
sensors

Article

Component-Based Modelling for Scalable Smart City
Systems Interoperability: A Case Study on
Integrating Energy Demand Response Systems

Esther Palomar 1,*, Xiaohong Chen 2, Zhiming Liu 3, Sabita Maharjan 4 and Jonathan Bowen 5

1 School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
2 Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA;

xc3@illinois.edu
3 Centre for Research and Innovation in Software Engineering, Southwest University, Chongqing 400700,

China; zhimingliu88@swu.edu.cn
4 Networks Department, Simula Research Laboratory, Fornebu 1364, Norway; sabita@simula.no
5 School of Engineering, London South Bank University, London SE1 0AA, UK; jonathan.bowen@lsbu.ac.uk
* Correspondence: esther.palomar@bcu.ac.uk; Tel.: +34-121-202-2442

Academic Editors: Andrea Zanella and Toktam Mahmoodi
Received: 12 August 2016; Accepted: 24 October 2016; Published: 28 October 2016

Abstract: Smart city systems embrace major challenges associated with climate change, energy
efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical
system. Those systems are constantly evolving and scaling up, involving a wide range of
integration among users, devices, utilities, public services and also policies. Modelling such complex
dynamic systems’ architectures has always been essential for the development and application of
techniques/tools to support design and deployment of integration of new components, as well as
for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports
on the definition and implementation of a scalable component-based architecture that supports a
cooperative energy demand response (DR) system coordinating energy usage between neighbouring
households. The proposed architecture, called refinement of Cyber-Physical Component Systems
(rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling
method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination
language. With rCPCS implementation in Reo, we specify the communication, synchronisation and
co-operation amongst the heterogeneous components of the system assuring, by design scalability
and the interoperability, correctness of component cooperation.

Keywords: smart city system modelling; component-based architecture design; component system
interoperability and coordination; scalable modelling; cooperative demand response

1. Introduction

Interoperability challenges of smart city systems can be overcome with an open architecture
approach that facilitates the integration of devices and applications and enables seamless sharing of
data between systems and reuse of code. In 2014, Palomar et al. [1] introduced an extension of the
refinement calculus of component and object systems (rCOS) modelling method [2,3] that supports the
development of a smart community demand response (DR) system [4,5]. A cooperative DR system is
coordinating the energy usage among neighbouring households [6] making the overall consumption
more sustainable and efficient. In a centralised scenario, an aggregator coordinates and optimises
neighbourhood-level aggregated power demand, given the total hourly power consumption across
neighbouring households, with the available supply from renewables at the utility sub-station. Both the
cooperation of the consumers targeting the available renewable energy supply and the heterogeneity

Sensors 2016, 16, 1810; doi:10.3390/s16111810 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1810 2 of 20

of the systems and devices involved motivate the need of a component based modelling method for
the development of a novel smart community DR solution that tends to promote transformation of the
whole energy value chain.

This article presents the implementation of the refinement of Cyber-Physical Component Systems
(rCPCS) architecture using Reo Coordination Language [7] and Eclipse Extensible Coordination Tools
(ECT) [8]. rCPCS captures the evolving nature of the system architecture and helps in dealing with
the dynamically growing functional complexity of the proposed DR framework, which comprises a
number of distributed, dynamic components deployed over large networks of heterogeneous platforms.
Animation of the Reo model in Eclipse will demonstrate that the formal architecture matches its
informal description and adequately describes the modelled system. In particular, our main aim is
to show (1) how we design a system that is able to scale up easily with no remarkable change in
its architecture, and (2) how we achieve “separation of concerns”; that is, we can focus on what a
component does in terms of its interface behaviour ignoring the “how” at an early stage of system
design process. Indeed, early validation of the interoperability and scalability of the complex and
networked social-technical smart city system designs are key concerns among the technology solutions.
Novel software architectures and developments that encounter these challenges are then desired to
build correct and reliable smart city applications.

There is a need for a systematic and scalable method (i.e., modelling language with a semantic
theory) for modelling, analysis and validation (sound techniques and tools for analysis, verification
and simulation) that addresses the dynamically evolving nature of the applications within smart
cities. In this regard, formal models and languages such as Reo capture the foundations of the system,
building a common understanding between the system components and participants, and making it
easy to design and analyse the dynamics of scalable systems and to automatically validate conformance
and ensure interoperability. The Reo model is supporting the following essential information flows:
(1) information flows between the utility and the aggregator; (2) information flows between each
consumer and the aggregator and (3) information and control flows between a consumer and his
appliances. We model the co-ordination between components leaving most of their functionalities,
especially in the case of appliances, to be implemented in the future. However, we will show that our
model is implementation-independent, so any possible implementation for the aggregator will work
for instance. Both rCOS and Reo have been used in the design and verification of service-oriented
and component-based software systems, but this paper gives a first attempt for them to be used in
modelling Smart City systems as a Cyber-Physical Component System.

The rest of the paper is organised as follows. We outline related work in Section 2. Section 3
describes our cooperative DR framework, including roles and main phases. We present the
cyber-physical component-based modelling rCPCS in Section 4 and the implementation details using
Reo in Section 5. We end with a discussion in Section 6 and conclude in Section 7.

2. Related Work

The technological complexity, as well as the complexity of the various sectorial services
involved within a smart city, has been addressed by a formal approach to open architectures and
platforms seeking the creation of global ecosystems, ensuring the interoperability and the creation of
standard data models [9]. Moreover, formal modelling has all the characteristics required to replace
programming and offer higher productivity, refinement and important features by design.

Several software architectures have been proposed such as in [10–13], with different goals.
Most architectures were designed for specific purposes like real-time monitoring, energy efficiency,
distributed sensing and processing, mobility, or privacy purposes and, other requirements were
eventually added in order to increase its adaptability and portability. For example, a middleware
is implemented using OSGi (—The OSGi Alliance, formerly known as the Open Services Gateway
initiative, is a worldwide consortium of technology innovators that advances a proven and mature
process to create open specifications that enable the modular assembly of software built with Java

Sensors 2016, 16, 1810 3 of 20

technology—) bundles in [10] to deal with objects interoperability and heterogeneous information
handling. An architecture, initially developed with the objective of providing a consistent model and
interfacing standardisation for building Internet of Things (IoT) applications is adapted to the context
of smart cities, providing the API for queries, and basic abstractions, such as events, states, and content
management services. Also with a middleware shape, Filipponi et al. [11] developed an interoperable
event-driven architecture through an Interoperability Open Platform (IOP) for the implementation of
information services for monitoring public areas and infrastructures. The architecture formalises the
interacting objects ecosystem (sensors, devices, appliances and embedded systems), and the services
and custom processes. None of these proposals deals with system composition and/or coordination.

There is a great deal of work on formal models of component systems [2,7,8,14–18]. In particular,
the modelling with relational calculus of object and component systems, rCOS [2], assists in the
formal modelling of software architectures for complex and integrated information and networking
systems, monitoring environments and collaborative workflows involving many different kinds of
stakeholders and end users across different domains [19,20]. rCOS supports interoperable compositions
of components that exhibit interacting behaviour with the environment and, for that, the local data
functionality is implemented in different programming paradigms, including modular, procedural
and object-oriented programming. Hence, in rCOS, we can deal not only with the interaction among
components and processes, but also the state-based functional behaviour of components [3,21].

