
Web Audio Evaluation Tool: A framework for subjective
assessment of audio

Nicholas Jillings2

nicholas.jillings@mail.bcu.ac.uk
Brecht De Man1

b.deman@qmul.ac.uk

David Moffat1
d.j.moffat@qmul.ac.uk

Joshua D. Reiss1

joshua.reiss@qmul.ac.uk
Ryan Stables2

ryan.stables@bcu.ac.uk
Centre for Digital Music, School of Electronic Engineering and Computer Science1

Queen Mary University of London
Mile End Road, London E1 4NS

United Kingdom

Digital Media Technology Lab2

Birmingham City University
Birmingham B4 7XG

United Kingdom

ABSTRACT
Perceptual listening tests are commonplace in audio research
and a vital form of evaluation. While a large number of tools
exist to run such tests, many feature just one test type, are
platform dependent, run on proprietary software, or require
considerable configuration and programming. Using Web
Audio, the Web Audio Evaluation Tool (WAET) addresses
these concerns by having one toolbox which can be con-
figured to run many different tests, perform it through a
web browser and without needing proprietary software or
computer programming knowledge. In this paper the role
of the Web Audio API in giving WAET key functionalities
are shown. The paper also highlights less common features,
available to web based tools, such as easy remote testing
environment and in-browser analytics.

1. INTRODUCTION
Perceptual evaluation of audio, using listening tests, is a

powerful way to assess anything from audio codec quality
over realism of sound synthesis to the performance of source
separation, automated music production and other auditory
evaluations. In less technical areas, the framework of a lis-
tening test can be used to measure emotional response to
music or test cognitive abilities.

Several applications for performing perceptual listening
tests currently exist, see Table 1. Many rely on proprietary,
third party software such as MATLAB and Max, making
them less attractive for many. With the exception of the ex-
isting JavaScript-based toolboxes, remote deployment (web-
based test hosting and result collection) is not possible.

HULTI-GEN [1] is an example of a toolbox that presents

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA

c© 2016 Copyright held by the owner/author(s).

the user with a large number of different test interfaces
and customisation, without requiring knowledge of any pro-
gramming language. The Web Audio Evaluation Toolbox
(WAET), presented here, stands out for the same reasons
but in addition does not require proprietary software or a
specific platform. It also provides a wide range of interface
and test types in one user friendly environment. Further-
more, any test based on the default test types can be con-
figured in the browser as well. Note that the design of an
effective listening test further poses many challenges unre-
lated to interface design, which are beyond the scope of this
paper [2].

The Web Audio API provides important features includ-
ing sample level manipulation of audio streams [3] and syn-
chronous and flexible playback. Operating in the browser
allows leveraging the flexible JavaScript language and native
support for web documents, such as the extensible markup
language (XML) which is used for configuration and test
result files. Using the web also reduces deployment require-
ments to a basic web server with extra functionality, such as
test collection and automatic processing, using PHP. As re-
cruiting participants can be very time-consuming, and as for
some tests a large number of participants is needed, browser-
based tests can enable participants in multiple locations to
perform the test simultaneously [3].

Both BeaqleJS [4] and mushraJS1 also operate in the
browser. However, BeaqleJS does not make use of the Web
Audio API and therefore lacks arbitrary manipulation of
audio stream samples, and neither offer an adequately wide
choice of test designs for them to be useful to many re-
searchers.

To meet the need for a cross-platform, versatile and easy-
to-use listening test tool, we previously developed the Web
Audio Evaluation Tool [9] which was capable of running a
listening test in the browser from an XML configuration file,
and storing an XML file as well, with one particular inter-
face. This has now expanded into a tool with which a wide
range of listening test types can easily be constructed and set

1github.com/akaroice/mushraJS

https://github.com/akaroice/mushraJS
https://github.com/akaroice/mushraJS


Table 1: Table with existing listening test platforms and their features

Toolbox A
P
E

B
e
a
q
le
J
S

H
U
L
T
I-
G
E
N

m
u
sh

r
a
J
S

M
U
S
H
R
A
M

S
c
a
le

W
h
is
P
E
R

W
A
E
T

Reference [5] [4] [1] [6] [7] [8] [9]
Language MATLAB JS MAX JS MATLAB MATLAB MATLAB JS
Remote (X) X X

MUSHRA (ITU-R BS. 1534) X X X X X
APE X X
Rank Scale X X
Likert Scale X X X
ABC/HR (ITU-R BS. 1116) X X
-50 to 50 Bipolar with ref. X X
Absolute Category Rating Scale X X
Degradation Category Rating Scale X X
Comparison Category Rating Scale X X X
9 Point Hedonic Category Rating Scale X X X
ITU-R 5 Continuous Impairment Scale X X
Pairwise / AB Test X X
Multi-attribute ratings X X
ABX Test X X X
Adaptive psychophysical methods X
Repertory Grid Technique X
Semantic Differential X X X
n-Alternative Forced Choice X

Figure 1: A simple example of a multi-stimulus, sin-
gle attribute, single rating scale test with a reference
and comment fields.

up remotely, without any need for manually altering code or
configuration files, and allows visualisation of the collected
results in the browser. In this paper, we discuss these differ-
ent aspects and explore which future improvements would
be possible.

