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Abstract 

Analysis of real contact area and thermal resistance combined with experimentally derived 

interfacial heat transfer coefficient values, led to the development of an advanced finite 

element based model to simulate the heat transfer at the oxidised tool-workpiece interface 

during hot steel rolling. An extensive progress review and building on the Sellars 1990’s core 

assumptions are discussed. Today, oxide scale failure is predicted taking into account the 

main physical phenomena such as stress-directed diffusion, fracture and adhesion of the 

oxide scale. The separation loads within the scale metal/system are measured during testing. 

They are sensitive to the chemical composition of steel. The assumption of several parallel 

heat flow systems at the roll-stock interface remains the core model for today’s research.   

 

Introduction 

 

Knowledge of heat transfer along with friction is vital to the understanding and 

operation of metal forming processes. The contact conditions in metal forming processes are, 

to a certain extent, specific to the particular operation, and certainly very diverse. The tool-

metal contact often involves large sliding lengths on which high pressures, sliding speeds and 

temperatures may be maintained together with plastic deformation. The plastic deformation 

coupled with lubrication, failure of oxide layers, creation of reactive metallic surfaces, and 

the constant renewal of one of the factors affecting the contact at the tool-workpiece 

interface, is typical for metal forming. Contact pressures can range from 1 MPa to a few 10 

MPa in sheet forming processes, to a few GPa in hard metal rolling or wire drawing. Speeds 

vary between a few µm/s (superplastic processing) to tens of m/s (high speed drawing, 

turning or thin strip rolling). Surface temperatures are in the range between 0°C and 300°C in 

cold forming due to self heating by plastic deformation, and up to 500°C, 1300°C or even 

2000°C in hot forming, depending on whether aluminium alloys, steels or refractory metals 

are considered [1]. The effect of these severe contact conditions is emphasised when there are 

high values of the aspect ratio of contact surface area to deformed volume (e.g. contact length 

/ characteristic thickness in the rolling of flat products). 

Mathematical modelling is now extensively used for optimisation of the deformation 

during the processing of metallic materials. Precisely determined boundary conditions are 

essential for prediction accuracy of the models. There are many parameters and variables 

affecting surface interactions [2]. Process parameters include the temperature, speed, 

reduction, stiffness and dynamic response of the equipment. In rolling, for instance, among 

the parameters that influence the interactions are the work roll and the back-up roll 

dimensions, their hardness, magnitude and direction of the surface roughness, cooling 



systems, lubricant delivery and the location of nozzles. The mechanical properties of the rolls 

and the work piece, including their resistance to deformation, all contribute here. The 

contributions of surface parameters, such as the chemical reactivity, the tendency to adsorb 

molecules from the environment, the adsorption of water vapour and oxygen, as well as 

surface energy, need to be taken into consideration. The nature of oxide scale formation and 

failure during deformation, the chemical composition of the scale and underlying metal, the 

adhesion between the scale and the metal surfaces in direct contact must all be taken into 

account. Lubrication also significantly affects the interface interactions. The chemical 

composition of the lubricant, the additives and their concentration in the base oil, the 

molecular chain length, density, viscosity and its dependence on both temperature and 

pressure, all should be precisely described. If emulsions are used, the composition, the 

emulsifier and the droplet dimensions are important. The difficulties of making laboratory 

measurements, combined with the complexity of events at the tool-stock interface, result in a 

wide range of reported values for the IHTC, Table 1 [3]. 

 

Table 1. Measured interface heat transfer coefficient (IHTC) between roll and stock for 

the hot rolling of steel and aluminium [after 3] 

Steel Aluminium 

IHTC, kW/m2K Reference IHTC, kW/m2K Reference 

10 - 50 
15 

15 – 20 
19 – 22 

100 – 350 
200 – 450 

8 – 25 
20 

20 and 40 
18 - 50 

[4] 
[5] 
[6] 
[7] 
[8] 
[9] 

[10] 
[11, 12] 

[13] 
[27] 

2 - 20 
5 - 50 

10 – 260 
18 – 38 
23 – 81 

200 
18 

40 – 75 
1 – 15 

400  

[14] 
[15] 
[16] 
[17] 
[18] 
[19] 
[20] 
[21] 
[22] 
[23] 

 

