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Abstract: Polymer-induced drag reduction takes the advantages of high efficiency for 

energy saving and consequently attracted a lot of research interest in recent decades. 

However, the interplays between polymer rheological parameters and drag reduction 

and flow features have not been explored extensively. In this study, a molecular-based 

non-Newtonian viscoelastic model, so-called, Finite Extendible Nonlinear Elastic- 

Peterlin (FENE-P) rheological model, has been incorporated into a 3D transient CFD 

code in order to investigate the polymer-induced drag-reduction in flow past cylinder 

over a wide range of rheological and flow parameters. The modeling results 

demonstrate that generally viscoelastic polymer solutions can indeed reduce the drag 

coefficient by means of the polymer stretch which facilitates the resistance on the 

wake instability. Particular attention has been paid to instantaneous vorticity fields, as 

well as the drag coefficient and vortices shedding frequency. It is found that the 

viscoelastic fluid flow elongates recirculation region behind the cylinder. The extent 

of drag reduction is elevated as polymer elasticity becomes stronger. However, the 

solution containing extreme long chain polymer might exhibit solid-like 

characteristics and cause the upstream pressure of cylinder increase, leading a larger 

drag on the cylinder. In addition, the simulations reveal that vortices shedding 

frequency are largely reduced by the viscoelasticity. These results are indicative of the 

predictive capability of established numerical model for viscoelastic fluid flow. The 

model is useful to explain the observations of polymer-induced drag reduction and 

gains insights into how polymeric additives can influence the flow features. 
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1  Introduction 

Polymer additives are often used to reduce friction drag of wall-bounded turbulent 

flows. The flow of a polymer solution exhibiting viscoelastic property has been 

reported to reduce up to 80% frictional drag compared to that the equivalent flow of 

the pure solvent
1
. Understanding of the role of polymers in the mechanism of drag 

reduction not only facilitates the development of advanced drag reduction models, but 

also provides valuable insights into turbulence itself. In the past half-century, 

numerous experimental and numerical studies have been conducted in order to better 

understand the origins of polymer-induced drag reduction, and various explanations 

have been proposed on the basis of their results. Broadly speaking, three classes of 

phenomenological explanation
2
 have been put forward: polymers cause the 
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buffer-layer thickness to extend across the entire boundary layer, polymers diminish 

the Reynolds stresses and polymers damp the streamwise vortices. Obviously, these 

studies provide the direct evidence that polymers alter turbulent flow structure. 

However, the fundamental principles underpinning this polymer-turbulence 

interaction remain elusive, and current experimental techniques (e.g. Particle Image 

Velocimetry, Phase Doppler Anemometry) have not yet proved to be sufficient for 

their identification
3
.  

 

Consequently, computational modeling of non-Newtonian viscoelastic flow is an 

attractive tool for obtaining new insights into the polymer-induced drag reductions. 

The simplest model to describe the elastic behavior of a polymer molecular is the 

so-called Dumbbell model. This model approximates an individual member of a dilute 

concentration of polymers as a single dumbbell connected with a finitely extensible, 

nonlinear elastic spring, and through a balance of forces acting on the beads, see Fig. 

1. The beads represent molecular segments of several monomers and the spring 

describes the entropic effects to which the end-to-end vector of the polymer is subject. 

 

Figure 1 Schematic of dumbbell model for polymer molecular 

 

Several dumbbell-concept-based constitutive models have been derived to predict the 

product of the aforementioned end-to-end vector, so-called conformation tensor. 

Among them are Upper-Convected Maxwell (UCM) model , Oldroyd-B model  and 

finite-extensibility-nonlinear-elastic (FENE) model family including FENE-Peterlin 

closure (FENE-P)
4
, FENE- Chilcott-Rallison closure (FENE-CR)

5 
and modified 

FENE-CR
6
. The quasi-linear UCM and Oldroyd-B models do not consider the 

maximum extensibility of polymer, which limited the application to very low values 

of the Weissenberg number and polymer extensibility
7
. The FENE model family are 

improved version of Oldroyd-B model, where a maximum extensibility has been 

introduced to bound the extension of spring, and thus the bounded stress of the 

polymers. This feature allows capturing the basic rheological properties of a polymer 

solution.  

 

The FENE model family has been widely verified over a wide range of rheological 

and flow parameters. Recent works on FENE model family are discussed herein. 