2. ARCHITECTURE
Although WAET uses a sparse subset of the Web Au-

dio API functionality, its performance comes directly from
it. Listening tests can convey large amounts of information
other than obtaining the perceptual relationship between the
audio fragments. With WAET it is possible to track which
parts of the audio fragments were listened to and when, at
what point in the audio stream the participant switched to
a different fragment, and how a fragment’s rating was ad-
justed over time within a session, to name a few. Not only

does this allow evaluation of a wealth of perceptual aspects,
but it also helps detect poor participants whose results are
potentially not representative.

One of the key initial design parameters for WAET was
to make the tool as open as possible to non-programmers.
To this end, all of the user modifiable options are included
in a single XML document, referred to as the specification
document, that can be written manually (or modifying an
existing document or template) or using the included test
creator. The test creator can modify existing specification
documents or generate new ones in an intuitive yet power-
ful HTML GUI. This simplifies the creation of elements by
visualising the data structure with explanatory text.

The specification document contains the URL of the au-
dio fragments for each test page. These fragments are down-
loaded asynchronously in the test and decoded offline by the
Web Audio offline decoder. The LUFS integrated loudness
of the buffers are calculated [10] and stored to enable on-the-
fly loudness normalisation. If the playback uses synchronous
looping, the buffers are zero-padded accordingly. Perform-
ing these in the browser removes any need for pre-processing.
The resulting buffers are assigned to a custom Audio Ob-
jects node which tracks the fragment buffer, the Web Audio
bufferSourceNode, and other specification attributes includ-
ing its ID, the interface object(s) associated with the frag-
ment and any metric or data collection objects. The Audio
Object is controlled by an over-arching custom Audio Engine
node allowing for session wide control of the Audio Objects.

The only significant issue with this model is the bufferN-
ode in the Web Audio API, implemented in the standard
as a ‘use once’ object. Once the node has been played, it
must be discarded as it cannot be instructed to play again.
Therefore on each play request the bufferSourceNode must
be created and then linked with the stored bufferNode. This
is an odd behaviour with no alternative except to use the



HTML5 audio element, but they do not have the ability to
synchronously start on a given time and therefore not suited.

In the test, each buffer node is connected to a gain node
configured by the loudness normalisation and any user spec-
ified gain. Therefore it is possible to perform a ‘Method of
Adjustment’ test where an interface could directly manipu-
late these gain nodes. These gain nodes are used for cross-
fading between samples when operating in synchronous play-
back. Cross-fading can either be fade-out followed by a fade-
in, or a true cross-fade. This is achieved by using the Au-
dioParam controls to provide linear ramping from 0 to the
calculated playback level. There is also an optional ‘Mas-
ter Volume’ slider which can be shown on the test GUI to
modify a gain node before the destination. The control’s
position is tracked providing extra test use validation. This
is not indicative of the final volume exiting the speakers,
though, not least because the browser cannot read the sys-
tem volume. Therefore its use should only be considered in
a lab environment to ensure results are representative.

The media files supported depend on the browser level
support for the initial decoding of information and is the
same as the browser support for the HTML5 audio element.
The most widely supported media file is the wave (.WAV)
format which is accepted by every browser supporting the
Web Audio API. Most browsers support floating point WAV
except Firefox. To resolve this, the tool includes its own
wave file decoder to extract the samples. The toolbox works
in any browser which supports the Web Audio API and
HTML 5.

All collected session data is returned in an XML docu-
ment structured similarly to the configuration document,
where test pages contain the audio elements with their trace
collection, results, comments and any interface-specific data
points.

3. REMOTE TESTS
If the experimenter is willing to trade some degree of con-

trol for a higher number of participants, the test can be
hosted on a public web server. This way, a link can be
shared widely in the hope of attracting a large amount of
subjects, while listening conditions and subject reliability
may be less ideal. However, a sound system calibration page
and the range of metrics logged mitigate these problems. In
some experiments, it may be preferred that the subject has
a ‘real life’, familiar listening set-up, for instance when per-
ceived quality differences on everyday sound systems are in-
vestigated. Furthermore, a fully browser-based test, where
the collection of the results is automatic, is more efficient
and technically reliable even when the test still takes place
under lab conditions.