Despite all this complexity in the behaviour at the interface, it is common to represent 

heat transfer or friction as simple coefficients. This is done because only a limited accuracy 

of prediction is needed, or the required calculation is not overly sensitive to heat transfer and 

friction, or because the details of the interface are not well understood, so more detailed 

information is simply not available. There are many circumstances, however, where the 

success of a mathematical model depends on the appropriate formulation of the boundary 

conditions, which could be as sophisticated as the model itself. Of course, reasonable choices 

are necessary to achieve desirable precision. Including all of the above-mentioned 

complexities into a single mathematical model describing dependence of these two 

parameters is highly impractical. The model should take into consideration the most 

important dependencies that affect the tribological system. The parameters of the contact 

surfaces in hot rolling can include, for instance, the strip and roll roughness, and the thickness 

of the oxide scale. When lubricants are used, the viscosity and its dependence on the 

temperature and the pressure are taken into consideration. The concentration of the oil in the 

water and the droplet dimensions are considered when emulsions are applied, as in the cold 

rolling of steel strips. 

The following sections consider heat transfer in metal forming operations, providing 

guidance on the evaluation of the interfacial heat transfer coefficient (IHTC) during hot metal 

forming operations based on variety of experimental observations of oxide scale behaviour, 

analysis of real contact area and thermal resistance, combined with experimentally derived 

IHTC values, which led to a physical model of the heat transfer at the oxidised tool-



workpiece interface developed by Prof. C.M. Sellars and his collaborators in the 1990s. Not 

surprisingly, given Sellars’ track record, the main model assumption remains the core model 

for today’s research into more accurate representation of actual interface conditions. 

Considering the several parallel heat flow systems at the roll-stock interface as the main 

assumption, an advanced FE based model has been developed by his collaborators in the 

following years. The model has been used in this work for numerical evaluation of the 

interfacial heat transfer during hot metal forming operations assuming complexity of scale 

deformation and failure effects.  

 

Review of IHTC model representation developed in the 1990s 

 

The interface heat transfer coefficient ho (IHTC) is used to quantify the resistance of 

an interface to the transfer of heat, usually from hot workpiece to cool tool. It is commonly 

defined by the equation q = ho (T2 – T1), in which T1 and T2 are the temperatures on either 

side of the interface, and q is the heat flux per unit area across the interface. The absence of 

detailed insight and a lack of fundamental understanding about the mechanism of heat 

transfer at a moving interface has led most modellers to assume an average, constant value of 

the heat transfer coefficient.   

The contacting points between two surfaces serve as paths of lower resistance for heat 

flow in comparison to adjacent regions where heat transfer occurs across air gaps [24]. It has 

been assumed that the link between friction and heat transfer at the interface is the fraction of 

the total area, εA, the area that is in direct contact. The real contact area depends on both the 

interfacial pressure, p, and the shear strength, kshear, in the real contact zone: 



 shearAc km
p       (1) 

where mc is an empirical constant within the range of 0 to 1 and μ is the friction coefficient at 

the interface [25]. Observations made through pilot mill tests on a 316L austenitic stainless 

steel shown that the variation in IHTC with reduction, rolling speed and lubrication could be 

explained on the basis of the influence of these rolling parameters on fractional contact area 

[26]. The observed increase in the IHTC during rolling was explained by the increase in 

pressure at the roll stock interface that led to an increase in the real area of contact between 

two surfaces. The influence of rolling reduction, rolling temperature, roll speed, roll and 

workpiece mechanical properties and surface roughness can be related to their effect on roll 

pressure. It has been found that the mean IHTC is linearly related to mean pressure (Fig. 1) 

[28]. This relationship can be used in industrial rolling to determine the magnitude of the 

IHTC from an estimate of the rolling load. The estimations exhibited that the heat losses to 

the work rolls during the early passes in hot rolling can be more than 30% of the total, 

showing the importance of accurately characterizing the IHTC in the roll bite.   

