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Abstract 

The consolidation of new associations is thought to depend in part on physiological processes 

engaged during non-REM (NREM) sleep, such as slow oscillations and sleep spindles. 

Moreover, NREM sleep is thought to selectively benefit associations that are adaptive for the 

future. In line with this, the current study investigated whether different reward cues at 

encoding are associated with changes in sleep physiology and memory retention. Participants’ 

associative memory was tested after learning a list of arbitrarily paired words both before and 

after taking a 90-minute nap. During learning, word-pairs were preceded by a cue indicating 

either a high or a low reward for correct memory performance at test. The motivation 

manipulation successfully impacted retention such that memory declined to a greater extent 

from pre- to post sleep for low rewarded than for high rewarded word-pairs. In line with 

previous studies, positive correlations between spindle density during NREM sleep and general 

memory performance pre- and post-sleep were found. In addition to this, however, a selective 

positive relationship between memory performance for highly rewarded word-pairs at posttest 

and spindle density during NREM sleep was also observed. These results support the view that 

motivationally salient memories are preferentially consolidated and that sleep spindles may be 

an important underlying mechanism for selective consolidation. 
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1. Introduction 

One important aspect of language learning, in particular second language learning, is 

the formation of associations between words. A process thought to be vital to the successful 

consolidation of memories is sleep (Rasch & Born, 2013). Benefits of sleep have been reported 

in procedural as well as declarative memory tasks (Fischer & Born, 2009; Fischer, Hallschmid, 

Elsner, & Born, 2002; Lau, Tucker, & Fishbein, 2010; Marshall, Molle, Hallschmid, & Born, 

2004; Tucker et al., 2006; Walker, Stickgold, Alsop, Gaab, & Schlaug, 2005; Wilhelm et al., 

2011). It seems that slow oscillations during slow-wave-sleep (SWS) and associated sleep 

spindles are particularly important for declarative memory consolidation (Born & Wilhelm, 

2012; Cox, Hofman, & Talamini, 2012; Gais, Molle, Helms, & Born, 2002; Marshall et al., 

2004; Mednick et al., 2013; Saletin, Goldstein, & Walker, 2011; Schmidt et al., 2006). 

Consequently, SWS and associated physiological mechanisms are presumed to be important 

for the successful acquisition of new associations which underpin some forms of language 

learning (Opitz & Friederici, 2004).  

In one recent study demonstrating the benefits of SWS and sleep spindles for 

hippocampus-dependent memories, we used memory tasks with single words and non-related 

word-pairs to compare the impact of nap sleep on item memory vs. associative memory (Studte, 

Bridger, & Mecklinger, 2015). In the item memory task, single words were to be judged as 

learned or new, whilst in the associative task participants were required to distinguish between 

learnt, learnt but rearranged and new word-pairs. The former test requires only recognition of 

simple item memory, whereas the ability to retrieve associations between learnt word-pairs is 

necessary to perform the associative test. A beneficial effect of 90 minutes of nap sleep was 

only found for associative memory performance, and this manifested as a smaller decrease in 

associative memory performance over time. Associative recognition memory performance 

after sleep was also found to be associated with sleep spindle density at frontal sites during 
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SWS, and performance before sleep was marginally correlated with sleep spindle density at 

frontal sites during non-REM (NREM) sleep. No corresponding correlations were observed for 

item memory, which underlines the strong association between associative memory 

performance and SWS mechanisms.  

Not all learnt information is retained after sleep however and which memories benefit 

from sleep and which do not remains to be fully specified. There is increasing evidence that 

sleep works as a filter by predominantly strengthening memories that are adaptive or of 

relevance to the future (Fischer & Born, 2009; Oudiette, Antony, Creery, & Paller, 2013; 

Saletin et al., 2011; Stickgold & Walker, 2013; van Dongen, Thielen, Takashima, Barth, & 

Fernández, 2012; Wilhelm et al., 2011). In one model of selective memory consolidation, 

Stickgold and Walker (2013) assume that consolidation of information will only occur if items 

are tagged as important during or after encoding. These tags could be induced by task relevance 

(Saletin et al., 2011; Wilhelm et al., 2011), emotionality (Payne, Stickgold, Swanberg, & 

Kensinger, 2008) or expected reward (Fischer & Born, 2009; Oudiette et al., 2013). Selective 

beneficial effects of sleep have been shown for both motor (Fischer & Born, 2009) and 

declarative memory tasks, such as word paired-associate tasks (Wilhelm et al., 2011) and object 

location tasks (Oudiette et al., 2013; van Dongen et al., 2012). In one pertinent demonstration 

of this, Wilhelm and colleagues (2011) asked participants to learn lists of semantically-related 

word-pair associates before 9 hour retention intervals filled with either sleep or wakefulness. 

