against two exist-
ing ARTIC workflow implementations: ARTIC-ILM (for Illumina) and
ARTIC-ONT (for Nanopore) (Methods). The data used were (1) simu-
lated data; (2) a‘truth set’ of 67 runs from 27 isolates with known results;
and (3) a larger dataset (n=12,287, ‘Early Omicron’) from multiple
countries in Africa from November 2021 to March 2022 that includes
the emergence of the Omicron variant.

Primer scheme identification

Wefirstevaluated our methodforidentifying primer schemes (Methods)
using two datasets where we knew the correct primer scheme; these
consisted of 8,000 simulated genomes and 67 curated truth genomes.
There were zero errors. We then used 2,341,118 [llumina and 122,410
Oxford Nanopore samples where the ENA/SRA metadatahad an ARTIC
primer scheme version entry of 3 or 4, and compared to the call from
Viridian (Supplementary Table 1). There was 99.7% agreement for
Illumina and 98.2% for Oxford Nanopore samples. A manual inves-
tigation of a subset (n = 20) of the discordances concluded that the
remaining errors were likely metadataerrorsinthe ENA/SRA;in19 of 20
cases, the pileups were categorical that Viridian was correct, and inthe
remaining one, the datawere inconclusive (Supplementary Text 3 and
Figs.3-7). Note that both the truth set and the ENA/SRA data contain
samples where tagmentation during the library preparation caused
fragmented reads, confirming that the method worked there too.

Simulations

We simulated a SARS-CoV-2 tree of 8,000 genomes, including
single-nucleotide polymorphism (SNP) errors in primers and ampli-
condropouts. llluminaand Nanopore reads were simulated from each
genome, from simulated amplicons usingthe ARTIC v.4 scheme. Toeval-
uate the accuracy of resulting consensus sequences from ARTIC-ILM,
ARTIC-ONT and Viridian, a novel pipeline was developed called CTE
(COVID truth evaluation; Methods), which evaluates each consensus
sequence using the truth to classify each position in the genome as

correct or as an error. Results were highly consistent across all tools
and amplicon schemes (Supplementary Table 2a-d). For Illumina
data, ARTIC-ILM called all 395,799 SNPs and Viridian called 395,795
SNPs. With Nanopore data, ARTIC-ONT called 394,152 SNPs and
Viridian 395,748. The ‘missed’ SNPs were called as Ns, not as reference
bases, except for one Nanopore SNP called as heterozygous by Viridian.
Although there were overall very few errors, ARTIC-ONT had notably
more indel errors than Viridian (54 ARTIC compared to zero Viridian
errors; Supplementary Table 2c¢,d).

Empirical truth dataset

Thetools were compared onatruth dataset of 67 high-quality sequenc-
ing runs from 28 samples, comprising a mix of [llumina and Nanopore
reads and ARTIC (v.3, v.4 and v.4.1) and Midnight amplicon schemes.
The ‘truth’, including all expected SNPs in all runs, was determined by
manualinspection of reads mapped to the reference genome. Similarly
to the simulations, all tools performed well, with few errors (Supple-
mentary Tables 3and 4), and Viridian performing better with respect to
indelsonNanopore data (43 ARTIC errors compared to1Viridian error;
Supplementary Table 4e,f). Across the whole truth set there was atotal
0f1,696 SNPs, of which Viridian called 1,688 and ARTIC-ILM/ONT called
1,689. ARTIC-ILM/ONT had 1,989,650 correct reference calls, and Virid-
ian1,988,410. Missed SNPs and differences in reference calls were due to
masking with Ns. We measured the peak RAM and total CPU time of each
truth set run. Viridian had mean peak RAM usage of 444 MB and mean
CPUtime of154 s, whereas ARTIC-ILM and ARTIC-ONT used 1.45 GB of
RAM and took 366 s, and 1.80 GB of RAM, and took 561 s, respectively
(Supplementary Table 5 and Supplementary Fig. 8).

African ‘Early Omicron’ dataset

Next, we evaluated our own empirical dataset, sequenced and assem-
bled at the Centre for Epidemic Response and Innovation in South
Africa, with samples from November 2021 to March 2022, including
VOCs Alpha, Beta and Delta, and also encompassing the emergence
of the Omicron variant. The 12,287 samples were from South Africa
(n=8,645),Angola (n =957), Mozambique (n = 619), Mauritius (n = 488),
Malawi (n =480), Cameroon (n = 344), Zimbabwe (n = 333), Ethiopia
(n=232),Uganda (n =102) and Namibia (n =83) (and four withunknown
country), and include lllumina (n = 9,935) and Nanopore (n =2,352)
runs, using either ARTIC (n =11,070 including v.3.4 and 4.1) or Midnight
(n=1,217) amplicon schemes (Supplementary Table 6). Each sample
was processed with Viridian and ARTIC-ILM/ARTIC-ONT as appropri-
ate, and the results compared to our original assemblies” which have
previously been shared to the UShER'®'" SARS-CoV-2 phylogeny via
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Fig. 3| Errorsin consensus sequences from the ‘Early Omicron’ African
dataset, split by sequencing technology and amplicon scheme. a, Plots show
the percentage of consensus sequences with an error, taking the maximum
valueinwindows of length 50 bp. Error here is defined as where the consensus
sequence hasan A/C/G/T call, the read depth passes Viridian’s default filters

(Methods) and the reads support adifferent A/C/G/T call. Results are shown for
Viridian, the original assemblies and for the ARTIC-ILM and ARTIC-ONT assembly
workflows. b, Total errors called by each method, summarizing the datashownin
afor each dataset. ¢, Total number of sites with at least one error.

GISAID. We scanned all positions in all consensus assemblies for ‘hard
errors’, where the majority of the reads disagreed with the consensus
(forexample, the consensus called an A but most reads say G; Methods).
We found systematic positional errors (which were specific to primer
scheme and sequencing technology) in the original consensuses and
the ARTIC-ONT assemblies. The errors were substantially reduced in
the ARTIC-ILM workflow although some did remain. By contrast the
errors were almost completely removed by Viridian. Thisis summarized
inFig.3a, showingerrorsacross the genome and total error counts and
siteswitherrors. Depending on the dataset, total Viridian errors ranged
from 31to 86, whereas ARTIC had 219-2,148 errors, and the original
assemblies1,069-10,909 (Fig.3b and Supplementary Table 7). The total

number of positions in the genome where at least one sample had one
error followed a similar pattern (Fig. 3c and Supplementary Table 7).

Assembly and evaluation of the global data

We processed all lllumina, Nanopore and lon Torrent SARS-CoV-2
sequencing runs from the ENA/SRA as of 2 March 2023, keeping all
3,960,704 that passed QC (Methods) and produced a consensus
sequence using Viridian. We also obtained all matching entries from
GenBank, giving an ‘intersection set’ of 3,311,456 samples with both
a Viridian and GenBank consensus sequence. We then built a tree of
each of these three datasets (all 3,960,704 Viridian sequences, Inter-
section/Viridian (the Viridian assemblies of the intersection set), and
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Fig. 4 |Most variable sites cause fewer reversions in the Viridian tree than
the GenBank tree. a, Plot showing how many positionsin the genome have at
least Nreversionsin each tree (Viridian in blue, GenBank in red). Viridian curve
drops faster, having fewer positions that create many reversions. b, Scatter-
plot comparing count of reversion mutations found in the GenBank dataset
and Viridian dataset. Note that (0, 0) is slightly indented from the origin of the
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plot. Each point represents a position of the SARS-CoV-2 genome. Three points
below the line y =xare highlighted (labeled by genomic coordinates 22786, 8835
and 15521) where Viridian has particularly high numbers of reversions, and one
(labeled 21987) for GenBank. ¢, Blow-up of dotted square from b showing vast
majority of variable sites in the genome lie above the line y = x.

Intersection/GenBank (the GenBank assemblies of the intersection
set)) using MAFFT?° and UShER (reverting deletions to the ancestral
sequence and excluding insertions; Methods). Supplementary Fig. 9
provides an overview of how the samples were processed to make the
trees. Note that these trees:

(1) arebuilt from unmasked consensus genomes, unlike the current
UShER global SARS-CoV-2 phylogeny, which pre-masks a list
of ‘problematic sites’ in the genome where the community has
determined assemblies may be unreliable, and

(2) do not have any forcible masking of particular mutations on
the branches of specific VOCs, unlike the current public SARS-
CoV-2tree.