An additional thermal resistance between the roll surface and the workpiece is introduced by 

the application of lubricant or the presence of oxide scale. In many cases, such as during hot 

strip rolling, with large reduction and low rolling temperature, the oxide will be unable to 

deform plastically with the deformation of the rolled stock and through-thickness cracks will 

appear orientated mostly perpendicular to the rolling direction. These cracks will allow 

extrusion of fresh hot metal through the gaps within the scale under the pressure in the roll 

gap. As a consequence of such metal extrusion, direct contact between the relatively cold roll 

and the hot metal can occur. This type of scale behaviour has been noticed during the hot 

rolling of both aluminium [29] and steel [30]. Based on the experimental observations of 

oxide scale behaviour, analysis of real contact area and thermal resistance, combined with 

experimentally derived IHTC values, a physical model was developed to represent heat 

transfer during hot rolling of steel [31]. As suggested by Li and Sellars, the interface heat 



transfer within the roll gap consists of two parallel heat flow systems: through the oxide 

 

scale – a “two-layer zone”, and directly between the roll/fresh metal interface, a “one layer 

zone”, representing the total thermal resistance over the entire apparent contact area by the 

following equation: 
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where Aa, As and Aox are the overall apparent contact area, and the apparent areas occupied by 

the extruded fresh steel and by the oxide scales in the roll gap, respectively, and Re is the 

thermal resistance of the various interfaces. 

Then, the effective IHTC, Ce, can be derived from eq. (2) as  

 

 sesee CCC   121      (3) 

where Ce1 and Ce2 are the heat transfer coefficients for the “one layer” and “two layer” zones, 

respectively. The term αs is the area fraction of the gaps formed from the through-thickness 

cracks at the interface and filled with fresh metal and is defined as αs = As / Aa. In order to 

obtain the effective IHTC for the entire rolling pass, it is therefore necessary to obtain not 

only the HTC components for the individual contact zones and thermal barriers, but also to 

know the mean area fraction of the fresh steel in the roll gap. At that stage of understanding 

the micro events within the oxide scale metal system, the mean area fraction of the fresh steel 

extruded through the gaps within the oxide scale was estimated using the following 

consideration. First, a mean rolling reduction em is determined thus:  
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where l is the horizontally projected length of the contact arc determined approximately by 

Rhl slab , and hx is the instantaneous thickness of the slab at the coordinate x of the 

deformation zone: 

Fig. 1 Relationship between the mean roll pressure and the mean heat transfer coefficient 

during hot rolling of low carbon, stainless and microalloyed steel [28].  
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Substituting eq. (5) into eq. (4) and integrating yield 
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Thus, the mean slab thickness corresponding to the mean reduction is defined as hm = ho slab(1 

– em) and volume of the deformation zone V can be determined as V = lhmbm, where bm is the 

mean width of the slab in the deformation zone. Assuming volume constancy of the slab 

during rolling, the mean area fractions of the scale layer αox and fresh steel αs in the 

deformation zone can be determined correspondingly as   
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where ∆hslab is the absolute reduction in the thickness, ho slab is the initial slab thickness and R 

is the roll radius [31]. Thus, the effective IHTC depends on HTCs for the individual contact 

zones and thermal barriers: 
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where Cb2 is the HTC for the partial contact at the “two layer zone”, usually called contact 

conductance, and Cox is the HTC through the oxide scale. The coefficient Cox was 

approximately obtained for the given oxide scale thickness δox and the scale thermal 

conductivity kox using the following equation: 
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No systematic analysis appears to have been conducted for quantitative variations of the 

contact conductance with surface, interface and deformation conditions during metal forming 

operations. It was assumed that, in addition to the surface roughness and thermal conductivity 

of two contacting solids under normal static contact conditions, the contact conductance is 

related to the apparent contact pressure, pa, and the hardness of the softer contacting material, 

HV, [32-34]. This relationship and also the relationship between the degree of real contact 

and the dimensionless contact pressure obtained on the basis of experimental measurements 

and mathematical analysis [35, 36] led to establishment of the exponential relationship 

between the contact conductance and the contact pressure during hot rolling [31]. The same 

contact and heat transfer states at the scale layer/tool interface were assumed for forging and 

rolling. Accordingly, the contact conductance for a “two-layer zone” Cb2 during hot steel 

rolling can be calculated by using the following equation that was developed earlier for hot 

forging of steel: 
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where A and B are empirical constants. For plain carbon steel, for instance, they are assumed 

to be 0.4 × 10-3 and 0.392 respectively. Ra is the roll surface roughness. λh2 is the harmonic 



mean of the thermal conductivity of the oxide scale λox and the steel roll λr and is determined 

by 
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The oxide scale grown on low carbon steels can be considered as a brittle material at elevated 

temperatures up to 800oC and its relevant behaviour also depends on the strain rate. Vickers 

hardness measurements can cause cracks in the oxide layer, so only measurements in the 

middle of the oxide layer are possible. The Vickers hardness of the oxide scale, HVox, was 

assumed to vary with the surface temperature of the oxide scale Toxs according to the 

following equation developed on the basis of interpolation of the available experimental data 