Critically, participants were randomly allocated to be either informed or uninformed that they 

would be later tested on their memory for these items after the retention interval. Participants 

who were informed that they would be later tested performed better on the final memory test 

than their uninformed counterparts, but only if they slept in the retention interval. These 

participants also demonstrated a robust increase in slow oscillation activity and sleep spindles 
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during slow-wave-sleep (SWS); again in line with the association between these physiological 

mechanisms and preserved associative memory. 

 The preceding considerations of the existent literature strongly indicate that sleep 

should preserve memory for word-pair associations that are tagged as relevant for the future. 

Moreover, data repeatedly demonstrating the engagement of SWS mechanisms predicts that 

the mnemonic benefits for information that undergoes a specific learning experience should be 

evident even after a 90-minute nap, so long as this is sufficient for individuals to engage in a 

prolonged phase of SWS. In the current study, all participants learnt a list of word-pairs and 

were tested on their memory both before and after taking a nap. Critically, half of the word-

pairs were preceded by a cue which indicated that later correct performance would be rewarded 

at a high level; whereas for the remainder, the cue indicated that the reward was relatively low 

(see Oudiette et al., 2013 for a similar approach to induce motivational salience). The logic 

behind this manipulation was that these reward cues should make high reward items 

motivationally more relevant and tagged for selective consolidation during sleep compared to 

low reward items. This should lead to better memory performance for high- than low-reward 

items after sleep, manifest as a significantly smaller decline in memory performance for high-

rewarded associations over time (Studte et al., 2015). In line with the notion that the 

physiological variables during NREM/SWS sleep are associated with selective consolidation, 

however, specific predictions about the relationship between spindle density (SpD) and 

memory performance were explicitly considered. If a correlation between SpD and memory 

performance for high but not low rewarded items can be observed, this would provide evidence 

for a selective role of sleep in memory consolidation, in particular a role for sleep spindles in 

the selective tagging of memories from a specific learning experience, in our case memories 

for events with a high motivational value (Murty & Adcock, 2014).  
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 In the current experiment therefore, behavioral and polysomnographic data were used 

to investigate how reward cues during encoding might interact with the benefits of nap sleep 

on associative recognition and how this would relate to physiological variables during sleep. A 

final aspect of the current design was the employment of an associative recognition memory 

test as was the case in our former study (Studte et al., 2015), in which word-pairs were to be 

classified as either old, recombined or new. Responses to these categories were used to create 

two discrimination measures. An old/new discrimination Pr index (PrI- score), calculated by 

subtracting false alarms to new pairs from the hit rate for old pairs (Snodgrass & Corwin, 1988) 

was taken to represent item memory performance whilst an associative PrA-score, calculated 

by subtracting the proportion of recombined pairs incorrectly classified as old (false alarms to 

recombined) from the hit rate for old pairs, was employed as a measure of 

recollection/associative memory (Bader, Mecklinger, Hoppstadter, & Meyer, 2010; Kriukova, 

Bridger, & Mecklinger, 2013). Sleep was expected to benefit associative but not item memory 

retention (Daurat, Terrier, Foret, & Tiberge, 2007; Drosopoulos, Wagner, & Born, 2005; Studte 

et al., 2015). 
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2. Methods 

2.1 Participants 

21 healthy young adults from Saarland University participated in this experiment. Data 

from 9 additional subjects were excluded due to (a) not sleeping (no occurrence of stage 2 

sleep; n=3), (b) technical problems1 (n=3) and (c) incorrect use of response buttons at pretest 

(n=3). The latter refers to two subjects who pressed two out of three possible buttons on at least 

80% of all trials and one subject who consistently confused “old” and “recombined”. All three 

of these excluded participants had a discrimination score at least 2 SDs lower than the mean in 

at least one of the two reward categories. The final sample consisted of 14 females and 7 males 

with a mean age of 21.7 ± 2.6. All participants stated that they did not have any sleep disorders, 

no known neurological problems and that they were right-handed (Oldfield, 1971). All gave 

written informed consent and were paid 20 € or equivalent course credit plus an additional 

reward which was dependent on their test performance (average: 9 € ± 3 €). The maximum 

additional reward was set to 20€.  

