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We present a hardware implementation of the Jacobi algorithm to compute the eigenvalue decomposition (EVD). The computation
of eigenvalues and eigenvectors has many applications where real time processing is required, and thus hardware implementations
are often mandatory. Some of these implementations have been carried out with field programmable gate array (FPGA) devices
using low level register transfer level (RTL) languages. In the present study, we used the Xilinx Vivado HLS tool to develop a high
level synthesis (HLS) design and evaluated different hardware architectures. After analyzing the design for different input matrix
sizes and various hardware configurations, we compared it with the results of other studies reported in the literature, concluding
that although resource usage may be higher when HLS tools are used, the design performance is equal to or better than low level

hardware designs.

1. Introduction

Eigenvalue calculation is a problem that arises in many fields
of science and engineering, such as computer vision [1],
business and finance [2], power electronics [3], and wireless
sensor networks [4]. In these applications, eigenvalues are
normally used in a decision process, so real time performance
is often required.

Since eigenvalue computation is usually based on opera-
tions such as matrix multiplication and matrix inversion, and
alarge amount of data must be handled, it is computationally
expensive and can represent a potential bottleneck for the rest
of the algorithm.

The algorithms involved in eigenvalue and eigenvector
computations are generally iterative and present strong data
dependencies between iterations; however, many similar
operations can be carried out in parallel in the same iteration,
such as multiply and accumulate in matrix products.

Although this is not important when working with
general purpose processors or more specialized digital signal
processors (DSPs), some devices leverage this feature by
allowing the execution of repetitive operations in parallel.

For example, graphic processing units (GPUs) are useful
when a large number of multiply and accumulate operations
are involved, since they are designed to work in graphics
processing, which is based on vector and matrix operations.

For similar reasons, field programmable gate arrays
(FPGAs) display a remarkable capacity to carry out repetitive
operations in parallel.

There are many applications where matrices are real and
symmetric, with sizes not exceeding 20 x 20 [5, 6]. In this
situation, EVD computation is easier, and there are many
algorithms that take advantage of this.

Some of the applications where the symmetric eigenvalue
problem arises include the principal component analysis
(PCA) statistical technique used for dimension reduction
in data analysis [1, 7] and the multiple signal classification
(MUSIC) algorithm [8] which uses a covariance matrix
(which is real and symmetric by definition). In these studies,
FPGA devices were employed to solve the problem, using a
specialized hardware module to compute the EVD.

As mentioned previously, most of the methods used to
solve the eigen problem are iterative. Depending on how
the operations are performed on the initial matrix and



the results obtained, a distinction can be made between
purely iterative methods (Jacobi, power iterations) [9] and
algorithms that perform some kind of transformation of the
initial matrix (Lanczos-bisection, householder-QR) [10, 11].
A distinction can also be made between algorithms that
output all the eigenvalues (Jacobi, QR) and those that only
compute extremal eigenvalues or the one closest to a given
value (power iterations, Lanczos).

In the studies cited above, the main method employed
for eigenvalue and eigenvector computation was the Jacobi
algorithm, since its characteristics render it highly suitable
for a parallel implementation. The Jacobi algorithm can be
implemented in such a way that there are almost no data
dependencies between operations in the same iteration and it
is possible to use systolic architectures, as has been proposed
by Brent et al. [12]. In addition, all the operations involved
can be carried out by using the CORDIC algorithm [13], as
has been shown by Cavallaro and Luk in [14], and this can
be implemented simply with add and shift operations, which
only use a small amount of hardware resources compared to
multiplication and division operations. Another advantage of
the Jacobi method is that its round-oft error is very stable [9].

However, there are other methods for computing
extremal eigenvalues that can take advantage of the
computing power provided by FPGAs, such as the QR
algorithm or the Lanczos [15] method, since some of their
operations can be carried out in parallel. In this study, we also
present an FPGA floating point implementation of the QR
algorithm. In terms of a practical FPGA implementation, it is
a challenging task to make efficient use of the available
resources while at the same time meeting real time
requirements. This is mainly because the analysis of
algorithm data dependencies and their parallelization is
extremely difficult.

