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Abstract 

European Commission has set clear targets for 2020 regarding energy and environment 

policy; these targets include 20% cut in greenhouse gas emissions against the 1990 levels. It 

is believed that adopted strategy has encouraged the renewable energy applications during the 

last two decades. Moreover, measurement deviations of carbon dioxide flux occurring in 

respiration chambers has been seen of a great importance to explain the biochemical 

parameters affecting the climate change issue. This is attributed on many occasions to 

chamber design constraints and the way they are coupled with the studied site location. This 

is illustrated by external disturbances whereby when they happen while gas measurements are 
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taken measurement deviations become more evident. This paper surveys the different soil 

physical, biological and geotechnical parameters and links them to meteorological ones. 

Consequently it explores their direct and indirect effects to the produced soil efflux. 

Furthermore this paper proposes several soil temperature models according to the studied 

case constraints to see what affects soil efflux production. Moreover a clear understanding of 

what affects the measurement process was achieved through surveying all the internal and 

external pressure parameters and how they influence the chamber in relation to time. The 

conclusion is that respiration chamber designers need to preserve chamber internal 

temperature and pressure to be equal to the outer atmosphere for the case of stabile external 

conditions. For the case of unstable external conditions design counter measures are 

incorporated. Furthermore the appropriate gas sensor needs to be selected professionally with 

emphasis on the importance of installation location inside the chamber. Likewise soil 

bacterial type and soil temperature also has an influence on efflux production. 

 

Keywords: Soil porosity; Respiration chambers; Global warming; Renewable 

energy; Climate change 

 

1.1 Introduction 

Soil can be defined as a complex system, consisting of a mixture of organic and mineral 

particles, soil solution and air, resulting from the interaction between biotic and abiotic factors; 

it is the medium in which plants acquire water and nutrients through their roots system. 

An efflux is something that flows out or forth from a porous medium (Soil) which for our case 

of concern is carbon dioxide. Carbon dioxide gas in the soil is produced due to the occurring 

biological activity in the soil domain. Measuring accurately the production of gas species from 
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the soil is a complex problem. This is due to the great spatial variability in soil emissions and 

to the fact that the quantification of these emissions is complicated by the high spatial 

variability exhibited by many microbial processes [1]. What also enforces the spatial variability 

is that soil chemical composition varies from one location to another [2]. To quantify the 

amount of the produced carbon dioxide at one location it is captured in an enclosed cavity or 

space which can be a chamber.  This method was first proposed by Henrik Lundegardh [3] in 

the form of the respiration bell. In the general context using respiration chambers can give 

scientists some insight to how fertile the studied site is. That is by measuring the rate of carbon 

dioxide produced for a certain site of concern and predict its impact on global warming issues 

[4]. Consequently with the increase of carbon dioxide concentrations in the atmosphere, planet 

earth responds to it in the form of the green house affect [5]. For instance global warming is 

attributed to burning excessive amounts of fossil fuels [6] furthermore it is also linked to the 

rise of human population around the world. Therefore using sustainable sources of energy to 

support the growing in population nations comes of priority for future,  as the study showed 

for the country of Sudan [7]. Scientist see switching to renewable sources of energy is 

achievable as shown in the global energy policy study by [8]. To help the gradual introduction 

and use of solar power governments have set solar energy polices. For instance for a country 

such as Malaysia the government has set its solar energy policy as mentioned in [9]. Energy 

planning algorithms for energy resource allocation can also assist in managing renewable 

energy sources. This is through using Multi-Criteria Decision Making techniques used to take 

care of multiple, conflicting criteria to arrive at better solutions  [10]. Wind forecasting 

algorithms are also being used for the purpose of managing renewable energy sources, this is 

based on the assessment of wind power forecasting models done by [11].  Fuel cells are another 

efficient clean source of energy as mentioned by [12] whereby electrical-generation 

efficiencies of 70% where achieved along with a heat recovery possibility. Moreover future 
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wise fuel cell based power systems will render an ideal distribution power-generation system 

characterized to be: reliable, clean, quiet, environmentally friendly, and fuel conserving.  

 A matter of immediate concern in the hazardous energy situation in most African countries is 

that forest resources are gradually declining. Hence the supply of fuel wood is becoming more 

difficult to sustain and demand especially that it is already exceeding the potential supply [13]. 

Therefore one of the main requirements of green energies is to be characterised as efficient 

systems furthermore for governments to apply policies that make citizens gradually use less 

fossil fuels [14]. Consequently new fuels are being introduced to the global market as for 

example in Malaysia palm oil is considered a sustainable source of fuel particularly that palm 

oil is one of the most productive bio-diesel crop. Moreover, its waste streams can be used to 

produce vast amounts of bio-gas and other values added products [15]. Another promising 

method is to use small scale gasifiers for domestic use in rural areas especially for cooking 

[16].  Likewise another sustainable type of fuel is ethanol what was evident that more research 

needs to be applied to get convincing proofs of its environmental friendliness as shown in the 

comparison between E10 and E0 [17]. 

In this paper: The required gas sensor type to be used in the respiration chamber is covered 

furthermore its location of installation inside the chamber is advised. Additionally types of used 

gas sensors in static and dynamic chambers are surveyed. On the other hand an inner chamber 

temperature effect on gas sensors is considered in a discussion. For the reason that infrared gas 

sensors are becoming commonly used in respiration chambers furthermore mentioned is a set 

of required considerations for gas sensors. Moreover gas sensor calibration methods are 

covered in particular that no sensor measurement occurs without sensor calibration is 

performed on a frequent basis. Lastly a recommendation to what types of sensors to be used on 

chambers to monitor in parallel the process of efflux measurements.  Above all what follows 

next is the focus on the chamber gas volume heat exchange process with the covered top layer 
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soil surface by the chambers shell. This is based on putting forward several temperature models 

as functions to the soil efflux equation. Likewise the chamber gas volume temperature affects 

with plant photosynthesises is observed. Subsequently the research is extended to a pressure 

model starting with the pressure equilibrium condition between inside and outside the chamber. 

This is done through firstly finding the ambient pressure at the location where the chamber is 

deployed at. The respiration chamber internal pressure is affected by internal affects such as 

the used internal mixing fan likewise it is affected by thermal heat gains from the suns solar 

radiation. Furthermore external pressure changes come also of importance due to blowing wind 

affects which case soil surface wall shear stress. This is looked at closely by studying soil 

surface pressure according to the soil air movement theory whereby linking it to the soil layer 

pressure profile which lead to soil surface pressure gradients. Hence the top soil aeration 

process is covered in addition to carbon dioxide solubility in relation to top soil layer surface 

pressure. Respiration chambers characteristics from advantages to drawbacks are presented. 

Furthermore chamber insertion on the site locations is covered. Finally the relationship between 

soil pH and micro bacteria activity with efflux is shown by introducing a general model. The 

model relates carbon dioxide efflux production with the type of micro bacteria found in the soil 

sample as a function of population and surface area and other parameters.  

1.2 Chamber Gas Sensors, Location of Instillation and Calibration 

One of the most essential parts of the respiration chamber is the gas sensor. Selecting the 

appropriate gas sensor for a certain type of respiration chamber always posed a challenge to 

scientists and designers. Unfortunately there is no simple approach to make this selection hence 

designers and researchers are advised to seek assistance from sensor specialists. Each sensor 

has certain capabilities and limitations, thus the suitability of a gas sensor depends largely on 

the application in which it is to be used.  Different techniques for measuring carbon dioxide 
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efflux have been investigated by many researchers such as [18]. Operational mode of the 

chamber has an impact on the sensor selection criteria.  

1.2.1 Gas Sensors and Static Chambers  

For instance static respiration chambers rely on a static pressure environment inside the 

chamber that provides species diffusion conditions; hence it is a reliable mode to measure soil 

biological activity as shown by [41]. On the other hand some would argue that the unreliability 

of the static mode at some instances is due to an external disturbance in the measurement. One 

of the setbacks in the use of static chambers is that relying on the uniform diffusive distribution 

of species in the gas volume will take a long period of time to achieve. Likewise it is not 

guaranteed always for steady conditions to prevail. Consequently that will delay the 

instantaneous understanding of the soil biological activity which changes at every discrete 

instance of time. The rate of sensor gas sampling per second all depends on the type of sensor 

and what biological activity is of importance for the study. Therefore this causes a time lag in 

measurement time till the gas species reaches the sensor head at a predefined location in the 

chamber. This setback depends mainly on the design constraints of the chamber. Furthermore 

what sometimes affects the gas sensor as reported by [19] is the location of gas sampling intake 

and outtake from the chamber. The mentioned case is for a gas species analyser that is located 

externally. It has been stated by [20] that species concentration varies within the chamber 

height as well as in the radial location. Deviations in efflux measurements are governed by the 

flow field in the chamber likewise they depend on the diffusion properties of carbon dioxide.  

1.2.2 Gas Sensors and Dynamic Chambers  

Covering the case of dynamic chambers some researchers like [21] recommended to take gas 

samples from the head section of the chamber. This was achieved by increasing the chambers 

volume where by a small cover-box is added at the headspace. Consequently this resulted in a 

measurements accuracy for carbon dioxide of 100 ppm, ideally even lower. Other researchers 
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[22] to prove the reliability and accuracy of the mini chamber method applied it to measure 

methane concentrations. Dynamic chambers use blowing fans, the purpose of using mixing 

fans in chambers is to create a homogenous gas mixture to instantaneously perform carbon 

dioxide measurements as shown by [23]. The setback of using mixing fans is that they generate 

turbulence during the mixing process. Consequently that cases an over measurement of the 

carbon dioxide efflux by an amount of 2-4% as stated by [24]. To resolve the challenge of 

efflux over prediction researchers have used gas sample bypass methods to draw out the sample 

for analysis. Therefore by using the bypass approach they found that turbulence effects can be 

omitted from the measurements. Hence the intense mixing that took place in the head space of 

the chamber was the source of error to the measurement.  