To assess the improvement in accuracy of a tree built from Viridian
sequences, we next compared the Viridian and GenBank intersection
set trees.

Ns and Pango assignment. A scatter-plot comparing the number of
Ns in the Viridian versus GenBank assemblies (Supplementary HTML
file) showed very little correlation, and a strong enrichment of points
where there were many more Nsinthe Viridian assembly—n=1,604,389
(53.4%) of GenBank assemblies had no Ns, compared to n=1,197,638
(39.8%) of Viridian assemblies. There were more Ns in the GenBank
assembly for 9% of samples versus 49% samples with more Nsin the Vir-
idian assembly; of those samples with more Nsin the Viridian assembly,
29% had zero Ns in the GenBank assembly. This is consistent with the
known issue that for some software pipelines, portions of the refer-
ence sequence had been used to fill in dropouts for alarge number of
sequences, and this effect alone will have been a significant cause of
reversionsinthe tree. Nevertheless, analysis at the lineage level using
Pangolin showed very strong agreement, with only 0.98% (n =29,475)
of samples having discordant assignments. Of the mismatches, the
majority (77%) were parent-child, with Viridian assembly the child
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Fig. 5| Comparison of uncertainty in growth estimates for different lineages
whenbased on either the Viridian or GenBank tree. a,b, The same dataare
represented in two ways; each point represents one lineage. a, Plot shows the
differenceins.d. of posterior density of relative growth rate estimate A log R (s.d.
using the Viridian tree minuss.d. using the GenBank tree). Negative values here
show that on average, the Viridian tree yields lower uncertainty than the GenBank
tree. b, Plot shows the s.d. of the posterior density of relative growth rate

estimate A log R based on the GenBank tree (left) and Viridian tree (right). The
median s.d. of strain growth rate using the GenBank tree is 2.967, while the
medians.d. using the Viridian tree is 0.859. This difference is statistically
significant (P=2.85x 10™", two-sided paired t-test; test statistic is 55, degrees of
freedom is 2,120). Box-plots show first and third quartiles (lower and upper
boundaries of box) and whiskers are set to the farthest point that is within

1.5 x the interquartile range from the box. Legend labels denote parent lineage.

(more specific) in 60% of those. Only 0.01% (n =287) mismatched at
the variant level. No Viridian assembly was ‘unassigned’, compared
to 87 of the GenBank assemblies. Analysis of the results by collection
date, country, technology and primer scheme revealed no category
enriched for disagreements.

Indel calls. In samples where Viridian and GenBank assemblies result
in the same Pangolin variant, indel calls are generally concordant and
either very dominant or very rare; the mean discordance across indels
foreachvariantwaslessthan1%for all variants except Zeta (1.1%), Lamba
(1.4%), Omicron BA.3(5.7%) and Theta (33%), which all had low number of
sequences in this dataset (n ranging between 6 and 107). The character-
izing insertion of TAC after position 21990 (S:YY144-145TSN) in Muis an
exception, foundin 90% of Viridian assemblies but only 60% of GenBank
assemblies. Insamples where Viridian/GenBank have mismatched WHO
variant calls, we see fewer indels per sample in GenBank versus Viridian
(Supplementary HTMLFile). Notable differences at variant-defining indel
sites; in particular, for samples assigned Delta for the Viridian assembly
and Omicronfor the GenBank assembly, we see two Delta-defining indels
that are present in the Viridian assemblies, but absent in the GenBank
assemblies. We show in Supplementary Fig. 10 those positions where
thereis discordance between Viridian and GenBank.

Reversions. One of the key signals of artifactual problems used dur-
ing the pandemic, was finding positions in the genome (or branches
of the tree) with very large numbers of reversions. We therefore used
Matutils™ and custom scripts to count the number of reversions in
bothtrees, and plot thisin two ways. InFig. 4a, we show one minus the
cumulative density function of reversions in the two trees, showing
that the Viridian tree has far fewer positions with many reversions.
To understand which positions are problematic, in Fig. 4b we show
a scatter-plot comparing number of reversions at each position of
the genome, in the Viridian and GenBank trees, with a blow-up of the
central region in Fig. 4c. The main issue for phylogenetic analysis is
positions with large numbers of reversions, so we care more about the
graph away from the origin. We see that apart from a handful of posi-
tions far to the right and below the line y = x, all positions have fewer
reversionsinthe Viridiantree. In other words, asmaller set of positions

can be masked inthe Viridian tree than in the GenBank tree to greatly
reduce the number of reversions. For example, the GenBank tree has
63 positions with 200 or more reversions, while the Viridian tree has
only 20.Supplementary Fig. 11 shows the specific example of genome
position 22813 (introduced earlier in Fig. 1), comparing the current
UShER global phylogeny with the Viridian tree.

Improved accuracy of lineage growth rate estimates. WeranPyR,, a
hierarchical Bayesian regression model that measures growth rates of
SARS-CoV-2lineages using genetic, temporal and geographical data.
When we ran this model onthe Viridian tree, precisionimproved more
than threefold on average compared to running the model on a Gen-
Bank tree. B-and BA-descended lineages had the largest decrease in the
uncertainty of their growth rate measurements (Fig. 5). Improvements
in precision occurred while maintaining accuracy. Supplementary
Figs.12-14 provide more detail.

Final global tree and masking

We updated our global sample list to include data from the ENA/SRA
as of 28 June 2024, making a final global tree of the Viridian consensus
sequences containing 4,471,579 samples. Tree construction was carried
out, as is normal with UShER, by batching the samples, and then alter-
natingaddingabatchtothetree and optimizingthetree.Inthe process
of doing this, we noted how the order in which samples were passed to
UShER had averysignificant effect onthe deep structure of the tree. Pass-
ingthemininrandomorder resultedin theinitial tree being constructed
with recombinant genomes, resulting in considerable misplacement of
the VOCs. We determined that the best approach was first to construct
atree with samples with no missing data, passed in in temporal order,
thentoadd lower quality sampleslater (Methods). After constructing the
tree, we masked positions in the problematic -sites set, which includes
highly homoplasic sites in addition to sites previously observed to be
reversion-proneinSARS-CoV-2,and masked 31reversions that occurred
200 or more timesin the tree (this choice of 200 allowed us to exclude
position11083, whichis highly homoplasic and one of the first problem-
aticsites), but did notinclude 23040 where there have been true rever-
sions multiple times in Omicron. After masking to remove artifactual
reversions and highly homoplasic sites, we ran matOptimize?, which

Nature Methods


http://www.nature.com/naturemethods

Resource

https://doi.org/10.1038/s41592-025-02947-1

rapidly searches the tree for opportunities to reduce the total number
of mutationsin the tree by performing branch moves that group similar
sequences together, thus maximizing parsimony.

Giventhesize of the tree, it would not be possible to use classical
Felsenstein bootstrapping to measure phylogenetic uncertainty, so
instead we use SPRTA?, a method that shifts from assessing confi-
dence of clades/groupings of taxa to instead looking at confidence
of evolutionary histories (whether a lineage evolved from a specific
other lineage or not). Supplementary Fig. 15 shows a histogram of
confidencesof nodesinthetree (raw datain Supplementary Table 8).
We provide a second version of the phylogeny in a supplementary
file, storing the SPRTA uncertainty information as metadata within
file such that it can be detected by the taxonium viewer and explored
interactively (screenshotsin Supplementary Fig.16). The user can ask
taxoniumto show low-supportnodes, or for a specificnode, to see what
alternative places in the phylogeny they might equally well be placed
(Supplementary Fig.16b).

Effect on evolutionary and epidemiological analysis

The primary aim of this study is to provide a high-quality resource
(assemblies and phylogeny), with less ‘ad hoc masking’, with the inten-
tionthatit reduces systematic error and noise in downstream work of
others. We give two example applications.