Furthermore, FPGA implementations are usually carried
out in register transfer level (RTL) languages where there is a
very low level of abstraction, and it is therefore necessary to
manage resources and timing carefully. This also implies that
when some architectural decisions are made, it is difficult to
go back without recoding most of the system. Nevertheless,
this kind of system can be very efficient in terms of the total
amount of resources used.

When an algorithm with relevant mathematical work-
load, such as the ones mentioned before, has to be imple-
mented in an FPGA, a great part of the design process
consist in the partition of the system in small units to
achieve the required grade of concurrency. Design time can
be shortened by using a high level synthesis (HLS) tool. This
tool attempts to raise the abstraction level allowing algorithm
specification by means of a high level programming language
such as C or C++. Thanks to this, the designer can focus
on the algorithm itself, while the tool makes the software to
hardware conversion guided by some user directives, which
range from resource usage to concurrency grade. Some of
the tools that have become popular in the recent years are
Impulse C [16], Catapult C by Calypto [17], and Vivado HLS
by Xilinx [18].

Hardware implementations of the Jacobi algorithm are
very popular because its characteristics permit different
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architectural designs depending on the required perfor-
mance. In the literature there are systolic implementations
where speed is the most important requirement [19, 20], serial
designs where low resource consumption is selected [1, 21],
and a meet in the middle approach (semiparallel) where both
criteria are balanced [8]. In this study, the Jacobi algorithm
was implemented using the Xilinx Vivado HLS tool, to
explore different hardware implementations and compare
them to select the most efficient one in terms of execution
time and FPGA resources used.

In this study, the Jacobi algorithm was implemented using
the Xilinx Vivado HLS tool, to explore different hardware
implementations and compare them to select the most
efficient one in terms of execution time and FPGA resources
used.

To gain a better understanding of the results obtained, we
also carried out a floating point implementation of the QR
algorithm using Vivado HLS. The results obtained were then
compared to similar systems described in the literature.

The rest of the paper is organized as follows. In Section 2,
the mathematical background behind the Jacobi and QR
algorithms is presented together with some details relevant
to implementation. The proposed implementations and its
parameters are discussed in Sections 3 and 4, respectively.
Finally, the system performance is compared with other
design approaches in Section 5 and we present our conclu-
sions in Section 6.

2. Mathematical Background

The eigenvalue problem [22] is one of the main questions in
numerical algebra, and due to the many applications in which
it is useful it has attracted much research attention in recent
years [23-25]. The formulation of the problem is simple (1),
but it can be approached from very different angles:

AV = A3, (1)

where ¥ and A are an eigenvalue and an eigenvector, respec-
tively, of a matrix A € R™". Although there is an analytical
solution, it involves the calculation of polynomial roots, and
therefore it is only suitable for low order (1) matrices (n < 4).
When the problem has a higher order, numerical algorithms
must be used. In this section, the mathematical background
of Jacobi and QR algorithms is presented when they are
used to compute the eigenvalues from real and symmetric
matrices.

2.1. The Jacobi Algorithm. The Jacobi algorithm [26] was
first proposed in 1846 but did not become popular until its
computational implementation was explored. The singular
value decomposition (SVD) of a matrix A € R™" is given
by

A=UDV', (2)

where U and V are orthogonal matrices and D is a diagonal
matrix storing the singular values of A on its diagonal. For the
case where A is real and symmetric, we can rewrite (2) as

A=VDVT, (3)
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The idea behind the Jacobi method is to perform a
series of similarity transformations (i.e., before and after
multiplication with an orthogonal matrix) of A, to render
it more diagonal in each iteration. This can be seen as an
iterative expression:

T
AR _ B 4By (4)

where k represents the current iteration and k+1 the next one.
The sequence of transformation matrices is chosen in such a
way that the double multiplication renders the updated A**"
a little more diagonal than its predecessor A% A popular
choice for V% is the Givens rotation matrix (5). Consider

1 0 0 0]
0 C, Sy 0 0
G(ij,a) = | : P 3 EE )
0 v =8y +++ Cy - 0
Lo 0 0 1)

where C, and S, are the sine and cosine of «, respectively.
Parallelism of the algorithm resides in this choice. If the VAV
productis studied, it can easily be seen that only four elements
of A® are modified, so multiple similarity transformations
can be carried at the same time.

