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ABSTRACT

In this paper, we present a model for the modulation of multi-
performer microtiming variation in musical groups. This is done
using a multivariate Markov model, in which the relationship be-
tween players is modelled using an interdependence matrix (α)
and a multidimensional state transition matrix (S). This method al-
lows us to generate more natural sounding musical sequences due
to the reduction of out-of-phase errors that occur in Gaussian pseu-
dorandom and player-independent probabilistic models. We ver-
ify this using subjective listening tests, where we demonstrate that
our multivariate model is able to outperform commonly used uni-
variate models at producing human-like microtiming variability.
Whilst the participants in our study judged the real time sequences
performed by humans to be more natural than the proposed model,
we were still able to achieve a mean score of 63.39% naturalness,
suggesting microtiming interdependence between players captured
in our model significantly enhances the humanisation of group mu-
sical sequences.

1. INTRODUCTION

In electronically produced music, humanisation algorithms are of-
ten applied to percussive sequences in order to create a more nat-
ural sounding expressive performance. This is particularly useful
when access to performers or equipment is limited, as events can
be programmed onto a quantised grid and then modulated by a
music producer, without the requirement for human performance.
This process is often applied during the point of music creation
from within the digital audio workstation and allows for the in-
corporation of sampled or synthesised instruments into a piece of
music.

One of the main issues with current humanisation systems is
that they do not necessarily represent the expressivity exhibited by
a human agent, thus the process requires further editing in order
to achieve a natural approximation of a human musician. Further-
more, the systems are unable to model the characteristics of group
performance when used in a multi-channel environment. These

problems are namely due to the fact that the majority of existing
humanisation systems modulate the onset locations and respec-
tive velocities of an event instantaneously, using a pseudorandom
variate, selected from a Gaussian window. Therefore in simulated
multi-player performance, phase error is often introduced between
the channels. This can actually reduce the naturalness of the per-
formance, rather than enhance it due to perceptually unrealistic
cues, generated by multiple instances of the algorithm running in
parallel.

1.1. Modelling Microtiming

In this study, we focus specifically on extracting and modulating
microtiming offsets in musical performance, this can be defined as
the subtraction of an event at time n from a corresponding point
on a reference track, as illustrated in Figure 1. Here, the refer-
ence grid represents a metronome running in parallel with the per-
formed musical sequence. The challenge of the humanisation al-
gorithm is to then estimate the distribution at n + 1, written as
P (θn+1). This is usually done independently of all other events in
the sequence, based on a distribution centred around the nth grid
point, characterised by the parameters µ and σ.

θn = tn - tnθn-1 = tn-1 - tn-1

t

t

P(θn+1) =

Figure 1: Representation of a player, following a metronome. The
offset measurements from the metronome are shown as θn, where
t̂n is the nth metronomic event and tn is the nth event performed
by player 1.
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Attempts have been made in previous studies to increase the
naturalness of single-player humanisation systems by incorporat-
ing some form of intelligent processing into the variate generation
procedure. In [1] for example, fuzzy logic has been used to model
strike velocity deviation in a humanisation system, based on sub-
jective rules, derived from domain knowledge. Similarly, micro-
timing deviation has been modelled using a number of different
supervised machine learning techniques by [2]. These techniques
are then used to apply the derived microtiming models to quantised
sequences, in which they conclude the systems used to model per-
cussive sequences significantly outperform the quantised version,
when evaluated for natural expressivity. Microtiming for Brazil-
lian Samba music is also estimated in [3] and [4], using a model
based on the extraction of quarter-note patterns using K-Means
clustering. Here, it is shown that the degree of expressive timing
can be attributed to specific metrical positions, with examples in
Samba music. This kind of information is omitted when pseudo-
random models are applied, due to the variables being indepen-
dently distributed for each event.

In previous work by Stables ([5], [6]), it has been shown that
the process of stochastic humanisation can be improved using prob-
abilistic temporal models to modulate a quantised sequence, based
on microtiming measurements taken from professional musicians.
Here, independently distributed variates (P (θn+1)) were replaced
by variates that were conditionally dependent in time (P (θn+1|θn)).
In these studies it was shown that the measured sequences ex-
hibited temporal patterns which could be synthesised using finite
state machines. In both cases, the empirically developed models
were shown to subjectively outperform quantised and Gaussian se-
quences for both perceived naturalness and musicality.

