
Noname manuscript No.
(will be inserted by the editor)

Behavioral Program Synthesis with
Genetic Programming: by Krzysztof Krawiec

R. Muhammad Atif Azad

Received: date / Accepted: date

By combining Genetic Programming (GP) with program synthesis, the title
invites the GP and program synthesis communities to bridge the gap between
them. At the same time, it refocuses effort on the dream behind GP, that
is, automatic computer programming. The dream (rather than just predictive
modelling) distinguishes GP from a host of Machine Learning (ML) algorithms
that are not designed to produce software. And so echoes the essence of discus-
sions on how best to position GP in the wake of the recent successes enjoyed
by some competing ML algorithms.

The preface sets a clear agenda. It wants GP to synthesise arbitrarily com-
plex programs. To do this it says GP needs multifaceted fitness feedback.
Typically, instead, the only feedback that GP is given is a scalar measure of
the disparity between the actual and the ideal program outputs. The book
calls this scalar feedback the evaluation bottleneck, as it blocks the kind of
extra information that a human evaluator might use to evaluate a piece of
code. Although not quite humanised, the multifaceted feedback which it ad-
vocates comes from a combination of sophisticated search drivers. Each driver
attempts to quantify intricate aspects of the evolved program’s behavior. Es-
sentially, the goal is to convert program verification in GP from a black box
into a white box by using much more sophisticated multi-objectives fitness
measures which include knowledge of the program’s internals as well as its
external outputs.

Another critical aspect of programming is modularity (reusable subpro-
grams). However, for GP, finding useful subprograms has been a challenge in
part because the fitness function is blind to the role of subprograms. As a
result, programs with potentially useful subprograms may be lost due to an
overall poor rating. Krawiec addresses the challenge effectively with a simple
yet novel approach that applies a Machine Learning classifier to the execution

R. Muhammad Atif Azad
CSIS Department, University of Limerick, Ireland.
E-mail: atif.azad@ul.ie



2 R. Muhammad Atif Azad

record of a GP-evolved program to identify a set of important subprograms. An
execution record is a matrix of execution traces. Each row of the matrix cor-
responds to a set of inputs and contains the execution trace which records the
sequence of effects of an executing program on its execution environment. The
next row records the effects when the program is given the next set of inputs,
and so on. Each column in the execution record corresponds to a particular
sub-sequence of instructions, and the ML-classifier treats each column as an
attribute. The ML-classifier then uses a subset of these attributes to model the
ideal output desired from the program. The subset thus identified becomes the
set of important subprograms. These subprograms are saved in an archive for
later reuse. Chapter 10 shows that this archive further improves performance
of several other ideas proposed later in the book. Thus, it potentially advances
the state of the art in automatic identification of useful subprograms in GP;
however, inexplicably, the preface does not highlight this.

The notion of recording the execution record is central to the book. For
instance, Chapter 11 poses the execution record as a treasure chest of infor-
mation that can be further exploited to derive useful search drivers. The final
chapter recommends that the choice of such drivers should influence all as-
pects of metaheuristic-design, including initialisation, selection and program
modification.

The book throws up a surprise in Chapter 10 when it shows that a many-
objective search helps program synthesis. This is at odds with conventional
wisdom which suggests that search with many objectives may degrade into
random search. Nevertheless, Krawiec shows that the best performance comes
with multiobjective search with up to five objectives. Although the book’s
principle recommendation is using multifaceted evaluation, it does not explain
why so many objectives work well together.

Chapters 1-3 give the background; chapters 4-8 describe increasingly so-
phisticated measures to capture the behavior of a given program and how to
use them to promote modularity in GP. Finally chapters 9-12 round up the dis-
cussion by presenting them as ways to drive the search. After reading the first
three chapters, the reader can skip chapters 4 and 5 because the subsequent
text does not critically depend on them.

Generally the text is very good. It first establishes the enormity of the
challenge that automatic program synthesis poses, and then builds towards
potentially ground breaking work that goes some way towards scaling this
challenge. Rarely does a passage require re-reading and typing errors are rare.
However, although the book addresses a broad audience interested in program
synthesis, it inevitably draws on bio-inspired optimisation. Therefore, to ap-
preciate the nuances some background in GP is essential. As such the book is
only suitable for postgraduate or advanced undergraduate level.

It is important not to overstate Behavioral Program Synthesis with Ge-
netic Programming’s accomplishments. It does not tackle constructs such as
loops and conditionals. Also, it only briefly comments on computational ex-
pense. Moreover, Chapter 10 should have been reorganised to separate de-
sirable search drivers (as described in section 9.12) from the search drivers in



Behavioral Program Synthesis with Genetic Programming: by Krzysztof Krawiec 3

general. This would help the reader to appreciate the critique of previous work
in section 9.10. Furthermore, the bibliography might have included work on
automatic synthesis of parallel programs with GP. Then there are some follow-
up questions. Why do many search objectives work in tandem? Is it because
of a loosely monotonic relationship between them? Must that relationship be
designed by the experimenter? Finally do the results from Chapter 10 apply
to Semantic GP described in Chapter 5?

Overall the book advances the state of the art in GP based program syn-
thesis. It is compact (only 147 pages). It offers excellent value and I highly
recommend it.