Eigenvectors of A are obtained by accumulating the
rotation matrices used in eigenvalue computation as shown
in the following expression:

h
v=[]v"®, where vV =1. (6)
k=1

To take full advantage of this, Brent and Luk [19] proposed
a systolic architecture in which the initial matrix A,,,, is
mapped onto a set of 2 x 2 matrices, such as the one shown in
expression (7). This leaves a subset of 2 x 2 diagonalization
problems which can easily be solved in hardware making
use of the CORDIC (COordinate Rotation DIgital Computer)
algorithm [27], as shown in [14]:

a

_ | Yi-12m-1 Ri-12m

Ay, = " a . 7)
21,2m—1 21,2m

Since n/2 diagonalization problems now have to be
solved, n/2 rotation angles («;) are also required. Given that
A is symmetric, the angle is selected from the submatrices
where | = m, according to expression (8), so n elements
(where nis the order of A) can be eliminated in each iteration.
As will now be shown, angle calculation can also be carried
out by the CORDIC algorithm, making an efficient use of
resources in the implementation:

a21—1,2m

tan Qa) = ————.
Diam ~ Rl-1,2m-1

(8)

After each update of A%*Y, it is necessary to bring new
nonzero elements near the main diagonal so that they can be
eliminated in the next iteration, repeating the entire process
until A%*Y = D. To this end, several rows and columns are
interchanged as it will be explained in Section 3.

As mentioned before, the CORDIC algorithm [13, 27]
can be used to solve the double rotation (4) on every
submatrix A,,, and to calculate the rotation angles. One great
advantage of CORDIC is that it can be expressed by means
of shift and add operations, which are easy to implement in
reconfigurable hardware. It also facilitates working with fixed
point codification, where the word length is not fixed to 32 or
64 bits as occurs with the floating point standard, thus making
more efficient use of FPGA resources. For example, in the
present study, the entire system was fixed to a word length
of 18 bits, since this is the entry word length of Xilinx FPGA
multipliers.

The fundamental idea behind CORDIC is to carry out a
series of rotations (called microrotations) on an input vector
to obtain another vector as output. This is performed in three
different coordinate systems (linear, circular, and hyperbolic),
and it is possible to obtain various basic functions, such
as multiplication, trigonometric operations, logarithms, and
exponentials [28], in the components of the output vector,
given some initial input vector conditions [27]. Microrotation
values are selected as shown in the following expression:

tan (o;) = 8;, where §; =27". 9)
The choice of §; as an inverse power of 2 is what will allow us
to implement the algorithm using shifts, since multiplication
or division for a power of 2 is equivalent to a shift to the left
or the right, respectively, in binary codification.

In the circular coordinate system, it is possible to obtain
the two operations required for the Jacobi algorithm: Givens
rotation and angle calculation (arctangent). Since CORDIC
performs a series of rotations on a vector, it can be seen as an
iterative expression (11). Consider

5 1 -g2° 5 5 X
el Tl ] w

Ziy1 = % T 0%, (1

where V is a vector determined by its vertical and horizontal
components (x and y) and z is a variable that keeps track
of the total rotated angle. In each iteration the direction of
the rotation o; is determined by the operation that is to be
performed. In the particular case of the circular coordinate
system, the two algorithm operation modes are as follows.

(i) Rotation mode: the algorithm takes a vector ¥, =
(x9> ¥o) and an angle z;, and outputs a new vector
v = (x, ¥), which corresponds to ¥, rotated z radians.
To do s0, 0; is selected in such a way that z approaches
zero in each iteration. When z = 0, it can be assumed
that the starting vector has been fully rotated a z angle.

(ii) Translation mode: algorithm input is again a vector
Yo = (x¢ ¥p)> whose phase /7, we want to compute.



To do so, the vector is rotated until its y component
is zero, selecting o; accordingly. Since z accumulates
microrotation angles, when y = 0 the variable z
will correspond to the initial phase of the vector. In
addition, since y = 0, x will store the absolute value
of V.

If this is expressed mathematically, in rotation mode o; =
sign(z;), the relation between the input and the output is as

follows:
x| cos(zy) sin(zy) ] [xo
Gl-ela@ @0 @
On the other hand, if the algorithm works in vectoring

mode, o; must be computed as g; = — sign(y;) and the relation
between the input and the output is now as shown in the

following expression:
x = Kj\xg + y3,

z:zo+atan&.