In Reo coordination language, [7] a channel-based model is used for describing coordination.
Components are loosely coupled and can only communicate with each other via a channel, which
also coordinates the behaviour of the components. Reo was originally designed to support the
compositional construction of web services. In particular, work in [22,23] introduces a Reo coordination
middleware to coordinate the interactions among application components by narrowing gaps between
real-world applications and low-level hardware and software. Following this idea, Zlatev et al. [24]
specify and implement in Reo the negotiation protocols for e-commerce that support compositional
construction and dynamical reconfiguration. Moreover, an architecture for normative systems, which
contains subsystems for conditional obligations and permissions, is proposed in [25], bridging the gap
between logical agent specification languages and agent architectures and programming languages.

Reo coordination language has also been applied to formal modelling long-running business
transactions enabling the specification of complex compensation handling scenarios using a small
number of modelling primitives [8,26,27]. Changizi et al. [28] introduced a unified toolset to
formalise business process models including the Business Process Modelling Notation (BPMN), Unified
Modelling Language (UML) Sequence Diagrams, and Business Process Execution Language (BPEL) in
terms of Reo circuits. Recently, a framework for generating partially-distributed partially-centralised
implementation of Reo connectors is proposed to support build-time compilation and run-time
parallelism [29]. Other studies such as [30] merge both Reo networks and the Reo coordination tool to
coordinate 2APL (A Practical Agent Programming Language) systems, thus focusing on the integration
of Reo networks into the 2APL platform. Simulation has led to interesting animation tools such as the
ECT plug-in for the Eclipse development environment [8,31,32]. This model checker tool supports code
generation and graphical editing of the Reo connectors and constraint automata allowing animation,
which demonstrates correctness of the formal model and assists designers in encountering scalability
and usability limitations.

Methods like rCOS and Reo that are established based on a sound semantic theory can be used
systematically for the design, automatic verification and coding of smart city systems with a toolkit.
The significance is that the tool is also developed based on the sound theory of the model. Due
to the aforementioned features, component based modelling and design, for instance, both rCOS
and Reo methods, can deal with the complexity of software in cyber physical component systems
and smart cities design, tackling the inclusion of complex analytics, modelling, optimisation, and
visualisation [33–35].

Sensors 2016, 16, 1810 4 of 20

3. System Description

With the installation of home area networks (HANs), smart meters and in-home display,
consumers can not only monitor and manage the power consumption within the networked area that
links thermostats, washing machines, clothes dryers and many more with a TV, PC and cell phone,
but also interact with utilities and other consumers [36,37]. The proposed cooperative DR system as
depicted in Figure 1 defines three possible roles that represent the concerned stakeholders namely:

• Utility is a set of energy suppliers shared by customers in a community. In this paper, we consider
the utility as a combination of two energy suppliers: one is renewable energy supplier and the
other is a fossil energy supplier.

• Aggregator is a centralised scheduler that compromises the plans from consumers and the available
energy supply from the utility and finds out the “best” energy consumption strategy for the whole
community, based on information about the available energy supply from the utility and the
energy consumption plans from consumers.

• Consumer is a household equipped with a smart meter that is connected to the power line as well
as the community network. A consumer may have some household appliances which function
according to the supply that the Aggregator allocates to them.

Figure 1. System model: roles and information flows.

These above roles will be interpreted as components with their own functionality in our
architectural model. In addition, we see appliances of consumers also as components. The functionality
of an appliance is not our concern however, because it is usually determined and defined by
the producer.

3.1. Utility

The Utility makes essential information available to the consumers about both the reliable
renewable and fossils, and energy supply planned for the upcoming 24 h.

Definition 1 (Renewable and Fossil Energy Supply). We denote by Pt
R,0 the energy supply generated from

a set of renewable sources at a time slot t ∈ {0, . . . , 23}. Similarly, Pt
F represents the energy supply at time t

generated from a set of fossil sources. The Utility centralizes the distribution of the energy, the notification to the
Data Collector, and the billing process.

Sensors 2016, 16, 1810 5 of 20

3.2. Consumers

An ordered set N of consumers is willing to cooperate in the pursuit of global community targets
(i.e., become greener), sending their data to the Aggregator. We consider a discrete H-hour time period,
e.g., H = 24 h, during which consumers schedule their electrical jobs [38].

Assumption 1 (Consumer’s habits). Consumer habits, behaviours and use of appliances commonly demand
a fixed energy load (formulae and benchmarks can be used to estimate appliance and home electronic energy use
in kilowatt hours (kWh), as well as household local records—for example, refrigerator, alarm-controller, meters,
standby televisions, water heater, etc.) as well as a variable load resulting from the utilisation of such appliances
and other equipment or facilities.

Assumption 2 (Home energy scheduler). An energy consumption scheduler (or home energy manager)
connects via HAN, power-line communication (PLC) or any lower power wireless, such as ZigBee wireless
standard [39], to all the appliances in the household.

The scheduler provides the consumer with an interface to allocate ”shiftable" demand at household-level,
taking into account his/her time preferences.

Each consumer then pre-allocates a certain amount of fixed demand as well as variable
consumption planned for the upcoming 24 h. Thus, consumer i ∈ N = 1, 2, . . . , N has a non
shiftable demand of xh

i,ns in timeslot h, h ∈ H representing the aggregated load of non-shiftable
local consumption of their appliances and regarding frequent behaviours. Moreover, consumer i
consists of shiftable appliancesAi = {ai,m, m ∈ 1, 2, . . . , M}, where M is the total number of appliances
of consumer i allowing shiftable consumption. Thus, xh

i,sh denotes the variable energy consumption of
consumer i in timeslot h.

3.3. Aggregator

Assumption 3 (Data Aggregation). The Aggregator acts as a central node to carry out aggregation tasks,
and communicates with the Utility as well as other Consumers.

The aggregator can obtain the available power supply information from renewable energy
sources/providers and non-renewable sources. The available power supply from the renewable
source is known for the upcoming H time-slots by the aggregator: {P1

R,0, P2
R,0, . . . , PH

R,0}. The future
smart grid highly emphasises the integration of distributed and renewable energy resources into the
grid, together with the prioritised penetration of renewable energy for meeting the consumer demand.
Thereby, in our model, the aggregator re-allocates a schedule to the consumers such that their demands
are covered by the available renewable energy as far as possible, and the fossil fuel based energy is
used only when necessary for the deficit power.

The above formulates our case study within the smart city system. Our cooperative DR system
integrates a residential demand response strategy into utility planning taking into account the
consumer comfort. The architecture along with its validation in Eclipse is presented in the following
and accepts other smart city system compositions.

4. Cyber-Physical Components Modelling—rCPCS

The models of software components in rCOS [3,21] are extended with physical components that
may be controlled by digital controllers. Refinement of Cyber-Physical Component Systems, namely
rCPCS, is supporting the development of the proposed DR system.

Sensors 2016, 16, 1810 6 of 20

4.1. State Variables, Interfaces and Interactions

In general, cyber-physical component, or simply “component” when there is no confusion, has
discrete state variables that are directly changed by control programs, and continuous state variables whose
changes follow differential equations, depending on states of the discrete variables. The state variables
of a component C, denoted by αC, called the alphabet of C, is divided into two subsets, αC = 〈βC, γC〉
of private discrete state variables and continuous state variables. For example, an appliance A of a
household is a component with its state variables αA = 〈{s : {on, off}}, {rate : Real}〉, where rate is the
rate in which energy is consumed by the appliance when it is in operation.