2. GENERATIVE MULTIVARIATE MODEL

Whilst the models described in section 1.1 work particularly well
with single-player sequences, phase error is still introduced in muti-
channel performance models due to the lack of inter-performer
dependence. This means that when a probabilistic humanisation
algorithm is applied to more than one track in a given session,
extensive manual correction is often required in order to create a
sense of cohesion between the separate channels. It is therefore
necessary to consider ways in which a group of musicians can be
modelled in parallel, thus preserving the inter-performer timing
characteristics of a musical group.

If we make the assumption that the performed musical signals
are stylised stochastic processes (as in studies such as [7] and [8]),
we can use a Markov chain to estimate a transition through a dis-
crete state-space Z = {z1, z2, . . . , zK}, where zn represents the
nth state of the system, providing the sequence being modelled,
satisfies the Markov property given in Eq. 1.

P (θn+1 = in+1|θ0 = i0, θ1 = i1, . . . , θn = in)
= P (θn+1 = in+1|θn = in)

(1)

Here, θn represents the nth event and in represents the cor-
responding state. Each state in the model can be described us-
ing canonical form representation, consisting of a binary vector of
length K, where

∑K
k=1(θn)k = 1 and (θn)k ∈ {0, 1}. For exam-

ple, in a 5-state model, if the nth event is equal to z3, we can use
the representation θn = {0, 0, 1, 0, 0}T . This allows us to define
a single-player model using Eq. 2.

P (θn+1) = Sθn (2)

Here, S is a state transition matrix (STM), representing the
probability of a transition from θn = in to θn+1 = in+1 for
n = {1, 2, . . . , N}, where N is the number of events in the se-
quence. We then consider P (θn) to be the Probability Density
Function (PDF) representation of θn. The canonical form of θn+1

is then calculated using a rejection sampling technique, given here
in Eq. 4.

(θn)i =

{
1, i = β
0, i 6= β

(3)

β =

{
γ1,k, [γ1,k, γ2,k] ∈ P (θn)
repeat, [γ1,k, γ2,k] /∈ P (θn)

(4)

Where γ1,k and γ2,k are pair-wise stochastic variables, evaluated
against the nth state distribution and β is the state vector index.
For situations such as grouped musical performance, in which there
are two or more conditionally dependent sequences, we can use
a Multivariate Markov Chain (MVMC) model. This consists of
the univariate model, estimated across M sequences being per-
formed concurrently, weighted by some measure of inter-player
dependence, given in Eq. 5.

P (θ
(i)
n+1) =

M∑
k=1

αi,kS
(i,k)θ(k)n (5)

In the multivariate model, θ(i)n represents the state distribution
of stream i in canonical form and the matrix S(i,k) gives the proba-
bility of a transition from the nth state in stream i, to the (n+1)th

state in stream k, as demonstrated in Eq. 6. When k = i, S
represents a standard univariate STM. The weights (αi,k) in the
model represent the interdependence factor between streams i and
k, which can be derived empirically.

2.1. Pulse Approximation

As demonstrated in Figure 1, the estimation of microtiming param-
eters in the current model relies on an isochronous grid (t̂) in order
to calculate differentials (θ(i)) at any point in time (n). In single-
player streams this model works particularly well if a player has
performed the sequence to a click-track as we can use a metro-
nomic grid to approximate t̂. However due to the nature of group
performance, it is relatively unlikely that the individual performers
will follow the same click track, unless the musicians are indepen-
dently contributing material to the musical piece. This trait is very
common in multitrack recording, but less common in group per-
formance. Using a metronomic model, we can represent the grid
using Eq. 8.