 

2.2 Stimuli 

270 semantically unrelated German word-pairs were used as stimuli. All words were 

nouns with a length between 3-10 letters and a frequency between 6 and 869 (Baayen, 

Piepenbrock, & Gulikers, 1995). 180 of the word-pairs were used in the previous nap sleep 

study from our lab (Studte et al., 2015). The remaining 90 word-pairs were newly created and 

evaluated in terms of semantic relationship and suitability to build a compound in order to 

reduce the pre-experimental associations within pairs (Bader et al., 2010). 30 additional 

                                                           
1 This refers to two instances in which the sleep EEG recording did not work and a further instance in which E-
prime failed to record responses so the session had to be stopped after the pretest. 
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subjects who did not participate in the main experiment rated the relatedness and unitization 

ability of the new and recombined word-pairs and only word-pairs with low relation and low 

unitization values (each ≤2 on a scale from 1-4) were included as test stimuli. There were six 

different stimuli-sets for word-pairs which were counterbalanced across our sample so that all 

items appeared equally often in each category (high/low reward; old/new/recombined). 

Recombined pairs were always rearranged within either the low or high reward category. 

  

2.3 Design and Procedure 

The experiment always began at 13:30 pm (see Fig. 1), at which time the sleep log - 

filled over the preceding three days - was checked by the experimenter. The sleep log asked 

for habitual bed, waking and rising times as well as for the occurrence of day naps and the 

ingestion of alcohol. Feelings of tiredness were also measured over several time points across 

the three days. Participants were instructed to maintain a normal sleep/wake pattern during the 

days before the experiment. At 13.45 pm the electrode setup began and the Handedness 

questionnaire as well as the Epworth and Stanford Sleepiness Scales were filled out. The 

Epworth Sleepiness Scale measures daily sleepiness by assessing the likelihood of falling 

asleep in different situations. The Stanford Sleepiness Scale (SSS) measures the current feeling 

of sleepiness on a 1-7 scale. There were 6 different time points for the sleepiness questionnaire, 

SSS1: before learning; SSS2: after learning SSS3: after pretest; SSS4: after napping; SSS5: 

before posttest and SSS6: at the end of the experiment.  

 

- Insert Figure 1 around here - 

 

The memory task was programmed using E-Prime 2.0 (Psychology Software Tools, E-

Studio 2.0.8.90). Participants sat in front of the monitor at a viewing distance of about 65 cm. 
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Stimuli were presented in black on a grey background (maximal horizontal visual angle ≈ 5.7°). 

After a fixation cross (500 ms), reward symbols were shown for 1000 ms. Reward symbols 

were either € or €€€, the latter depicting the high- and the former the low-reward upcoming 

stimuli (see Fig. 2a). Participants did not know the exact value of either reward type (which 

was 0.20€ for high- and 0.02€ for low-reward correct answers) but were informed that the 

maximum additional reward they could earn was 20€, if they recognized all high-reward 

stimuli correctly at pre- and posttest2. Word-pairs were presented slightly below and above 

central vision at both study and test (vertical visual angle ≈4°). The presentation time of all 

word-pairs at study was 5000 ms. Participants were instructed to memorize items for a later 

memory test by imagining both items together in one picture. The study list with 180 word-

pairs was divided into six blocks. There were self-paced breaks in-between blocks. Stimuli 

were presented in random order with an interval of 550 ms (of which 500 ms was a fixation 

cross). The duration of the study phase was approximately 26 minutes.  

The initial memory test (pretest) was conducted immediately after the study phase. The 

pretest included 30 new, 30 old and 30 recombined word-pairs. Half of the test items had been 

associated with a high-reward cue during study, the remainder with a low-reward cue. 