Xo

(13)

As can be observed, in expressions (12) and (13) the
result is scaled by a constant value of K;. This is due to the
nonorthogonality of the microrotations, which modifies the
absolute value of the vector. To solve this, results obtained
can be scaled by 1/K;. In addition, K; (14) is known in
advance and only varies with the number of microrotations
performed. Since K is fixed, 1/K; can be precomputed and
stored in a memory element to correct the output data:

-1
K, = n]—[\h +o} 272 (14)
i=0

2.2. The QR Algorithm. As indicated in Sectionl, to show
the effectiveness of the Jacobi algorithm over other meth-
ods when it is implemented in reconfigurable logic, a QR
algorithm implementation was also carried out using Vivado
HLS.

In the QR algorithm, another condition must be added
to our initial matrix, which was real and symmetric: now it
must also be a tridiagonal matrix, like the one presented in
the following expression:

a b 00
b, a, by 0
0 b a; b
0 0 b a,

T = 15)

To obtain the eigenvalues of T, a reduction strategy is used
where the b,,...,b, entries are zeroed. When, for example,
b, = 0 the row and the column involved can be removed,
where g, is an eigenvalue of T'.

To accomplish this in the QR algorithm a sequence of
matrices similar to T (T™,..., T™) s produced [29]. To start
with, the initial matrix T% is factored as follows:

T® _ Q(k)R(k) (16)
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where Q® is an orthogonal matrix and R® is an upper

triangular matrix. In a similar way T**! is defined as

T(k+1) — R(k)Q(k). (17)

As presented thus far, the convergence of the method is
slow. To speed it up a shift can be performed on the original
matrix for a o quantity close to the eigenvalue we are looking
for. Thus, we now have a new sequence of matrices such that

70 _ o1 = QWR®
(18)
70D _ gOQ® | o

After each shift, the eigenvalues of T' will be shifted by the
same ¢ amount, and it is easy to recover the original values
by accumulating the shifts after each iteration. To obtain
an approximated value of o for each iteration, a popular
choice is to calculate the eigenvalues of the matrix E (19) and
take the one closest to a,,. This is called the Wilkinson shift
[26]. Finally, Q" and R™ are chosen to be Givens rotation
matrices to eliminate the appropriate b; element:

E= [“I’;l Z] . (19)

n n

3. Implementation Details

As discussed in Section 1, the implementation tool used in
this study was the Xilinx Vivado HLS [18], which allows
the use of a high level programming language (C, C++ or
System C) instead of a hardware description language such as
VHDL or Verilog. Although it presents some drawbacks, this
means of implementing the algorithms enabled us to test very
different hardware configurations of the system with very few
design modifications.

Due to its iterative nature, the Jacobi method can easily
be expressed as a series of loops, which is the main element
used in Vivado HLS to implement the algorithms.

This can be done via #pragma directives or tcl scripting,
giving each part of the design different attributes that deter-
mine the degree of concurrency or the desired resource con-
straints. Some important operations that can be performed
on design loops include the following.

(i) Pipeline: which will try to achieve parallelism between
the operations performed in the same iteration.
Pipeline operation can also be specified throughout
the entire design so that all internal loops are unrolled
making parallelism between two system iterations
possible.

(ii) Unroll: which will implement each iteration as a
separate hardware instance.

(iii) Dataflow: which will try to achieve parallelism
between different loops that are data dependent,
implementing communication channels such as ping-
pong memories.

As mentioned before, we can also apply resource con-
straints to the designs, limiting the number of instances



Mathematical Problems in Engineering

of a particular hardware element. The elements that can
be limited range from operators (+,*) to specific resources
such as DSP48E and BRAM memory blocks. User defined
elements, such as a function called multiple times, can
also be constrained, and this is very important for design
optimization, as will be shown later.

Figure 1 shows a functional diagram of the Jacobi algo-
rithm. Since the C programming language was used, each
task was implemented as afor loop and labeled to make
optimization easier.

When the design starts its operation (a), the input matrix
A € R™" is buffered in a memory element S. In addition, to
compute eigenvectors, V! is loaded with an identity matrix
(I € R™"). After the initial operations, there are three tasks
(a, b, and ¢) to be performed h times in the external loop,
where h corresponds to the total number of Jacobi iterations
(elimination of the n elements adjacent to the main diagonal)
that the algorithm will execute and is selected in such way that
eigenvector error is minimized.