Richter et al. (2011)
8
 utilized a modified FENE-P rheological model to simulate 

viscoelastic flow past a cylinder at moderate Reynolds numbers. The predicted 

Strouhal number, drag coefficient and lengthening of the recirculation region were 



compared against the previous experiments. The FENE-P constitutive equations have 

been embedded into an in-housed code to study the effects of viscoelasticity on the 

transitioning cylinder wakes. It has found FENE-P model show relatively good 

agreement with aforementioned FENE-MCR model for the drag and shedding 

frequency. It also reveals viscoelasticity reduces the vortex shedding frequency, as 

well as dramatically increase the drag at high polymer extensibility. More recently, 

Zheng et al. (2013)
9
 incorporated the FENE-P model into a commercial CFD code 

ANSYS FLUENT via a User Defined Function interface that produces the 

instantaneous source terms for momentum equations and constitutive equations. This 

model has been verified for a viscoelastic fluid in symmetric planar sudden expansion 

geometry. It shows FENE-P model predicted good flow resistance compared to the 

previous experimental. The encouraging results prove FENE-P rheological model is 

capable of capturing essential physical processes in turbulent drag reduction studies. 

Therefore, the FENE-P rheological model was employed throughout the present 

study. 

 

The aim of present work is two-fold: to develop a subroutine incorporating FENE-P 

model into commercial CFD software package ANSYS FLUENT
10

; and, to 

investigate the polymer-induced drag reduction in 3-D flow past circular cylinder over 

a large range of rheological parameters (polymer length, L, 10-150, Weissenberg 

number, Wi, 0-80) and flow conditions (Reynolds numbers, Re, 300-2000). The data 

leads to in-depth insights into the role of polymer on the mechanism of drag 

reduction. 

 

In the sections below, firstly, the governing equations together FENE-P constitutive 

equation are presented. We then present corresponding computational domain for flow 

past circular cylinder modelling, and the numerical setup including discretization 

scheme, convergence criteria and under relaxation factors. This is followed by a 

presentation of key modeling results and discussion. The final part of this work is 

devoted to concluding remarks. 

 

2  Methodology 

 

2.1 Governing equations 

In the Finite Volume Method framework, the governing equations of unsteady 

isothermal flow of incompressible fluid consist of a single set of continuity and 

momentum equations: 
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where u and p are the pressure and velocity, respectively, while subscripts i, j and k 

are the vector components in the i-th, j-th and k-th directions, respectively. The 𝜏𝑖𝑗
𝑝

 



represents the additional stress induced by elasticity the polymers in the flow. 

According to the kinetic theory of FENE-P model, the elastic stress term, 𝜏𝑖𝑗
𝑝

, is 

related to a conformation tensor Cij written as: 

𝜏𝑖𝑗
𝑝 =

𝐶𝑖𝑗

1−
𝐶𝑘𝑘
𝐿2

− 𝛿𝑖𝑗                                             (3) 

in which C and L are the polymer conformation tensor and the maximum molecular  

extensibility in relation to its equilibrium size, respectively. δ is the Kroneker symbol. 

In the above equation, the trace of conformation tensor Ckk cannot extend over the 

parameter L
2
. The confirmation tensor Cij is positive-definite symmetric (total 6 

component for 3D case) and satisfies the following partial differential equation (PDE) 
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where Γ refers to the constant scalar diffusivity, chosen so that the Schmidt number 

(Sc ≡ ν/ Γ, the ratio of momentum diffusivity to scalar diffusivity) closes to 1 for 

guaranteeing the numerical stability of the scheme. The dimensionless parameters in 

equations 1, 2 and 4, Weissenberg number (Wi), Reynolds number (Re) and polymer 

concentration (β), are defined as: 

𝑅𝑒 =
𝜌𝑈𝑑

𝜇
                                                     (5)                       

𝑊𝑖 =
𝜆𝑈

𝑑
                                                      (6)                       

𝛽 =
𝜇𝑠

𝜇𝑠+𝜇𝑝
                                                     (7)    

Wi number describes the degree of viscoelasticity; Re number refers to the ratio of 

inertial forces to viscous forces in a flowing fluid; β is written as the ratio of the zero 

shear-rate viscosity of the solvent (μs) to the zero shear-rate viscosity of the total 

solution (𝜇𝑠 + 𝜇𝑝) and a homogeneous polymer concentration (β = 0.9) was imposed 

throughout the flow field. 𝜇𝑝is the partial viscosity contributed by the polymer. Here, 

ρ is the solvent density; U and d are the reference velocity and length separately, 

where the averaged inlet velocity, 1 m/s, and the cylinder diameter were adopted in 

the present study; λ is the characteristic polymer relaxation timescale.  