Participants had to decide whether the presented word-pair was old, new or recombined and 

responded on one of three keys. The key assignment to right and left hand was counterbalanced 

across subjects. Word-pairs were presented for 1000 ms, followed by a 2000 ms long response 

window with an interval of 1000 ms. There were self-paced breaks in-between blocks. After 

the pretest, two electrodes were applied to the participant’s chin to measure muscle activity 

during sleep, before they were asked to lie down at around 15:15 pm (±15 minutes). 

Participants were given the opportunity to sleep for a maximum of 90 minutes. After waking, 

participants watched 20-25 minutes of a movie (Relaxing: The most beautiful landscapes on 

                                                           
2 It was made clear to the participants that low-reward stimuli contributed very little towards the additional 20€. 
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earth) featuring only instrumental sounds. This step was taken in order to reduce sleepiness 

effects on the second test (posttest). At around 17:15 (±15 minutes), the second test (posttest) 

was conducted. The posttest consisted of 60 new, 60 old and 60 recombined word-pairs; again 

half of these had been associated with high values during study, the other half with low values. 

The response procedure was the same as in the pretest.  

- Insert Figure 2 a & b around here  

 

2.4 Data acquisition and processing 

2.4.1 Electroencephalogram (EEG)  

EEG was recorded with BrainVision Recorder Version 1.20 (Brain Products). In total, 

32 Ag/AgCl electrodes were used including electrodes which were located above and below 

the right eye and outside the outer canthi of both eyes in order to assess electro-ocular activity 

and 2 electrodes at the chin for electromyographic recordings. Data were recorded with 

amplifier band pass filter settings from DC to 100 Hz and a Notch-filter at 50 Hz. The sampling 

rate was 1000 Hz for polysomnographic data acquisition during the nap. The EEG data 

recorded during the pre- and posttest are not reported here. All electrodes were recorded 

referenced to the left mastoid electrode and re-referenced to the average of the left and right 

mastoid (offline). Electrode impedances were kept below 5 kΩ.  

 

2.4.2 Sleep stage scoring 

Preprocessing of the sleep data was conducted using BrainVision Analyzer (2.0, Brain 

Products). Each 30 second epoch of sleep was scored visually into rapid-eye-movement 

(REM)-sleep or non-REM (NREM) sleep stages 1, 2, 3 or 4 according to standard criteria 

(Rechtschaffen & Kales, 1968). Slow-wave-sleep was calculated as the sum of sleep stages 3 

and 4. The time in minutes for each sleep stage, the total sleep time, the sleep onset latency, 
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wake time after sleep onset (WASO) and the percentage of sleep time in each stage with 

reference to total sleep time (TST) were determined. 

 

2.4.3 Sleep spindle analysis 

Sleep spindles were detected using an adaption of the algorithm originally provided by 

Ferrarelli et al., 2007 (see also Cox et al., 2012, Studte at al., 2015). In short, the envelope of 

the individual sleep EEG signal was computed using the Hilbert transform and its resulting 

absolute values. Unique thresholds for spindle detection were used for each participant. These 

were derived by calculating the mean plus two SD (lower threshold) and the mean plus four 

SD (higher threshold) of the participant’s filtered EEG signal. The average envelope amplitude 

was examined for spindle-comprising sleep stages (2, 3, and 4). To classify a spindle, two 

criteria had to be fulfilled: i) the duration between the points at which the signal fell above and 

below the lower threshold needed to be at least 500 ms and ii) the signal also had to cross the 

upper threshold within this 500 ms time window (Ferrarelli et al., 2007). Spindle density (SpD) 

at electrode Fz was calculated for NREM (S2+SWS) sleep by dividing the number of spindles 

by minutes of NREM (S2+SWS) sleep. 