The following features allow easy and effective remote
testing:

• PHP script to collect result XML files and store
on central server.

• Randomly pick a specified number of pages to
ensure an equal and randomised spread of the different
pages across participants.

• Calibration of the sound system (and partici-
pant) by a perceptual pre-test to gather information
about the frequency response and speaker configura-
tion - this can be supplemented with a survey.

• Intermediate saves for tests which were interrupted
or unfinished.

• Collect IP address information for geographic lo-
cation, through PHP function which grabs address and
appends to XML file.

• Collect browser and display information to the
extent it is available and reliable.

4. INTERFACES
The purpose of this listening test framework is to allow

any user the maximum flexibility to design a listening test
for their exact application with minimum effort. To this
end, a large range of standard listening test interfaces have
been implemented, including

• AB Test [11]: Two stimuli presented simultaneously,
participant selects a preferred stimulus.

• ABC/HR (ITU-R BS. 1116) [12] (Mean Opinion Score:
MOS): each stimulus has a continuous scale (5-1), la-
beled as Imperceptible, Perceptible but not annoying,
Slightly annoying, Annoying, Very annoying.

• -50 to 50 Bipolar with Ref: each stimulus has a contin-
uous scale -50 to 50 with default values as 0 in middle
and a reference.

• Absolute Category Rating (ACR) Scale [13]: Likert
but labels are Bad, Poor, Fair, Good, Excellent

• ABX Test [14]: Two stimuli are presented along with a
reference and the participant has to select a preferred
stimulus, often the closest to the reference.

• APE [5]: Multiple stimuli on one or more axes for
inter-sample rating.

• Comparison Category Rating (CCR) Scale [13]: ACR
& DCR but 7 point scale, with reference: Much bet-
ter, Better, Slightly better, About the same, Slightly
worse, Worse, Much worse.

• Degredation Category Rating (DCR) Scale [13]: ABC
& Likert but labels are (5) Inaudible, (4) Audible but
not annoying, (3) Slightly annoying, (2) Annoying, (1)
Very annoying.

• ITU-R 5 Point Continuous Impairment Scale [15]: Same
as ABC/HR but with a reference.

• Likert scale [16]: each stimulus has a five point scale
with values: Strongly agree, Agree, Neutral, Disagree
and Strongly disagree.

• MUSHRA (ITU-R BS. 1534) [17]
• Pairwise Comparison (Better/Worse) [18]: every stim-

ulus is rated as being either better or worse than the
reference.

• Rank Scale [19]: stimuli ranked on single horizontal
scale, where they are ordered in preference order.

• 9 Point Hedonic Category Rating Scale [20]: each stim-
ulus has a seven point scale with values: Like ex-
tremely, Like very much, Like moderate, Like slightly,
Neither like nor dislike, Dislike extremely, Dislike very
much, Dislike moderate, Dislike slightly. There is also
a provided reference.

It is possible to include any number of references, hidden
references, hidden anchors and comment fields into all of
these listening test formats.

Because of the design to have separate core code and in-
terface modules, it is possible for a third party interface
to be built with minimal effort. The repository includes a
boilerplate (blank.js) and documentation on which functions
must be called and the specific functions they expect your
interface to perform. The core includes an ‘Interface’ object
which includes object prototypes for the on-page comment



boxes (including those with radio or checkbox responses),
start and stop buttons and the playhead / transport bars.

5. ANALYSIS AND DIAGNOSTICS
There are several benefits to providing basic analysis tools

in the browser: they allow diagnosing problems, with the
interface or with the test subject; they may be sufficient
for many researchers’ purposes; and test subjects may enjoy
seeing an overview of their own results and/or results thus
far at the end of their tests.

For this reason, we include a proof-of-concept web page
with:

• All page IDs, file names, subject IDs, audio element
IDs, ... in the collected XMLs so far

• Selection of subjects and/or test samples to zoom in
on a subset of the data

• Embedded audio to hear corresponding test samples
• Scatter plot, confidence plot and box plot of rating

values (see Figure 2)
• Timeline for a specific subject
• Distribution plots of any radio button and number

questions in pre- and post-test survey
• All ‘comments’ on a specific audioelement
• A ‘download’ function for a CSV of ratings, survey

responses and comments

Figure 2: Box and whisker plot showing the aggre-
gated numerical ratings of six stimuli by a group of
subjects.