θ
(i)
n = t

(i)
n − t̂n

where, t̂n = (n− 1)
(
60
τ

) (8)

Where τ represents a measurement of fixed tempo and t(i) is the
event generated by the ith performer. In order to adapt this method
for group performance, we need to estimate a global representation
of tempo within the musical group. We can provide a simplistic
model for this by taking the mean of the beat-spacings within each
bar, across all players using Eq. 9.
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S(i,k) =


p(θ(i) = z1|θ(k) = z1) p(θ(i) = z2|θ(k) = z1) . . . p(θ(i) = zK |θ(k) = z1)

p(θ(i) = z1|θ(k) = z2) p(θ(i) = z2|θ(k) = z2) . . . p(θ(i) = zK |θ(k) = z2)
...

...
...

...
p(θ(i) = z1|θ(k) = zK) p(θ(i) = z2|θ(k) = zK) . . . p(θ(i) = zK |θ(k) = zK)

 (6)

i = {1, 2, . . . ,M}, k = {1, 2, . . . ,M} (7)

τ̂m =
1

MB

M∑
i=1

B∑
n=1

(t
′
n)

(i) − (t
′
n−1)

(i) (9)

Where t
′
n represents an event that falls on a beat location and B is

the number of beats in the bar. τ̂m then represents the estimated
tempo for the mth bar. This is now an estimated dynamic mea-
surement of temporal drift and is updated each time a new bar is
performed. The micro timing offsets are then subtracted from this
grid, using the technique defined in Eq. 8, replacing τ with τ̂m and
interpolated for n.

2.2. Inter-Player Dependence

We model the interdependence (αi,j) amongst performers in the
group using lagged cross-correlation, in which player i’s stream is
lagged by a pre-defined number of events (n) and correlated with
the stream of player j. This allows us to estimate the amount of de-
pendence that one player has on another. This technique has been
demonstrated by [9] to be optimal at a single event, suggesting that
players are highly receptive to short-term variations in accompani-
ment. This measurement is demonstrated in Eq 10.

αi,j =
1

N

N−n−1∑
k=0

θ
(i)
k θ

(j)
k+n (10)

Where n is a non-negative integer representing the number of events
to lag, set to 1 for this application.

3. EXPERIMENT: STRING QUARTET MODELLING

In order to evaluate the performance of the model, we analyse a
professional quartet performing an excerpt from the 4th movement
of Hayden’s String Quartet Op. 74 No. 1 in C-Major, the score for
which is given in Figure 2. The quartet consisted of two violins, a
viola and a cello, and the excerpt was chosen due to the number of
notes being performed concurrently. The quartet have around 12
years experience performing together, and were shown by [9] to
follow the lead violin player relatively closely. The excerpt, con-
sisting of 12 bars was performed and recorded 15 times using the
same equipment and the musicians were asked to perform using
their natural expression. In total, each take contained 48 musical
events, all of which were being performed by all members of the
quartet at the same metrical positions in the bar.

Each player was recorded using an individual instrument mi-
crophone (DPA 4061), positioned on the body of each instrument
with a rubber mount in order to reduce bleed in the recordings.
The onsets from each player were then extracted using a spectral-
flux based technique, and adjusted manually to improve accuracy.
To find the microtiming offsets, the pulse was estimated at the be-
ginning of each bar using the method defined in Eq. 9 and the

events were subtracted using the technique defined in Eq. 8. The
mean tempo for the recordings was found to be 105.0 BPM, with
a standard deviation of 6.49. Figure 3 illustrates offset measure-
ments from all 15 takes, with the mean of the results represented
in black. Here, deviations are shown across all four performers
playing concurrently.
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Figure 3: A graphical representation of the microtiming deviation
(θ) for all four performers. the measurements are taken across 15
takes of the same piece with the mean offset indicated in black, the
vertical lines represent bar divisions.

3.1. Subjective Evaluation

To evaluate the perceived naturalness of the model, subjective lis-
tening tests were conducted using a MUSHRA-based methodol-
ogy [10]. The subjects were asked to rank each of the samples
with a multi-stimulus interface and provide a rating between 0-
100 for how naturally expressive each sample was perceived to
be. Participants were informed that the experiments were based on
professional musicians and were played an excerpt from a string
quartet (not included in the stimuli) before the test began. In to-
tal 20 people participated in the experiment, all of whom were all
aged between 18-35 and had normal hearing. All participants had
some experience in performing or producing music.