 

The viscoelastic constitutive equation (equation 3) and transport equation (equation 4) 

are incorporated into the commercial code ANSYS FLUENT ver. 15.0. via UDF 

interface. The UDF contains a set of coupled user-defined scalar transport equations 

consisting of four customized terms: transient term, convection term, diffusion term, 

and source term, respectively. In the CFD-based approach used in the simulations 

reported here, all of the above governing equations are discretized and solved properly. 

The numerical procedure through a single iteration (going from iteration n-1 to n) is 

described as: evaluate the Ckk
n-1

 and guarantee the polymer boundedness, and obtain a 

value of 𝜏𝑖𝑗
𝑝

 is obtained at the beginning of each iteration; solve 6 PDEs for Cij using 

the 𝜏𝑖𝑗
𝑝

 from previous step; solve simultaneously continuity equation and momentum 



equation using Cij from previous step; update the Ckk
n
 at the end of each iteration. The 

final solution provides the instantaneous velocity, pressure, polymer conformation, 

and non-Newtonian stress fields of a fluid with a dilute concentration of polymer 

additives. 

                   

2.2 Problem formulation 

The flow past a circular cylinder is one of the classical problems of fluid mechanics 

since it includes many important physical features such as flow separation, boundary 

layers, wakes and vortex dynamics, as illustrated in Figure 2. Therefore, it was chosen 

in the present work to study the complex viscoelastic effect under various flow 

conditions.  

 

Figure 2 Basic feature of subcritical flow past a circular cylinder
11

  

 

A circular cylinder of diameter d is placed in an otherwise undisturbed uniform 

crossflow (U∞ = 1.0 m/s) as shown in Figure 3a). The domain extends radially to 10d 

upstream of the cylinder. The lateral boundaries and the exit boundary in the 

streamwise direction are placed at 10d and 45d from the center of the circular cylinder, 

respectively. The discretization points were 150 and 100 for the streamwise direction 

and lateral direction separately, see Figure 3b). The spanwise domain length was set at 

10d and discretized using 50 nodes in order to capture the three-dimensional flow 

behavior. An oblique view of cylinder wall surface grid is given in Figure 3c). A 

close-up of the spanwise-normal plane of the unstructured grid surrounding the 

cylinder is shown in Figure 3d).   

a) b) 



c) d) 

Figure 3 Three-dimensional computing domain, a) geometry of the domain showing 

the location of cylinder, b) unstructured hexahedral grids (number of nodes nx×ny×nz 

=150×100×50), c) oblique view of circular cylinder, d) close-up of unstructured grid 

surrounding the cylinder    

 

The boundary condition of entrance is set to be velocity inlet. Two lateral boundaries 

in spanwise direction were imposed as periodic condition to mimic an infinitely long 

cylinder. All exits are set as pressure far-field, and the cylinder wall has no-slip 

boundary condition. The velocity of whole flow field is initialized by the average 

velocity at the inlet velocity (ux = 1m/s, uy = 0, uz = 0), and the conformation tensor is 

initialized to be Cxx = Cyy = Czz = 1, and Cxy = Cyz = Cxz = 0. 

 

We followed suggestions outlined in recent research
9
 on how to setup the spatial 

discretization on each governing equation. Pressure implicit with splitting of operators 

(PISO) scheme is adopted to solve the coupling of velocity and pressure; standard 

scheme is utilized to discretize the pressure equation; QUICK scheme is used to 

discretize the momentum equation and user-defined-scalar equations. The second 

order implicit method was used to advance the solution in time. The convergence 

criteria are set as small as 10
-6

 and under relaxation factors are tightened to 0.02 for 

all variables. The time step is set to be 0.001 s and a maximum number of 20 

iterations for each time step. All of the transient simulations running for flow time up 

to 2000 s were conducted on a HP-Z820 24-core 3.4 GHz workstation run in parallel. 

 

3.  Results and discussion 

It was necessary to validate and benchmark CFD’s ability to predict the flow structure. 

A suitable case with Newtonian flow (Re = 195) was therefore performed prior to the 

broad tests on non-Newtonian flows. The CFD predicted streamline pattern colored 

by velocity magnitude were then compared with the experiments
12

. As shown, both 

CFD and experiment captured the classic von Karman vortex street occurring behind 

the cylinder. It was also found that the flow begins to separate from the wall surface 

where the reverse flow occurred. 



a) b) 

Figure 4 Comparison of the streamlines between the experimental
12

 data and the CFD 

modeling. 