 

2.5 Data Analysis 

For the behavioral data, analyses of variance (ANOVA) with factors of reward 

(high/low), time (pretest/posttest) and item-type (item/associative) were used. An old/new 

discrimination Pr index (PrI- score) was calculated by subtracting false alarms to new pairs 

from the hit rate for old pairs (PrI = hitsold-FAnew) (Snodgrass & Corwin, 1988) and aimed to 

provide a measure of item memory. Of principal interest was the ability of participants to 

distinguish between old and recombined pairs, so an associative PrA-score was computed 

(Bader et al., 2010; Kriukova et al., 2013) to reflect associative memory. This was calculated 
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by subtracting the proportion of recombined pairs incorrectly classified as old (false alarms to 

recombined) from the hit rate for old pairs (PrA = hitsold -FArec). For the reaction time data, 

ANOVAs with the factors time (pretest/posttest) and item condition 

(oldhigh/oldlow/new/rechigh/reclow) were conducted for correct answers. Subsidiary analyses were 

performed using t-tests which were corrected for multiple comparisons applying Holm’s 

sequential Bonferroni correction (Holm, 1979). Only contrasts that survived correction are 

reported, except where noted. 

For all analyses, the significance level was set to α=0.05. Where necessary, analyses 

included Greenhouse-Geisser corrections for nonsphericity with corrected p-values and 

uncorrected degrees of freedom (Greenhouse & Geisser, 1959).  

 

 

3. Results 

3.1 Behavioral data 

- Insert Figure 3 around here -   

 

Fig. 3 shows the mean PrI- (a) and PrA-scores (b) for the pre- and posttest separated by 

reward. To test the hypothesis that there will be a smaller decrease in memory performance 

from pre- to posttest for the high-rewarded compared to the low-rewarded word-pairs, a three-

way ANOVA (with factors reward, item-type and time) was conducted.  Main effects of time 

(F(1,20)=18.86, p<.001), item-type (F(1,20)=86.05, p<.001) and reward (F(1,20)=5.29, p<.05) 

and a marginally significant reward x time interaction (F(1,20)=4.26, p=.052) were revealed. 

To deconstruct the interaction, Bonferroni-corrected (p=.0125) follow-up tests were conducted, 

collapsed across item-type. At pretest, there was no significant reward effect (p=.447) whereas 
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this was significant at posttest (t(20) = 3.413, p=.003). The effect of time on performance was 

significant for low (t(20) = 6.099, p<.001) but not high-reward discrimination (p=.188). 

For an overview, Table 1 shows the hit and FA rates as well as reaction times for pre- 

and posttest for each item- and reward condition. 

 For reaction times, an ANOVA with factors time (2) and item condition (5) on correctly 

responded to items, revealed only a main effect of item condition (F(4,80)=49.19, p<.001). 

Follow-up analyses revealed no difference in response times for high vs. low rewarded pairs 

within either the old or recombined categories (all p>.23). Participants responded faster to 

correct old responses than correct rejections and recombined pairs (all p<.01) as well as faster 

to correct rejections than recombined pairs (all p<.01) irrespective of reward category. 

 To explore whether there was an influence of sleepiness on memory performance at 

pre- and posttest, the subjective feeling of sleepiness (as measured with the Stanford Sleepiness 

Scale [SSS]) was subjected to an ANOVA for the 6 measured time points. A main effect of 

sleepiness over time was revealed (F(5,100)=15.31, p<.001). Participants felt most awake 

before (SSS1: 1.90±0.44) and after the experiment (SSS6: 1.38±0.5) as well as before the 

second test (SSS5: 2.14±0.85) and remained relaxed wakeful in-between (SSS2: 2.90±0.89; 

SSS3: 2.57±0.93; SSS4: 2.90±0.77). Participants felt more awake before the post (SSS5) than 

the pretest (SSS2) (p=.012, uncorrected). This latter effect argues against the possibility that 

sleepiness accounts for the decrement in memory performance from pre to post-sleep. 
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Table 1 Hit rates (%), FA rates (%) and reaction times (ms) for Pre- and Posttest 

  Pretest Posttest 

  
Hit rate 

(SD) 

FA rate* 

(SD) 
RT (SD) 

Hit rate 

(SD) 

FA rate* 

(SD) 
RT (SD) 

Old 
High .71 (.19) - 1486 (204) .66 (.17) - 1558 (181) 

Low .65 (.19) - 1509 (202) .55 (.22) - 1588 (171) 

Rec. 
High .61 (.19) .16 (.11) 1832 (268) .58 (.19) .15 (.12) 1873 (253) 