[37]:  

 KTKTHV oxsoxsox 12732935387075               (13) 

For a case of low pressure, the equation (5) is replaced by the simpler version: 
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For the rolling conditions where the initial rolling temperature is around 1000oC, the scale 

thickness is within the 25 – 700 μm range, the rolling reduction is between 10 and 50% and 

the corresponding average rolling pressure is between 130 and 200 MPa, the contact 

conductance of a “one layer zone” is calculated using the same equations (eq. 11 and 14) 

where the constants A and B are set to 0.405 and 1.5 respectively, and the parameter λh2 is 

replaced by λh1. The parameter λh1 is the harmonic mean of the thermal conductivity of the 

roll material, λr, and the specimen material, λs, and is determined by 1/λh1 = (1/λr + 1/λs)/2. 

HVs is the Vickers hardness of the fresh steel specimen. 

The developed modelling approach successfully demonstrated that the IHTC 

decreases dramatically once the scale thickness increases because of the relatively poor 

thermal conductivity of the oxide scale. At the same time, the application of the model 

allowed for explanation the major reasons why the IHTC increases rapidly with rolling 

reduction (Fig 2). This was physically consistent with the variation of the real contact area 

and the high contact conductance in the fresh steel zone that dominated the overall high 

values of the heat transfer coefficient at the interface during steel rolling, even though the 

area fraction of the fresh steel zone is less than that of oxide scale for rolling passes with 

reduction less than 50%.  

 



 
 

A physically-based FE oxide scale model considering scale failure effects   

 

 The oxide scale model is usually a meso-part of a more complex multilevel FE model 

[38, 39]. The model can be included into and run simultaneously with a macro model 

representing either a technological operation or a testing procedure. The thickness of the 

secondary oxide scale, usually about 10 – 100 μm, is relatively small with respect to the 

macro model. The oxide scale model has the capacity to include very fine features such as 

multi-layer scale, voids or a complicated profile of the scale/metal interface (Fig. 3).  

 

 

a b 

Fig. 2 The IHTC during steel hot rolling predicted for the different scale thickness (a) 

and rolling reduction (b) at initial temperature about 1000oC [31]. 

Fig. 3 Schematic representation of the oxide scale FE model set up 



The finite elements should have similar sizes at the contact regions and the increment load 

should be adequate to the element sizes being in contact so as to avoid the numerical 

obstacles. It becomes difficult to satisfy the above criteria in a single model. Hence, 

corresponding linking of modelling scales is a necessary stage for prediction of scale 

behaviour during modelling of both mechanical testing and technological operations. The 

oxide scale is simulated as comprising numerous scale fragments joined together to form a 

scale layer, covering the representative raft length. To be able to reflect the real crack pattern 

observed during the hot rolling pass, the length of each oxide scale fragment is chosen to be 

less than the smallest spacing of cracks observed in the experiments. The predicted crack 

spacing should be insensitive to the sizes of the scale fragments. They are chosen randomly, 

enabling prediction of representative crack spacing and distribution of cracks along the length 

of the raft due to both longitudinal tension and contact with the roll. Oxide scale failure is 

predicted by taking into account the main physical phenomena such as stress-directed 

diffusion, fracture and adhesion of the oxide scale, strain, strain rate and temperature (Table 

1). The main mathematical assumptions of the model related to oxide scale are presented in 

Table 2. The other relevant details of the model can be found elsewhere [39, 40, 48]. 

 

Table 1. Properties of oxide scale and scale/metal interface used for calculation [after 

39] 

Parameter Function Ref. 