The first task that must be done in each Jacobi iteration (b)
is to calculate rotation angles ((x;k)). As previously mentioned,
this was achieved using the CORDIC algorithm in vectoring
mode.

The next tasks to be performed (c.1and c.2) are eigenvalue
and eigenvector rotations, which consist of pre- and post-
multiplication with the Givens rotation matrix. Since there
are no data dependencies between these two tasks, they are
placed in different loops and thus parallelization is possible.
Pre- or postmultiplication with a Givens rotation matrix can
be expressed as two vector rotations, so it can be performed
with two rotation mode CORDIC algorithm executions. This
leaves us with six CORDIC executions, four of them which
correspond to eigenvalue calculation and the other two to
eigenvector computation.

The final operation to be performed before the next Jacobi
iteration (d) is a series of row and column permutations with
the purpose of introducing new nonzero elements into the
diagonal submatrices.

This element rearrangement was implemented as
described by Brent and Luk [19] but with some modifications.
In their study, they proposed a systolic architecture
where each submatrix corresponded to an independent
hardware unit called a processor, and all processors were
interconnected so that data interchanges were possible.

Since our design did not have a defined hardware archi-
tecture at this point, element interchange was substituted with
the corresponding row and column permutations in order to
tulfill the requirement of introducing new nonzero elements
into the diagonal submatrices.

Finally, when all the Jacobi rotations are completed,
eigenvalues and eigenvectors are output as arrays, which can
be implemented as BRAM ports or AXI buses so that the
design can be integrated in different kinds of system.

All tasks were implemented in the C programming
language using a fixed point data type, following the XQN
quantification scheme, where a number is represented by X
bits of integer part and N bits of fractional part, with a total

number of bits (word length) of WL = X + N + 1 for signed
values and WL = X + N for unsigned values.

Starting from the initial C prototype, different hardware
architectures can be considered depending on the design
requirements. Mainly, resource usage (LUT, Flip-Flops, mul-
tipliers, memory elements) and timing performance (latency
(Tp), throughput or initiation interval (II) and maximum
clock frequency) are the parameters that we attempt to
optimize:

(i) the latency (T} ), which specifies how much time will
take until the system generate the first valid result;

(ii) the initiation interval (II), which corresponds to the
throughput or the number of clock cycles between
two valid sets of results, after the latency period.

As a result of the Vivado HLS optimization directives
three architectures can be achieved, depending on which
parameters are considered more important.

(i) Serial architecture: this hardware scheme pursues
minimal resource usage at the expense of a higher
latency. To reach this optimization level, a pipeline
directive is specified on the external loop of the
design, which performs the Jacobi iterations.

(ii) Parallel architecture: in this kind of system, the main
goal is to achieve the best performance in terms
of execution time (latency and throughput) at the
expense of resource usage. To achieve this, pipeline
is applied to the entire design, which means that
the external loop will be unrolled and parallelism
between two algorithm executions will be possible.

(iii) Semiparallel architecture: although timing is still
important in this scheme, resource usage is also
considered, and attempts are made to minimize it
while affecting execution time as little as possible. In
our particular case, this was achieved by limiting the
number of CORDIC instances of the design in the
parallel architecture.

Although all three alternatives were analyzed, the full
parallel architecture was found to use a massive amount of
internal FPGA resources, greatly exceeding the capacity of
the device. This was mainly due to an excessive amount
of CORDIC units in the rotation mode, which led to 55
hardware instances of it in the case of an 8 X 8 input
matrix. Consequently, we ruled out the possibility of parallel
architecture.

It is important to clarify the difference between semi-
parallel and serial architecture. In both cases, we always
attempted to maximize concurrency between operations,
such as arithmetic operations and memory accesses; however,
with parallel architecture it was also possible to achieve
concurrence between two full executions of the algorithm.

The excessive amount of CORDIC units implemented by
the Vivado HLS synthesizer was taken as a starting point
for optimization of the design. Since Vivado HLS allowed
us to limit the number of elements of a particular hardware
resource or entity, the number of CORDIC instances in both
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FIGURE 1: Jacobi algorithm functional diagram.

semiparallel and serial architecture was limited to different
values, allowing Vivado HLS to redesign the RTL implemen-
tation and subsequently analyzing the design performance
obtained.