Low .60 (.20) .12 (.12) 1865 (273) .51 (.16) .17 (.14) 1852 (254) 

New  .75 (.20) .03 (.04) 1681 (202) .65 (.17) .05 (.07) 1720 (230) 

*FA rate= old answers to new or recombined word-pairs 

 

3.2 Sleep data 

3.2.1 Polysomnographic data 

A summary of sleep parameters is shown in Table 2. The average time spent in sleep 

was about 71 minutes, spent mostly in stage 2 (S2) sleep (43.56%). Participants showed on 

average about 15.60 minutes of slow-wave-sleep (22.52%) and about 3 minutes of rapid-eye-

movement (REM) sleep (3.79%). Most participants showed SWS (n=18) but only one third 

reached REM sleep (REM: n=7) which accounts for the large variability of these measures. 
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Table 2 Sleep parameters 

 Minutes (SD) %  (SD) 

Latency 14.83  (12.22)   

Total Sleep Time 70.64  (15.83)   

Stage 1 8.14  (4.4) 11.56 5.93 

Stage 2 31.52  (13.51) 43.56 12.68 

Stage 3 10.36  (7.83) 15.04 11.61 

Stage 4 5.24  (6.58) 7.48 9.45 

REM 3.02  (4.92) 3.79 6.39 

WASO 12.36  (11.19) 18.57 17.78 

 

3.2.2 Sleep spindle data 

 

Table 3 Sleep spindle correlations (Fz) with PrI/PrA scores at posttest 

Low reward High reward 

PrI PrA PrI PrA 

r=0.36 (p=.11) r=0.3 (p=.19) r=0.54 (p<.05) r=0.52 (p<.05) 

- - r=0.43 (p=.06)* r=0.43 (p=.06)* 

* Outcomes of partial correlation analyses with pretest performance as control variable 
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 To test the prediction outlined in the introduction, correlations were calculated between 

SpD at Fz during NREM sleep (mean spindle density at Fz was 1.01, SD: 0.18) and Pr-scores 

for high-reward and low-reward pairs. As presented in Table 3 significant correlations were 

obtained between PrAhigh-score at posttest and SpDNREM as well as between PrIhigh-score at 

posttest and SpDNREM (Fig. 4). The corresponding correlations between SpDNREM and PrAhigh-

score/PrIhigh-score at pretest were not significant (p-values>.10), neither were there any 

significant correlations between SpD and PrA or PrI measures for low reward trials at pre- or 

posttest (p-values>.10). A partial correlation analysis revealed that the correlations between 

SpD and PrAhigh-/PrIhigh-scores at posttest were still marginally significant when pretest 

performance was controlled.  

In previous studies of this kind, correlations between spindle density and overall 

memory performance at both pre and posttest have been reported (Gais et al., 2002; Studte et 

al., 2015), and this was also tested in the current data. SpD at Fz during NREM correlated 

significantly with overall memory performance (% correct responses for all word-pairs (old 

and recombined pairs in the low and high reward condition plus new pairs)) both before and 

after sleep (pre: r=0.44, p<.05; post: r=0.53, p<.05, Fig. 5). A partial correlation analysis (with 

pretest overall memory performance as covariate) revealed that the correlation between posttest 

overall memory performance and SpD during NREM is no longer significant (r=0.34, p=.14) 

when pretest performance is controlled for.  

Taken together, the current data replicate previous findings that have shown that overall 

learning is related to NREM spindle density, but in addition reveal a specific correlation 

between NREM spindle density during napping and item and associative memory performance 

thereafter, which is unique to items tagged as motivationally salient during learning.   