Density, kg/m3  = 5.7x103 Ranta et al., 1993 
 

Specific Heat Capacity, J/kg deg 

 

cp = 674.959+0.297*T-4.367*10-

5*T 

for T  600 – 1100oC 

 

Ranta et al., 1993 

 

Thermal Conductivity, W/mK 

 

 = 1+7.833*10-4*T 

for T  600 – 1200oC 

 

Ranta et al., 1993 

 

Young’s Modulus, GPa 

 

E = Eox
o (1 + n (T-25)) 

n = - 4.7x10-4; Eox
o = 240 GPa;  

 

Morrel, 1987   

 

Poisson’s Ratio 

 

 = 0.3 

 

Robertson and  

Manning, 1990  
 

Heat transfer coefficient at oxide/metal 

interface, W/m2K 

 

 = 30000 

 

Pietrzyk and 

Lenard, 1991  
 

Surface diffusion coefficient times 

effective surface thickness, m3/s 

 

SDS  = SDoS exp(-QS / RT) 

SDoS = 1.10*10-10 m3/s;  QS = 220 

kJ/mole 

 

Swinkels and 

Ashby, 1981  

 

Volume (lattice) diffusion coefficient, 

m2/s 

 

DV = DoV exp(-QV / RT) 

DoV = 1.80*10-4 m2/s;  QV = 159 

kJ/mole 

 

Swinkels and 

Ashby, 1981 

 

Stress intensity factor, MN m-3/2 

 

K = ao+a1T+a2T2+a3T3+a4T4+a5T5
 

for 20 – 820oC 

ao = 1.425;            a1 = -8.897*10-3; 

a2 = -8.21*10-5;     a3 = 3.176*10-7; 

a4 = -5.455*10-10;  a5 = 3.437*10-13 

 

Hancock and 

Nicholls, 1988 
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Table 2.  Oxide scale model assumptions [after 39] 

Assumption Equation Reference 

 

Stress-directed diffusion of metal atoms round 

interface irregularities controls the rate of 

viscous scale sliding  

 

  

Riedel,  1982 

 

Dislocation creep in addition to diffusional 

flow of atoms can circumvent interface 

irregularities                                

 

  

Riedel,  1982 

Critical strain for through-thickness crack 

depends on fracture surface energy, 

Young’s modulus, the shape and position 

of the void, the composite void size  

 

  

Schütze, 1995 

 

The viscosity coefficient depends on the 

temperature, atomic volume, the diffusion 

coefficients, the interface roughness  

 

  

Raj and Ashby, 1971 

 

 

 It was assumed that spalling of the scale could occur along the surface of lowest energy 

release rate, which can be either within the scale or along the scale/metal interface. A flaw 

will continue to grow under a stress, if its energy release rate G exceeds the critical energy 

release rate Gcr. The availability of experimental data exhibited that through-thickness 

cracking is an essentially brittle process of unstable crack propagation for the majority of 

cases. It favoured the assumption of linear elastic fracture mechanics for the model that is 

acceptable for prediction of scale failure for such cases. Assuming the opening of the 

through-scale crack due to applied tension loading perpendicular to the crack faces (tensile 

mode), the critical failure strain cr may be used as a criterion for a through-thickness crack 

occurring. Tangential viscous sliding of the oxide scale on the metal surface is allowed, 

arising from the shear stress  transmitted from the specimen to the scale in a manner 

analogous to grain-boundary sliding in high-temperature creep. Tangential viscous sliding of 

the oxide scale over the metal surface due to the shear stress transmitted from the steel is 

allowed when the scale and the metal surface are adherent. This kind of viscous sliding is 

different to frictional sliding of the separated scale fragment when separation stresses are 

exceeded. 

In some cases, steel oxides can show both brittle failure at temperatures below about 

800oC and signs of ductile fracture at higher temperatures. At high strain rates the failure can 

become brittle even at high temperatures. Experimental observation of the ductile fracture 

within the oxide sale favours the important conclusion that the model should be able to 

accommodate both types of failure. For the former, the critical strain for failure is 

implemented into the model, while the J-integral is used as a parameter corresponding to the 

strain energy release rate for consideration of ductile scale failure. Path independence of the 

J-integral can be proved for non-elastic material behaviour. Provided that the actual elastic-

plastic material behaviour resembles this non-linear elastic behaviour, the J-integral can also 

be used to evaluate the stress and strain field near the cracks in elastic-plastic material. 

Determination of the crack length is based on increment number and deactivation of the 

separation forces based on the crack length and J-integral value. It has been assumed that no-
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singularity modelling near the crack tip is applicable, with a quarter-point node technique and 

only one contour for the J-integral specified for each interface. The derivatives of elements of 

the inverse Jacobian J-1 and of the determinant of the Jacobian [J] are only considered in the 

applied virtual crack extension method.  
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where the symbols have their usual meaning. The MSC/MARC commercial finite element 

code is used to simulate metal/scale flow, heat transfer, viscous sliding and failure of the 

oxide scale during hot rolling, assuming the plane strain condition. The release of nodes is 

organized with user-defined subroutines in such way that the crack length is determined 

based on the increment number then, according to crack length, the boundary conditions are 

deactivated by calling a routine for a specific node number. 