First, to estimate the effect of the reduced number of sequence/
assembly artifactsin the Viridian assemblies on epidemiological analy-
sis, we used geographic metadatafor each sample and apandemic-scale
cluster estimation algorithm (matUtils, Cluster-Tracker?*), to compare
the number of inferred unique SARS-CoV-2 viralintroductionsineach
country using the GenBank and Viridian data (Supplementary Table 9).
The expectation would be that removing artifactual errors would
reduce the number of small clusters, caused by errors pushing genomes
outofthelarger clusterstheytruly belongin, creating artificial ‘intro-
ductions’. We found, for every country except Slovakia, there were
more inferred introductions with the GenBank assemblies. The effect
ismore pronounced in highly sampled geographicregions, especially
the USA (15,026 versus 13,626 introductions and 7,281 versus 6,676
singleton clusters for GenBank versus Viridian; Supplementary Fig.17).
Aspredicted, we see fewer smallintroductions with Viridian, and at the
farright (note log scales) the very largest clusters are slightly larger.

Second, we quantified the extent to which the higher quality
assemblies would affect estimates of differing mutational spectra of
different VOCs?®. In all cases the spectra were very similar (that is the
effect was limited), butinterestingly in Alphathere hadbeenanodd T
> A context (labeled with anarrow in Supplementary Fig.18a) that was
elevated above all others with the August 2022 UShER tree, which was
gone in the Viridian data (Supplementary Fig. 18b). The difference in
G>Tmutationsthat had been observed previously between Omicron
and non-Omicronis still very much present (Supplementary Fig. 19),
confidence intervals (shown as error bars) do not always overlap the
x=yline, so there are minor differences in the exact values, but the
overall trend and conclusions are unchanged.

Discussion

The pandemic was met with an unprecedented globally distributed
sequencing effort thatimposed substantial challenges for comparing
andjointly analyzing data produced by thousands of labs with hetero-
geneous sampling, molecular, bioinformatic and analysis protocols.
Inparticular, the downstream effect of using multiple variable-quality
genome assembly workflows, inconsistent QC criteriaand the inevitable
coevolution of virus and amplicon schemas, led to systematic errors
ingenomes, and therefore the phylogeny.

Here we present Viridian, a fast, low-resource viral assembly tool
specifically designed for tiled amplicon data and use it to produce a
high-quality sequence dataset of all publicly deposited SARS-CoV-2
data from January 2020 through to June 2024. With this we were able

tobuildamuch higher quality phylogenetic tree, needing less masking,
thanthe current phylogeny.

We hope for three outcomes. First, that this resource will provide
avaluable substrate for detailed methodological, evolutionary and
epidemiological analyses. This has already happened, with de Maio
etal. developing new methods for handling mutation rate variation and
sequencing errors in large phylogenies®. Second, that Viridian itself
will prove useful, providing a significant improvement for Nanopore
(and marginal for Illumina) compared to the ARTIC workflow, and a
standardized single workflow and output format for Illumina, Nanop-
oreand lonTorrent. Third, thatin future epidemics or pandemics, the
toolsandideas fromthis paper will serve toreduce the amount of time
spent poring over trees and trying to distinguish artifact frombiology.
Viridian will work for tiled amplicon sequencing of nonsegmented
viruses where aconsensus is the desired output (notin circumstances
where multiple strains should beidentified) and asingle reference can
be used. In other words, situations where there is limited structural
variation or hypervariability, such as a particular outbreak or arecent
zoonosis (suchas SARS-CoV-2). Successful Viridian testing on 181 mpox
samples using the data from Chen et al.” (Supplementary Table 10) is
described in Supplementary Text 11 and Supplementary Figs. 20-23.

We note that a similar approach (amplicon-by-amplicon assem-
bly followed by remapping for QC) has been previously used for HIV
(https://github.com/neherlab/hivwholeseq?tab=readme-ov-file
#1-mappingfiltering-sample-by-sample). An alternative approach,
more robust to handling hypervariable regions, is to do amplicon
assembly followed by de novo scaffolding of amplicons without use
of areference. Thismethod wasimplemented in the tool Lilo, used for
African Swine Fever Virus®.

Despite all this, bioinformatic methods can only go so far. QC
within a single laboratory is relatively easy, especially if one can use
molecular protocols, such as negative controls and using synthetic
spike-ins*’; however, maintaining quality levels from distributed
sequencing and assembly on anational and global scaleis much harder.
Our approach (uniform reprocessing) is actually the simplest, provid-
ingthe raw dataremains available; however, itisnot aviable approach
mid-pandemic whenthereis barely enoughtime tokeep up withincom-
ing data. We therefore advocate for improved standardization (and
adoption) of metadata around sampling, assembly and QC, and also
multinational ‘simulations’ of pandemics to better prepare for integrat-
ing data from different pipelines.

As the data in the ENA/SRA is heavily biased toward a few
high-income countries (especially the USA and UK), we realized that
itwasimportant to increase the geographical breadth of our dataset.
Our team submitted pre-existing raw sequence data to the ENA/SRA
from Argentina, Austria, Germany, Ghana, India, the Netherlands,
South Africa, Singapore and Sri Lanka. The worldwide distribution
of samplesis shown in Supplementary Figs. 24 and 25 (raw data are in
Supplementary Table11). It has been a privilege to work together to pro-
duce these high-quality resources for the benefit of all, which was only
possible because raw sequence data were deposited inthe ENA/SRA.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

Viridian pipeline

The main stages of the assembly process are to identify the ampli-
con scheme; sample the reads per amplicon; generate a consensus
sequence by overlapping a consensus built for each amplicon; deter-
mine variants by aligning the consensus to the reference sequence;
mask low-quality bases using read mapping to the consensus; and
outputafinal masked consensus sequence. An overview of the pipeline
isshownin Supplementary Fig. 26.

Amplicon scheme identification. The amplicon scheme is automati-
callyidentified from the reads, fromthe built-in set of schemes (users
canoptionally add their own): AmpliSeq (v.1); ARTIC (v.3,4.1,5.3.2_400,
5.2.0_1200)**; Midnight 1200"; and VarSkip (v.1a-2b; (https://github.
com/nebiolabs/VarSkip).

The reads are mapped to the reference genome (default
SARS-CoV-2 MN908947.3) using minimap2 (ref. 35) with options -x
map-ont (Nanopore) or -x sr (Illumina/lon Torrent). SAMtools***’
is used to make a sorted by coordinate and indexed BAM file, which
by default is deleted at the end of the run but can be kept using the
option-keep bam. This BAMfileis parsed using pysam (https://github.
com/pysam-developers/pysam) to determine read depth across the
genome and which amplicon scheme is the best match to the reads.
Mappings flagged as secondary or supplementary are ignored. If reads
are paired, thenonly proper read pairs are used. The pipelineis stopped
at this stage if (by default) less than half of the genome has more than
20x read depth.

For each amplicon scheme under consideration, a normalized
score is calculated based on the positions of mapped fragment ends.
Throughout, ‘fragment’ means the mapped portion of an unpaired
read, or the leftmost to rightmost mapping coordinates of a proper
read pair. Theideais that fragment end mapping positions are expected
to stack up at the left end of left primers and the right end of right
primers, as the reads are from amplicon sequencing. The score is an
overallmeasure of how close the fragmentends are to the primer ends.

At each position in the genome, the number of fragments with
leftmost mapped end at that position is counted. These counts are
used toscoreeach ampliconschemeseparately in turn (Supplementary
Fig. 27). For each position in the genome, the distance to the nearest
leftend of aleft primerin the schemeis found, moving to the left of that
position. Forexample, if there is aleft primer at position100-130, then
(assuming no other primersin this region), position 103 would have a
distance of 3 (Supplementary Fig. 27a). Then at that position, we find
how many fragments had their left end mapped at that position, and
add that number to a counter of nearest distances. For example, if there
were 20 fragments with left end at position 103, then 20 would be added
tothe counter for distance 3. The processisrepeated similarly for right
primers: for each position in the genome, the distance to the nearest
rightend of aright primer is found, moving to the right of that position
(Supplementary Fig.27a,b). The end result is a count of mapped frag-
mentends ateach distance from a primer (Supplementary Fig.27b,c).