 

- Insert Figure 4 around here - 
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- Insert Figure 5 around here - 

 

4. Discussion 

 The current study investigated whether different reward cues at encoding influence 

associative memory performance after nap sleep. Participants’ memory for associations was 

tested after learning a list of word-pairs both before and after taking a nap. During learning, 

word-pairs were either preceded by a cue indicating a high reward for correct performance at 

test or by a low-reward cue. There is increasing evidence that sleep should preserve memories 

that are tagged as relevant for the future (Fischer & Born, 2009; Oudiette et al., 2013; Saletin 

et al., 2011; Stickgold & Walker, 2013; Wilhelm et al., 2011). Since high reward items should 

be of higher motivational value and therefore be tagged at encoding for selective consolidation 

during sleep (Stickgold & Walker, 2013)3, we expected the memory benefit for high-rewarded 

pairs to be larger than for low-rewarded word-pairs after sleeping. This pattern was obtained: 

Memory performance declined to a greater extent for low rewarded than for high rewarded 

word-pairs after the nap. The absence of a wake control group in the current design, however, 

precludes any strong claims about the specific role of sleep on greater memory retention for 

high-reward items at posttest, on the basis of this pattern of data alone. We turn therefore, to 

the outcomes of the analyses on the relationship between sleep spindles and memory 

performance to provide important insight into the role of sleep in selective consolidation.  

First, consistent with prior studies, we found a correlation between pre- and post-sleep 

overall memory performance and spindle density in NREM sleep. In one previous study, Gais 

and colleagues (2002) compared the influence of a learning experience (paired associate task) 

                                                           
3 The neural mechanisms underlying tagging are still unknown. It has been reported that hippocampal activity at 
encoding is related to the amount of sleep related memory consolidation (Rauchs et al., 2011). However, it is still 
debated whether the hippocampus is the only brain structure involved in tagging or whether tags are generated in 
diverse neuroanatomical networks (Stickgold & Walker, 2013). 
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with a non-learning task - which was matched on all stimulus and task characteristics apart 

from the intention to learn - on sleep spindles in the following sleep episode. Sleep spindle 

density was found to be higher after the learning task compared to after the non-learning task, 

and spindle density was found to correlate with performance both before and after sleep. In the 

current study, overall memory performance both before and after napping was also related to 

spindle density. The findings of both studies may imply that consolidation during sleep is 

equally likely for all memories intentionally learned before sleep. Alternatively, the 

observation that memory performance before and after sleep correlates with spindle density 

could also suggest that individual differences in memory performance predict both sleep 

spindle density and post-sleep memory performance (Fogel & Smith, 2011). Regardless of 

which account is most appropriate, the link between sleep spindles and overall memory 

performance reported here supports the general claims of system consolidation theory 

concerning the role of spindles for memory retention (Rasch & Born, 2013). 

Notably, however, a selective correlation between spindle density and high-reward 

memory scores at posttest was found in the current dataset as well. This relationship was not 

obtained for word-pairs in the low reward condition nor could the correlation between spindle 

density and high rewarded memories be accounted for by memory performance before sleep. 

This pattern supports the high relevance of sleep spindles for memory consolidation 

(Diekelmann & Born, 2010) and together with the behavioral data showing smaller decline for 

high than low reward from pre to posttest, these findings support the view that sleep enables 

the selective consolidation of memories from a specific learning experience. Other studies also 

report correlations between sleep spindles and specific memory measures post-sleep (Saletin 

et al., 2011; Schmidt et al., 2006). Saletin and colleagues (2011), for example, used a directed 

forgetting paradigm to investigate the role of explicit instructions during encoding on memory 

retention after sleep. It was shown that memory for to-be-remembered items was selectively 
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preserved after sleep, and that the memory performance difference between to-be-remembered 

and to-be-forgotten items was correlated with sleep spindle density. Our findings thus add to 

the converging evidence that learning instructions, intentions or other pre-sleep learning 

experiences can actively modulate memory consolidation.  

Reward-related differences in memory performance were observable at post- but not 

pretest, which doesn’t reflect patterns reported in some reports (Oudiette et al., 2013; Saletin 

et al., 2011). One reason for this outcome could be because the short interval between initial 

study and pretest was sufficiently short that working memory processes were available during 

pretest and may have obviated any reward effects on episodic memory. An alternative and not 

necessarily mutually exclusive possibility is that dopamine-mediated reward effects generally 

require a delay in order to be observed (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, & 

Gabrieli, 2006; Feld, Besedovsky, Kaida, Münte, & Born, 2014; Wittmann et al., 2005). In line 

with these possibilities is the observation that where sleep studies have reported reward effects 

prior to sleep, the interval between learning and first test have generally been longer (i.e. 15-

45 minutes) than in the current study (Oudiette et al., 2013; Saletin et al., 2011).  