Fig. 4 illustrates the gap patterns typically formed in the oxide scale at entry into the 

roll gap and within the roll gap. The gaps have different lengths because of their different 

origin. Some relatively big gaps formed from through-thickness cracks developed at the entry 

zone due to longitudinal tensile strain in that area. Other gaps, usually small, formed due to 

bending at the roll bite. The small gaps can become even narrower during passage through 

the roll gap. The gap between scale fragments is changed under the roll compression because 

of sliding and deformation of the oxide scale and metal extrusion through the gap. Crack 

closure eliminates or reduces the metal extrusion and improves the product’s surface finish. It 

has been shown that among the main factors influencing the degree of metal extrusion during 

compression are the temperature and the initial width of the gap [41]. The scale slides at high 

temperatures making the initial gap smaller or closed. However, if the initial gap is relatively 

big the gap width is increased during the deformation. 

 

Numerical evaluation of IHTC during steel hot rolling – results and discussion  

 

As can be seen in Fig. 4, the apparent contact surface in the roll gap consists of the 

three types of zones: the roll and stock oxide scale zone, and two non-scaled zones forming  

 

 

Fig. 4 Temperature and crack distribution predicted at the oxidized stock/roll interface at 

exit from the roll gap. 

 



gaps between stock scale fragments. Some gaps can have direct contact between the roll 

surface and extruded hot metal. This behaviour of the oxide scale and fresh steel allows for 

the assumption that there are three parallel channels (zones) for the heat from the high 

temperature stock to be transferred to the low temperature rolls. In the first zone, the heat is 

transported through the scale layer, the boundary gap due to partial contact between roll and 

scale and, possibly, the roll scale. In the second zone, the heat is transported through the 

boundary gap developed between the oxidised roll and the steel surface. The third zone is 

formed when the extruded metal has a direct contact with the relatively cold surface of the 

roll. In such a case, the heat is transferred through the gap as well as through the direct 

contact. The boundary gap due to partial contact between roll and the fresh metal is also 

assumed for the third zone. As can be seen (Fig. 4), the FE model results are in good 

agreement with the main representations of Prof. C.M. Sellars and his collaborators 

developed in the 1990s considering the several parallel heat flow systems at the oxidised roll-

stock interface. The advanced FE based model just allows for improvement of evaluation of 

the IHTC during metal forming operations assuming complexity of deformation in the area 

and evolving scale failure effects. The model has been upgraded with experimental data 

related to low carbon steel oxides obtained during hot tensile testing of the steel specimens of 

the following chemical content (wt%): 0.18C, 0.26Si, 0.95Mn, 0.03Cr, 0.05Ni and 0.1Cu. 

Matching the predicted and measured loads at the head of the specimen, as it is described 

elsewhere [42], the separation loads within the scale and at the scale/metal interface were 

implemented into the oxide scale model for evaluation of the IHTC. It is assumed in the 

model that the surface geometry of the roll does not change significantly during the rolling 

pass. The roll surface roughness is measured and included in the numerical analysis while the 

scale surface is assumed to be flat. The total thermal resistance, Re, over the apparent contact 

area can therefore be determined as  
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where Aa is apparent contact area and A1, A2 and A3 are apparent areas occupied by the scale, 

gaps and extruded metal. 
i

iAA 11 , i - number of the scale fragments; 
j

jAA 22 , j – 

number of gaps and 
k

kAA 33 , k – number of the direct contact zones. Eq. (16) is similar 

to eq. (2) with the difference that the three heat flow channels are considered.  The effective 

IHTC at the arc of contact is therefore determined as a sum of the heat transfer coefficients 