The distance is normalized by taking the distance as a percent of
the mean amplicon length for the scheme, and the count of fragment
ends is normalized by taking the percent of total fragment ends. The
resultsare binned, so that for each integer iin the range 0-100, we know
the percent of fragmentsf(i) ending normalized distance in the interval
[i,i +1)fromaprimer. The scoreis defined as

100

2, (S -,
i=0

Thisis similar to calculating the area between the observed fragment
countsandtheliney=x (Supplementary Fig.27d), but negative values
are allowed. The maximum possible score for perfect reads is 5,050,
because f(i) =100 for alli and the score is then

100
2100 — i) = 5,050.
i=0

Intuitively, a scheme that matches the reads will have fragment
ends close to the primer ends, resulting in an initial steep curve. Con-
versely, ascheme thatis not related to the reads should approximately
followtheliney =x. Therefore, measuring the divergence fromthey =x
line provides areliable measure of how wellthe scheme and reads agree.
Supplementary Fig.27d shows cartoons of amatching and nonmatch-
ing scheme, and Supplementary Fig. 28 for a real example output by
Viridian. Viridian chooses the scheme with the highest score; however,
if the best score is less than 250, or less than double the second-best
score, thentherunisstopped andthe sampleis considered to be failed.
For context, ERR8959196, shown in Supplementary Fig. 28, had best
score 0f 4,290 and second-best score of 464. The default cutoffs, scores
seeninsimulated reads andin the empirical truth dataset are discussed
inmore depthinthe supplementary material (Supplementary Tables12
and 13 and Supplementary Figs. 29 and 30).

Read sampling. Once the amplicon scheme is known, reads are sam-
pled to a target depth of (by default) 1,000x for each amplicon, or
using all reads for an amplicon if the mean depth is less than 1,000x.
If afragment matches to more than one amplicon, then it is assigned
randomly to one of the amplicons (the random number generator is
seeded so that results are deterministic).

Withinan amplicon, where there is more than one left primer (and
similarly inthe following description for right primers), the number of
fragments supporting that primer is counted. Here, supportis counted
as the left fragment end being within 5 bp of the start of the primer. A
primeris excluded fromthe remainder of the pipelineifitis supported
by fewer than 20 fragments. The exceptionis thatif no left primers for
the amplicon have support, then all left primers are kept. The result
isaninferred amplicon scheme, consisting of a subset of the original
primers from the chosen scheme.

Each fragment is assigned to a left and right primer pair within
its designated amplicon. These are chosen by taking the rightmost
left primer and leftmost right primer that contain the fragment. In
summary, at this point in the pipeline we have a set of reads for each
ampliconwithmean coverage1,000x (or lower if there were not enough
reads sequenced for anamplicon). Where an amplicon has more than
one left and/or right primer, the set of reads is further split into sets
for each primer pair.

Assembly. A consensus sequenceis generated using aseparate module
called cylon (https://github.com/igbal-lab-org/cylon). The overall
method is to generate a consensus for each amplicon, overlap these
consensus sequences into contigs, then scaffold against the refer-
ence sequence to output a final consensus sequence for the genome
(Supplementary Fig. 31). It takes the inferred amplicon scheme (as
describedinthe previous section) and a set of sampled reads for each
amplicon. Reads are further sub-sampled for each amplicon fromthe
1,000x reads, with a target depth of (by default) 150% for Illumina and
250x% for Nanopore or lon Torrent.

A consensus sequence is generated for each amplicon by itera-
tively running Racon' until no more corrections are made, up to a
maximum of ten runs. As Racon uses a partial-order alignment graph
around the reference, this is a more reliable method of assembling
sequence that containsindels than using mapping/pileup. If theinput
reads are paired, then each read pair is merged where possible using
NGMerge*® before running Racon. During testing, merging read pairs
was found to improve the accuracy of Racon. In each Raconiiteration,
reads are mapped using minimap2 with options -x map-ont (Nano-
pore) or -x sr (Illumina/lon Torrent). Racon options -no-trimming
-window-length Wareused, where wis the length of the amplicon
plus100to avoid any erroneous indels at window ends. If no sequence
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is returned from Racon, then the amplicon is classed as failed. The
sampled reads are mapped back to the consensus sequence and all
positions with less than 5x depth are masked with Ns. If the result-
ing sequence is shorter than 30 bp or has more than 50% Ns then the
ampliconis failed.

Once there is a consensus sequence for each amplicon, adjacent
amplicons are merged. First, amplicons are mapped to the reference
genome using minimap2, and those with no mapping in the correct
orientation are classified as failed and removed. If there is a perfect
sequence match of atleast10 bp between adjacentamplicons, itis used
tojointhem. Otherwise, if the minimap2 match coordinates imply that
adjacent amplicons overlap (the reference positions overlap), then
those matches are used. Finally, if the minimap2 matches do not have
overlapping reference positions—for example, if one or both of the
amplicons have atruncated consensus sequence—thena contig break
is placed between the two amplicons.

Note that the start and end of the consensus sequence from each
ampliconis excluded by this overlapping method, meaningthat unre-
liable regions of consensus sequences that were inferred from reads
starting or ending with primers are excluded. The only exception to this
iswhere anampliconis dropped, the next amplicon willinclude primer
sequence; however, this ismasked laterin the QC stage. Theamplicon
overlappingisrepeated for each adjacent pair of amplicons, stitching
together a consensus sequence.

Onceall possible adjacent amplicons have been merged, the result
isone or more contig(s). When there is more than one contig, the posi-
tion in the reference of each contig is determined using nucmer from
the MUMmer software package®. The contigs are scaffolded, putting
anestimated number of Ns between them based on the mapping coor-
dinates. As there could be insertions or deletions in the sample, this
number of Nsis not reliable, but it is corrected during the next stage.

Variant calling. Variants are called with respect to the reference
genome using the function make _truth_vcf from the tool vari-
fier*. This globally aligns the cylon consensus sequence to the ref-
erence genome to identify variants. As the amplicon schemes do not
cover the complete reference genome, false-positive deletions are
excluded from the start and end of the genome using the options -
global_align _min_coord,-global_align max_coordtorestrict
to coordinates within the amplicon scheme. Gaps in the consensus
(thatis, strings of Ns) are corrected to be the same length asthe corre-
sponding portion of the reference sequence usingthe option -sani -
tise truth gaps. Theseincorrectlengths can arise from failed
amplicons, where the amplicon overlapping algorithm cannot always
determine the exact gap length. For Nanopore and lon Torrent reads,
indels oflength1or2areremoved from the consensus sequence using
theoption-indel max fix length 2.Thisremovesfalse-positive
indels caused by the error model of those technologies, at the cost
of excluding real calls; however, in most cases any true-positive call
that is removed will be masked later in the QC and masking stage of
the pipeline.

The end result of this stage is a VCF file of variants, a consensus
sequence with consistent gap lengths and the alignment of the refer-
ence and consensus sequences.

QC and masking. During read sampling to 1,000x read depth per
amplicon, each fragment (read pair or single unpaired read) is allo-
cated to a left and right primer, by taking the smallest primer range
that spans the entire fragment. For each amplicon and each primer
pair within that amplicon, all reads for that primer pair are mapped
tothe consensus sequence using minimap2 (with the same options as
the original run of minimap2) and then pileup is run to gather cover-
age statistics. Keeping the reads partitioned in this way means that at
eachgenome position, the results from one pileup run can be counted
aseitherinsideaprimer (‘bad’ coverage) or notinside aprimer (‘good’

coverage). Thisisoutlined in Supplementary Fig. 32. Pileup s calculated
using the pileupfunctionfrom pysamwiththe stepperoptionsetto
samtools,and ignore overlapsand compute bagsettoFalse.

Pileup results are aggregated at each position in the consensus
sequence. Thisis used with the reference genome/consensus sequence
alignment to output a tab-delimited report with read depth details at
each position (splitinto separate counts for good and bad coverage).
Thegood coverageis used to generate amasked consensus sequence,
where untrustworthy positions are replaced with Ns. If the majority of
reads disagree with the consensus position, or fewer than 20 reads in
total agree with the consensus, then it is masked. At positions where
thereisevidence of more than oneallele (by default anallele is counted
as present ifis supported by at least 20% of reads) then the consensus
base is replaced with an ambiguous IUPAC code (for example, ‘R’ to
mean‘A’or ‘G’).