In contrast to our former study (Studte et al., 2015), we did not find sleep effects to be 

selectively related to associative memory retention. One possibility is that this is because the 

discrimination indices associated with item and associative memory (PrI and PrA) in the 

current study were derived from the same test phase. This step was taken in order to reduce 

overall memory load whilst maintaining sufficient trials to test reward effects. In our former 

study, however, two different memory tasks (single words vs. word-pairs) were employed in 

different test blocks to examine item and associative memory. Estimates of item and associative 

memory in the present study, therefore, are derived from the same response set which may have 

reduced the ability to detect dissociable effects of sleep on item and associative memory. 

Nonetheless, by finding larger effects of sleep on memory performance for high rewarded 
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word-pairs the data tally with prior reports of the beneficial effects of motivational cues on 

memory consolidation during sleep (Feld et al., 2014; Fischer & Born, 2009; Oudiette et al., 

2013; van Dongen et al., 2012) and extend these effects to another form of reward-related 

learning. 

In sum, the present study showed a differential influence of high- and low-reward 

associated cues on memory retention in that high-reward information was better retained after 

90 minutes of nap sleep. Positive correlations between spindle density during NREM sleep and 

general memory performance pre- and post-sleep were found. Furthermore there were selective 

positive relationships between memory performance for highly rewarded word-pairs at posttest 

and spindle density during NREM sleep. These findings support the notion that processes 

during NREM sleep may be important for preferential consolidation of motivationally salient 

memories (Stickgold & Walker, 2013). This may indicate that reward cues induce tags (in a 

top down manner) for information that ensures these items are preferentially consolidated 

during sleep, leading subsequently to more durable memories.  

Finally it is important to comment on the practical implications of these findings. 

Showing the importance of sleep for preserving associations between arbitrarily paired words 

that are tagged as relevant by moderate motivational cues, such as is often the case for items to 

be learnt for a vocabulary test, has important practical implications for educational settings, in 

particular for second language acquisition. The ability to learn arbitrary associations is critical 

across a wider variety of educational contexts (second language learning, face-name 

association to be learned in schools, kindergartens and other workplaces), however, and an 

intervention like nap sleep that promotes learning of previously unassociated information is 

thus of high relevance for the improvement and acceleration of learning for a range of contexts. 

The individual learner engaging in self-direct study may perhaps be best placed to apply the 

lessons learnt from the current data, given that they indicate that students do not need to work 
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late in the evening before sleep to benefit from the consolidation processes in sleep. A nap after 

learning or perhaps after a morning's revision for an afternoon test, may be as valuable as a 

night of sleep for consolidating newly learnt motivationally-relevant memories.   
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Figure Legends 

 

Fig. 1 Study design: Overview and timeline of the experimental procedure. The study phase 

consisted of the learning of 180 unrelated word-pairs. For the pretest 90 word-pairs (30 in each 

category, with 15 high and 15 low value pairs) were tested. The proportions of the different 

categories were the same at posttest, but for 180 unrelated word-pairs. The asterisks mark all 

measured time points of the Stanford Sleepiness Scale. 

 

Fig. 2 Examples of a learning (a) and test trial (b) are presented. The violet arrow was not 

shown to the participants. 

 

Fig. 3 Memory performance is shown for (a) PrI-scores (hits-FAnew) and (b) PrA-scores (hits-

FArec) for pre- and posttest. Error bars show one standard deviation.  

 

Fig. 4 Correlations are shown for PrAhigh-/ PrIhigh -score at posttest and spindle density (NREM) 

at Fz. These correlations remain marginally significant when pretest memory performance is 

treated as a covariate.  

 

Fig. 5 Correlations are depicted for memory performance (in %) both before (a) and after sleep 

(b) and spindle density (NREM) at Fz. Memory performance (in %) includes the overall 

memory performance across all word pairs (old and recombined pairs in the low and high 

reward condition plus new pairs). The correlation between memory performance at posttest 

and spindle density (NREM) is no longer significant with pretest memory performance as 

covariate.   
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Fig 2. 
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Fig 3. 
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Fig 4. 
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Fig 5. 

 

 