1.2.3 Gas Species Sensors  

Realistically the objectives researchers and chamber designers are trying to accomplish is to 

define an instrument specification that meets their minimum requirements. Generally in the 

scientific community infrared gas sensors have gained the confidence of researchers [25]. The 

main reason for that is their ability to take measurements at time durations less than a second. 

Additionally the following factors/observations should be considered when selecting the gas 

sensor: 

1- The specifications should define the gases ranges of the sensors 

2- Carbon dioxide is what is mainly required to be measured. Additionally what are also 

required to be determined are the back ground gases in the monitoring area.  Usually 

for interest are methane and NOx which require gas chromatography. 

3- The temperature ranges (−10 ℃ to 60 ℃) inside the chamber in which the sensor is to 

be installed should be within the sensor specifications and should be suitable for the 

gases to be monitored. 

4- A typical specification for humidity is 95% non-condensing. 
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Is a Continuous mode of Measurement important? This kind of mode to run a respiration 

chamber on comes very handy when deployed on not easy to access locations. Whereby it can 

be left unattended and data gathering can be conducted and recorded with timed aeration 

periods. This was clearly shown by the results of [26] notably the point of reliability of repeated 

measurements is a must. Significantly what is clear from the duration of the measurements 

those 25 seconds that where required to reach equilibrium concentration state. The jump in 

concentration was about 300 ppm then it was followed by aeration, while at other instances 

concentration took 15 minutes to stabilize.  

In conclusion, for respiration chambers using a carbon dioxide sensor by its self is not sufficient 

to understand fully what is happening. Therefore in parallel of taking concentration 

measurements, date, time of day has to be recorded to verify the diurnal affects, temperature, 

inner chamber pressure and outer chamber pressure. A light intensity sensor is required in 

addition to a day timing recorder when measurements are taken. This means the distribution of 

carbon dioxide particles in the chambers should increase with temperature according to time 

of day. Furthermore light intensity should be recorded to verify if its cloud or sunny, while rain 

affects can be predicted by measuring atmospheric humidity. The optimum duration for a 

measurement, depends on the location of study in general, in specific it depends on the type of 

location characterization hence grass land, forest land, peat land, swamp, desert, etc. There is 

a difference in the duration time from site to site, this is attributed to several  points, as an 

example a difference in occurring biological activity on different locations, change of response 

according to change of temperature. Any chamber has optimum working conditions these either 

depend on chamber design or in the used type of sensors.  Some researchers have used an 

external apparatus that air conditions the chamber to keep the internal and external 

environmental conditions the same as seen in some of LI-COR designs.  
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1.2.4 Temperature effects on Gas Sensors  

Diurnal affects as discussed by [27] have more of an evident impact on soil efflux 

measurements in static chambers than dynamic ones. Gas diffusion is a function of temperature 

according to the kinetic gas theory as shown in equation (1.1), further more temperature varies 

from day time too night time. Hence carbon dioxide diffusion changes with temperature this is 

illustrated in equation (1.1) by the relationship of vrms velocity with temperature: 

vrms = 23.8(T)
0.5 (1.1) 

Some researchers [26] have adopted a continuous approach for data sampling on the site of 

deployment. In particular it helps in capturing the change of measured parameters in relation 

to time of day and month of the year. Similarly external uncontrollable environmental 

disturbances occur while measurements are taken; these are attributed to seasonal affects. 

These affects are notably evident in the form of excess blowing winds, rain, heat wave, etc. 

Diurnal affects become more evident in forest site locations as found by [28] in particular the 

occurrence of dynamic litter,  variations in wind pressure relating to tree dynamics, etc.    

1.2.5 Sensor Measurement Calibration  

No standard calibration method or means has yet been adopted by researchers to test the 

accuracy of soil respiration measurements [29]. The drive to find the most reliable method of 

calibration that wins the trust of the researcher is based on finding a method that helps the 

researcher get repeatable measurements on the same site.  During the early stages of research 

in the field of efflux measurements the soda lime method was the common practice used to 

capture the carbon dioxide efflux. Then, with the introduction of the gas analyser method the 

soda lime method became less popular. A comparison between the soda lime and the infra-red 

gas analyser methods is covered in [30] for the reason of calibration what was reported that the 

soda lime method properly functioned when a 98% moisture content is provided. The author 
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concluded that there was no strong correlation between both used methods on the same forest 

location. The soda lime method is suitable to be used to calibrate static chambers. A calibration 

system for soil carbon dioxide-efflux measurement chambers has been put forward by [31]  for 

the case of open and closed dynamic chambers. This is done by firstly calibrating 

measurements with a previously known efflux. Another common practice used for calibrating 

chamber efflux measurements for chambers is the Eddy covariance (EC) method [32] the 

researcher is recommended to read reference [33] to further his understanding of the method. 

The Eddy covariance method can also be used to link the relationship between blowing wind 

velocity, moisture content, temperature, and Carbon dioxide concentrations [34]. The 

drawbacks of the Eddy covariance method is that it firstly measures the efflux coming from 

the ecosystem while the interest of the researchers is the amount of carbon dioxide produced 

by a specific soil site [35]. Secondly It only gives good results for windy conditions, therefore 

it will be mainly suitable to calibrate dynamic chambers [36]. 

A way to tackle the calibration challenge is to use soil media with predetermined water content 

thus soil porosity is known before the experiment. Furthermore to prepare a soil texture with 

known ratios of sand silt and clay this helps in knowing the soil permeability for the setup 

experiment. Moreover this is followed by decomposing the sources of the efflux whereby 

independent effluxes are used to mimic the ones generated by bacteria, plants etc. That is all 

according to pre agreed upon ratios of efflux contributions when the experiment is setup. This 

is for the purpose to create a similar example to the studied case for the measured efflux. This 

method was applied for a dynamic chamber case by [37] hence what affects the efflux 

calibration can be identified. Another secondary approach to improve the calibration method 

for a closed dynamic chamber is by improving the mixing rate within the chamber hence the 

mixing time previous to the measurement. Consequently both proved to be critical to obtain an 

adequate correction factor to approximate the true value of carbon dioxide soil efflux in field 
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test sites [38]. One of the challenges facing calibration for both static and dynamic chambers 

is whether the gas source provides a steady or an unsteady efflux in time. This was stated in 

the study by [39] on the linear measurements of nitrogen oxide obtained by accumulating it in 

a closed chamber.  The researcher is also recommend to read the chamber calibration steps for 

a closed chamber that uses commercial gas analysers  type EGM-4 and LI-7000.  

1.3 Chamber Temperature Increase/Decrease and its Relation to efflux  

Discussing a general case for a soil site location on a daily basis there is heat transfer 

represented by total heat Qtotal[W]  into and out of the soil mass at one location. Thus the 

gained heat at the site location without the cover of a chamber is QSoilw [W] as shown in 

equation (1.2): 

QSoilw = Qtotal (1.2) 

There are basically three different processes whereby heat can be transported into the soil mass 

these are: heat conduction Qcon[W], heat convection Qconv[W] (with or without latent heat 

transport) and heat radiation Qrad [W]. Furthermore the summation of these terms leads to the 

total heat transferred to the soil mass as shown in equation (1.3): 

Qtotal = Qcon + Qrad + Qconv (1.3) 

Hence the thermal efficiency for the process of heat transfer to a soil location without chamber 

cover can be represented in  ηw whereby it’s the ratio of heat gained for a soil location without 

an installed chamber over the total heat the location (this is the considered as the ideal case): 

ηw =
QSoilw
Qtotal

 
(1.4) 



12 
 

Moreover considering the comparison case where heat is transferred to the soil mass when a 

chamber is placed on location QSoilwt[W] this would result in a new load heat term  Qtotaln [W]  

as shown in: 

QSoilwt = Qtotaln (1.5) 

The new heat term Qtotaln is the summation of the total heat without a chamber with heat gain 

or loss ∆Q [W]  as shown in: 

Qtotaln = Qtotal ± ∆Q (1.5) 

This means that with the installation of the chamber on site location the heat load is changed. 

Hence a new thermal efficiency is defined  ηwt where it is defined as the ratio of  

ηwt =
QSoilwt
Qtotal

 
(1.6) 

In conclusion to preserve the locations thermal integrity as much as possible chamber designers 

must aim to achieve the following assumption: 

ηw ≥ ηwt (1.7) 

Consequently this proves the reason why many commercial companies that produce respiration 

chambers aim to use external environmental systems [40]. That is in order to sustain the same 

heat balance between inside and outside the chamber. For simplicity equation (1.8) can be used, 

by measuring the temperature difference ∆T [Kelvin] experimentally, the amount of gained 

heat can be calculated by difference in internal energy where cv is the specific heat capacity 

for air at constant volume: 

Qtotaln = cv∆T (1.8) 
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To purse a more detailed analysis of the temperature effects on soil efflux several temperature 

models are presented in the following sections.  