The stimuli consisted of 25 versions of the same synthesised
polyphonic sequence, the score for which was taken from Haydn’s
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Figure 2: The score of the excerpt taken from Hayden’s Quartet Op. 74 No. 1 in C Major, in which 4 separate instrument parts are shown.

Quartet Op. 74 and synthesised using a string ensemble pre-set
from the Logic Studio 9 plug-in: EXS24 (Apple, CA, USA). The
sequences were compiled by generating MIDI note-on messages
and importing them into a sequencer. The MIDI was generated
using 5 different techniques, these can be categorised as follows1.
• Quantised: The note-on messages were quantised to a fixed

grid, thus exhibiting no temporal variation.
• Gaussian: Each of the note-on messages were modulated

using an independent Gaussian window.
• MC: The note-on messages for each channel were modu-

lated using a conditionally independent Markov chain.
• MVMC: The note-on messages are modulated using the MVMC

model presented in Eq. 5.
• Human: The onsets are taken from a dataset of human per-

formers.
In order to isolate microtiming deviation, other parameters

such as note-off and velocity were fixed to constant variables. The
length of each event was fixed to 1/4-note length and the global
tempo was varied across samples, bounded by measurements from
the dataset. To control the mean and variance of the micro tim-
ing deviations across conditions, the µ and σ parameters used to
characterise the distributions in the Gaussian method were derived
from the dataset of human performers. This meant that all tech-
niques were able to produce a similar range of θ values.

4. RESULTS

4.1. Performance Analysis

From our observations of a string quartet performing 15 iterations
of a 12-bar of a piece in 4/4, we can identify characteristics of the
musical group by performing analysis on the data. Firstly, the max-
imum microtiming deviation was measured to be 198.02ms and
the minimum was -202.48ms. Overall the mean was 6.51ms, with
a SD of 2.65ms. As the mean tempo was observed to be 105BPM,
in 4/4 time signature, the maximum deviation was around 35.4%
and the mean deviation was around 1.2% of the inter-onset interval
(IOI).

The dependencies between each performer in the group are
summarised in Eq. 11 and also shown using boxplots in Figure 4.
Both of these diagrams represent the variable α in the model.

α =


0.410 0.009 0.026 0.001

0.177 0.257 0.113 0.147

0.217 0.203 0.320 0.175

0.007 0.151 0.072 0.181

 (11)

1Stimuli can be found at http://www.ryanstables.co.uk/data/dafx14
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Figure 4: Boxplot representation of inter-player dependence mea-
sured over 15 takes. This is measured using a lagged cross-
correlation function.

Here it is evident that the most highly correlated measurements
taken from the data are based on lagged autocorrelation. This pro-
motes the use of Markov chains in musical performance modelling
as it suggests there is a strong relationship between an event (xn)
and it’s predecessor (xn−1) within the same stream. Generally, the
1st violin has very low correlation scores with the other musicians
in the group with a mean of 0.012 and a very high auto-correlation
measurement. This suggests that they have adopted the role of lead
performer. The other musicians in the group are generally more
positively correlated with each other. Here, both the 2nd Violin
and the viola player are following the lead violin, whilst the Cello
is following the 2nd violin. We can calculate a leadership metric
(lα) for each player by taking the column-wise means, excluding
the autocorrelation measurements at cell αij where i = j. This is
illustrated in Eq. 12.

lα =
{

0.1337 0.1210 0.0703 0.1077
}

(12)
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Figure 5: A boxplot showing subjective listening test results taken
from 20 subjects. The stimuli consisted of 5 samples taken from 5
categories (25 in total).

Here, it is evident that the 1st Violin has the highest degree of lead-
ership, reinforcing the suggestion that the performer has a leading
role within the group.