First, we analyze the case of the semiparallel architecture.
Since 8 x 8 is a common size in the literature for input matri-
ces, the design was optimized for this matrix size, extending
the conclusions reached to other matrix sizes. The results
obtained (resource consumption and timing performance)
are shown in Figure 2.

An analysis of timing performance indicated that
although latency did not vary very much, the initiation
interval (II) was considerably reduced when the number of
rotation mode CORDIC instances was increased from one
to four, slowly decreasing as more CORDIC modules were
added.

This result was mainly due to data dependencies between
operations performed in the Jacobi algorithm. As previously

indicated, four rotations must be performed for eigenvalue
calculation, and the result of the first two is required to
perform the last two, whereas two independent rotations
must be performed for eigenvector calculation.

From this, it can be concluded that four CORDIC
modules will greatly increase the performance of the system.
When timing performance is related to resource usage, it is
clear that it increased linearly with CORDIC module usage,
and the slope variation was due to the different control logic
implemented by Vivado with an odd and an even number of
CORDIC modules.

The last conclusion that can be reached from Figure 2 is
that there was parallelism between two algorithm iterations,
since T; > IL This means that the first valid result will be
obtained after T; clock cycles, but the next results will be
obtained more rapidly, after every II clock cycles.

The results obtained for the serial architecture are shown
in Figure 3. This time, only the latency is shown, since there
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FIGURE 2: Semiparallel architecture implementation results of the
Jacobi algorithm for 8 x 8 matrices.

was no parallelism between two algorithm executions and
they only differed in one clock cycle that the system needed
to start the next execution (I = T + 1).

Asindicated earlier, the execution time between two valid
result sets is the same as the latency period (1}), and in
the semiparallel design alternative, it evolved similarly to the
initiation interval.

For similar reasons, there was a greater improvement in
latency in the first four CORDIC module additions, which did
not decrease at all after six. The increase in resource usage was
also linear, now with a constant slope, although it used fewer
resources.

4. Assessment of Design Parameters

4.1. Optimal Number of Jacobi Iterations. To evaluate the
quality of the results obtained using the Jacobi method, we
conducted an experimental error analysis to determine how
many Jacobi iterations were required to obtain satisfactory
results.

The word length (WL) selected for the fixed point cod-
ification scheme presented in Section 2 was 18 bits with a
fractional part of 15 bits (2Q15), since Xilinx FPGA multiplier
entry is fixed to this value and the purpose of using the
CORDIC algorithm was to minimize resource usage. In
addition, as will now be shown, this codification provided
sufficient precision to avoid overflow and growing rounding
errors.

Simulating the system for multiple 8 x 8 real and sym-
metric random matrices, we calculated the eigenvalue and

Resource usage

50 ¢
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3
&
0 1 I 1 1 1 1 1 J
1 2 3 4 5 6 7 8 9
Rotation CORDIC modules
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— FF
Execution time
3000
v 2500
o
N
= 2000
1500 . | . . . . . ;
1 2 3 4 5 6 7 8 9
Rotation CORDIC modules
— T

FIGURE 3: Serial architecture implementation results of the Jacobi
algorithm for 8 x 8 matrices.
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FIGURE 4: Eigenvectors maximum and quadratic component error.

eigenvector maximum (ey4x) and quadratic (esqry) error,
comparing FPGA Jacobi fixed point results with MATLAB
floating point implementation (eig).

When the results were analyzed, we found that the eigen-
vector error stabilized later than the eigenvalue error (more
iterations were required). Consequently, Figure 4 shows



the eigenvector component error, calculated according to the
following expressions:

_ |VHLS| B |VMATLAB|

% = - 100,

|VMATLAB |

EMAX = max( €9

) (20)

k-1
e = — Zez
SQRT = 713 %

=0

where k represents the total number of samples. The error
obtained was plotted as a function of the number of Jacobi
iterations (i.e., the number of rotations performed for each
submatrix) and was used to determine the optimal number
of iterations (h) that the algorithm must perform to obtain
sufficiently accurate results.