1-6-1 The Cyclic State efflux Model Related to Soil Layer Depth 

Carbon dioxide efflux is produced from the soil and is a function of soil temperature. On a 

sunny day when the chamber is set up on location after several minutes of deployment heat 

builds up in the chamber till a certain limit. This heat in turn is then transferred to the mass of 

soil beneath the chamber gas volume. This process can be modelled based on the lumped 

analysis approach for time varying convection as shown in equation (1.9). Soil temperature 

TSoil [K] at a specified instance of time t[sec]. The soil heat capacity is c[J/kg K] likewise the 

density of the soil is ρs [kg/m
3]  this is for a studied volume of soil  V[m3] located in the O 

horizon. The initial chamber temperature after closure is considered as Ti[K]. Furthermore the 

average heat transfer coefficient for convection is h̅ [W/m2K] this is considered for the soil 

surface interface Asi [m
2] within the inner chamber gas volume. Additionally the asymptotic 

temperature of the gas volume in the chamber is T∞[K].  

TSoil = (Ti − T∞)exp(−
h̅Asi
ρscV

t) + T∞ 
(1.9) 

Equation (1.9) proves the point why regular ventilation is required during measurements, this 

is kind of approach is used in the LI-8100A chamber model as shown in Error! Reference 

source not found.. By substituting equation (1.9) into the Arrhenius equation results in 

equation (1.10) this resembles a simple form of the efflux equation. Hence the relationship 

between soil efflux  ef [mole/m2s] and soil temperature TSoil can be found where the constant 

d [mole/m2s] is the pre-exponential constant E [kJ/gmole]  the activation energy and and R 

the ideal gas constant. 
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ef = d. exp (
−E

RTSoil
) 

(1.10) 

1-6-2 The efflux Model Related to Heat Radiation 

Depending on the chambers role of what intended efflux is to be measured, there are transparent 

chambers and none transparent ones (sometimes called soil flux chambers) like the SRC-

1chamber model [41] as shown in Figure 1. The outer chamber shell for most of the commercial 

chambers (used to measure soil efflux) is taken to have a white colour. 

 

Figure 1: The PP Systems SRC-1 none transparent chamber model used to measure soil 

efflux. 

The reason for that is with adsorption of heat a rise of internal temperature occurs. Hence an 

unwanted disturbance to the internal micro climate is eminent. This emitted radiation heat can 

be calculated using equation (1.11) where Qemit [w] is the emitted radiation from the chamber. 

Emissivity is referred to as ε for a white surface it takes the value of ε = 0.9. The Stephan 

Boltzmann constant is σ = 5.67 × 10−8W m2k4⁄ .The outer surface shell wall surface of the 

chamber is Aw [m
2]. Likewise the chamber outer wall shell temperature is Ts [k]. 
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Qemit = σεAwTs
4 (1.11) 

Transparent chambers are used to see the diurnal effects on carbon dioxide efflux 

measurements this is evident in commercial chamber model CPY-4 made by PP Systems. For 

instance chamber CPY-4 [42] is used specifically for low laying vegetation this is clearly 

shown in Figure 2.  

 

Figure 2: The CPY-4 transparent chamber used to measure efflux from low lying vegetation. 

In the case of transparent chambers, researchers have noticed on a sunny day that after several 

minutes of chamber site deployment water condensation starts occurring on chamber walls 

referring to rise of internal temperature. This is called the absorbed heat Qabs[w] as shown in 

equation (1.12). The absorptivity of the chamber transparent shell is α and Qinc[w] is the rate 

at which radiation is incident on the surface: 

Qabs = αQinc (1.12) 

On the contrary the reverse conditions do occur during winter where heat loss dose occur which 

might cause plant freeze at some instances.  The radiant flux in the chamber is due to carbon 
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dioxide and water vapour contained in the air. Other gases such as N2 and O2 have nonpolar, 

symmetrical molecular structures, thus they do not emit or absorb significant amounts of 

energy.  

In this section a model is proposed for a transparent cylindrical chamber to show the effects of 

solar radiation on contained water vapour and carbon dioxide in the chambers gas volume and 

how it contributes in heating the chambers air gas volume. Considering that for a location after 

duration of time an average temperature inside the chamber becomes of Theatedair = 310 [K] 

whereby the emissivity doesn’t change. Meanwhile for the case of a chamber located at a fixed 

site the total atmospheric pressure is considered to be Pt = 1 [atm]. Then the water vapour 

partial pressure is Pw = 0.02 [atm] this is based on making the assumption that the atmospheric 

water average volume fraction is 2%. Moreover to find the emissivity values for water vapour 

inside the chamber that has a diameter of  D = 0.5 [m] is based on knowing the value of  

Theatedair and by calculating PwD which turns out to be 0.01 m. atm .Hence by using Figure 3  

this leads to a value of emissivity of (ϵw)1 = 0.14.  
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Figure 3: Emissivity of water vapour in a mixture with none radiating gases at 1-atm total 

pressure [36]. 

Like wise to find the correction factor of water vapour is by using Figure 4 where the average 

pressure is 0.5(Pw + Pt) = 0.505 atm moreover we know that PwD= 0.01 m. atm  

consequently the correction factor is taken to be cpw = 1 hence the actual gas emissivity from 

water vapour is  (ϵw)actual = 0.14. As with the Stephane Boltzmann constant it is σ = 5.67 ×

10−8 [W m2k4]⁄  . 

 

Figure 4: Correction factor for obtaining water vapour emissivities at pressures other than 1 

atm [43]. 

The total rate of heat transfer per unit of length  Lh [m] for the chamber heated air Theatedair to 

the chamber wall if the wall emissivity is unity and its temperature is TChmaberWall: 

qw−c
Lh

= πD(ϵw)actualσ(Theatedair
4 − TChamberWall

4 ) (1.13) 

On the other hand studying gas emissivity for carbon dioxide is based also on considering that 

the total atmospheric pressure is Pt = 1 [atm] . Moreover carbon dioxide partial pressure is 
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taken to be Pc = 4 × 10
−4 [atm] based on that the location has an atmospheric concentration 

of carbon dioxide of 400 ppm. Furthermore the chamber has a diameter of D = 0.5 m  meaning 

that PcD = 2 × 10
−4 [m. atm]. Hence by knowing PcD and Theatedair and using Figure 5 the 

emissivity for carbon dioxide has an emissivity value of (ϵc)1 = 0.006 . However by using 

Figure 6 and knowing that total pressure is 1 [atm] and PcD leads to the emissivity correction 

factor for carbon dioxide to be cpc = 1. Consequently the actual emissivity for carbon dioxide 

is (ϵc)actual = 0.006 whereby it is applied to equation (1.14). Thus this gives the radiative heat 

transfer per linear Lh [m] from the carbon dioxide to the chamber wall if the wall emissivity is 

unity and its temperature is TChamberWall: 

qc−c
Lh

= πD(ϵc)actualσ(Theatedair
4 − TChamberWall

4 ) (1.14) 

 

Figure 5: Emissivity of carbon dioxide in a mixture with none radiating gases at 1-atm total 

pressure [43]. 
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Figure 6: Correction factor for obtaining carbon dioxide emissivities at pressures other than 

1 atm [43]. 

Lastly the total radiant flux from the contained carbon dioxide and water vapour in the chamber 

to the heated air inside the chamber is: 

qtotal
Lh

= πD(ϵc + ϵw)σ(Theatedair
4 − TChmaberWall

4 ) (1.15) 

A numerical model based on heat balances was developed by [44] for a soil mulch  atmosphere 

case using the finite difference scheme, where latent heat content and radiative among others 

were considered. Such a model can give hints to the potential of applying such models in 

available CFD packages. Rise of chamber inner temperature is attributed to carbon dioxide 

concentration rise in the chamber due to the high heat capacity of carbon dioxide. For 

measurements lasting in the range of several minutes to an hour it is assumed that the soil 

temperature has the same temperature as the ambient air. Hence, the studied case is steady state 

one.  

1-6-2 The Daily Cyclic State efflux Model Related to Soil Layer Depth 

The thermal properties of the soil are strongly dependent on soil porosity [45]. The soil 

temperature which is achieved through the solar radiation projected during the day on the 
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studied soil area reflects on the temperature of the water moisture content, raising the 

temperature of the soil will increase the evaporation pressure. Soil temperature cyclic 

behaviour can be modelled using equation (1.16) as shown in detail by [46], where Tzt is a 

function of time and depth, Ta is the average soil temperature, t is time. Heat conduction is 

governed by the thermal properties of the soil composition; volumetric heat capacity and heat 

conductivity are represented in the kc constant. The frequency of the cyclic behaviour is 

represented by w = 2π/τp where τp is the period of cycle which can be day or year. Likewise 

the term σt represents w/2k [m−2]  as seen in the following: 

Tzt = Ta + A0e
−(σt)

0.5zsin (wt − (σt)
0.5z) (1.16) 

Cyclic temperature change during the day and night cases a change of the mass diffusion 

coefficient, affecting the carbon dioxide efflux produced mainly at the top surface soil layer 

near the surface.  The temperature cycle simple model is covered in many soil physics books, 

as an example in [46].  The temperature damping model that considers thermos physical 

properties of the soil is covered in [45], other interesting approaches are also available in [47].  

The power of equation (1.17) it can be applied for the top surface layer of soil on both the 

bacteria and plant roots for a certain depth and time of the day. 

ef = d. exp (
−E

RTzt
) 

(1.17) 

The following research paper [48] has also proposed a similar approach to predict temperature 

variations in relation to time and soil depth for geothermal heat exchanger applications. 

1-6-3 The Steady state efflux Model Related to Soil Layer Depth 

Researchers in [49] have pointed to temperature variations in the soil as a cause of this 

underestimation of flux, where the biological response factor differs from one location to 
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another. That is because they assume a uniform temperature distribution in the studied soil 

layer while in real life it is not the case. Usually a uniform temperature is modelled using 

equation (1.18). The soil temperature at the surface interface with the atmosphere is Tss [k]. 