The interfaces provide the means for the component to interact with its environment (i.e., other
possible cyber-physical components including human actors). A component C can have a provided
interface (or input interface), C.pIF, and or a required interface (or output interface), C.rIF; but a component
must have an interface. Each of the interfaces contains two sets, C.pIF = 〈pO, pW〉 of provided operations
and provided signals or wires, or C.rIF = 〈rO, rW〉 of required operations and required signals. It is required
that the set of provided signals is a subset of the continuous variables of the component (i.e., pW ⊆ γC).
The variables γC− pW are the private continuous variables of C. Figure 2a shows an appliance A with a
provided interface A.IF = 〈{switch()}, {rate}〉 (i.e., one provided operation switch()).

Interactions can be performed with other digital or physical components. For example, a digital
controller can be designed to interact with A to switch the appliance “on” and “off”, and a meter
to record the energy consumption by using the rate. On the other hand, interactions of A can be
with human actors, for example the householder can “observe” or use the rate to “calculate” the
energy consumption and “switch” the appliance “on” and “off”. One can imagine the evolution
from interactions of the appliance with human operators to interactions of digital controllers and
meters. This would be one step of increase in automation, but the model of the functionality, behaviour,
including interactions behaviour, of the appliance remains unchanged.

4.2. Local Functionality and Behaviour

The discrete variables change through execution of programme instructions that are enabled via
invocations to interface operations. The execution of these operations is called local functionality. Note
that the behaviour of the continuous variables is controlled through the change of the discrete variables.
Therefore, the local functionality defines the behaviour or abstract semantics of the control programme.

Besides discrete functionality, cyber-physical components can also show continuous evolution for
its continuous variables defined in time-dependent functions, often differential equations. For example,
the continuous evolution for the appliance A can be defined by rate as the rate in which energy is
consumed by the appliance when it is on, and the rate is assumed to 0 when the appliance is off.
We believe the definition of rate is usually provided by the manufacture of the appliance. Thus, the
behaviour of A is that the rate evolves along with the switches on and off of the component A. Consider,
for instance, an electronic meter M that records the accumulated consumption of energy of appliance
A. Its provided interface M.pIF comes up with a signal read and its required interface M.rIF consists of a
single signal rate. The behaviour of M (i.e., the evolution of read) is a timed function of the required
signal rate. For example, it can be defined as read(t) =

∫ t
0 rate. Therefore, in general, the behaviour

of the continuous variables is defined by timed functions of the discrete variables and the required
signals. In general, the continuous behaviour (or the trajectories) of the continuous variables of a
component C is specified by timed functions of the following form, where feedbacks loops are possible
γC = F(βC, γC, rW).

Sensors 2016, 16, 1810 7 of 20

Figure 2. (a) A, representing an appliance, has a provide operation switch() and a provided signal
rate. M, representing a meter, has a provide operation read(), and a required signal rate; and (b) A||M
connects the provided signal of A and the required signal of M, thus forming a component that
provides operations switch() and read(). Different ways of composing components represent different
design approaches: (c) evolution of a household with a meter; and (d) evolution of an Aggregator.

4.3. Component Composition

Components are composed through their interfaces. rCPCS interfaces include signals for the
composition of physical components. Interfaces also bridge different technologies, whereas different
ways of composing components represent different design approaches. For example, Figure 2b depicts
a composite component C = A ‖ M composing appliance A and meter M. Thus, to design a household
component as in Figure 2c, we consider an arbitrary number m of appliances in a household, each
modelled by Ai for i = 1, . . . , m and meter M. A main switch connector, denoted by G centralises ratei

interfaces such that it has a continuous variable rate as its provided interface and {ratei | i = 1, . . . , m}
as provided interfaces. The behaviour of G is rate = ∑m

i=1 ratei. Thus, the household can be modelled
by H = ((‖m

i=1 Ai) ‖ G) ‖ M. Similarly, a switch connector G can also be used to summate the fixed and
variable demands of individual households. Component E in Figure 2d represents a scheduler that
reads readi from Mi to decide when appliances can be switched on to operation according to the energy
combustion budget fxi and vxi.

The model of the Utility by a component U is simple. It only provides an operation
request(x : Real, y : Real; z : Real) for the supply of energy. Its execution provides the amount of committed
supply for the day through the return parameter. The E component has an interface (i.e., an active
process), through which it periodically calls the interface operations R fi() and Rvi() and makes a
request to utility U via request(). Once it receives notification from U about the committed supply,
it “negotiates” with the households and reallocates budgets, namely W fi() and Wvi(). Each household
Hi is then managed by its own. We represent this system scenario as E ‖ U.

4.4. Discussion

With rCPCS, we demonstrate the importance and effectiveness of building models of the system
architecture with respect to the following aspects:

1. As the system grows larger, abstraction and decomposition in building the system architecture
becomes essential for dealing with complexity.

2. The modelling method supports top-down development and bottom-up synthesis; more
importantly, it supports both component-based system evolution and component-based
incremental design model building.

Sensors 2016, 16, 1810 8 of 20

3. The modelling method supports different implementations of coordination and control of
components on different hardware platforms.

4. It supports tool development for simulation and verification.

rCPCS allows system evolution in different ways. For example, the composition ‖k
i=1 Hi of the

households behaves exactly the same as one household in a “black box” if a connector is added to
summate the fixed and variable demands of the individual households. This shows how abstract
modelling deals with complexity. Similarly, we can imagine that a network of utilities works in
collaboration to provide power supply. Once they reach agreement on how to share the supply upon
the Aggregator’s request, they interface with the Aggregator as a single utility. Furthermore, the
centralised Aggregator can be transformed into a distributed implementation such that the reallocation
can be performed among households themselves. We can also envision a component home manager
HM that allows the householder to set budgets fxi and vxi up for each appliance Ai; it then controls the
operations of the appliance to meet budgets and calculates consumption readi of Ai from its ratei. It is
also possible to arrange a distributed scheduling solution in which the control on Ai, along with fxi
and vxi, is embedded in meter Mi.

The architectural model is also important for identifying and analysing vulnerabilities and
weaknesses within the different components due to interaction mechanisms, communication protocols,
hardware quality or software bugs. Based on this hazard and risk analysis, architectural decisions
can be made for different concerns, such as distribution, use of redundancy, specially designed secure
protocols, etc., to improve safety, security, integrity, and availability.

Moving towards interoperable smart city systems, rCPCS is introduced as a formal framework for
modelling and analysis of smart city systems and their compositions, making it easy for designers and
planners to integrate platforms, devices and applications. Through the implementation of rCPCS in Reo
Coordination Language and the Extensible Coordination Tools for the Eclipse platform, we especially
focus on testing its adaptivity modelling aspects such as switching/extending the different components
according to the varying requirements.

5. rCPCS Implementation in Reo

Tool support, such as simulation and verification, is important for rCPCS practical adoption.
In this section, we model its component communication patterns by means of Reo connectors and the
Eclipse ECT plug-in.