6. CONCLUDING REMARKS
We have developed a browser-based tool for the design and

deployment of listening tests, requiring no programming ex-
perience or proprietary software. Following the predictions
or guidelines in [3], it supports remote testing, cross-fading
between audio streams, collecting information about the sys-
tem, among others.

Whereas many other types of interfaces do exist, we felt
that supporting e.g. a range of ‘method of adjustment’ tests
would be beyond the scope of a tool that aims to be versa-
tile enough while not claiming to support any custom experi-
ment one might want to set up. Rather, it supports intuitive
creation of non-adaptive listening tests up to multi-stimulus,
multi-attribute evaluation including references, anchors, text
boxes, radio buttons and/or checkboxes, with arbitrary place-
ment of the various UI elements, and many standard test
‘presets’ already available.

The code and documentation can be downloaded from the

SoundSoftware repository2.

7. REFERENCES
[1] C. Gribben and H. Lee, “Toward the development of a

universal listening test interface generator in Max,” in AES
Convention 138, 2015.

[2] S. Bech and N. Zacharov, Perceptual Audio Evaluation -
Theory, Method and Application. John Wiley & Sons, 2007.

[3] M. Schoeffler, F.-R. Stöter, B. Edler, and J. Herre,
“Towards the next generation of web-based experiments: A
case study assessing basic audio quality following the
ITU-R Recommendation BS. 1534 (MUSHRA),” in 1st Web
Audio Conference, 2015.

[4] S. Kraft and U. Zölzer, “BeaqleJS: HTML5 and JavaScript
based framework for the subjective evaluation of audio
quality,” in Linux Audio Conference, Karlsruhe, DE, 2014.

[5] B. De Man and J. D. Reiss, “APE: Audio Perceptual
Evaluation toolbox for MATLAB,” in 136th Convention of
the AES, 2014.

[6] E. Vincent, M. G. Jafari, and M. D. Plumbley,
“Preliminary guidelines for subjective evalutation of audio
source separation algorithms,” in UK ICA Research
Network Workshop, 2006.

[7] A. V. Giner, “Scale - A software tool for listening
experiments,” in AIA/DAGA Conference on Acoustics,
Merano (Italy), 2013.

[8] S. Ciba, A. Wlodarski, and H.-J. Maempel, “WhisPER - A
new tool for performing listening tests,” in 126th
Convention of the AES, 2009.

[9] N. Jillings, D. Moffat, B. De Man, and J. D. Reiss, “Web
Audio Evaluation Tool: A browser-based listening test
environment,” in 12th Sound and Music Computing
Conference, 2015.

[10] “Recommendation ITU-R BS.1770-4: Algorithms to
measure audio programme loudness and true-peak audio
level,” International Telecommunication Union, 2015.

[11] S. P. Lipshitz and J. Vanderkooy, “The Great Debate:
Subjective evaluation,” Journal of the AES, vol. 29,
no. 7/8, pp. 482–491, 1981.

[12] “Recommendation ITU-R BS. 1116-1: Methods for the
subjective assessment of small impairments in audio
systems including multichannel sound systems,”
International Telecommunication Union, 1997.

[13] “Recommendation ITU-T P. 800: Methods for subjective
determination of transmission quality,” International
Telecommunication Union, 1996.

[14] D. Clark, “High-resolution subjective testing using a
double-blind comparator,” Journal of the AES, vol. 30,
no. 5, pp. 330–338, 1982.

[15] “Recommendation ITU-R BS. 562-3: Subjective assessment
of sound quality,” International Telecommunication Union,
1997.

[16] R. Likert, “A technique for the measurement of attitudes,”
Archives of Psychology, 1932.

[17] “Recommendation ITU-R BS.1534-1: Method for the
subjective assessment of intermediate quality levels of
coding systems,” International Telecommunication Union,
2003.

[18] H. A. David, The method of paired comparisons, vol. 12.
DTIC Document, 1963.

[19] G. C. Pascoe and C. C. Attkisson, “The evaluation ranking
scale: A new methodology for assessing satisfaction,”
Evaluation and program planning, vol. 6, no. 3,
pp. 335–347, 1983.

[20] D. R. Peryam and N. F. Girardot, “Advanced taste-test
method,” Food Engineering, vol. 24, no. 7, pp. 58–61, 1952.

2code.soundsoftware.ac.uk/projects/webaudioevaluationtool

https://code.soundsoftware.ac.uk/projects/webaudioevaluationtool
https://code.soundsoftware.ac.uk/projects/webaudioevaluationtool

	Introduction
	Architecture
	Remote tests
	Interfaces
	Analysis and diagnostics
	Concluding remarks
	References