The soil temperature at the bottom of the top layer is Tbl [k].  The layer soil thermal 

conductivity is kc [w/m
2k]. The heat source or sink term q [w] can either represent heat gained 

during the day can be regarded or heat loss term during the night. L [m] is the total thickness 

of the soil layer. 

Tins = (
Tbl − Tss
L

+
q

2kc
(L − z)) z + Tss 

(1.18) 

Hence by substituting equation (1.18) into the Arrhenius equation leads to equation (1.19) 

which is a steady state equation relating to the thermal qualities and thickness of the soil slayer.  

ef = d. exp (
−E

RTins
) 

(1.19) 

Some researchers have proposed [50] in order to improve efflux measurements is through 

considering the atmospheric ambient air temperature on the site of study as the contributing 

factor that affects biological activity. Consequently this adopted assumption by the research 

community is wrong because soil air temperature is a function of the lumped heat capacitance 

of the soil layer; hence the growth dynamics of bacteria will also be affected hence the efflux 

will be affected. 

Tins ≠ T𝑎 (1.20) 
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Furthermore other authors [51] have noted that soil wetness affects the total thermal resistance  

of the soil at the location of study through the use of air-earth heat exchangers.  

1-6-4 The Steady state efflux Model Related to Soil Layer Depth 

Soil efflux is governed by soil temperature as shown by [52] which also found there is no 

optimum soil temperature for biological activity and that after a certain temperature rise 

biological activity is halted. The paper summarises several experimental extrapolated models 

relating to temperature and soil efflux. Likewise other researchers [53] have shown that soils 

that have high porosity values responded with less sensitivity to temperature changes. 

Furthermore what also affects carbon dioxide efflux is the soil microbial community behaviour 

where they adapt to cold conditions therefore they exhibit a stronger temperature response 

when compared to the ones that exist in warmer climates. Some have argued that soil porosity 

is the contributor for wrong efflux measurements, where low porosity caused underestimation 

while high porosity caused over estimation [54]. Other researchers  [55]  have stated that 

temperature and porosity are the two major factors affecting efflux. The discussed point can be 

proved by using the Sutherland equation [56]. The Sutherland equation for carbon dioxide is 

(1.21), it represents the dynamic viscosity of the gas at two instances, one is the reference state 

and the second is at the temperature of concern. The carbon dioxide constants are taken as 

follows C = 240 [K]  while the reference dynamic viscosity for carbon dioxide is μ(CO2 )0 =

14.8 [μPa. s]  in relation to the reference temperature T0 = 293.15 [K]: 

μCO2 = μ(CO2 )0
T0 + C

T + C
(
T

T0
)
1.5

 
(1.21) 

By applying equation (1.21) into the Darcy equation this leads to the efflux form of the equation 

as a function of temperature: 
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ef = −
−k. ρCO2

MWCO2 . μ(CO2 )0

T + C

T0 + C
(
T0
T
)
1.5 ([CO2]S. PTS − [CO2]B. PTB)

L
 

(1.22) 

Several researchers have demonstrated that during a drought an occurrence of a strong 

dependency of carbon dioxide efflux and isotopic compensation that effects soil water content 

[57]. Conversely the author of [58] sees that a better understanding of the efflux in a forest site 

location is based on predicting its carbon pool. Likewise [59] argued that GPP (gross primary 

production) does not have an effect on efflux production in the forest ecosystems. Forest soil 

efflux measurements (that contained considerable sand levels in its texture) taken at different 

seasons of the year were presented by [60] they used both the EC and chamber methods, the 

presented data showed the relationship of soil respiration with temperature. The researchers in 

this paper mentioned that a relationship between carbon dioxide and friction velocity was 

found. They also claimed that they have derived a model with the required constants to use for 

grassland respiration and other sites.  

There is a location efflux relationship with seasonal variance done by [61] done through using 

the EC method. This was followed by [62] more specifically for a forest site they also which 

also focused on time of the year and temperature effects on soil respiration efflux. Attention 

has been drawn in [62] to diurnal measurements taken over a two year period have shown that 

climate changes relating to temperature increase the carbon efflux. One of the setbacks stated 

by researchers [63] in relation to closed systems is that they underestimate the soil efflux by 

about 15%, which was observed through the collected experimental data. 

1-6-5 Chamber Temperature effects on Plant Photosynthesis and Cellular Respiration  

The temperature affects almost all aspects of the respiration processes. These include biological 

processes, such as germination of seeds, plant growth, root development and activity, microbial 

activity, etc. The relationship between the temperature and the biochemical processes of the 
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respiration is usually described by an exponential equation called the Arrhenius equation, as in 

the following: 

wi = dpee
−Ei
RT  

(1.23) 

Where dpe is a pre-exponential constant, Ei is the activation energy, R is the universal gas 

constant, and T is the temperature. Photosynthesis is a process used by plants and other 

organisms to capture the energy of the sun in order to split off the water's hydrogen from 

oxygen. It is estimated that  about 40% of the soil respiration is from plant roots [64]. While 

hydrogen is combined with carbon dioxide (absorbed from air or water) to form glucose and to 

release oxygen, photosynthesis is just the opposite of cellular respiration. The chemical 

equation (1.24) of photosynthesis is 6CO2 (carbon dioxide) and 6H2O (water) and that makes 

6O2 (oxygen) and C6H12O6 (glucose), or  

6CO2
Carbon Dioxide

+
6H2O
Water

Light
→    

C6H12O6
Glucose

+
6O2
Oxygen

 
(1.24) 

What is missing in the chemical equation (1.24) is the capture of energy from sunlight. 

However, the two processes take place through a different sequence of chemical reactions and 

in different cellular compartments. Cellular respiration in living cells, in turn, use the fuels 

derived from glucose and oxidize the hydrogen and carbon to release the energy of the sun and 

to re-form water and carbon dioxide, as expressed in the following formula (1.25) 

C6H12O6
Glucose

+
6O2
Oxygen

⟶
6CO2

Carbon Dioxide
+
6H2O
Water

 
(1.25) 

Cellular respiration is a combustion reaction. That does not clearly resemble a combustion 

reaction when it occurs in a living cell. This difference is due to the fact that it occurs in many 

separate steps. While the overall reaction is combustion, no single reaction that comprises it is 

a combustion reaction. Plant respiration is limited by the process of diffusion. Plants take in 

carbon dioxide through holes on the undersides of their leaves known as stoma or pores. 
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Figure 7: An illustration showing plant activity during the day which is called Photosynthesis 

(shown on the right hand side) and the night activity which is called Cellular Respiration 

(shown on the Left hand side). 

However, most plants require little air. They have relatively few living cells outside their 

surface because the air (which is required for metabolic content) can penetrate only skin deep. 

Nevertheless, most plants are not involved in highly aerobic activities, and thus have no need 

for these living cells. This explains why there are several sources of carbon dioxide. Having 

plants in the chamber is one of these sources, while the other source is the bacteria of the soil. 

This occurs during the day activity, while during the night plants perform the role of a carbon 

dioxide source sink. For more details on the process of photosynthesis, see [65]. When the soil 

is covered by vegetation, water can then be transported from anywhere in the root zone, via the 

roots, stems and leaves into the atmosphere; the so-called soil-plant-atmosphere-continuum 

(SPAC). The loss of water from soil via plants is called transpiration. Transpiration is mostly 

a passive process. While the leaf stomata are open for the exchange of carbon dioxide and 
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oxygen for the process of photosynthesis, water vapour is lost to the atmosphere. The deficit is 

replenished by water uptake by the roots. The driving force for the transpiration stream is the 

large potential difference between the water in the soil and the water in the atmosphere. Again 

the deficit is replenished by the water uptake by the roots. When the winds blow, a thin 

boundary layer occurs in different regions of the plant and the transport of water vapour from 

the leaves into the atmosphere is turbulent. In this case, the stomata will close when the roots 

cannot take up enough water to satisfy the evaporative demand.  Then, with the transpiration, 

photosynthesis is also interrupted, which will result in yield reductions. Under a full vegetation 

cover, evaporation from the soil can, generally, be neglected. When there is no breeze, the air 

surrounding a leaf becomes increasingly humid thus reducing the rate of transpiration. When a 

breeze is present, the humid air is carried away and replaced by the drier air. When the soil is 

partially covered with vegetation, water is lost by both evaporation and transpiration, which 

are usually lumped together as evapotranspiration. 

The wind speed affects the porosity of the soil due to the increased soil liquid uptake by the 

plant roots through the wind action on the plant causing more water to be ejected by the plant 

stems into the chamber entrainment. The type of vegetation that controls the soil processes 

involving the carbon dioxide fluxes, accumulation, and transport in a chaparral ecosystem is 

discussed in [66]. 

1.4 Pressure effects on efflux Measurement Chambers   

Effects of external/internal pressure fluctuations on chamber measurements have been 

observed. Such fluctuations were found to this lead to over and underestimation of efflux 

measurements. The authors in [67] corroborated past work by demonstrating the importance of 

heterogeneous pressure fields in promoting gas movement in porous soils. They further 

suggested that fluctuations in the static pressure fields introduced by wind interactions with 

terrain and vegetation may lead to pressure pumping effects at the soil surface, hence a large 



27 
 

spatial inhomogeneity in soil fluxes of trace gases occurs. Weather patterns play an important 

role as stated by [68] in carbon dioxide efflux production for a grassland location. When there 

is no wind for instance, storage of carbon dioxide in the soil occurs. This carbon dioxide studied 

for the site is flushed out when the soil surface is subjected to high winds during the day time, 

while during the night time carbon dioxide accumulates in the soil.  