5.1. Basic Concepts

Reo [7,35,40,41] is a channel-based exogenous coordination model wherein complex coordinators,
called connectors, are compositionally constructed from simpler ones. Components in Reo are
computational entities that are able to store, manipulate produce and receive data and messages
from other components. Components may be located at different places physically. A complex
component may contain other components as part of it as well and are connected through connectors.

Channels in Reo have two types of channels ends: source and sink. A source channel end accepts
data into its channel, and a sink channel end dispenses data out of its channel. It is possible for the ends
of a channel to be both sinks or both sources. Reo places no restriction on the behaviour of a channel
and thus allows an open-ended set of different channel types to be used simultaneously. Each channel
end can be connected to at most one component instance at any given time. Figure 3 shows the graphic
representation of some basic channels:

• FIFO1 channel represents an asynchronous channel with one buffer cell which is empty if no data
item is shown in the box. If a datum d is contained in the buffer of a FIFO1 channel, then d is
shown inside the box in its graphical representation.

• Synchronous channel has a source and a sink end and no buffer. It accepts a data item through its
source end when it can simultaneously dispense it through its sink.

Sensors 2016, 16, 1810 9 of 20

• Lossy synchronous channel is similar to a synchronous channel except that it is able to accept data
through its source end at all times. The datum is transferred if it is possible to dispense it through
the sink end; otherwise, the datum is lost.

• Filter with a pattern P specifies the type of data that are permitted to transfer through it.
Any datum that conforms to the pattern is accepted through the source end when at the same
time the sink end is ready to dispense it. Any datum that does not conform to the pattern is still
accepted through the source end but will be immediately discarded.

• Synchronous drain is similar to a synchronous channel except that it has two source ends and
no sink ends. It consumes a pair of data from its two source ends simultaneously and discards
them away.

Complex connectors are constructed by composing simpler ones mainly via the join and hiding
operations. Channels are joined together in a node that consists of a set of channel ends. Nodes are
categorised into source, sink and mixed nodes, depending on whether all channel ends that coincide
on a node are source ends, sink ends or a combination of the two. The hiding operation is used to
hide the internal topology of a component connector. The hidden nodes can no longer be accessed
or observed from outside. A complex connector has a graphical representation, called a Reo circuit,
a finite graph where the nodes are labeled with pair-wise disjoint, non-empty sets of channel ends, and
the edges represent the connecting channels. The behaviour of a Reo circuit is formalised by means
of the data flows at its sink and source nodes. Intuitively, the source nodes of a circuit are analogous
to the input ports, and the sink nodes to the output ports of a component, while mixed nodes are its
hidden internal details. Components cannot connect to, read from, or write to mixed nodes. Instead,
data-flow through mixed nodes is totally specified by the circuits they belong to.

A component can write data items to a source node that it is connected to. The write operation
succeeds only if all (source) channel ends coincident on the node accept the data item, in which case the
data item is simultaneously written to every source end coincident on the node. A source node, thus,
acts as a replicator. A component can obtain data items, by an input operation, from a sink node that it
is connected to. A take operation succeeds only if at least one of the (sink) channel ends coincident on
the node offers a suitable data item; if more than one coincident channel end offers suitable data items,
one is selected nondeterministically. A sink node, thus, acts as a nondeterministic merger. A mixed
node nondeterministically selects and takes a suitable data item offered by one of its coincident sink
channel ends and replicates it into all of its coincident source channel ends. A component can not
connect to, take from, or write to mixed nodes.

Figure 3. Some basic channels in Reo

Sensors 2016, 16, 1810 10 of 20

(a)

(b)

Figure 4. Examples of some Reo circuits. (a) a FIFO3 channel, constructed from some FIFO1 channels,
gets data from its input node, temporarily stores it in an internal buffer of size 3, and propagates it to
its output node); and (b) a Gatherer4 channel constructed from FIFO1 channels, synchronous channels
and synchronous drains.

5.2. Reo Circuits

Example 1 (FIFO connectors). A FIFOn connector is similar to a FIFO1 channel except that it has a buffer
with a capacity of n instead of 1. It consists of a chain of n FIFO1 channels. Figure 4a shows an example of a
FIFO3 channel that is constructed from three FIFO channels: AB, BC and CD. The grey nodes (B and C) are
mixed nodes while the white ones are either source node (as node A) or sink node (as node D).

Initially, the three buffers (shown as blank boxes) are empty. Once a datum arrives at node A, it is accepted
and stays in the left buffer. When the datum is staying in the left buffer, the FIFO1 channel AB is full and cannot
accept any new data through node A. In the meantime, this datum is going to be transferred automatically from
the left buffer to the middle buffer through the mixed node B because the middle buffer is empty. After that, the
FIFO3 channel is able to accept another datum from A and store it in the left buffer.

Example 2 (Gatherer connectors). A Gatherern connector consists of one source node and n sink nodes. A
Gatherern connector is similar to a FIFOn channel such that they are able to store the data previously accepted
through the source node as long as the memory does not run out. The difference lies in the fact that FIFOn
channel distributes one piece of data at a time while a Gatherern connector dispenses (but does not discard) all
the data in its memory. Every time a Gatherern connector dispenses, it only discards the oldest datum in its
memory and reserves the vacant space for a new datum.

Figure 4b depicts a Gatherer4 connector on its initialisation with some FIFO1 channels full (shown as a dot
in the box). It has a source node A for inputs and four sink nodes B1 . . . B4 for outputs. Node B1 always delivers
the latest datum in the memory, whereas B2 dispenses the second latest datum, and so on. The four sink nodes
deliver the data at the same time, which is guaranteed by the synchronous drains between the set of four mixed
nodes in the middle.

Once the connector is initially set-up, it is ready for the first datum arriving into node A. After the first
datum, which is also the latest datum in the memory, data will be distributed through node B1. However, since
there is no second (and third and fourth) data yet, there is nothing that can be delivered from node B2 (and B3

and B4). Therefore, when the Gatherern connector is initialised, it needs some redundant data in its memory, as
the full FIFO1 channels shown in Figure 4b.

Sensors 2016, 16, 1810 11 of 20

5.3. Utility–Aggregator Communication

The utility sends the amount of available renewable resources P1
R,0, . . . , PH

R,0 and fossil fuel
resources P1

F , . . . , PH
F to the aggregator, so the utility–aggregator communication is a one-way

communication. In a more complex context that considers billing, we may ask the utility to send the
price information to the aggregator who returns billing information about each consumer back to
the utility. In that case, the utility–aggregator communication becomes a two-way communication.
Furthermore, the utility and the aggregator may be physically located at different places far from
each other, so the communication between them cannot be done in a flash. In that case, we may add
some timing properties on the communication. At any case, Reo connectors are sufficient to model the
communication behaviours [41].

(a)

(b)

Figure 5. Utility–aggregator communication. (a) a GathererH connector that is used to construct a
communication pattern between the utility and the aggregator; and (b) the utility–aggregator connector.