 

After confirming the predictive capability of the present CFD code, the same analysis 

was done for the viscoelastic flows to obtain an overall insight into the 

polymer-induced drag reduction. Ideally, the numerical modelling needs cover a broad 

range of rheological parameters and flow conditions, which requires a considerable 

amount of computing resources and makes the work impossible. Therefore, 3 value of 

each parameter (L: 10, 30 and 100; Wi: 0, 10 and 80; Re: 300, 1000 and 2000) has 

selected in the present work, see Table 1. Total 9 data points/combinations of Wi, L 

and Re has been tested in the aforementioned numerical experiments. 

 

Table 1 Test matrix of the numerical experiment, total 8 data points/combination of Wi, 

Re and L, and keep polymer concentration, c, as constant, 𝑐 =
1

𝛽
− 1 ≈ 0.1 , 

representing the typical dilute solutions. 

Case Number Re Wi L 

1 300 0 (Newtonian) 10 

2 300 10 10 

3 300 80 10 

4 300 10 30 

5 300 10 100 

6 300 10 150 

7 1000 10 10 

8 2000 10 10 

 

A baseline case (Case 2) for non-Newtonian flow past cylinder has been tested and the 

development of 3D flow patterns was displayed in Figure 5. One can see a pair of 

symmetric counter-rotating vortices generated behind the cylinder and develops 

further on as time elapsing. All other cases discussed henceforth were compared with 

the baseline cases. 



a) b)

c)

d) 

Figure 5 Development of flow pattern for a non-Newtonian flow past cylinder 

(baseline case): a) t = 100 s, b) t = 200 s, c) 400 s, d) 600 s. 

 

3.1 Influence of Weissenberg number 

To investigate the influence of fluid elasticity on the flow patterns, numerical 

simulations with Wi number ranging from 0 (Newtonian) to 80 have been conducted, 

at fixed Reynolds number, 300, and finite-extensibility, 10. For comparative purposes, 

the contours of vortex shedding patterns are plotted at the same time instants for 

different cases, see Figure 6. One can see that strong and periodic vortex shedding has 

been observed for both elastic and inelastic fluids. At first, a pair of symmetric 

vortices formed behind the cylinder. As flow develops, one of the two vortices breaks 

away and then the second is shed due to the non-symmetric pressure in the wake 

region.  

 

As shown, the non-Newtonian cases exhibit a longer recirculation region behind the 

cylinder compared to those obtained by Newtonian flow due to their greater resistance 

to normal deformations. The greater Wi value is, the stronger the fluid elasticity is, 

and a larger recirculation region is. Since normal strains are resisted more intensively 

by elastic fluids, a retardation of the vorticity development is observed for the case 

with a higher Wi value. The pronounced retardation can be seen over the early stage of 

flow development, 200- 600s.  

 

    Wi 

time 

0 (Newtonian) 10 80 

 

100 s 

   



200 s 

   

400 s 

   

600 s 

   

800 s 

   

Figure 6 Influence of Weissenberg number (Wi) on the vorticity field of visco-elastic 

flow past cylinder, Re = 300, L = 10.     

3.3 Influence of Reynolds number 

To study the influence of Re number on flow patterns, numerical simulation were 

conducted by varying Re (300-2000) at constant Wi number, 10, and L value, 10. The 

instantaneous contour of vorticity field was illustrated for different Re numbers in 

Figure 7, which shows that the lasting period of vortices reduces as Re number 

increases. This is because the flow with high Re number exhibits stronger inertial 

forces causing unsteady vortex shedding. In addition, increasing Re number causes 

the boundary layer transitioning ahead of separation, which is more resistant to 

separation, hence effectively move the separation point downstream, see the contours 

at 800s.  

 

    Re 

time 

300 1000 2000 

100 s 

   



200 s 

   

400 s 

   

600 s 

   

800 s 

   

Figure 7 Impact of Reynolds number (Re) on the vorticity field of visco-elastic flow 

past cylinder, Wi = 10 and L = 10.    

3.4 Influence of finite extensibility parameter 

The influence of polymer extensibility on flow pattern was illustrated in Figure 7. 

Total 4 maximum extensibility values (L = 10, 30, 100 and 150) have been selected 

for comparative purpose. The instantaneous contour of vorticity fields clearly shows 

larger L value weakens the streamwise vortices and elongates the recirculating region 

behind the cylinder along with an upstream shifting of the flow separation point. The 

contours also indicate larger extensibility tends to delay the growth of instabilities.  