Our analysis of 8 x 8 matrices indicated that h = 26
was the best number of iterations for both eigenvectors and
eigenvalues in order to obtain a sufficiently accurate solution,
since the error was constant from this value on.

After performing the same tests for other input matrix
sizes, it was concluded that, in general, expression (21) can
be used to determine the optimal number of iterations to be
performed for an n x n matrix:

h=9+mnlogn. (21)

4.2. Serial/Parallel Jacobi Analysis. Since an expression was
available for the optimal number of Jacobi iterations (h), we
also conducted a study of the design performance depending
on initial matrix size.

With the parallel architecture, we found that although
the Vivado HLS generated an RTL design for matrices with
an order n > 10, the Vivado suite synthesizer was unable
to implement it successfully. However, the serial architecture
design performed well for higher order matrices (20 x 20).

Based on the parametric study performed in Section 3,
we decided that a good trade-oft between execution time and
resource usage would be to use four CORDIC modules, which
would perform WL — 1 iterations in both parallel and serial
architectures, where WL was the data word length.

Implementation results for the serial architecture are
shown in Figure 5 for the Xilinx Artix 7 series (XC7A100T-
1CSG324C) device.

Turning first to resource usage, it can be seen that this
did not not increase as fast as execution time, since when
matrix size is increased with a fixed amount of CORDIC
units, only storage elements and control logic will be added.
Consequently, it becomes evident that in terms of resources
used, the design has an O(n*) complexity.

Regarding execution time (7. ), the Vivado HLS enabled
us to examine the sequence of operations performed by the
design in each clock cycle. An analysis of this information
indicated that the design latency, which corresponds to
execution time in the serial architecture, follows the following
expression:

TL = Tload + 1’12 : h, (22)
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FIGURE 5: Serial Jacobi design performance with matrix order
increase.

where n is the size of the processed matrix and h is the
number of Jacobi iterations performed, following expression
(21). Meanwhile, T} ,4 (23) corresponds to the time required
to read sufficient data from an external memory to start the
first Jacobi iteration, and #* is the amount of clock cycles
required to perform a Jacobi iteration:

Tload = (23)

oS,
+

oI
+
N

A similar study was performed for different numbers
of rotation CORDIC units, which revealed that the time to
perform a Jacobi iteration varied. However, it remained a
function of 2, so system latency (1) was still related to the
size of the input matrix, as shown in the following expression:

TL = Tload + TI . h, (24)

where T; = f (n*) is the time required to perform a Jacobi
iteration.

Regarding the maximum size (1) of the input matrix, we
assumed that given the serial nature of the system, resource
usage would be the limit; however, we found that for n > 20,
the Vivado HLS took a very long time to guess the control
logic, and implementation eventually failed. Despite this,
the design has been coded in such a way that input matrix
size and the codification scheme can be modified simply by
changing a few constants, which is a vast improvement over
the classic RTL designs.
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FIGURE 6: Comparative between different design alternatives.

5. Comparison with Other Proposals

The results obtained were also compared with those reported
in other studies of 8 x 8 matrices, since these have received
much research attention.

Figure 6 shows the implementation results for the two
architectures proposed here (serial and parallel), a Jacobi
serial architecture carried out in VHDL [1], a Jacobi semi-
parallel architecture from the multiple signal classification
(MUSIC) algorithm [8], and the Vivado HLS linear algebra
library svd implementation.

The criteria selected to compare the different designs
were as follows: FPGA resource consumption, in terms of the
discrete elements FF and LUT, computation time (latency and
initiation interval), and maximum clock frequency ( f;x)-

The VHDL serial Jacobi algorithm features a fully cus-
tomized system using two ad hoc CORDIC modules, one of
which works in rotation and vectoring mode while the other
is optimized to work only in rotation mode.

The Jacobi module used in the MUSIC algorithm features
a semiparallel architecture based on the Brent and Luk
proposal [12] and also uses the CORDIC algorithm for the
calculations. However, it does not implement the full systolic
array, only making use of a subset of this to save resources.

Turning first to the two Jacobi algorithm implementations
proposed here, it is evident that the best performance in
terms of speed was achieved by the semiparallel architecture,
whereas the serial architecture only used half of the resources
required to implement the parallel one.