In practice, the aggregator schedules the energy consumption round by round. At every round,
the utility is responsible to offer the latest fossil fuel resources iPF (and renewable resources resp.),
and the aggregator should be able to collect the fossil fuel resources limits for the past H hours
PH

F , . . . , P1
F . Therefore, we have to provide a mechanism to store the utility supply generated in the

past H hours and provide the aggregator with this information at a time through the nodes PH
F , PH−1

F ,
. . . , P1

F . GathererH connector supports this functionality (Figure 5a). At every round, the utility writes
the latest fossil fuel supply through node ipF, and the aggregator collects this load for the past H
hours from node PH

F , PH−1
F , . . . , P1

F . In a similar way, we can construct a gatherer connector for the

Sensors 2016, 16, 1810 12 of 20

supply available from renewable resources. The entire communication pattern between the utility and
aggregator is shown in Figure 5b.

A note on the Aggregator’s local functionality. The Aggregator holds the following algorithmic
statements according to the available supply from renewable resources, as follows:

Case 1:

∑
i∈N

xh
i,ns ≥ Ph

R,0. (1)

If Equation (1) is the case ∀h ∈ H or for most h, the renewable energy supply is not able to cover
even the non-shiftable appliances, which means that the rest of the power partly for the non-shiftable
appliances and wholly for the shiftable appliances should be supplied by the fossil fuel based source.
The problem thus reduces to conventional shiftable-appliance-scheduling problem, where scheduling
should be done for

(
∑i∈N xh

i,ns − Ph
R,0

)
+ ∑i∈N xh

i,sh:
Case 2:

∑
i∈N

xh
i,ns < Ph

R,0. (2)

In this case, in addition to satisfying the power requirements for non-shiftable appliances of all
consumers, the renewable energy serves to supply shiftable appliances.

5.4. Consumer–Aggregator Communication

A consumer sends his power demand for the next few hours to the aggregator. Once the aggregator
works out the power scheduling solution, it will send the result back to the consumer. Therefore, the
consumer–aggregator communication is a two-way communication (Figure 6).

A note on the Consumer’s local functionality. Let us write the demand of Consumer i in timeslot h as
xh

i = xh
i,ns + xh

i,sh for h ∈ H, where {xh
i,sh} should be optimised. The shiftable appliances of consumer

i specify the following parameters: ai,m : {si,m, ei,m, di,m, ci,m}, which represent the earliest possible
starting timeslot, the last acceptable starting timeslot, the duration of operation in timeslots and the
power consumption, respectively, of appliance ai,m. Let γi ∈ [0 1] denote the flexibility factor of
consumer i, where γi = 0 indicates that the consumer prefers to operate its shiftable appliances in the
earliest possible timeslots, and γi = 1 implies that the consumer is totally flexible and does not mind
operating its shiftable appliances in the last possible slots.

Let us define Ph
R := Ph

R,0 −∑i∈N xh
i,ns > 0, ∀h ∈ H according to Equation (2). Note that even if

∑i∈N ∑ai,m∈Ai
[ci,m]

si,m+di,m
h=si,m

≤ ∑h∈H Ph
R is true, ∑i∈N xh

i,sh ≤ Ph
R ∀h ∈ H may not hold. The goal of the

aggregator can be achieved in two stages:
Stage 1:

min
{xh

i,sh,∀i∈N}
Ph

R − ∑
i∈N

xh
i,sh, (3)

s.t. ∑
i∈N

xh
i,sh ≤ Ph

R; si,m ≤ s∗i,m ≤ ei,m. (4)

The solution to Equations (3) and (4) is x∗hi,sh corresponding to the optimal starting timeslots s∗i,m
for the appliances of consumers i ∈ N1, where I1 ⊆ N .

Stage 2:
Let N2 denote the set of consumers with appliances that could not be scheduled by solving

Equations (3) and (4) such that N1 ∪N2 = N . The deficit power requirement is obtained from the
fossil fuel source. For the fossil fuel source, the objective is to minimise the peak-to-average ratio
(PAR) of supply from the source. Suppose the set of the appliances not scheduled in stage 1 be A′i for
consumer i, i ∈ N2. Let x

′h
i,sh be the shiftable load of consumer i, i ∈ N2 in timeslot h. Thus, the power

requirement from the fossil fuel source will be x
′h
i,sh ∀h ∈ H, i ∈ N2 and ai,m ∈ A

′
i. The objective of the

aggregator in this stage is therefore:

Sensors 2016, 16, 1810 13 of 20

min
{x′hi,sh,∀i∈N2}

max
(

∑i∈N2
x
′h
i,sh − {P

h
R −∑i∈N1

x∗hi,sh}
)

1
H

(
∑H∈H ∑i∈N2

x′hi,sh − {P
h
R −∑i∈N1

x∗hi,sh}
) , (5)

s.t. ∑
i∈N2

x
′h
i,sh ≤ Ph

F ; si,m ≤ sti,m ≤ ei,m, (6)

where Ph
F represents the power generation limit of the fossil fuel source in timeslot h.

The solution to the optimal power allocation problem is {s∗i,m} obtained by solving
Equations (3)–(6).

Since the overall problem is non-deterministic polynomial-time hard (NP-hard), existing work
proposes approximations using well- known metaheuristic policies such as simulated annealing or
some others based on linear programming [42] that provide accurate solutions in a fraction of the time
required by the system. Though we will not investigate how these techniques would perform, the
optimal consumption for consumer i that the aggregator has to obtain ∀i ∈ N is

x∗i,sh = ∑
ai,m∈Ai

[ci,m]
s∗i,m+di,m
h=s∗i,m

, (7)

where s∗i,m ∈ [si,m ei,m].

Figure 6. Consumer–aggregator communication architecture in Reo.

Figure 7. Consumer–appliance communication architecture in Reo.

5.5. Consumer–Appliance Communication

A consumer can control his appliances through his home network. For each appliance, the
consumer–appliance communication is a one-way communication (Figure 7).

Sensors 2016, 16, 1810 14 of 20

Algorithms in the Appliance Component. Current smart home energy displays show instantaneous
usage, expenditure and historic feedback as a minimum [43]. These displays can allow the consumer
to coordinate the interaction among the devices participating in the scheduling. Its implementation
should help user engagement and support the novel functionality. To schedule shiftable appliances,
the home scheduler (class Consumer) provides consumer i with the interface to specify the following
parameters ∀ai,m: the earliest possible starting timeslot si,m, the last acceptable starting timeslot ei,m,
and the duration of operation in timeslots di,m. Moreover, consumer i can indicate a flexibility factor
γi ∈ [0 · · · 1] expressing his/her tolerance for operating the shiftable appliances at the earliest/last
possible timeslots, respectively. Functionality procedure in class Consumer parametrised these
elements through the user interaction. On the other hand, non-shiftable appliances consumption
scheduling is automatically allocated by the home scheduler given the hourly usage patterns recorded
by the smart meter. Once receiving the aggregator re-allocation, the Consumer scheduler shows
the user how much shiftable load was removed or re-allocated. Appliances will automatically
operate accordingly.

5.6. Experimental Results

Our model consists of three Reo connectors (shown as blue boxes in Figure 8) that form the main
body of the architecture. Connector animations of the Reo circuit on the ECT Eclipse confirm the
correct communication of the system components. In particular, the following information flows are
supported within the current implementation:

1. Utility–Aggregator: Connector GathererH consists of one source node and 24 sink nodes,
i.e., the number of hours/slots which utility supply information is provided in. As described
is Section 5.3, boxes are one space buffer and save up to one data item; as new data comes into
the connector, boxes are filled up so the connector can save up to 24 data items. Two GathererH
connectors serve the Aggregator to gather up both renewable and fossil available supply in
kilowatt hour from the Utility; hence, every hour the input will be the updated iPR and
iPF, respectively. Refined models might add a GathererH connector from Aggregator to
Utility informing the latter about the reallocated supply vector for billing purposes and/or
energy management.