Output files. The final masked consensus sequence is writtenin FASTA
format, plus other files with additional information. Plots of read depth
across thegenome and schemeidentification scoring are made. AllQC
results are written to a tab-delimited file with one position per row,
including detailed read depth information. A log file in JSON format
is written, with a high-level results summary section that includes all
command line parameters, run time, version information and con-
sensus sequence statistics. It also contains detailed information such
asthe multiple sequence alignment (MSA) between the reference and
consensus, amplicon details (such as chosen primers and number of
matchingreads) and genome-wide read depth statistics.

Simulated data

We developed a Snakemake* pipeline to simulate tiled amplicon
sequencing with PCR artifacts, to compare the assembly accuracy of
Viridian to the Connor Laboratory (https://github.com/connor-lab/
ncov2019-artic-nf) and Epi2me laboratories (https://github.com/
epi2me-labs/wf-artic) ARTIC Nextflow workflows. First, to get a realistic
tree ‘shape’ truth assemblies are simulated from a reference genome
and reference phylogeny® using PhastSim**and obtained truth variant
calls using varifier*°, The primer sequences of the ARTIC v.4 amplicon
schemeare then mapped to the truth assembly of eachsample using the
alncommand of bwa* to get the startand end positions of each ampli-
con and check for sequence mismatches in primer binding regions. If
one or more mismatches are identified, one of two possible PCR arti-
facts are simulated with equal probability: either the primer sequence
containing the mismatch is replaced with the reference sequence, or
theampliconis assigned aread depth of 0. Random amplicon dropout
is simulated with probability 0.001 and the sequencing depth of all
otherampliconsis drawn fromanormal distribution (1 =500, s.d. 20).
Readsare thensimulated fromeach amplicon at the selected sequenc-
ing depths using ART* for Illumina and Badread* with —-identity
94,98.5,3forNanopore. Thereads of eachamplicon are aggregated
suchthatthereis one FASTQ of Illumina and one of Nanopore reads per
sample and the reads are assembled using the Connor lab pipeline and
Viridian workflow for Illumina and Epi2me labs pipeline and Viridian
workflow for Nanopore. Finally, anew tool called COVID truth evalua-
tion (CTE; https://github.com/igbal-lab-org/covid-truth-eval), whichis
describedindetail later, was used to generate TSV files that summarize
the assembly accuracy for each tool.

Empirical truth set

Combined nasaland oropharyngeal specimens were identified during
routine sequencing at Oxford University Hospitals NHS Foundation
Trust as part of Pillar 1 national surveillance in the UK. Specimens
were selected representing the Pango lineages B, B.1, B.1.1.7, B.1.1.7
(E484K),B.1.214.2,B.1.351,B.1.525,B.1.617.2,B.28,BA.1,P.1and P.2. These
were retrieved and cultured at the University of Oxford, generating
abundant virus stocks. RNA from these virus stocks was sequenced
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usinglllumina and Oxford Nanoporeinstruments withboth ARTIC and
Oxford Nanopore Technologies (ONT) Midnight protocols, in addition
to sequence-independent single primer amplification, forming the
dataset deposited in ENA projects PRJEB50520 and PRJEB51850 (ref.
46). Sequencing was performed at the University of Oxford except
where otherwise stated below.

Viral culture. Vero cells were maintained in DMEM high-glucose
medium supplemented with 1% fetal bovine serum, 2 mM GlutaMAX,
100 IU mI™ penicillin-streptomycin and 2.5 pg ml™ amphotericin B
at 37 °C, 5% CO, in a humidified atmosphere before inoculation with
200 plofthroatswab fluid. Cells were thenincubated at 37 °C, with daily
monitoring for cytopathic effects. When cytopathic effects reached
80%, virus-containing supernatants were collected through centrifu-
gationat 3,000 rpmat4 °Candstored at -80 °Cinsingle-use aliquots.
Virus titers were quantified by a focus-forming assay on Vero cells.
Spike genes were sequenced to verify protein sequence integrity. Ref.
47 provides more details.

Extraction. Viral RNA was extracted from 200 pland 400 plvolumes of
Coplanviral transport medium on the KingFisher Flex system (Thermo
Fisher) using the MagMAX Viral/Pathogen Il Nucleic Acid Isolation kit
(IVD). Two wash steps were incorporated and extracts were eluted
in50 pl.

PCR. PCR tests were performed by Oxford University Hospitals NHS
Foundation Trust using two PCR assays: Altona RealStar (targeting E
and S genes; Altona Diagnostics) and Thermo Fisher TaqPath assay
(targeting S and N genes, and ORFlab; Thermo Fisher).

Sequence-independent single primer amplification. Viral RNA was
extracted as described above then complementary DNA was prepared
using a SISPA approach*®. In brief, first RNA was reverse-transcribed
with SuperScript Il Reverse Transcriptase (Life Technologies) using
Sol-Primer A (5'-GTTTCCCACTGGAGGATA-N9-3")*. Then 5 pl of cDNA
and 1l (100 pmol pl™) primer B (5-GTTTCCCACTGGAGGATA-3") were
added toa50-plreaction using AccuTaq LA (Sigma), according to the
manufacturer’s instructions. PCR conditions were 98 °C for 30 s, fol-
lowed by 30 cycles of 94 °Cfor15s,50 °Cfor20 s, and 68 °C for 5min,
and afinal step of 68 °C for 10 min. Amplified cDNA was purified using
al:1ratio of AMPure XP beads (Beckman Coulter) and quantified using
the Qubit High Sensitivity dsDNA kit (Thermo Fisher Scientific).

SISPA Oxford Nanopore sequencing. SISPA products were sequenced
following a previously described protocol*® using ONT native barcod-
ing (EXP-NBD104) and ligation sequencing (SQK-LSK109) kits with
R9.4.1flow cells.

ARTIC v.3 Illumina sequencing. Libraries were prepared using the
NEBNext ARTIC SARS-CoV-2 Library Prep kit, following standard pro-
tocol with cDNA Amplicon and Ligation Bead Clean-ups (v.3.0 7/21).
Manual library normalization was performed to ensure even sample
coverage, based on the library’s DNA concentration and average size,
asmeasured by the Qubit (Thermo Fisher Scientific) and 2200 TapeSta-
tion (Agilent Technologies). Paired-end sequencing was performed
using the MiSeq reagentkit v.2, with 2 x 250 bp, and one water control
on each run. NEBNext Multiplex Oligos for lllumina (96 Unique Dual
Index Primer Pairs) were used.

ARTIC v.4.11llumina sequencing. Libraries were sequenced at the Uni-
versity of Northumbria following the ARTIC V4.1 CoronaHiT-lllumina
protocol™, using an lllumina NextSeq 550.

ARTIC v.3 Oxford Nanopore sequencing. Sequencing was performed
using the ARTIC LoCost protocol and v.3 primers using R9.4.1 flow

cells. Final library concentration was quantified by the High Sensitivity
dsDNA kit Qubit (Thermo Fisher Scientific).

ONT Midnight Oxford Nanopore sequencing. Libraries were pre-
pared using ONT Midnight RT-PCR Expansion kits (EXP-MRTO0O1) and
rapid barcoding (SQK-RBK110.96), following manufacturer protocols.
R9.4.1flow cells were used.

Manual curation. All reads were mapped to the reference genome
MN908947.3 using minimap2 with the -x preset map-ont for Nanopore
reads and srforlllumina. Asorted BAM file was made using samt cols
sort. Thiswas used to make an unfiltered set of variant calls by piping
the output of samtools mpileupintobcftools call -vm. Each
sample was curated manually, using Artemis™ to view the mapped reads
andinferatruthsetof variant calls. Although the unfiltered calls from
bceftools were used asaguide, the whole genome for every sample was
inspected for variant calls. In rare cases where the Nanopore and Illu-
minareads disagreed at a position, it was flagged as ‘unknown’. The VCF
files and metadata are available at https://github.com/igbal-lab-org/
covid-truth-datasets.