Cei determined within the corresponding zones 

332211  eeee CCCC                   (17) 

where αi = Ai/Aa is the area fraction of the corresponding zones: the scale, the gap and the 

extruded metal zone, such that α1 + α2 + α3 = 1. Assuming no scale on the roll surface, the 

heat transfer coefficient through the scale (zone 1), Ce1, is determined as 
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where Cox is the heat transfer coefficient through the oxide scale layer and Cb1 is the heat 

transfer coefficient due to partial contact at the boundary gap (Fig. 5). This is usually called 

contact conductance. The heat transfer coefficient through the scale layer is determined as 
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where kox is the thermal conductivity of the scale depending on the temperature, T, and δox is 

the scale thickness, which depends on the pressure pa. The temperature dependence of the 

thermal conductivity is calculated as 

TTkox

410833.71)(                                                      (20) 

within the temperature interval from 600oC to 1200oC [43]. In the case when the roll scale 

cannot be neglected in terms of the heat transfer, the eq. (11) can be rewritten as 
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where CRox is the heat transfer coefficient through the roll scale layer determined as 
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where the parameters kRox and δRox have the same meaning as in the eq. (16) but related to the 

roll’s oxide scale. The contact conductance parameter, Cb1, has proved to be difficult to 

determine. No systematic measurements or analyses have been found for the quantitative 

variations with surface, interface and deformation conditions during metal forming 

conditions. It has been assumed that the contact conductance, in addition to the effects of the 

surface roughness and the thermal conductivity of two contacting materials, is related to the 

apparent contact pressure pa and the hardness, HV, of the softer material in the contact, as it 

was adopted earlier by Li and Sellars [31] and expressed by eq. (11) – (14). 

For zone 2, when there is no direct contact between solids, the heat transfer 

coefficient Ce2 depends on the roll oxide thickness, lubricant thermal conductivity and other 

parameters. It was assumed to be negligibly small in this analysis. For zone 3, the heat 

transfer coefficient Ce3 is determined as 

 sesbe CCC   1233                (23) 

where βs is the degree of the fresh steel contact. The contact conductance Cb3 between 

extruded fresh steel and the roll surface is determined from eq. (9) and (12), assuming A3 = 

0.405 and B3 = 1.5. The harmonic mean of the thermal conductivity of the roll and specimen 

steel, kh3, is determined as shown in eq. (2). The Vickers hardness of the fresh plain carbon 

steel, HV3, is calculated approximately by using the flow stress σs at 8% strain, neglecting 

work hardening [44]:  

sHV 33                  (24) 

The degree of the fresh steel contact βs is determined as the ratio between the length of the 

fresh steel contact and the length of the gap in the oxide scale formed at the arc of contact 

during the rolling pass (Fig. 5). It has to be noted that the parameter βs is changed during the 

rolling pass depending on many technological parameters such as temperature, scale 

thickness, chemical composition of the steel, gap width at entry into the roll gap, rolling 

Fig. 5 Temperature distribution predicted at the area of the fresh steel contact with the 

roll surface. 
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reduction, etc. The area fraction αi of the corresponding zones the scale (i = 1), the gap (i = 2) 

and the extruded metal zone (i = 3) is changed during the rolling pass and depends, among 

others, on the initial stock temperature and the oxide scale thickness, as can be seen in Fig. 6. 

The gaps within the oxide scale are formed at lower temperatures and higher reductions. It 

can be explained by the fact that the scale /metal interface of the low carbon steel becomes 

weaker at higher temperatures and the scale tends to slide along the interface rather than 

cracking in the through-thickness mode. Thicker scale, of about 100μm thickness for 

instance, exhibits more tendency towards crack development during the rolling pass rather 

than thinner scale layers about 10-30μm thick. 

The heat transfer coefficient through the scale layer, Cox, is also changed during the 

rolling pass, mainly because of changes in the thermal conductivity of the scale, kox, and the 

scale thickness, δox, depending on the temperature, type of the oxide scale and the rolling 

reduction (Fig. 7). As can be seen in Fig. 7a-b, the thickness of the oxide scale changes 

during the rolling pass according to the reduction. The changes are more pronounced when 

the scale consists of a few sublayers and big voids, which are closed at the initial 

deformations during the rolling pass. 



 

These changes will affect the heat transfer coefficient through the oxide scale layer according 

to eq. (19). The degree of fresh steel contact, βs, is changed during the rolling pass due to 

steel extrusion within the gap between the scale fragments and among other rolling 

parameters, such as the scale thickness and temperature, depends to a large extent on the 

initial gap width 

 

Scale thickness 0.1mm Scale thickness 0.1mm 

Temperature 800oC 
Temperature 800oC 

Fig. 6 Effect of the initial stock temperature and oxide scale thickness on the area 

fraction of the scale failure zones predicted for the different rolling reductions. 