2. Aggregator–Consumer: The A-C connector links the aggregator and a consumer with two simple
synchronous channels. A synchronous channel with a source end “in” and a sink end “out”
works as the assignment statement of out := in, transferring data (namely, consumers’ demand
structure and allocated supply vector) between the aggregator and a consumer in a flash.
However, in practice it is not always feasible because the aggregator and the consumer might
be located in different places geographically. The transfer might take several microseconds or
longer to proceed, and we need a mechanism to report to the sender whenever the connector
fails to successfully transfer the data in time. Synchronous channels can be replaced by more
delicate compound circuits made of lossy channels and timed channels. For instance, a timed
channel is able to capture the behaviour of a monitor detecting whether the data is transferred
successfully within a time threshold. Similarly, a lossy channel can capture data loss during
network transmission [7,35].

3. Consumer–Appliances: C-App connector adopts similar semantics to the A-C connector but in a
one-way communication shape. For more domotics features on appliances, we might need a
two-way communication, thus including more functionality from Appliance towards Consumer.
More complex connectors such as Feedback Loop, Sequencer and Inhibitor can be applied for
appliances self-scheduling the available supply.

Each Reo connector has its own well-documented and/or formal specification (refer to [44] for a
Reo connector repository), which makes reusability highly probable and preferable. As long as some
standards are established for the protocols lying in between Utility, Users, Appliances and Aggregator,

Sensors 2016, 16, 1810 15 of 20

one can develop Reo connectors based on those standards and will be assured that the connectors fit in
any implemented protocol.

Figure 8. Cooperative demand response system architecture that allows scalability and system
composition and coordination through separate connectors.

6. Discussion

The formal model of the proposed architecture aims at making the design rigorously verifiable,
enabling systematic change of architecture design through refinement or equivalence (that is, the
algebraic equations proved in refinement calculus), and also making the design process repeatable.
The correctness is guaranteed by the soundness of the semantic theory. An actual architecture of a given
system implementation is proved by using the toolkit for model checking. Functional correctness is also
guaranteed through model transformations implemented in the tool that are proven in the refinement
calculus to preserve functional correctness. These models are at different levels of abstraction from the
model of requirements through those of architecture design to code generation.

6.1. Model Checking

The algebraic laws established for refinement and abstraction assure scalability. There are an
arbitrary number of components of the same type, such as a community of households or a large
number of smarter meters that are treated as a single component, i.e., a single household, at a higher
level (or integration) design of the system. Interoperability means the adaptability or customisability of
components in different local contexts, and this is supported by changing interfaces through connector

Sensors 2016, 16, 1810 16 of 20

and coordinator components. Regarding this, we have shown how Reo connectors can specify the
communication between the system components. A whole picture of the entire system architecture
can be easily drawn from Figures 5a, 6 and 7.

Our architecture model has many advantages as follows:

• Scalable. Our model is scalable in that it supports an arbitrary number of consumers and appliances
in the energy management system. If the communication patterns between components do not
change, the architecture of the entire system will remain the same.

• Component-Based. Our model is a component-based approach. Different components can be
developed independently because the interfaces and communication patterns are specified and
determined in advanced by Reo connectors. Components can be implemented in any way as long
as they respect the interfaces specified by the architecture model. As we will see, the aggregator
can use any (centralised) scheduling algorithm in the architecture model and the entire system’s
functionality will not change at all.

• Practical. Our model is not only a theoretical model, but also one that can automatically generate
codes. Reo comes with a set of development tools including a Java code generator, which generates
code for circuits based on their constraint automaton semantics. Therefore, all connectors (shown
as blue boxes) are actually passages of Java codes that work as “glue codes” that connect all the
components in the system.

Both the rCPCS formal model and its implementation in Reo with Eclipse guarantee that the
system is correct-by-construction. Services’ (or systems’) composition are then possible as independent
distributed entities that utilise Reo channels and connectors to communicate. Consider, for instance,
our cooperative DR system efficiently accommodating plug-in hybrid electric vehicle (PHEV) fleets
and making the EV penetration invisible to the system. The Aggregator represents a key component in
this composition, which accepts reading real-time demand information from the passing-by vehicles
via the control from a new connector. The connector will add PHEV demand to the Aggregator just like
from a consumer, so nothing will change within its functionality. The Aggregator will keep notifying
and updating consumers/PHEVs of the up-to-date scheduling vectors.

Finally, development and maintenance of computer programs certainly benefit from tool support,
providing separation of concerns in the system design stages [45]. This represents the main motivation
for using component-based architectures in the smart cities system design and integration, and
validating/testing the architectures by Reo implementations. In this regard, Reo language is one of
the Turing-complete models such as nondeterministic state machines and regular grammars, with
expressive power to represent systems’ properties. Furthermore, the framework provided by Eclipse
ECT certainly helps to empirically prove the property representations.

6.2. A Note on the Distributed Approach

Modern grid initiatives are moving toward distributed approaches that add much more autonomy,
flexibility and scalability [46]. The use of multi-agent systems has become an increasingly powerful
tool for energy management problems [47]. Typical objectives range from reducing peak power
demand, utility energy costs and consumer bills [48], balancing energy supply and demand as well
as improving grid efficiency [49], and increasing the share of renewable energy sources [50]. These
can be achieved using a number of optimisation techniques such as integer, quadratic, stochastic and
dynamic programming and also evolutionary algorithms [49].

We have identified two main approaches to the distribution and decentralisation of the scheduling
task performed by the Aggregator. In any case, we can assume that consumers have complete
knowledge of each others’ demands (anonymised) and the incoming H-period available renewable
energy supply provided by the utility commercialiser. A game is then played by Consumers where
they seek to minimise the global energy load per time-slot or, in other words, to satisfy Equation (2).

Sensors 2016, 16, 1810 17 of 20

The simplest way is to make the Aggregator role take turns amongst the Consumers participating.
The logic of the resource allocation algorithm would be exactly the same as when it runs on the
Aggregator side.

A more complex and decentralised approach, based on the multi-agent architecture, consists of
dividing the power management scheduling problem into subproblems involving different agents, each
of which solves its own problem independently to find a solution to the whole problem. In general, this
scheme seems to be scalable; however, it cannot guarantee obtaining the optimal solution or avoiding
the complex interaction between the agents. Nevertheless, we found in [43], one of the most convenient
techniques for the autonomous and distributed scheduling (which is a knapsack problem), namely, the
backtracking algorithm. Backtracking incrementally builds a search tree that finds all feasible solutions,
each of which is an energy consumption schedule represented by an M× N time table, where N is
the number of tasks and M is the number of time-slots. Thus, each consumer knowing the others’
demands vectors and running the allocation procedure can satisfy a global peak reduction (or, in other
words, achieve respective local peak reduction). Experiments in [43] show that when the number of
tasks is over eight, a global coordination among scheduling units is desirable.