Consensus accuracy evaluation

Theaccuracy of results of the simulated data and truth set were evalu-
ated using a new tool CTE. It can evaluate either a VCF file of variant
calls, or a consensus sequence, by comparing it with a ‘truth’ consen-
sus sequence. If the input is a VCF file, the consensus sequence to be
evaluatedis madeby applying the variants to the reference sequence.
It makes aMSA of the consensus, truth, and reference sequences using
MAFFT?, Each position in the genome is classified by comparing the
base calls of the MSA, to verify the accuracy of the consensus sequence.
The most common case is that the truth nucleotide is equal to the
reference nucleotide, and the consensus also called the reference
nucleotide. The possibilities for the truth are areference call, ‘homozy-
gous’ SNP (thatis, A, C, G or T, which is different from the reference),
‘heterozygous’ SNP (that is, amix of A, C, G, T), indel, dropped ampli-
conoranN.Althoughrare, anNis used when the truth is unknown, as
described above in the manual curation section. The possibilities for
the consensus call are the same, except each nucleotide call could be
correct or incorrect (the same as or different from the truth nucleo-
tide). CTE reports the total count of each combination seen in the
input sample.

Dropped amplicons are known in the truth data; however, they
must be estimated from the consensus sequence that is under evalu-
ation. As tools can use different methods to mask a nucleotide or an
entire amplicon, defining a position with an N as part of a dropped
amplicon, or simply masked, is ambiguous. CTE uses the minimum
possible range of coordinates we would expect to be Nsif anamplicon
isdropped, ranging from one past the end of the previous amplicon to
the position before the start of the next amplicon. If arun of Ns contains
this range of coordinates for a given amplicon, then it is considered
as dropped in the sequence under evaluation. Hence there is some
ambiguity between ‘called as N’ and ‘dropped’ when interpreting the
output of CTE.

Africa dataset

The Africa dataset comprises a total of 12,287 samples, each of
which has a ‘GISAID’” assembly, and either [llumina (n =9,935) or ONT
(n=2,352) sequencing reads, with primer schemes ARTIC v.3 or 4, or
MIDNIGHT-1200 (Supplementary table 6). Allsamples were processed
with Viridian and ARTIC-ILM/ONT, producing a consensus sequence.
Systematic positional errors were thenidentified using Viridian, which
was run on each consensus sequence from Viridian and ARTIC-ILM/
ONT using the option —-force_consensus. This skips the de novo
consensus building stage, instead using the provided assembly. The
final QC stage is runas normal, which provides amethod to evaluate the
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inputassembly. In particular, positions where the consensus sequence
is not supported by reads can be identified. Figure 3a was generated
using the branch ofthe Viridian code https://github.com/martinghunt/
viridian/tree/qc_plots.

Global dataset

Metadata for all sequencing runs with taxon ID 2697049 were down-
loaded usingthe ENA portal query https://www.ebi.ac.uk/ena/portal/
api/search?result=read_run&query=tax_id=2697049&fields=all&li
mit=10000000 on2March2023. These runs were filtered to only keep
thosewithlibrary strategyequaltoAMPLICON,library source
equal to VIRAL RNA, host empty or equal to homo sapiens, and
instrument platformoneof ILLUMINA, OXFORD NANOPOREOI ION
TORRENT. The resulting 5,288,952 sequencing runs were downloaded
using either prefetch/fasterqg-dump fromthe SRA-toolkit (https://
github.com/ncbi/sra-tools) or enaDataGet (https://github.com/enase-
quence/enaBrowserTools). They were processed with Viridian, with
4,395,655 passing its QC requirements and producing a consensus
sequence. These were further filtered for quality, requiring no more
thanthree ‘heterozygous’base calls (none of A, C, G, T,N) and no more
than 5,000 Ns. The N count was taken from the consensus sequence
after aligning to the reference using MAFFT, as described in the Trees
section later. A further round of filtering was applied based on requir-
ing areliable date for each sequencing run, using where available the
collection date fromthe ENA/SRA, COVID-19 Genomics UK Consortium
(COG-UK) and GISAID. Runs with no collection date from any source
were removed. Where dates conflicted for agiven sample, the order of
preference used was the date with highest resolution, then COG-UK,
GISAID and finally ENA/SRA. At this stage, there were 3,960,704 runs,
whichis the set of runs used to compare with GenBank sequences (see
next paragraph). Finally, the datawere updated on 28 June 2024, adding
all new runs that passed the same QC requirements, making a total of
4,484,157 consensus sequences.

All GenBank genomes were downloaded on 23 May 2023 using
the Datasets tool (https://github.com/ncbi/datasets) with parameters
download virus genome taxon SARS-CoV-2.Thegenomeand
metadata files (genomic. fna.gz, data_report.jsonl.gz) were
extracted from the downloaded zip file. Genomes with host taxon
ID (‘host’ > ‘tax1d’) 9606 (human), were kept. The genomes were
matched to sequencing runs from the ENA/SRA using the run acces-
sion. Only GenBank genomes that matched to a single run that also
belonged to the set 0f 3,960,704 Viridian consensus sequences (from
the initial data obtained on 2 March 2023) were kept. This resulted in
an ‘intersection set’ of 3,006,407 runs with both a Viridian consensus
sequence and GenBank genome.

Primer scheme validation
As the COG-UK metadataincludes the ARTIC primer scheme version,
we used their project PRJEB37886 (included in the global dataset) to
validate the scheme calls from Viridian. The ARTIC primer scheme ver-
sionused was obtained from the SRA metadatausing efetch (https://
www.ncbi.nlm.nih.gov/books/NBK179288/) to download metadata
for experimentsin batches using the options -format xml -db sra
-input ids.txt,whereids.txt isthe name ofthe file containinga
list of experiment accessions. The primer scheme version was extracted
foreachexperiment fromthevalueoftheartic primer versiontag
inthe EXPERIMENT ATTRIBUTES sectionoftheXMLdata.Eachefetch
command was attempted twice (failures were common), resulting
in a total of 2,485,169 primer scheme calls from ENA/SRA metadata.
We then restricted to Illumina and Nanopore samples that passed
Viridian (the 4,395,655 samples described earlier), and only included
ENA/SRA primer scheme values of 3/ARTIC v3 for ARTIC v.3 and
4/4.1alt/ARTIC v4for ARTICv.4. Thiswasatotal of 2,341,118 samples.
Discordant samples for manual inspection were chosen by taking
all [lumina samples with ENA/SRA scheme v.3 and Viridian scheme

v.4,sorting by runaccession, and taking five equally spaced runs from
thelist. The same method was used for lllumina with ENA/SRA v.4 and
Viridianv.3, and thensimilarly for Oxford Nanopore samples, totaling
20 samples for manual inspection. Reads were mapped using mini-
map2 with the option -a to make SAM output, and the preset -x of s
(Ilumina) or map-ont (Nanopore). A sorted BAM file was made using
SAMtools, and then manually inspected with Artemis.

Trees

Trees were built using MAFFT and UShER™ and visualized with taxo-
nium®., Eachsequence was aligned to the reference using MAFFT with
theoption -keeplengthto forcethealignmenttobe the samelength
asthereference genome, by only allowing gapsin the query sequence.
The alignment was modified by forcing any gapsin the query sequence
tobethe sameasthe reference sequence. Theresulting sequences were
batched into sets of size 100,000. A VCF file was made for each batch
with faTovcf, with the option -includeNoAltN. A tree was built by
adding each batch in turn using usher-sampled and the option -
sort-before-placement-3. The final tree was optimized with the
UShER command matOptimize and the options -m 0.000000001
-r 8 -T 20.Finally, the taxonium input file was generated using the
scriptusher to_taxoniumfrom taxoniumtools®. The processingof
input sequencesto obtain taxoniuminput wasimplementedin a pipe-
line called Ushonium (https://github.com/martinghunt/ushonium).