1.4.1 Chamber Ambient Pressure  

Once the researcher can identify at what elevation the site is at, he can calculate the atmospheric 

pressure according to this relation (1.26). The atmospheric pressure Patm [Pa] is related to 

location elevation z[m] in relation to sea-level. The standard pressure at sea level is Po =

101325 [Pa]. Earths gravitational acceleration is g = 9.8 [m/s2]. The molar mass of dry air 

is M = 29 [g/mole]. The sea level standard temperature is To = 288.15 [K] . The universal 

gas constant R = 8.314 [J/mole. Kelvin]: 

Patm = Poexp (−
M

RTo
gz) 

(1.26) 

The number one rule in using chambers is to ensure pressure equilibrium between the inside 

chamber pressure Pin [Pa] and the outside the atmospheric pressure Pout[Pa] as shown in 

equation (1.27) : 

Pin = Pout (1.27) 

In the case of closed dynamic chambers, some researchers [69, 70] have identified that chamber 

over pressurization or under pressurization causes efflux under estimation or over estimation 

respectively.  Unfortunately the case of pressure equilibrium equation (1.27) rarely occurs. The 

real scenario is represented in equation (1.28) which is an upgrade for equation (1.27). It 

represents the relative pressure values (that’s why the atmosphere pressure term is evident on 
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both sides of the equation) with addition or subtraction or internal ∆Pin n [Pa] and external 

pressure ∆Pout n [Pa] represented in a summation form:  

Patm ±∑∆Pin n

𝑛

1

= Patm ±∑∆Pout n

𝑛

1

 
(1.28) 

1.4.2 Chamber Internal Pressure  

Rise of internal chamber pressure can be calculated by equation (1.29) for the case of 

temperature rise, this is by applying the Gay Lussac law to calculate the increase in pressure 

relating to inner chamber temperature at start of the measurement process T1 [Kelvin] and at 

the end of the measurement process T2 [Kelvin], where the initial chamber pressure P1 [Pa] and 

the final chamber pressure is P2 [Pa]: 

∆Pin 1 = P2 − P1 = P1
T2
T1
− P1 

(1.29) 

While for a blowing fans, the rise of internal pressure can be calculated from equation (1.30). 

Fan blowing effects can be derived using the conservation of linear momentum law for control 

volumes. It can be derived for the nearest wall that the fan jet hits or it regarded the flow 

velocity ends to zero in a control volume. Then based on regarding the pressure is acting 

homogenously on all chamber surfaces, where fan blowing area is AFan[m
2] . The inner 

chamber surface area in contact with air including the covered soil surface is  Ainner[m
2] . Air 

density is ρ [kg/m3] and volumetric flow rate of a blowing fan is Q𝐹𝑎𝑛 [m
3/s]: 

∆Pin 2 =
Ainner
AFan

ρQFan
2  

(1.30) 
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1.4.3 Chamber External Pressure  

Experiments conducted on the soil surface and inside the soil volume [67]  have shown that 

pressure fluctuations over the soil surface cause an inflow or an outflow flux of species from 

the porous media. Some researchers [32] and [71] have found by using the EC method and 

chamber methods that pressure fluctuations and turbulence effects cause under-estimation or 

over-estimation of carbon dioxide efflux. External pressure perturbations occurring near the 

soil surface ∆Pout_1 can be taken by the Reynolds decomposition as shown in equation (1.31), 

where Pav [Pa] is average pressure component and  Pfc [Pa]  is the instantaneous fluctuating 

pressure component: 

∆Pout_1 = Pav + Pfc (1.31) 

Other more advanced statistical models can be used instead of equation (1.29). Experiments in 

[72] have shown that external pressure disturbances in the range of [mbars]  cases changes in 

the carbon dioxide flux in [μg /cm2s]. This proves from the units the sensitivity of the system 

response to small changes. The other affect is with increase of internal pressure in the chamber 

that would lead to an increase in carbon dioxide partial pressure, enhancing the diffusion rate 

of carbon dioxide through the leaf stomata [73]. 

1.4.4 Chamber Internal Condensation Pressure  

It has been noted that water vapour absorbers carbon dioxide hence lowers the carbon dioxide 

concentration in respiration chambers [74]. By using the Antoine equation (1.32) where vapour 

pressure Pv [Pa] and chamber temperature Tc  [Kelvin]. The researcher can find/predict 

condensation pressure in the used chamber. Water when condenses affects the gas sensors 

probe therefore a correction factor is used. 
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Pv = 133.3 exp (20 −
5132

Tc
) 

(1.32) 

Hence the condensation pressure condition is when the chamber wall temperature is Tc: 

∑∆Pin n

𝑛

1

≥ Pv 
(1.33) 

In conclusion temperature drop or rise should not occur abruptly inside the chamber. Hence 

temperature equilibrium between inside and outside the chamber when change dose occur 

should be slow to overcome the problem of water condensation to occur on the gas tip sensor.  

1.4.5 Soil Surface Interface Pressure and Pressure Profile 

Researchers using closed dynamic chamber on a forest site location [75] found that efflux 

measurements are governed by static pressure fluctuations, soil temperature and forest litter. 

What was also evident by [76] that an increase in pressure above the ambient pressure in closed 

dynamic chambers resulted in a decrease of carbon dioxide efflux measurements. It is noted in 

reference [77] that pressure fluctuation frequencies over the soil surface range from 10−4 HZ 

to 102 HZ. Pressure fluctuations with frequencies < 2Hz have greater penetrable effect on the 

top soil surface [78] to depths of several centimetres with little attenuation.  The theory of soil 

air movement was introduced by [79] it covers all the necessary aspects to model the mass 

transport according at the soil interface with the atmosphere. The soil surface pressure field can 

be describe mathematically by equation (1.34) whereby time is t [s] furthermore the scaled 

period is taken as Tn [s]. The wave length of mth wave in the X-direction is Xm [cm] similarly 

Ym [m] is the wave length of mth wave in the Y-direction. The distance downwind is 

represented by x [cm] while  y [cm] is the crosswind distance. The phase angle of mth wave 

in the x-direction is ϕxm [radians] likewise the phase angle of mth wave in the y-direction is 
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ϕym [radians]. The amplitude of the pressure wave with nth period and mth wave length is 

amn [μba]: 

P =∑∑ [
anm
2
cos (

2πt

Tn
−
2πx

Xm
− ϕxm −

2πy

Ym
− ϕym)

M

m=1

N

n=1

+
anm
2
cos (

2πt

Tn
−
2πx

Xm
− ϕxm +

2πy

Ym
+ ϕym)] 

(1.34) 

In conclusion the rate of aeration can be predicted based on the power of the penetration 

frequency of the pressure fluctuations. What could further enhance diffusional fluxes 

significantly more than ground level turbulent pressure fluctuations is the Quasi-stationary 

pressure fields induced by wind blowing over rough topography [80]. Research by [31] has put 

forward that turbulence occurring in the chamber gas volume affects the boundary layer 

occurring over the soil surface. Consequently this causes an increase in the efflux of carbon 

dioxide from the soil top layer. Above all the turbulence intensity should not cause substantial 

flow fluxes to occur from inside to the outside of the chamber. 

The soil pressure profile is covered in [81] in particular the authors shows the cyclic pressure 

behaviour  in relation to soil depth starting from the soil surface as shown for the case of several 

depths. Furthermore the author of [82] studying the thermal properties of several soil samples 

found  a relationship between soil moisture and the cyclic pressure behaviour taking into 

account a depth of 0.8 [m].  By knowing the concentrations of species and by measuring the 

total pressure between two points, species partial pressure profile can be found using equation 

(1.35). The root development activity is limited at the topsoil because the carbon dioxide 

concentration in the gas phase of a soil generally increases with depth. Scientists have linked 

the carbon dioxide efflux to soil physical pressure parameters such as [83]. Using the equations 

of Fick's law, ideal gas and continuity for carbon dioxide at a steady state, the partial pressure 
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distribution for carbon dioxide PCO2[kPa] in the soil (valid to a depth of  z0 = 0.7 [m]) can be 

found using the derived equation (1.35):   

PCO2 = −αCO2
RTτ

2DCO2ϵδMCO2
(z2 − z0

2) + PCO2s 
(1.35) 

Soil porosity is represented by ϵ while soil tortisity is represented by τ which can have a value 

from 1.8 to 6 its value depends mainly on the size of the macro pores. Soil constructivity δ is 

mainly related to micro and nano-pores it does not vary that much in value and can be taken to 

have a value in the range of  0.9 to 1. The partial atmospheric pressure of carbon dioxide at the 

soil surface can be taken as PCO2s = 0.0401 [kPa]. Carbon dioxide molecular weight is 

MCO2 = 44 [kg/kmole]. Furthermore carbon dioxide Mass diffusion  DCO2[m
2 s]⁄  can be 

found in [84] as a function of temperature. The source term for carbon dioxide is referred to as 

αCO2 [ kg m
3s⁄ ]. Its value for simplicity can considered for a grassland site to be  αCO2 =

10−3  [kg m3s]⁄  while for a forest site can be taken as  αCO2 = 10
−4  [kg m3s]⁄ . For more 

accurate values for the carbon dioxide source term for specified categories of soil site locations 

the researcher is directed to available literature.  Furthermore this term changes according to 

land use changes as mentioned by [85].  

In conclusion for the design of an open dynamic chamber which generally encounters carbon 

dioxide efflux overestimation proposals were presented to tackle such a problem for both calm 

and windy conditions  by using a vented nozzle design that regulates pressure fluctuations [86-

88]. Another vertical vent design proposed by [89] was used on a closed dynamic chamber to 

regulate internal pressure on windy sites. The use of a multichannel system of interconnected 

chambers was another alternative to resolve the pressure disturbances issues [90]. Moreover 

they opted to use automated pressure compensation counter measures in order to take care of 
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the situation when pressure fluctuations occur. However over and under estimation problems 

were attributed to the chamber design and gas mixture mixing methods. 