7. Conclusions

In this paper, we have proposed a scalable system architecture for a co-operative DR system,
which is component-based, and proved component interoperability through formal modelling and
languages. In the process of our component-based system design, we can be assured by the
architectural description that the system under specification is correct by design with respect to
the interoperability correctness of component cooperation. The proposed architecture, namely
“Refinement of Cyber-Physical Component Systems” (rCPCS), extends the rCOS modelling method,
and provides a powerful means of abstraction so that large and complex composite subsystems, such
as the composition of all households, can be treated as as simple component. In addition, rCPCS
architecture proposed for a DR system also supports different designs and different processes of system
evolution as being integrated to a smart city system, in which new components with various interaction
mechanisms can plugged into the existing system. By implementing rCPCS in Eclipse Extensible
Coordination Tools and Reo language, we have proved scalability and correct interoperability amongst
the heterogeneous system components. Reo has a very flexible infrastructure and can be applied
to various application domains as a basis for test set design and decision-making. In our work, we
successfully embedded smart grid and smart city systems in Reo’s framework, following the idea of
Reo coordination middleware.

Our immediate future work includes the development of the formal semantics and algorithms
presented in a Living Lab. We will also use the models to identify safety weaknesses and vulnerable
components, as well as points about security threats in order to make architectural decisions to
strengthen the system [51]. Furthermore, the introduction of intelligent components with learning
capabilities is of interest for utilities and storage purposes.

Acknowledgments: Z.L.’ s work is supported by the project grant SWU116007 from Southwest University and
project grant 61672435 from the Chinese National Science Foundation.

Author Contributions: E.P. and S.M. set the problem statement and system model; E.P., Z.L. and J.B. conceived
and designed the modelling architecture; E.P., X.C. and Z.L. conceived and designed the implementation;
X.C. performed the experiments; all authors carried out data analysis and contributed reagents/materials/analysis
tools; and E.P. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2016, 16, 1810 18 of 20

Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interface
DR Demand Response
ECT Eclipse Extensible Coordination Tools
HAN Home Area network
IOP Interoperability Open Platform
IoT Internet of Things
MDPI Multidisciplinary Digital Publishing Institute
PHEV Plug-in Hybrid Electric Vehicle
PLC Power-Line Communication
rCOS Refinement Calculus for component and Object Systems
rCPCS Cyber-Physical Component Systems

References

1. Palomar, E.; Liu, Z.; Bowen, J.P.; Zhang, Y.; Maharjan, S. Component-based modelling for sustainable and
scalable smart meter networks. In Proceedings of the IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM 2014), 3rd IoT-SoS Internet of Things Smart Objects and
Service Workshop, Sydney, Australia, 10–12 June 2014; pp. 1–6.

2. Jifeng, H.; Li, X.; Liu, Z. rCOS: A refinement calculus of object systems. Theor. Comput. Sci. 2006, 365, 109–142.
3. Dong, R.; Faber, J.; Ke, W.; Liu, Z. rCOS: Defining Meanings of Component-based Software Architectures.

In Proceedings of the ICTAC Training School on Software Engineering, Shanghai, China, 26–30 August 2013;
pp. 1–66.

4. Klein, C.; Kaefer, G. From smart homes to smart cities: Opportunities and challenges from an
industrial perspective. In International Conference on Next Generation Wired/Wireless Networking; Springer:
Berlin/Heidelberg, Germany, 2008.

5. Tang, S.; Huang, Q.; Li, X.Y.; Wu, D. Smoothing the energy consumption: Peak demand reduction in smart
grid. In Proceedings of the IEEE INFOCOM 2013, Turin, Italy, 14–19 April 2013; pp. 1133–1141.

6. Mohsenian-Rad, A.H.; Wong, V.W.S.; Jatskevich, J.; Schober, R. Optimal and autonomous incentive-based
energy consumption scheduling algorithm for smart grid. In Proceedings of the Innovative Smart Grid
Technologies (ISGT), Gothenburg, Sweden, 11–13 October 2010; pp. 1–6.

7. Arbab, F. Reo: A channel-based coordination model for component composition. Math. Struct. Comput. Sci.
2004, 14, 329–366.

8. Kokash, N.; Arbab, F. Formal design and verification of long-running transactions with extensible
coordination tools. IEEE Trans. Serv. Comput. 2013, 6, 186–200.

9. Schaffers, H.; Komninos, N.; Pallot, M.; Trousse, B.; Nilsson, M.; Oliveira, A. Smart Cities and the Future
Internet: Towards Cooperation Frameworks for Open Innovation. In The Future Internet; Springer: Berlin,
Germany, 2011; pp. 431–446.

10. Blackstock, M.; Kaviani, N.; Lea, R.; Friday, A. MAGIC Broker 2: An open and extensible platform for the
Internet of Things. In Proceedings of the Internet of Things (IOT), Tokio, Japan, 29 November–1 December
2010; pp. 1–8.

11. Filipponi, L.; Vitaletti, A.; Landi, G.; Memeo, V.; Laura, G.; Pucci, P. Smart city: An event driven
architecture for monitoring public spaces with heterogeneous sensors. In Proceedings of the 2010 Fourth
International Conference on Sensor Technologies and Applications (SENSORCOMM), Venice/Mestre, Italy,
18–25 July 2010; pp. 281–286.

12. da Silva, W.M.; Alvaro, A.; Tomas, G.H.; Afonso, R.A.; Dias, K.L.; Garcia, V.C. Smart cities software
architectures: A survey. In Proceedings of the 28th Annual ACM Symposium on Applied Computing,
Coimbra, Portugal, 18–22 March 2013; pp. 1722–1727.

13. Steuer, S.; Benabbas, A.; Kasrin, N.; Nicklas, D. Challenges and Design Goals for an Architecture of a
Privacy-preserving Smart City Lab. Datenbank-Spektrum 2016, 16, 147–156.

14. Papadopoulos, G.; Arbab, F. Coordination models and languages. Adv. Comput. 1998, 46, 329–400.

Sensors 2016, 16, 1810 19 of 20

15. Garlan, D.; Monroe, R.T.; Wile, D. Acme: Architectural description of component-based systems.
Found Compon.-Based Syst. 2000, 68, 47–68.

16. Edwards, S.; Lavagno, L.; Lee, E.; Sangiovanni-Vincentelli, A. Design of embedded systems: Formal models,
validation and synthesis. In Readings in Hardware/Software Co-Design; Morgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 2001.

17. Schutte, S.; Scherfke, S.; Troschel, M. Mosaik: A framework for modular simulation of active components in
smart grids. In Proceedings of the 1st Internet workshop on Smart Grid modelling and simulation (SGMS),
Brussels, Belgium, 17 October 2011; pp. 55–60.

18. Pourvatan, B.; Sirjani, M.; Arbab, F.; Bonsangue, M. Decomposition of constraint automata. In Proceedings
of the 7th international conference on Formal Aspects of Component Software (FACS), Guimaraes, Portugal,
14–16 October 2012; pp. 237–258.

19. Chen, X.; He, J.; Liu, Z.; Zhan, N. A model of component-based programming. In Proceedings of the
International Symposium on Fundamentals of Software Engineering (FSEN), Tehran, Iran, 17–19 April 2007.