To maintain an accurate tree structure, we ordered the samples
by first using the samples with zero N or heterozygous calls, sorted by
collection date. Then the remaining samples were used, again sorted
by collection date. An exception to the date ordering was the 12,953
samples (3,876 of these were in the intersection set of 3,006,407 sam-
ples) where the GISAID date was given priority over other sources,
whichwere added at the end instead of using the date. Using the high-
est quality consensus sequences first meant that UShER did not have
toimpute any ambiguous positions in any sequences. Sorting in date
order meant that recombinant genomes (which emerged later in the
pandemic) were notadded to the tree too early, as they could be placed
inanincorrect clade and then cause structural errors.

The global Viridian tree was built in two stages. A first version of
the tree was built from the runs up to the 2March 2023, using the order
described above (highest quality and earliest collection date first).
Positions in the problematic-sites set (https://github.com/W-L/Prob-
lematicSites SARS-CoV2) were masked globallyinthe tree,and 31rever-
sions found to occur at least 200 times in the tree were also masked
globally (all masked positions are listed in Supplementary Table 14).
matOptimize was run following the masking to joinbranches that had
been split by the masked substitutions or reversions. This tree was
used as astarting point to update using the second batch of datafrom
28 June 2024, with the same ordering method. The problematic-sites
positions were masked in new sequences before they were added to
the tree. After the new sequences were added, in addition to masking
the 31 reversions that occurred at least 200 times in the first version
of the tree before masking, we added branch-specific masking for
regionsin BA.1and BA.2.86 in which mafft misinterpretsadeletion and
insertionin close proximity as aseries of substitutions. Positions 6513,
6515,22195,22197-8,22202 and 22204 were masked in the BA.1branch.
Positions 21610, 21612-3, 21615-7, 21619-21, 21624-7, 21629, 21632, 21637
and 21639-41 were masked in BA.2.86. matOptimize was run after mask-
ing.12,578 duplicate runs were removed from the tree that came from
shared samples, to make a final tree with 4,471,579 unique samples/
runs. We note that there are only 14 duplicate runs in the intersection
tree, which were not removed.

Measuring uncertainty in the global tree

We ran SPRTA on our tree with the Jukes-Cantor model, obtain-
ing measurements of uncertainty and alternative placements of
nodes which correspond almost exactly to alternative equally
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parsimonious trees. To do this, MAPLE v.0.7.2 was run with the
options - -doNotOptimiseBLengths - -doNot ImproveTopology
- -numTopologyImprovements doNotReroot, which prevent any
tree improvement in MAPLE, so that the output tree is the same as
the input tree. The option —-normalizeInputBLen 0.000033 was
used, whichrescales the branch lengths to match the length unitused
in MAPLE (expected substitution per site versus the unit of number
of substitutions used by UShER). A JC69 model** was used with the
option - -model JC.SPRTA was run with the option --sSPRTA, while
representing alternative placementsin the output tree and metadata
(using the option -networkoutput). The other options used were
--largeUpdate --estimateMAT --numCores 10 --reference
NC_045512.2.fa.

PyR, analysis
PyR,wasrunusing Pythonv.3.10. Codeis available via GitHub at https://
github.com/broadinstitute/pyro-cov?tab=readme-ov-file.

Analysis was conducted using the matched Viridiantree and Gen-
Banktree of theintersection dataset. PyR, estimates growthrate of line-
ages usinga hierarchical regressionmodel (see ref. 21for details); based
on this, the standard deviation of strain growth rate was aggregated
across regions (countries or first-level country divisions (for example,
state or province) if the first-level division has at least 50 samples) by
summing region-specific standard deviations. A paired ¢-test was con-
ducted on the standard deviationin growth rate estimates using the Vir-
idiantree versus GenBank tree. Supplementary Manhattan plots (spike
proteinand whole genome) only show mutations that appearedinboth
Viridian and GenBank trees, and a paired ¢-test was conducted on the
growth rate estimates for each mutation. An unpaired ¢-test was also
conducted onthe full set of mutations, including those that only appear
in the Viridian or GenBank trees, though no statistically significant
results were found. Accompanying each Manhattan plot (Supplemen-
tary Figs. 12 and 13) is a plot of the ratio of growth-related mutations
to all mutations, where growth-related mutations are defined as those
whichareatleast ones.d.fromzero. Fisher’s exact test was performed
toanalyze the differencein proportions of growth-related mutationsin
eachannotated subdomain/reading frame of the spike protein/whole
genome (respectively). To produce Supplementary Fig. 14, rank was
assigned according to the mean of the posterior density of the rela-
tive growth rate of a strain compared to the ancestral strain (denoted
by R/RA) divided by the standard deviation of said posterior. AlogRis
the common log of the R/RA growth rate estimate. Mutation relative
growthratedescribestherelative growth rate conferred by amutation
compared to no mutation.

Calculation of mutational spectra and proportions of

G >T mutations

Mutational spectra were calculated as reported previously?. In brief,
all mutations downstream of the corresponding lineage root node
are identified. The contexts of these mutations are calculated in the
genomic sequence at the start of the corresponding phylogenetic
branch, taking into account mutations that have arisen on ancestral
branches in the phylogenetic tree. Mutational spectra were rescaled
by the genomic compositioninthe lineage root ancestor as described
previously”. Confidence intervals on the proportion of G > T mutations
were calculated using a Wilson score interval incorporating the calcu-
lated proportion and the number of sampled mutations.

Software versions

Package versions used for the simulations were: Snakemake (v.7.8.5)*,
PhastSim (v.0.0.4)*?, ART (v.2016.06.05)**, Badread git commiit (c2bd-
cbe)®, ARTIC Illumina workflow git commit (8af5152) from https://
github.com/connor-lab/ncov2019-artic-nf, Epi2me wf-artic git commit
(218aald) from https://github.com/epi2me-labs/wf-artic, CTE git com-
mit (9cd94b8) from https://github.com/igbal-lab-org/covid-truth-eval,

Nextflow (v.21.04.3)*, bwa git commit (c77ace7)*, (htslib v1.14)%,
SAMtools (v.1.14)*, BEDTools (v.2.30.0)%, joblib (v1.1.0) from https://
github.com/joblib/joblib, numpy (v.1.22.1)*3, pandas (v1.4.0)*’, pysam
(v.0.18.0) at https://github.com/pysam-developers/pysam and tqdm
(v.4.62.3) from https://github.com/tgdm/tqdm.

The ARTIC-ILM pipeline used was git commit (8af5152) from
https://github.com/connor-lab/ncov2019-artic-nf. The ARTIC-ONT
pipeline used was git commit (218aald) from https://github.com/
epi2me-labs/wf-artic. Version 4.3 of Pangolin and v.1.21 of Pangolin-data
were used for the intersection dataset. Version 1.29 of Pangolin-data
was used on the final Viridian global tree. MAPLE (v.0.7.2) was used to
measure uncertainty in the global tree.