Fig. 7 The oxide scale thickness predicted for the different reductions during the 

rolling pass: a - one layer oxide scale, no big voids; b – three layer oxide scale, big 

voids 



at entry into the roll gap and the rolling reduction. As can be seen in Fig 8a, the small gaps, 

formed presumably due to bending at the roll bite, tend to close during further compressive 

deformation within the arc of contact during a rolling pass and there is no contact between the 

roll surface and fresh stock steel observed. As the initial gap becomes wider, the gap narrows 

until about 10% reduction. Then, at higher reductions, the gap widens, allowing fresh steel to 

be extruded into the gap under the roll pressure. The first direct contact between fresh steel 

and the roll surface occurs at about 20-30% reduction, depending on the initial gap width, and 

the degree of fresh steel contact increases up to a fraction of about 0.5-0.8 at 40% reduction 

(Fig. 8b – f). These changes in the degree of fresh steel contact lead to significant changes in 

the ITHC calculated for the different reductions, as shown in Table 3. 

  

 

Fig. 8 Effect of the rolling reduction on the gap width L (a, b, d) and degree of fresh 

steel contact βs (c, f) predicted for the different gap width at entry into the rolling pass 

and the initial temperature T = 1000°C.  

a 

b c 
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Table 3. Effect of the rolling reduction and the initial oxide scale thickness on  

IHTC predicted at the initial temperature of 800oC  

 
Rolling reduction, 

% 

Initial scale thickness, 

mm 

IHTC, 

kW/m2K 

20 0.03 56 

20 0.1 22 

30 0.03 128 

30 0.11 52 

40 0.03 153 

40 0.1 138 

 

 Quantitative characterization of heat transfer at the workpiece/tool interface during 

hot metal forming operations is still inconsistent and in most cases creates a major handicap 

to producing accurate and reliable models for hot metal working processes. The reason for 

this is partly because of the complicated physical phenomena taking place in the contact. 

Along with complicated secondary oxide scale behaviour, the importance of surface 

roughness and lubrication effects on IHTC in the hot rolling of steel has been widely 

recognized [45]. The strain imposed on the steel surface when stock enters the roll gap, 

because of drawing in by frictional contact with the roll, produces longitudinal tensile stresses 

ahead of the arc of contact, which may result in oxide failure. The fractured scale, which has 

a thermal conductivity about 10-15 times less than the steel, can enable direct contact of hot 

metal with the cold roll due to extrusion through fractured scale up to the cool roll surface 

[46]. Such spaces, distributed along the arc of contact, will increase the IHTC through the 

oxide thermal barrier, as discussed above. However, at higher temperatures the oxide metal 

interface is weaker than the oxide and shear stresses cannot be fully transmitted to the oxide 

raft due to sliding, which complicates the crack pattern formation [47]. The location of the 

plane of sliding is determined by the cohesive strength at the different interfaces within the 

steel-inhomogeneous oxide scale and by the stress distribution when delamination within the 

scale takes place. A major problem is high sensitivity of properties and morphology of both 

the scale itself and the interfaces to the chemical content of steel and the conditions of their 

growth. Despite considerable complexity, a combination of careful experiments and detailed 

finite element (FE) analysis has been successfully applied to represent a wide range of the 

observed physical phenomena [48] and numerical characterization of these phenomena can 

be achieved using the physically-based FE model briefly described in this section. Although 

the results presented above are mainly for carbon steels, the method can be applied to other 

technologically important alloys such as stainless steels and aluminium alloys.  

 

Conclusion 

To a large extent, the success of any mathematical model depends on the appropriate 

formulation of the boundary conditions, which, as seen from the evaluation of IHTC, could 

be as sophisticated as the model itself. The method described, based on FE modelling, allows 

for calculation of the IHTC at the stock/roll interface assuming the effects of failure of 

secondary oxide scale. Comparing the results in Figs. 2 and 9, it can be suggested that 

including all of the mentioned complexities into a single mathematical model describing 

dependence of IHTC is time consuming and not always necessary. Instead, relatively simple 

formulae for heat transfer work well for general applications based on understanding and 



predicting the micro events at the roll/stock interface affecting the IHTC, such as those 

suggested by Prof. C.M. Sellars and his collaborators in the 1990s. Of course, reasonable 

choices are necessary to achieve desirable precision; they should take into consideration the 

most important dependencies that affect the tribological system. Sellars was adept at such 

choices thanks to the tremendous physical insight that characterised his research. 
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