20. Chen, Z.; Hannousse, A.H.; Van Hung, D.; Knoll, I.; Li, X.; Liu, Z.; Liu, Y.; Nan, Q.; Okika, J.C.; Ravn, A.P.; et al.
Modelling with relational calculus of object and component systems—rCOS. In The Common Component
Modeling Example; Springer: Berlin/Heidelberg, Germany, 2008; pp. 116–145.

21. Chen, Z.; Liu, Z.; Ravn, A.P.; Stolz, V.; Zhan, N. Refinement and verification in component-based
model-driven design. Sci. Comput. Program. 2009, 74, 168–196.

22. Diakov, N.K.; Arbab, F.; Diakov, N.; Arbab, F. Compositional construction of web services using Reo.
In Proceedings of the International Workshop on Web Services: Modeling, Architecture and Infrastructure,
Porto, Portugal, 14–17 April 2004.

23. Heydarnoori, A.; Mavaddat, F.; Arbab, F. Towards an automated deployment planner for composition of
web services as software components. Electron. Notes Theor. Comput. Sci. 2006, 160, 239–253.

24. Zlatev, Z.; Diakov, N.; Pokraev, S. Construction of negotiation protocols for E-Commerce applications.
ACM SIGecom Exch. 2004, 5, 12–22.

25. Boella, G.; van der Torre, L. An architecture of a normative system: Counts-as conditionals, obligations
and permissions. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems, Hakodate, Japan, 8–12 May 2006; pp. 229–231.

26. Lazovik, A.; Arbab, F. Using Reo for Service Coordination; Springer: Berlin/Heidelberg, Germany, 2007;
pp. 398–403.

27. Kokash, N.; Arbab, F. Applying Reo to service coordination in long-running business transactions.
In Proceedings of the 2009 ACM Symposium on Applied Computing, Honolulu, HI, USA, 8–12 March 2009;
pp. 1381–1382.

28. Changizi, B.; Kokash, N.; Arbab, F. A unified toolset for business process model formalization. In
Proceedings of the Formal Engineering Approaches to Software Components and Architectures, Paphos,
Cyprus, 27 March 2010.

29. Jongmans, S.S.T.; Santini, F.; Arbab, F. Partially-distributed coordination with Reo. In Proceedings of the
2014 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP), Garching, Germany, 15–17 February 2014; pp. 697–706.

30. Arbab, F.; Aştefănoaei, L.; de Boer, F.S.; Dastani, M.; Meyer, J.J.; Tinnermeier, N. Reo connectors
as coordination artifacts in 2APL systems. In Intelligent Agents and Multi-Agent Systems; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 42–53.

31. Baier, C.; Klein, J.; Kluppelholz, S. Modeling and verification of components and connectors. In Formal
Methods for Eternal Networked Software Systems (SFM); Springer: Berlin/Heidelberg, Germany, 2011;
pp. 114–147.

32. Clarke, D.; Costa, D.; Arbab, F. Connector colouring I: Synchronisation and context dependency. Sci. Comput.
Program. 2007, 6, 205–225.

33. Lee, E.A. Cyber physical systems: Design challenges. In Proceedings of the 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 5–7 May 2008;
pp. 363–369.

Sensors 2016, 16, 1810 20 of 20

34. Xu, T.; Liu, Z.; Tang, T.; Zheng, W.; Zhao, L. Component based design of fault tolerant devices
in cyber physical system. In Proceedings of the 2012 15th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops (ISORCW), Shenzhen,
China, 11 April 2012; pp. 37–42.

35. Chen, X.; Sun, J.; Sun, M. A Hybrid Model for Connectors in Cyber-Physical Systems. In Proceedings
of the 16th International Conference of Formal Engineering Methods, Luxembourg, Luxembourg,
3–7 November 2014.

36. Gellings, C.W. The Smart Grid: Enabling Energy Efficiency and Demand Response; The Fairmont Press, Inc.:
Lilburn, GA, USA, 2009.

37. Darby, S. Smart metering: What potential for householder engagement? Build. Res. Inf. 2010, 38, 442–457.
38. Myerson, R.B. Conference structures and fair allocation rules. Int. J. Game Theor. 1980, 9, 169–182.
39. Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid technologies:

Communication technologies and standards. IEEE Trans. Ind. Inf. 2011, 7, 529–539.
40. Baier, C.; Sirjani, M.; Arbab, F.; Rutten, J. Modeling component connectors in Reo by constraint automata.

Sci. Comput. Program. 2006, 61, 75–113.
41. Arbab, F.; Baier, C.; de Boer, F.; Rutten, J. Models and temporal logical specifications for timed component

connectors. Softw. Syst. Model. 2007, 6, 59–82.
42. Li, G.; Liu, H. Resource allocation for OFDMA relay networks with fairness constraints. IEEE J. Sel.

Areas Commun. 2006, 24, 2061–2069.
43. Lee, J.; Kim, H.J.; Park, G.L.; Kang, M. Energy consumption scheduler for demand response systems in the

smart grid. J. Inf. Sci. Eng. 2011, 27, 197–211.
44. Centrum Wiskunde & Informatica Institute, S.R.C. A Repository of Reo Connectors. Available online:

http://reo.project.cwi.nl/webreo/ (accessed on 18 October 2016).
45. Fitzgerald, J.; Larsen, P.G. Modelling Systems: Practical Tools and Techniques in Software Development; Cambridge

University Press: Cambridge, UK, 2009.
46. Pipattanasomporn, M.; Feroze, H.; Rahman, S. Multi-agent systems in a distributed smart grid: Design and

implementation. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle,
WA, USA, 15 –18 March 2009; pp. 1–8.

47. Bakr, S.; Cranefield, S. Optimizing Shiftable Appliance Schedules across Residential Neighbourhoods for
Lower Energy Costs and Fair Billing. In Proceedings of the Joint Workshop Proceedings-AIH 2013/CARE
2013, Dunedin, New Zealand, 3 December 2013; pp. 45–52.

48. Mohsenian-Rad, A.H.; Wong, V.W.S.; Jatskevich, J.; Schober, R.; Leon-Garcia, A. Autonomous Demand-Side
Management Based on Game-Theoretic Energy Consumption Scheduling for the Future Smart Grid.
IEEE Trans. Smart Grid 2010, 1, 320–331.

49. Clement, K.; Haesen, E.; Driesen, J. Coordinated charging of multiple plug-in hybrid electric vehicles
in residential distribution grids. In Proceedings of the 2009 IEEE/PES Power Systems Conference and
Exposition, Seattle, WA, USA, 15–18 March 2009; pp. 1–7.

50. Banos, R.; Manzano-Agugliaro, F.; Montoya, F.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods
applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766.

51. Bowen, J.P. The Ethics of Safety-Critical Systems. Commun. ACM 2000, 43, 91–97.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://reo.project.cwi.nl/webreo/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	System Description
	Utility
	Consumers
	Aggregator

	Cyber-Physical Components Modelling—rCPCS
	State Variables, Interfaces and Interactions
	Local Functionality and Behaviour
	Component Composition
	Discussion

	rCPCS Implementation in Reo
	Basic Concepts
	Reo Circuits
	Utility–Aggregator Communication
	Consumer–Aggregator Communication
	Consumer–Appliance Communication
	Experimental Results

	Discussion
	Model Checking
	A Note on the Distributed Approach

	Conclusions