1.4.7 Soil Surface Aeration and Pressure Gradient  

The aeration process in general is providing regular charges of air to the small finite soil cavities 

near the soil surface as shown on Figure 8. The Aeration process supplies oxygen (which makes 

up 21% of the supplied air) and removes carbon dioxide and other gases from the soil, this 

exchange process happens between the soil and the atmosphere interface. The bulk flow of gas 

in the soil is a result of the pressure gradient for dynamic chambers, while for static chambers 

it is related on concentration gradients.  

 

Figure 8: The aeration process through the top soil surface. 

Different gases have different friction velocities this is proved mainly using the Eddy 

covariance method when applied for both carbon dioxide and methane gas as investigated by 

[91]. The relationship between the friction velocity and efflux has always been an important 

case to be considered especially for dynamic chambers. Friction velocity u∗ for carbon dioxide 
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can be calculated using equation (1.36) whereby the carbon dioxide gas density near the soil 

surface is ρCO2[Kg/m
3] moreover the surface wall shear stress is τw[Pa] its value can be found 

in [92] it all depends on the surface roughness of the location: 

u∗ = √
τw
ρCO2

 

(1.36) 

Equation (1.36) can be applied on the soil surface inside the gas volume of the chamber and on 

the outside soil surface located near to the respiration chambers outer shell. There is a 

relationship between friction velocity and soil interface pressure this can be found by relating 

it to a macro-flow case. This can be applied for the first soil layer O horizon which has a 

thickness of h = 5.08 [cm] . Furthermore by using equation (1.37) adapted from [93] whereby 

it is applied for a distance range of 0 < z < h. The partial pressure derivative for a discreet 

distance x on the soil surface can be calculated from the following equation: 

dp

dx
=

u − u∗(1 + 7927h)

(9.7 × 10−9z2 + 15853.6 hz)
 

(1.37) 

Consequently equation (1.37) can be applied for instance to study the generated suction 

pressure due to the use of circulation fans inside the gas volume of the chamber.   Friction 

velocity is affected by time of day hence temperature this was shown by [94] a dependence of 

the Eddy covariance measurement reliability on net radiation was found. During high effective 

net radiation nights the Eddy covariance method usually underestimates the carbon dioxide 

efflux produced by the ecosystem. Moreover efflux measurements using the Eddy covariance 

method were not reliable for nights with extremely low friction velocity.  It was found that 

during low effective radiation nights with friction velocity lower than 0.07 [m s]⁄  

underestimation occurred, while for a case of friction velocity higher than the stated value 

showed similar measurements between chamber and Eddy covariance method. 
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For the purpose of aeration equation (1.38) can be used [95] to estimate the required power for 

an installed circulation fan inside the respiration chamber.  K is based on chamber geometry, 

N is the number of revaluations for the selected fan, Pu [w] is the fan power required in a 

respiration chamber, Di [m] is fan diameter, and Q [m3/s] is the aeration rate (Volume of air 

supplied per minute divided by the soil volume under the chamber) 

Pg = K(
Pu
2NDi

3

Q0.56
)

0.45

 
(1.38) 

In conclusion by conducting wind tunnel tests on certain chamber designs or by using ready 

experimental data the occurring pressure flow frequencies can be calculated. Moreover by 

linking soil surface pressure frequencies with turbulence frequencies near the soil surface flow 

infiltration can be calculated. Hence the occurring mass transport can be predicted additionally 

efflux measurements can be corrected. The Eddy covariance method is not recommended to be 

used for calm days with low wind speeds. A proposed approach in the research community is 

the chamber anchoring method it can be used to reduce gas species leakage due to wall shear 

affects both ways see page 40.       

1.5.1 Solubility of Carbon Dioxide and Oxygen in Soil Water 

The gas phase of the soil is characterized by the amount or volume and composition of the 

studied soil sample. The volume fraction of gas generally decreases with depth in a soil profile 

due to decreasing porosity that takes place as a result of compaction, biological activity and 

due to the absorbed water content. In the grassland studied case, a volume fraction of gas 

between 5-15% is generally considered adequate. The composition of the soil air also varies 

with depth and time. Due to the free diffusion of the atmospheric components through the soil 

surface, the composition of the soil air near the surface is almost the same as that in the 

atmosphere. With depth, the concentration of carbon dioxide increases and that of oxygen 
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decreases because of the biological activity in the soil (respiration of plant roots, micro-

organisms and soil fauna). 

The Reason for mentioning the two gases Carbon dioxide and Oxygen is their direct 

relationship to the respiration quotient. Some scientists have found that re-wetting of peatland 

in south-east Asia will lead to substantial reductions of net greenhouse gas emissions [96]. 

Carbon dioxide solubility in the soil water content is governed by Henrys law [97], where PCO2 

[Pa] is the partial gas pressure of the gas of interest, KSolu [mole/m
3Pa]  is the solubility 

constant and  Cw [mole/m
3]   is the dissolved gas concentration in Water.  

PCO2 = KSoluCw (1.39) 

The dissolving of the different gasses, which is to some extent affected by the relation between 

the soil pH [98] and the soil stored carbon, this in turn would be to soil total porosity, but it can 

be small enough to be neglected on the short term measurements. Oxidation–reduction 

reactions occur under various conditions. Increased carbon dioxide affects the soil pH. Carbon 

dioxide dissolves in water producing both bicarbonates and carbonates. For more details on the 

chemistry side of this point, the reader is referred to [99] and [100]. According to the total 

pressure, species concentration and temperature profile in the soil layers prediction of the gas 

species solubility can be predicted in the soil pores.  This is shown in equation (1.40) whereby 

the solubility constant of Carbon dioxide decreases with temperature, meaning that during the 

period of mid-day the carbon dioxide dissolves less. While during the night and early morning 

Carbon dioxide dissolves more. 

KSoluCw ≤ PCO2s − αCO2
RTτ

2DCO2ϵδMCO2
(z2 − z0

2) 
(1.40) 

Soil temperature changes during hourly bases in a more evident way therefore measurements 

conducted using chambers for 6 minutes or even for 24 minutes are reliable to know what the 
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biological activity of a studied location. Therefore dynamic chambers are recommended for 

such a study, static chambers are recommended for more of hourly or long duration 

measurements. This in turn in affect will give some reasons why in Bogs the error of 

measurement deviations would most probably occur especially on hot days. Due to water 

evaporation rates are high, in addition to occurring water circulation currents due to the 

occurrence of buoyancy affects based on temperature gradients in the soil layers. 

The conclusion is that you can use static chambers as long as you conduct aeration regularly 

you release all the stored heat gained from solar radiation, the same for stored cold air during 

the night. Dynamic chambers also require aeration, this insures a homogenous gas mixture and 

temperature mixture. Temperature and concentration profiles are necessary to understand the 

efflux measurements. It is recommended not to have too many circulation fans in the chambers, 

so that they won’t raise the occurring pressure inside the chamber at the soil surface which 

would resulting from the increase of carbon dioxide solubility. Chamber ventilation is 

necessary during measurements because entrained gas in the chamber will store heat which in 

turn would disturb and increase the soil biological activity. A limiting factor for solubility of 

carbon dioxide is that metabolism is related to temperature occurring in the soil. 

1.6  Respiration Chamber Characteristics 

Each type of experimental apparatus has its own pros and cons. It is the responsibility of the 

researcher to choose the suitable apparatus that meets the required needs. This depends on the 

drive of the conducted research. The advantages and disadvantages of using chambers are 

summarized in the following sections: 

1.6.1  The Advantages of the Chambers  

The main advantages of the chambers can be summarized as follows: 
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1. They are relatively easy with no need for highly trained researchers to operate them. 

For ventilation purposes, the chambers early models open and close manually while the 

latest models are automated and open and close on the site of deployment [101]. 

2. They have spatial coverage unlike the EC method where there is no spatial coverage. 

Thus, air samples are directly measured from a tower located near the studied area.  

3. The cost of making a research purpose chamber is relatively low in relation to a 

commercial one. The cylindrical shell (made from transparent plastics) can be custom 

built, and the chamber can be put together at the research institute workshop for 

instance. As long as the chambers has a classical volume shape. 

4. Fast measurements and short waiting times can be reached because of the advanced 

features that uses forced convection for soil efflux measurements [102].  

5. By using custom built sensor boxes connected to the chamber entrainment, they can be 

used for measuring photosynthesis, evapotranspiration, respiration, temperature, dew 

point temperature, pressure, and light intensity simultaneously. Gas species 

concentration can also be measured. That can be done through the many available types 

of gas sensors in the market [103].  

6. The chambers can be used in underwater environments to measure carbon dioxide 

fluxes from seagrass [104] or on peatland locations [105]. 

7. Cylindrical chambers can be used to measure the efflux resulting from plants and tree 

branches. 

1.6.2  The Drawbacks of the Chambers 

The main disadvantage of the chambers can be summarized as follows. They were presented 

in this form to give a clear description to the ideas which varied substantially in topic: 

1. The chambers affect the efflux being measured causing collar and pressure problems. 

The collar problem occurs when the studied soil surface is not flat. The soil that has 
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rocks and gravel would also make it difficult to fix the chamber on the soil surface. The 

pressure problem occurs when a pressure difference takes place between the inside and 

outside of the chamber causing leakage in and out of the chamber [106]. 