 

     L 

time 

30 100 150 

100 s 

   

200 s 

   



400 s 

   

600 s 

   

800 s 

   

Figure 7 Impact of molecular extensibility (L) on the vorticity field of visco-elastic 

flow past cylinder, Re = 300, Wi = 10.     

3.5 Quantitative Analysis 

To obtain a quantitative view of the aforementioned influences, various quantities (e.g. 

the drag coefficient, Strouhal number) have been calculated and used for comparing 

the results. Drag coefficient is defined as the ratio of the drag force to the force 

produced by the dynamic pressure times the area, written as: 

𝐶𝐷 =
𝐹𝑑

1

2
𝜌𝑈2𝐴

=
∮ 𝑃𝑛̂∙𝑒̂𝑑𝑑𝑆+∮ 𝜏𝑤𝑡̂∙𝑒̂𝑑𝑑𝑆

1

2
𝜌𝑈2𝐴

                                       (8) 

where Fd is the drag force consisting of a pressure term (∮ 𝑃𝑛̂ ∙ 𝑒̂𝑑𝑑𝑆) and a viscous 

term (∮ 𝜏𝑤𝑡̂ ∙ 𝑒̂𝑑𝑑𝑆), ρ the fluid density, U the reference velocity and A the frontal area 

of the cylindrical tube. An example of the temporal evolution of drag coefficients for 

viscoelastic flow past a cylinder is given in Figure 8 a). And an example of 

dimensionless pressure (P/ρU
2
) profile over cylinder is given in Figure 8 b). As shown, 

the pressure on the front of the cylinder is near the stagnation pressure which is much 

higher that in the back side of the cylinder. 

 

The Strouhal number reflecting the vortices shedding frequency is defined by  

𝑆𝑡 =
𝑓𝑟𝑑

𝑈
                                                             (9) 

where 𝑓𝑟 is the shedding frequency, d and U the diameter of circular cylinder and 

reference velocity. To accurately calculate the shedding frequency, the lift coefficient 

history was recorded. By taking an average of 10 shedding cycles (e.g. 10 CL peak as 

shown in Figure 8 b)), the shedding frequency could be calculated as  

𝑓𝑟 =
10

𝑡2−𝑡1
                 (10) 

where t1 and t2 are the time when the first and tenth CL peaks appear. 

 

It is evident from the Figs 8a) and c) that the oscillations of drag and lift coefficients 



show clear sinusoidal patterns. The averaged CL equals zero, while the averaged CD 

returns a positive value larger than zero. The frequency of drag coefficient oscillates 

at twice the frequency of the lift coefficient, i.e. shedding frequency. The viscoelastic 

fluid flow exhibits a lower the drag amplitude and temporal-averaged drag coefficient. 

 

a)  b) 

c) d) 

Figure 8 Examples of a) temporal evolution of drag coefficient of Newtonian flow, b) 

temporal evolution of drag coefficient of viscoelastic flow (baseline model), c) 

dimensionless pressure profile over a cylinder (baseline model), and d) lift 

coefficients for viscoelastic flow past a circular cylinder. Polar angle θ in b) measured 

counterclockwise from leading edge stagnation point. 

 

 

The influence of Wi, Re and L on averaged drag coefficient is plotted quantitatively in 

Figure 9. In general, the averaged drag coefficient decreases, ~30% drag reduction, as 

polymer viscoelasticity Wi increases from 0 to 80 and hold Re and L as constant at 

300 and 10. This decrease resulted from a rising base pressure on the rear portion of 

the cylinder, which integrated over the surface of the cylinder, results in a diminished 

form drag
13

. This result indicates effective drag reduction requires high Wi number.  

 

The striking drag reduction, about 50% CD decrease, was observed as Re number 



increases from 300 to 2000 for viscoelastic flow. It shows a trend similar to data for 

the Newtonian case from Faith A. Morrison (2013)
14

. This effect can be explained that 

laminar boundary layer around the cylinder grows rapidly as Re number increases 

modestly. The thicker laminar boundary layer is, the wider the flow separation area is, 

leading a higher base pressure behind the upstream cylinder and hence reduced drag.   

 

The influence of polymer extensibility is more complicated. For low polymer 

extensibilities (L = 10-30), the drag decrease about 20% compared to the Newtonian 

value, CD = 1.53. For larger polymer extensibilities (L = 100 and 150), however, the 

drag actually increases about 20% compared to the Newtonian case, at constant Wi 

and Re. This ±20% difference in drag reduction between low and high extensibilities 

could be explained by analyzing the pressure distribution over the cylinder. For the 

low extensibility cases, a rising base pressure on the back side of the cylinder is 

dominated and the back pressure alters slightly. For high extensibility cases, an 

increase in the leading stagnation point pressure is dominated, even though the back 

pressure increases modestly, see Figure 8b).  