4.2. Model Evaluation

In order to evaluate the naturalness of the model, we performed
subjective tests to identify the similarity between the generated se-
quences and the performed sequences. The results from the subjec-
tive tests are illustrated in Figure 5. Here, it is evident that the mi-
crotiming sequences sampled from real musicians performed bet-
ter than any of the synthetic samples with a mean score of 77.59%.
The lowest scoring categories were Gaussian and Quantised mod-
els, which scored 22.33% and 21.42% respectively. The samples
that were generated using the proposed multivariate model scored
relatively highly with 63.39%, this was 21.94% higher than the
closest category, which was the univariate model suggested in [5].
This result shows that the multivariate model performs slightly
less favourably than using onsets taken directly from human per-
formers, however it outperforms all existing methods for univariate
modulation.

5. DISCUSSION

5.1. Model Performance

From the analysis of the string quartet, it is evident that the per-
formers all seem to have stronger lagged autocorrelation scores
(αij , where i = j), than cross-correlation scores (i 6= j). This
would suggest that the internal representation of time held by each
player takes priority over the external timings of group perfor-
mance. Whilst these autocorrelation scores are significantly higher
than the cross-correlation measurements, the performers still pro-
duce a sufficient amount of microtiming offset to cause potentially
audible phase errors in the piece. This suggests the model’s de-
pendence matrix (α) is a significant factor as both the univariate
model and the normally distributed model (with equivalent µ and

σ parameters) underperform at producing timing sequences with
natural expressivity. Subjectively, the multivariate model tends to
produce much more confluent sequences than any of the univariate
models running in parallel across multiple channels.

Whilst the subjective listening tests show an increased mean
score for the multivariate model, suggesting the model is able to
produce realistic musical sequences, there is a much higher vari-
ance than in other categories. This means there is uncertainty
within the results, with some participants rating the system as low
as 7/100. This is acceptable to an extent due to the relative uncer-
tainty in the human samples, however it suggests there is room for
improvement due to the inconsistency in results.

5.2. Implementation

Whilst we have demonstrated that the univariate models running
in parallel do not perform particularly well for this application,
the model allows for the conversion between univariate and mul-
tivariate methods by converting α to an identity matrix, imposing
conditional independence on all streams. Similarly, we can alter
the dependencies in α to change the characteristics of the musi-
cal group. If for example, the performance requires the group to
closely follow Violin 1, the values in column 1 can be incremented,
thus increasing the performers’ leadership score (lα). From an im-
plementation standpoint, this is relatively simple to parameterise
as users of the system can input values into the dependence matrix
directly or via some mapping function.

Another key aspect to producing natural sounding rhythmic
performance is tempo variation. In our listening tests, this was
based on existing templates taken from our dataset. In most hu-
manisation systems, this is ignored as control is generally main-
tained by the host application. For systems that wish to include
this attribute, another variable can be added directly to the sum
in Eq. 5, derived using the technique defined in Eq. 8. In the
performances measured for this study, the tempo variation has a
particularly high standard deviation due to the expressive nature of
the music. In other genres such as pop-music, this may not be as
important due to the prominence of quantisation and click-tracks.

6. CONCLUSION

In this paper, we have presented a model for the synchronous mod-
ulation of multiple streams of onsets using a multivariate Markov
model. The model derives parameters from a user-defined cor-
pus of multi-performer musical data and probabilistically applies
modulation to a group of concurrent sequences. We can estimate
the inter-player dependencies using lagged cross-correlation met-
ric and approximate the pulse of the group using the bar-wise mean
of all performers. The model is designed to alleviate the phase is-
sues that arise when humanisation algorithms are applied to mul-
tiple sequences simultaneously.

We have demonstrated that the model outperforms univariate
techniques including an instantaneous pseudorandom model and a
Markov chain model applied independently to multiple channels,
using data from a string quartet performing Haydn’s Quartet Op.
74 No. 1 in C-Major. Through subjective listening tests, we ob-
served an improvement of 21.94% accuracy on the closest syn-
thesized category when measured for naturalness of expression.
Whilst this was a significant improvement, sequences derived di-
rectly from human agents were still perceived to be more expres-
sive than the model, indicating the importance and complexity of
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the interdependence in multi-player musical performance that re-
quires further attention.
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