2. If left at the same site for several months, chambers may change the conditions in the 

soil, such as grass over growing between inside and outside the chamber. The same 

applies for increase of plantation cover in a forest site location between two seasons of 

winter and spring. 

3. They are difficult to use in winter especially in critical weather conditions. The 

accumulation of the snow over the shell leads to the blockage of the solar rays into the 

chamber affecting the photosynthesis. The chamber might break or deform if 

surrounding water freezes, crushing its outer shell. In desert locations, extreme heat 

might cause them to melt down because heat buildup in the chamber would gradually 

cause the inner chamber to deform and gradually collapse inwards. 

4. The differences between the chamber types require calibration. To overcome this 

problem, there have been many proposals to use cross-calibration functions  for the soil 

carbon dioxide efflux measurement systems [107]. 

5. It is often cited that a closed chamber underestimates the actual flux due to the mass 

accumulation or the concentration buildup within the chamber headspace, while a 

dynamic chamber over estimates the actual flux due to the pressure difference present 

inside the chamber and caused by drawing an airstream through the chamber. The 

underestimate bias of closed chambers has been demonstrated in some experiments 

where concentrations within the chambers headspace showed a nonlinear increase with 

time, or where the fluxes measured by closed chambers were compared with those 

measured by dynamic chambers [70]. 
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6. Chambers need to be fixed well to the ground because on windy locations they can be 

blown off. 

1.7 Chambers Anchoring or Insertion into the Soil 

Chamber insertion method is by pushing the chamber on or into the ground. On the other hand 

the chamber anchoring method is by fixing the chamber onto a fixed base that is inserted into 

the soil to a predetermined depth, the purpose of such action is to reduce the occurring mass 

transfer from in and out of the chamber based on external occurring events, to stop leakage. 

One method of mechanical fixture is through the use of collars presented by [108], or through 

using the insertion method. An extensive study to quantify chamber pressure effects on soil 

location was investigated by [109]. Numerical models have also been used to evaluate the 

anchoring method [110]. Some researchers [108] have found that collar-insertion depth has a 

potentially long-lasting effect on measured flux rates and needs to be considered when 

interpreting past data and planning future studies. They demonstrated the need either to avoid 

insertion or to measure the amount of cut roots when inserting collars, and for the deployment 

of less intrusive techniques such as stable isotopes or membrane techniques. The chamber 

clamp method has been applied for a dynamic chamber case for a grassland site,  while mixing 

fans that blow air in a perpendicular direction to the soil surface were used [20]. The test results 

strongly suggest that, to get accurate measurements of soil respiration, collar insertion is 

strongly recommended. After a while, scientist started to investigate the insertion depth  

applicability,  as done by [111] where the collar was pushed inside the soil to a distance ranged  

between 5 and 8 cm. Others  [112] used the anchoring method to a depth of 6 to 8 cm the 

selected depth purpose is to ensure complete entrainment. Other researchers tested the 

anchoring depth of 10 cm [113]. Reference [114] stated that 75% of the carbon dioxide efflux 

comes from the top 20 cm of the soil. 
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Reliability of the chamber systems was not related to the measurement principle as stated by 

[24], good results can be achieved with both steady-state and unsteady-state chambers. 

However, even the same chambers with different collar designs showed highly variable results. 

The general trend seemed to be that non-steady-state non-through-flow chambers 

systematically underestimated measurements by 4–14%. Likewise no significant differences 

between through-flow chambers were observed. 

In a grassland study [115] anchors have been left for over 10 years. One advantage of leaving 

anchors in place for long periods of time is that soil disturbance and root damage are 

minimized. The problem with anchored chambers is that during a rain fall they create ponds of 

water around the chamber. Chamber-soil contact mode has a significant impact on the efflux 

measurement as mentioned by [107] this was observed when using collar or insertion mode. 

The resulting general high efflux values obtained by using the “insertion” mode can be 

explained through the following three hypotheses: 

1. Diffusion conditions would change in the litter and near surface mineral layers while 

inserting the chamber. When insertion is conducted the soil surface litter is disturbed 

[116] , therefore the vertical diffusion coefficient is increased resulting in an initial 

jump of efflux measurements.  

2. On a long-term study, carbon dioxide efflux measurements are affected after a collar 

placement has been installed, due to fine plant roots getting cut during the process 

3. When using collar or drilled ring method a distance is created between the structural 

outer shell and the soil surface. When a blowing fan is used the boundary layer created 

on the soil surface is thinner for a collar method than that of a drilled ring, this resulted 

in an increase in carbon dioxide efflux measurements by the used insertion method 

[117]. 
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In conclusion static chambers are practical for use for a long period deployment. A way around 

this problem is to see what correction factor that can be obtained, and when using the anchoring 

method. So for example to derive such a factor experimentally the researcher can measure the 

flux without having an anchoring method at steady conditions and then check the difference in 

flux resulted from the anchoring. 

1.8 The Role of Soil pH/Bacteria on Carbon Dioxide Production and Transport in Soil 

Soil pH is a measure of its acidity or alkalinity and it is expressed in a numerical scale. The 

scale goes from 0.0 to 14.0 with 0.0 being the most acid and 14.0 being the most alkaline. 

Researchers have explored the relationship between soil efflux and pH and have found that soil 

pH and relative root mass are found as important factors to describe spatial variation of soil 

carbon dioxide emission due to vegetation productivity and microbial activity spans [118]. 

Speaking from a abiotic perspective, by knowing the soil site pH, the mineral constituents of 

the soil sample can be estimated in a qualitative manner [119]. On the other hand from a biotic 

(biological) perspective looking closely at a bacteria cell, we find that it contains several 

hundred enzymes, most of which are pH dependent and are associated with cell components, 

such as membranes. Moisture porosity is of importance in relation to pH because it reflects the 

contained water content of the studied soil on location, studies have showed that moisture 

porosity till a value of 21% increases CO2 efflux, then any increase after that value results in 

a decline in fluxes[120]. Soil pH plays a major role because it influences several soil factors 

affecting plant growth [121] which can affect the carbon dioxide measurement , such as: 

1. Nutrient leaching occurs if there are big concentration gradients in the soil layers, 

leaching intensity decreases with depth as a result of water plant uptake and evaporation 

[122]. Plant nutrients leach out of soils with a pH below 5.0 in a more rapid manner 

than from soils with values between 5.0 and 7.5. Leaching effects have been studied for 

grassland and forest sites [98], only on long duration time scales leaching effects can 
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be seen on the carbon dioxide production by the plants and the bacteria, because it 

directly affects the location carbon pool. Moreover, excess rain fall [123] does affect 

the soil leaching only if rainfall exceeds a rate of 6.35mm/h. 

2. Nutrients availability affects carbon dioxide production in the autotropic and 

heterotropic process [124]. Plant nutrients are generally most available to plants in the 

pH range from 5.5 to 6.5. For most plants, the optimum pH range is from 5.5 to 7.0, but 

some plants will grow in a more acid soil or may require a more alkaline level. That is 

why the researcher has to make a survey of the existing plants on the studied soil 

surface. Most of the known bacteria species grow within a pH range from 4 to 9 while 

in the case of fungi they are acidophilic, with a pH range from 4 to 6 [70].  

3. Toxic elements, if found, cause a decrease in the carbon dioxide production [125] 

because they act as inhibitors for growth and metabolism for bacteria, for plants they 

also have unwanted affects [126]. Therefore aluminium and manganese should be in 

the safe limit depending on type of plant, this has been proved for Rye grass [127]. 

4. The acidity or alkalinity of the soil plays a role in changing the permeability (soil 

structure) on the long term basis, where new pores are created due to the consumption 

of the chemical constituents and other pores are closed due to new chemical constituents 

being created. The rate of this change ranges from the micropore to the macropore scale 

depending on the intensity of the process. 

In conclusion chambers should preserve as much as possible the carbon pool of the location. 

That is by the chamber not contributing directly or indirectly to the soil leaching effect. 

Unfortunately extreme weather conditions do occur and cannot be controlled, keeping in mind 

that depends on the site of study. High blowing winds or sudden temperature rise would 

increase the water evaporation rate causing soil leaching. Nutrient leaching for soil also occurs 
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if plant root growth is disrupted inside or outside the chamber. Avoiding the creation of water 

pools around the chamber is recommended because it disturbs the original site pH.  

Bacteria play an important role in the decomposition of the organic materials, especially in the 

early stages of the decomposition when the moisture levels are high. In the later stages of 

decomposition, fungi tend to dominate. Soil bacteria metabolism is related either to aerobic or 

anaerobic conditions which links up to soil parameters of porosity and permeability, this proves 

why there is an important factor of aeration or regular watering.  

Microorganisms abound in the soil and are critical to the decomposing of the organic residues 

and to the recycling of the soil nutrients. The Bacteria are the smallest and most hardy microbe 

in the soil and can survive under harsh or changing soil conditions. The bacteria are important 

in producing polysaccharides that cement sand, silt, and clay particles together to form 

microaggregates and improve the soil structure. Their activity can increase carbon dioxide flux 

[128]. The decomposition rates in the soil under elevated carbon dioxide would be slower, 

resulting in an increased carbon storage in the soil [129]. Bacteria growth phases have been 

characterized and modelled by [130]. A new Growth of bacterial cultures' 50 years on: towards 

an uncertainty principle instead of constants in bacterial growth kinetics  [131]. Bacteria 

population goes through 5 phases in relation to time these are as follows: lag, exponential, 

deceleration, stationary and death phase this is shown in Figure 9 : 
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Figure 9: Typical growth curve for a bacterial population. Note that the phase of growth 

depends on the parameter used to monitor growth [132]. 