 

This drag increase for high extensibility has also been seen experimentally
15

 and 

numerically
8
 in which a similar substantial increase in drag was observed for different 

polymer solutions. However, the contradictory finding that high polymer extensibility 

favors drag reduction was also reported in experimental
16

 and numerical
17

 studies.  

    

a) CD vs. Wi            b) CD vs. Re            c) CD vs. L             

Figure 9 Influence of a) maximum extensibility, b) Reynolds number, c) Weissenberg 

number on the averaged drag coefficient using the same parameters as Figures 5-7, 

respectively. 

  

a) St vs. Wi            b) St vs. Re            c) St vs. L             

Figure 10 Influence of a) maximum extensibility, b) Reynolds number, c) 

Weissenberg number on the Strouhal number, St, using the same parameters as 



Figures 5-7, respectively. 

 

The influence of Wi, Re and L on dimensionless vortex shedding frequency is plotted 

as St vs. Wi, St vs. Re and St vs. L, shown in Figure 10. As can be seen, a reduction in 

vortex shedding frequency (reduced St number) with increasing elasticity (Wi number 

and L) is in agreement with those reported in the literature. As reported by Sahin and 

Owens (2004)
18

, this decrease as the stabilizing nature of viscoelasticity on the shear 

layer that develops as fluid flows over the cylinder surface.  

 

Furthermore, the Strouhal number of viscoelastic fluid increases as the Re number 

increases gradually and reaches a certain “saturation” level around St~0.75 (for 

Re=2000), which is much higher than that of classical Newtonian flow past a cylinder, 

0.21. The cause of increased shedding frequency at higher Re number results from 

three-dimension wake instabilities
19

 becoming energetic as the inertial forces start to 

dominate over viscous forces. It was speculated that the “saturated” Strouhal number 

is associated with the transitioning of complex flow structures. However, the 

sufficient evidence are still lacking, and the in-depth view of three-dimension vortex 

structure for high Reynolds number needs to be explored further.   

 

4.  Conclusion 

In the present work, the flow features of viscoelastic flow past 3D circular cylinder 

have been simulated and analyzed to obtain in-depth understanding the underlying 

mechanism of polymer-induced drag reduction. To take into account the elastic stress 

term induced by polymer stretch, the FENE-P was incorporated into the commercial 

CFD software via User Defined Function interface. The influence of rheological 

parameters (i.e. polymer finite-extensibility, L, and Weissenberg number, Wi) and flow 

conditions (Reynolds number, Re) on the extent of drag reduction and vortices 

shedding frequency were investigated by means of the Navier-Stokes system. The 

drag coefficients, Strouhal numbers and vorticity contours have been demonstrated 

and compared for a broad range of Wi, Re and L values. In light of these results, the 

main conclusions are drawn here. 

 

It was found that the higher Wi numbers (i.e. longer polymer relaxation time) elevate 

the extent of drag reduction. This elevated drag reduction was also observed for a 

modest increase in the polymer finite-extensibility (L = 10-30). This elevated drag 

reduction is attributable to the stabilized cylinder wakes induced by the polymer 

elasticity. For the high extensibility (L = 100 -150) cases, the drag force increases 

since the pressure profile in the upstream side of cylinder increase dramatically. The 

drag coefficient increases monotonically as Reynolds number increases. 

 

In addition, the role of polymer elasticity in reducing tStrouhal number (i.e. lowering 

vortices shedding frequency) is significant compared to Newtonian flow. This 

reduction effect becomes more pronounced for stronger elasticity (i.e. larger Wi 

number and L value). Increasing Reynolds number prompted the vortices shedding 



frequency and the Strouhal number tends to level off (at Re = 2000) probably due to 

the transition of complex flow structure.  

 

Although the present modeling framework for viscoelastic fluid flow has been 

comprehensively tested and proved to be a useful tool for simulating the 

polymer-induced drag reduction, there is still considerable scope for improvement for 

the future work. For instance, at the highly turbulent flow regime, the turbulence itself 

can be modelled properly using certain closure models, k-ε or k-ω. However, the 

sophisticated interplay between Reynolds stress and elastic stress needs to be adapted 

accordingly. The rational and strategic closure methods have to be developed for this 

work.  
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