Viridian (v.1.0.0 or v.1.1.0) was used to process all runs. The only
difference between these versionsisv.1.1.0 added support for unpaired
Illumina reads. The versions of tools used by Viridian were: Cylon
git commit (57d559a), minimap2 git commit (b0Ob199f), MUMmer
(v.4.0.0rc1), NGMerge git commit (224fc6a), Racon git commit (a2cf-
cac), Varifier git commit (8bc8726). Ushonium git commit (b024320)
was used, with dependencies MAFFT (v.7.520), UShER git commit
(2df81ee) and taxoniumtools (v.2.0.111).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Theglobal Viridian treeis hosted at https://viridian.taxonium.org. All
otheradditionalfiles are available from figshare and some are provided
assupplementary tables and files. Supplementary datafile on figshare
at https://doi.org/10.6084/m9.figshare.30453716.v1 (ref. 60), which
is a TSV file containing metadata of all 5,959,032 sequencing runs
considered in this study. Supplementary Tables 1-14 in one xlIsx file
onfigshare at https://doi.org/10.6084/m9.figshare.28987784.v2 (ref.
61). Supplementary Table 1. Summary of counts of amplicon schemes
in INSDC metadata and the scheme called by Viridian. Supplementary
Table 2. Accuracy of Viridian, ARTIC-ILM and ARTIC-ONT on simu-
lated data. Supplementary Table 3. Accuracy of Viridian, ARTIC-ILM
and ARTIC-ONT on Illumina truth dataset. Supplementary Table 4.
Accuracy of Viridian, ARTIC-ILM and ARTIC-ONT on Nanopore truth
dataset. Supplementary Table 5. Run times and RAM usage on the truth
dataset. Supplementary Table 6. Metadata for the African dataset. Sup-
plementary Table 7. Counts of sites with errors in the African dataset.
Supplementary Table 8. Confidence of nodes in the global Viridian
tree.Supplementary Table 9. Numbers of inferred viralintroductions.
Supplementary Table10. mpox data. Supplementary Table 11. Country
counts in the Viridian global tree, and number of new samples since
thetree was built. Supplementary Table 12. Viridianamplicon scheme
scores using simulated data. Supplementary Table 13. Viridianamplicon
schemescores on the truth dataset. Supplementary Table 14. Positions
masked when building the global Viridian tree. Supplementary HTML
file onfigshare at https://doi.org/10.6084/m9.figshare.25713198 (ref.
62) comparison of Viridian and GenBank assemblies. All Viridian con-
sensus sequences that arein the global tree, split over two tar archive
files on figshare (https://doi.org/10.6084/m9.figshare.25713225 (ref.
63) and https://doi.org/10.6084/m9.figshare.27194637 (ref. 64)), which
contain the sequences split over multiple xzipped FASTA files. These
are the same batched FASTA files used when building the trees. The
Viridian global tree of 4,471,579 sequences, in JSONL and . pb format
on figshare at https://doi.org/10.6084/m9.figshare.27194547 (ref.
65). The GenBank and Viridian intersection trees in JSONL and . pb
format on figshare at https://doi.org/10.6084/m9.figshare.25713285
(ref. 66). All other Viridian consensus sequences that are not in the
global tree, split over two xzipped FASTA files on figshare at https://
doi.org/10.6084/m9.figshare.25713342 and https://doi.org/10.6084/
m9.figshare.27194652 (refs. 67,68). The output TSV file from Maple/
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SPRTA run on the global Viridian tree on figshare at https://doi.
org/10.6084/m9.figshare.28985573.v1 (ref. 69). The Viridian global
tree with Maple/SPRTA data added in JSONL format on figshare at
https://doi.org/10.6084/m9.figshare.29097608 (ref. 70).

Code availability

Viridian is freely available under the MIT license at https://github.
com/igbal-lab-org/viridian, and code v.1.5.1 is archived at https://
doi.org/10.5281/zenodo.17257005 (ref. 71). Code used for analy-
sis and to generate figures is available at https://github.com/mar-
tinghunt/viridian-paperand is archived at https://doi.org/10.5281/
zenodo.17279235 (ref. 72).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  We downloaded all tiled amplicon SARS-CoV-2 sequence data from the ENA/SRA as of June 2024.

Data analysis Package versions used for the simulations were: Snakemake v7.8.5, PhastSim v0.0.4, ART v2016.06.05, Badread git commit c2bdcbe, ARTIC
Illumina workflow git commit 8af5152 from https://github.com/connor-lab/ncov2019-artic-nf, Epi2me wf-artic git commit 218aald from
https://github.com/epi2me-labs/wf-artic, CTE git commit 9cd94b8 from https://github.com/igbal-lab-org/covid-truth-eval, Nextflow v21.04.3,
bwa git commit c77ace7, htslib v1.14, samtools v1.14, BEDTools v2.30.0, joblib v1.1.0 from https://github.com/joblib/joblib, numpy v1.22.1,
pandas v1.4.0, pysam v0.18.0 at https://github.com/pysam-developers/pysam tq,dm v4.62.3 from https://github.com/tgdm/tgdm. Version
4.3 of Pangolin, and version 1.21 of pangolin-data were used for the intersection dataset. Version 1.29 of pangolin-data was used on the final
Viridian global tree. MAPLE version 0.7.2 was used to measure uncertainty in the global tree. Viridian v1.0.0 or v1.1.0 was used to process all
runs. The only difference between these versions is v1.1.0 added support for unpaired Illumina reads. The versions of tools used by Viridian
were: Cylon git commit 57d559a, minimap2 git commit bOb199f, MUMmer v4.0.0rc1, NGMerge git commit 224fc6a, Racon git commit
a2cfcac, Varifier git commit 8bc8726. Ushonium git commit b024320 was used, with dependencies MAFFT v7.520, UShER git commit 2df81ee,
and taxoniumtools v2.0.111. We also ran version 3.10 of pyRO from https: //github.com/broadinstitute/pyro-cov?tab=readme-ov-file.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Supplementary text and figures S1-9 are in the supplementary PDF file.
The global Viridian tree is hosted at https://viridian.taxonium.org.

All other additional files are available from Figshare:

* Supplementary table S1[60], https://doi.org/10.6084/m9.figshare.27195261 - this is a TSV file containing metadata of all 5,959,032 sequencing runs considered in
this study

* Supplementary tables S2-15 in one xlsx file[61], https://doi.org/10.6084/m9.figshare.28987784, details below:

S2 - Summary of counts of amplicon schemes in INSDC metadata and the scheme called by Viridian
S3 - Accuracy of Viridian, ARTIC-ILM and ARTIC-ONT on simulated data

S4 - Accuracy of Viridian, ARTIC-ILM and ARTIC-ONT on Illumina truth data set

S5 - Accuracy of Viridian, ARTIC-ILM and ARTIC-ONT on Nanopore truth data set

S6 - Run times and RAM usage on the truth data set

S7 - Metadata for the African data set

S8 - Counts of sites with errors in the African data set

S9 - Confidence of nodes in the global viridian tree

S10 - Numbers of inferred viral introductions

S11 - mpox data

S12 - Country counts in the Viridian global tree, and number of new samples since the
tree was built

S13 - Viridian amplicon scheme scores using simulated data

S14 - Viridian amplicon scheme scores on the truth data set

S15 - Positions masked when building the global Viridian tree

* Supplementary HTML file, https://doi.org/10.6084/m?9.figshare.25713198-comparison of Viridian and GenBank assemblies

« All Viridian consensus sequences that are in the global tree, split over two tar archive files (https://doi.org/10.6084/m39.figshare.25713225, https://doi.org/10.6
084/m9.figshare.27194637), which contain the sequences split over multiple xzipped FASTA files. These are the same batched FASTA files used when building the
trees.

¢ The Viridian global tree of 4,471,579 sequences, in JSONL and .pb format[65], https://doi.org/10.6084/m39.figshare.27194547

¢ The GenBank and Viridian intersection trees in JSONL and .pb format[66], https://doi.org/10.6084/m?9.figshare.25713285

« All other Viridian consensus sequences that are not in the global tree, split over two xzipped FASTA files - https://doi.org/10.6084/m9.figshare.25713342, https:
//doi.org/10.6084/m9.figshare.27194652.

¢ The output TSV file from Maple/SPRTA run on the global Viridian tree[69], https://doi.org/10.6084/m9.figshare.28985573.v1

¢ The Viridian global tree with Maple/SPRTA data added, in JSONL format[70], https://doi.org/10.6084/m9.figshare.29097608
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Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We analyse all public tiled-amplicon genome data for SARS-CoV-2, about 6 million genomes.
Data exclusions  None (except for our criteria that we only analyse tiled amplicon data)

Replication
° We measure the error rates of different software processes (amplicon assembly by Viridian and state-of-the-art alternatives), first on

simulated data (n=8000), then a small manually curated truth set of 67 genomes, then a larger independent dataset (Early Omicron data from
Africa, n=12,287), and then via various indirect methods (number of reversions in the tree, comparison of amplicon scheme identification with
metadata) on further independent datasets (all other sequenced SARS-CoV-2). In doing so we take care to consider key covariates
(sequencing technology, primer scheme version, and also Pango/lineage). This is in a sense replication of those error estimates. But beyond
that, this is not a paper making claims that A causes B, or is predictive of B, so there is no replication in the normal sense of for example
GWAS.

Randomization  N/A. There is no randomization because we are not selecting from a population, or assigning to different groups, or comparing groups, or
doing experiments.

Blinding There was no blinding because there was no group allocation. This is not a study where we compare groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
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