Vivado

HLS library
VHDL

(Bravo et al.,

2008)
QR

Parallel Jacobi

Serial Jacobi

0 50 100 150 200 250 300
Clock frequency (MHz)

FIGURE 7: Maximum clock frequency for all the designs when input
matrix size is fixed to 8 x 8.

The other Vivado HLS implementation considered was
the svd function from the Vivado HLS library, which can
only be implemented in single precision floating point for-
mat. Resource usage is not dissimilar to our Vivado HLS
implementations; however, it is slower and makes use of 58
DSP48E blocks.

The difference arises from the use of floating point cores
which are implemented with DSP units, while the fixed
point CORDIC approach employed in the present study only
required two DSP48E multipliers per unit.

As previously mentioned, a floating point QR algorithm
was implemented in the same FPGA device also using Vivado
HLS. The main purpose of this was to determine whether
other algorithms presented greater computational efficiency
than the Jacobi method. Although we used different coding
systems in the Jacobi and QR algorithms, respectively, an
analysis of both implementations revealed that QR was less
suitable for a hardware implementation since the operations
performed can vary between different iterations.

Nevertheless, we found that although the performance
of the algorithm in terms of execution time was poor, it did
not use a large amount of FPGA resources, and it therefore
represents an alternative to consider when floating point
codification is required.

Looking next at the eigen solver implemented as part of
the MUSIC algorithm, it can be seen that it did not perform
very well. On paper, it is similar to the semiparallel architec-
ture presented here, but the control logic was designed by
hand. This shows that HLS performs better than traditional
hardware design flows when control logic becomes too
complicated, since it is implemented automatically.

Our final comparison was with the VHDL serial architec-
ture, in which only two CORDIC modules were used. Since
everything in this design was customized for the application,
timing performance was similar to HLS designs, but it used
far fewer resources.

As regards the maximum clock frequency at which the
designs can work, Figure 7 shows a comparison of all the
alternatives discussed.

On the one hand, we have Vivado HLS designs, where the
difference between floating point and fixed point is evidenced
by the results. While floating point designs can easily go above
200 MHz, fixed point designs stay around 120 MHz.
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On the other hand, we find the VHDL design. In this case,
the performance of the design proposed in [1] was similar to
the floating point designs since it was hand-coded at a very
low optimization level.

6. Conclusions

In this paper, we have described a high level synthesis
implementation of the Jacobi algorithm for eigenvalue and
eigenvector calculations, and this has been compared to
similar or related systems reported in the literature.

The main purpose of using a HLS tool was to try to
achieve a similar performance to that of a custom RTL system
coded in, for example, VHDL, in a fraction of the design time
required.

In recent years, the amount of resources available in
FPGA devices has grown exponentially, and thus rapidity is
becoming more important than efficiency when implement-
ing computational algorithms.

Furthermore, HLS tools have evolved, making it possible
to achieve good systems that are easy to integrate into larger
designs as hardware coprocessors together with a CPU, or as
a processing block in regular RTL designs.

As final paper conclusion, we can say that the use of high
level implementation tools reduce the design time. In most
cases, the designs are initially coded, simulated, and validated
with high level languages, where there exist standard libraries
and reference code available. Manual RTL coding is not
usually an easy step because there is not a straight way to
translate the functional algorithm to RTL description. In
addition, the required level of RTL expertise is very high.

Another inconvenience for RTL-based designs appears
when new changes have to be included in the algorithm. The
RTL structure is not very flexible and any modification to the
algorithm requires a lot of time (simulation and recoding).
Nevertheless, RTL designs generate hardware reconfigurable
approaches with less resources and higher clock frequency
than high level hardware designs (see Figures 6 and 7).

The developed algorithm in this work was initially made
with a traditional RTL flow [1]. As a result, we can compare
the results of a complex algorithm such as Jacobi based on
RTL or HLS flows. According to Figures 6 and 7, the achieved
results for the HLS methodology compared with RTL-based
design are favorably from different points of view.

We have shown that the design process varies from the
traditional RTL flow, since it is possible to iterate on the same
code to obtain different hardware architectures and perform
parametric simulations of the hardware in order to obtain the
best results.

Therefore, the designer should balance what are the prior
requirements in the system, clock frequency/resources, or
design time and choose the methodology (RTL/HLS) that
best fit for that particular case.
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