This drives us to the conclusion that one of the main challenges of site location of study is that 

bacteria cultures are distributed in a random manner and identifying at which stage the soil 

bacteria is going through is difficult in addition to population distribution. Hence one of the 

recommended methods of modelling growth and population is by linking these parameters to 

soil layers through the use of statistical and probability distribution functions. 

The carbon dioxide efflux is related to the average value of the log number of bacteria, for each 

stage of growth cycle. Experimental tests have been conducted through integrated evaluation 

of soil quality after the incorporation of organic matter and microorganisms [133] this is 

illustrated in Figure 10. Furthermore the change of carbon dioxide efflux is related to date of 

incubation.  
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Figure 10: Determination of total microbial activity (𝐦𝐠𝐂𝐎𝟐 − 𝐂) in sample of soil mixed 

with different types of organic matter, incubated at 𝟐𝟓°𝐂 [133] . 

There is also an important relationship between bacteria cultures and temperature stated in 

[134], This has been modelled by for the biokinetc temperature range [135]. At some instances 

it is been reported that by disturbing the soil at a site of interest a jump in soil flux dose occur 

[116]. That’s resulted in the adoption of the soil tilling method on agricultural locations of farm 

lands, because with the aeration of the soil biological activity is stimulated .The air of the soil 

is made up of the same basic constituents as the atmospheric air; however, the ratios of various 

gases are different and more variable due to that diffusion is the dominant factor for mass 

transport in soil cavities. Bacteria also gets transported within water flows, when rain storms 

hit the soil site location [123], this has been proved for an agricultural site, where crop fertilizers 

where used that contained bacteria.  

It is very important to point out that almost all the void volume of the soil can be occupied by 

either air or water. The amount of air in the soil is thus inversely related to the amount of water 

present. When the air content is around 50% or more of the void volume, the soil is considered 

to be aerobic and oxidation reactions predominate. When the void volume is occupied by water, 
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the soil becomes anaerobic and reducing reactions predominate. The ratios of volume fraction 

distribution for masses, Soil atmosphere composition under aerobic and anaerobic conditions.  

The Aerobic bacteria are those that need oxygen. This means that they are related to the volume 

of the gas pores, so aerobes tend to dominate when the soil is well drained as an example for a 

desert soil location. Anaerobes, on the other hand, are the bacteria that do not need oxygen and 

may find it toxic, these kinds of bacteria can be found in ponds, wetlands, peatland respiration, 

respiration chambers have also been used in ponds [136].  This means that they are related to 

the volume of liquid pores.  

The oxidation reactions in the soil, particularly those carried out by the microorganisms and 

plant roots increase the amount of carbon dioxide in the soil air to 10 times or more the 

concentration in the atmospheric air. As a result of that the oxygen content will be 

proportionally decreased. When the soil void volume is almost or completely filled with water, 

the remaining trapped and dissolved oxygen is quickly utilized by the organisms and the 

oxygen content of any remaining gas will become zero. The soil will then become anaerobic 

and the reducing conditions will prevail. The Aerobic bacteria are those that need oxygen. This 

means that they are related to the volume of the gas pores, so aerobes tend to dominate when 

the soil is well drained. Anaerobes, on the other hand, are the bacteria that do not need oxygen 

and may find it toxic. This means that they are related to the volume of liquid pores. In this 

studied attention is paid to both the aerobes and the anaerobes because of their relationship 

with porosity and permeability. 

Microbial activity is the flux of carbon through a biotic system. Microbial activity is normalized 

with growth microbial activity to give the relative microbial activity. The relative microbial 

activity in any site is related to the soil porosity. This reflects the rate of production of carbon 

dioxide for both anaerobic and aerobic conditions. There is a common conceptual relationship 
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[137] that shows where the soil carbon dioxide efflux becomes slow under dry conditions. It 

reaches a maximal rate at the intermediate soil moisture level, and decreases at high soil 

moisture content when anaerobic conditions prevail to depress aerobic microbial activity. The 

optimum relative microbial activity is usually somewhere near field capacity. 

In conclusion, lab based analysis of the soil sample is required to identify the soil bacteria, and 

then the respiration quotient can be found. The focus here will only be on aerobic bacteria due 

to its strong relationship with aeration process. The aeration process [132] in the respiration 

chamber dose not consume all the available oxygen in the chamber.   Respiration quotient 

differs for one type of bacteria to another meaning that each type of bacteria has different 

stoichiometric coefficients. In general the process is represented in equation (1.41):  

CwHxOyNz + aO2 + bHgOhNi → cCHαOβNδ + dCO2 + eH2O (1.41) 

The carbon balance C  shown in equation (1.42) is found from equation (1.41): 

w = c + d (1.42) 

The hydrogen H balance shown in equation (1.43) is found from equation (1.41): 

x + bg = cα + 2e (1.43) 

The oxygen O balance shown in equation (1.44) is found from equation (1.41): 

y + 2a + bh = cβ + 2d + e (1.44) 

The nitrogen N balance shown in equation (1.45) is found from equation (1.41): 

z + bi = cδ (1.45) 

By solving simultaneously the system of equations (1.42 to 1.45) for a specified type of 

bacteria: CwHxOyNz. The Respiration quotient for a specific type of bacteria n can be found 
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using equation (1.46). Where the ratio is in d [mole/s] of produced carbon dioxide over 

a [mole/s] of consumed oxygen: 

RQn =
CO2 Produced

O2 Consumed
=
d

a
 

(1.46) 

The individual efflux from a single soil microbial cell efmcell[mole/m
2s] can be calculated 

from equation (1.47). This equation was proposed by [138] where C0 [mole/m
3] is the solute 

concentration at the cell surface, Cb [mole/m
3] is the solute concentration in bulk soil is, 

D0[m
2/s] is diffusivity, Kb is constant, θ is the volumetric water content, and S [m] is the 

diameter of a bacterial cell: 

efmcell =
(C0 − Cb)D0Kbθ

3

S
 

(1.47) 

In particular the model can be extended to calculate the total efflux efBP [mole/m
2s]  for a 

bacterial community. Where by the total number of bacterial cells Nb is for a specified area or 

volume of a soil sample. Then for simplicity this can be applied to the whole soil volume 

located beneath the respiration chamber: 

efBP = Nb efmcell (1.48) 

The respiration quotient of the whole bacterial activity at one location is in equation (1.49) this 

represented by the summation RQTotal Bacteria of all respiration quotients.  

RQTotal Bacteria =∑RQn

𝑛

1

= RQ1 + RQ2 +⋯RQn 
(1.49) 

To calculate the total generated efflux efTotal Bacteria [mole/m
2s] from aerobic bacteria at a 

specified location soil surface area ASoil Area [m
2]: 
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efTotal Bacteria =
[ Total Consumed O2]. RQTotal Bacteria

ASoil Area
 

(1.50) 

Soil bacteria types can be found in [121] also in [139] this helps in finding the CwHxOyNz for 

the bacteria of interest .  The main focus on aerobic bacteria is because the respiration chambers 

measure the biological activity of the top layers of the soil. Respiration chambers have an 

impact on bacterial activity because they do disturb the bacteria cultures distributed on the 

location. Chemical reactions are governed by temperature therefore the efflux in equation 

(1.50) is a function to soil temperature.  

It has been noted by researchers that soil temperature affects root growth in parallel soil 

nutrients also contribute [140], therefore there should be some heat balance achieved in the 

respiration chamber gas and the soil volume beneath the chamber. Chambers at some points 

have negative effects on stem growth especially in rain forests [141] but also this can allow us 

to identify the complex interactions between canopy foliar and reproductive dynamics, stem 

growth, soil processes, and nutrient fluxes as exclusion provokes progressively larger soil 

moisture deficits.  

Using closed dynamic chambers, some researchers [142] have pointed out that there is a 

relationship between soil porosity, carbon dioxide flux and root rhizospheres. That was proved 

through data measurements collected from the sites of several forests during dry seasons, these 

showed less activity of the root rhizospheres. Root respiration was found to depend mainly on 

the soil fertility, which has been discussed extensively in the classical references of  [143] and 

[144]. One concern according the respiration chambers use is that they should minimize their 

effect on the transport of nutrients, and nutrient exchange with plant roots.  In conclusion 

temperature affects the activity therefore there has to be some balance between the inner 

temperature of the chamber and atmospheric outer temperature. 
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1.9  Conclusion 

Infrared gas sensors look promising to be used on new designs of respiration chambers. 

Likewise they should be used in parallel with other sensors to monitor the process closely from 

all other physical parameters. Especially that change in surrounding pressure internal 

temperature and air moisture content affects the directly or indirectly the measurement process.  

The chambers gas mixture should be mixed to create a homogenous mixture. Furthermore the 

sample should be measured at a location predetermined from tests. That is because as it was 

proved from other used chamber designs in the scientific community that mixture concentration 

inside the chamber gas volume changes from one location to another especially in the vertical 

direction. Pressure equilibrium between the inside and outside the chamber is a requirement 

therefore internal pressure affects must be considered. Blowing winds on the soil surface 

produce a pressure gradient in the soil top layer consequently that changes the pressure profile 

inside the soil layer. Hence the proposed model can be used to predict the soil aeration rate in 

relation to blowing wind velocities. Moreover the pressure profile with the required 

concentration and temperature profile shows the carbon dioxide solubility in the different soil 

layers. The respiration chamber characteristics can be used as a guide to develop better 

chambers. By surveying the different soil bacteria in the soil site location and finding their 

respiration quotient of each type. Furthermore by surveying the population of bacteria in a soil 

sample and approximating the bacteria surface area the produced efflux from each bacteria 

community can be calculated. 
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