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Frac~al Geometry, Complexity, and the Nature of Urban ~lorphological Evolution: 
Developing a/ractal analysis tool to assess urban morphological change at neighbourhood level 

Abstract 

During the ~ast three decades, an increasing amount of evidence suggests that the ne\\ theories 
of complexIty and fractals are building up realistic views to study complex nature of urban 
forms. ~nd functio~ from micro to macro scales. Such works are based mainly on the concept 
that cIties are evolvmg and changing from the "bottom up" according to their local rules and 
conditions at micro city scales by which more morphological and functional orders emerge at 
macro city scales. From a morphological point of view, it can be interpreted that urban forms 
and patterns emerge at macro scales of a city based on the sequence of changes occurring in 
micro scale urban units (buildings) within it. While complexity theorists are questioning the 
deterministic top down approach in current urban planning and design, the problem is that 
there are still gaps in formulating how the complexity theory may be applied in practice, 
particularly where it relates to city shapes, forms and patterns. This research addresses the 
lack of feasible tools for measuring changes in the physical complexity of urban 
morphological features and focuses on change analysis in urban patterns at local and 
neighbourhood scales. 

The research, therefore, has sought to develop a fractal analysis tool to measure the 
complexity of urban patterns by calculating fractal dimensions of them. It proposes Fractal 
Neighbourhood Identification codes (FNID) as a kind of digital signature of a city structure, 
which reveal the level of physical complexity that urban patterns demonstrate at 
neighbourhood and local scales. Furthermore, the research has succeeded to produce a 'fractal 
map' of a city for the first time. It has employed fractal calculation software (Benoit) in 
linkage with GIS software (ArcMap) to convert numerical data into pictorial data and to 
visualise spatial fractal dimensions in terms of the fractal map. This map could then provide a 
basis for fractal identification and classification of urban patterns and, more importantly, the 
analysis of pattern changes over both space and time. 

A district in the north of Tehran (Shemiran) has been selected as the case study for this 
research. The proposed fractal analysis tool has been found to be useful for the fractal 
interpretation of urban patterns, suggesting a realistic way of pattern identification and 
classification. Two sample cases within Sherniran, one originated from a gradual organic 
growth and the other from a rapid planned development, were selected to test the potentiality 
of the method in identifying homogeneity and heterogeneity that the patterns exhibits over 
different places. The same method was employed to measure the changes occurring over 
different periods. The aerial photos of Tajrish, the centre of Shemiran, between 1956 and 
2002 were analysed to examine quantitatively the degree of changes that the urban pattern 
related to each neighbourhood experienced during this period. The research suggests that the 
same method can be applied to the entire metropolitan city of Tehran and more generally to 

any other cities. 

The fractal assessment method suggested in this research can also be employed by urban 
designers, planners, and decision makers to predict mathematicall~ the degr~e of changes that 
architectural design proposals or any other kind of urban interventlOns may Impose to the 
physical complexity of an existing urban fab.ric, before their ~eal implementat~on. In this 
sense, the proposed fractal assessment techmque could contnbute a more fle.xI?lc appr<llsal 
method for urban conservationists who are keen to preserve urban charactenstlcs while 
allowing innovations and recreations in the contex~ of an hist?ric urba~ district. Final1y, the 
research also took another step forward in developmg a practical tool tor planners who 
believe that the current top down deterministic planning and design routine should be rc\ised 

by flexible bottom up approaches. 
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CHAPTER ONE 



1.1 Introduction and the Rationale for the Research 

1.1.1 The city of organized complexities 

'Cities happen to be problems in organised complexity, like the life sciences. 
They present situations in which half a dozen or several dozen quantities are all 
varying simultaneously and in subtly interconnected ways .... They are many but 
they are not he Iter skelter; they are interrelated into an organic whole' (Jacobs, 
1961; quoted in Batty, 2005, p.l). 

'There are several adaptive forces in society which, directly and indirectly, 
influence the life and shape of urban areas: there are demographic, economic, 
technological, and cultural forces .... They operate at all scales .... The problem in 
discussing each separately is that, in real life, most of these factors are complexly 
interlinked in a web of causes and effects' (Gottmann, 1978, quoted in Larkham, 
1996b, pp.37-38). 

The city and its problems are the product of considerable diversity of socio-spatial 

processes, elements, variable problems, and several adaptive forces associated with 

politics, economics, technology, culture, climate, etc. There are also many factors 

playing a role in each of these processes and forces, which make the modem city more 

complex and its problems multi-factorial. These factors 'operate at all scales in all 

settlements and throughout history' and they are 'complexly interlinked' (Larkham, 

1996b, p.37). Therefore, it should be obvious that the reductionist approaches to the city 

systems, which reduce their problems to their constituent parts with one-, two-, three-, 

and four-factors, cannot cope with the complex nature of problems posed by the modem 

city (Weaver, 1948; Jacobs, 1961; Batty, 2005). In this sense, cities, like the life 

sciences (e.g. biology), are recognised as 'problems in organised complexity' (Jacobs, 

1961, p.432). 

The difficulties of addressing this type of problems by purely reductionist approaches 

become even more apparent when considering the following two defining features: (a) 

City systems, like living organisms, are characterised by a complex organization, which 

results from a network of interactions involving a high degree of nonlinearity (b) they 
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are open systems; that is, their form and function are in a state of permanent flux, 

continuously influencing and being influenced by their wider environment, exhibiting 

"emergent properties" (Portugali, 2000; Walleczek, 2000). Figure 1.1 visualises the 

concept of a complex system with these two defining features. The whole structure is in 

a non-equilibrium state, emerging through the continuing interactions between micro 

and macro processes. In this sense, emergent properties or surprising events in a city -

like a living organism - can be defined as properties that are possessed by a dynamic 

complex system as an organic whole, but not by its constituent parts alone (see also 

Chapter Three, section 3.2.2 and appendix A for definitions). 

\ 1 / 
0..,0. O.. 

O.. '0. a .0. 
'0 .. "" .0 

"0. O.· 
Local \Jicro,,:opi,' 

1"'''f"a,'lion_ 

Figure 1.1: The dynamical interdependence between 
local (micro) interactions and the emerging global 
(macro) structure. (Walleczek, 2000, p.3) 

However, cities have not generally been treated as complex systems. The architects, 

planners, urban designers, and builders of settlements treated them as simple predictable 

systems to be ordered and reduced to their components in order to facilitate urban 

modelling and to tackle city problems (Batty, 2005). In planning and design, the rise of 

the science of complexity has engendered a shift between the old view that sees cities as 

simple, ordered, structured, expressible by smooth lines and shapes towards a view that 

cities are complex organisms, evolving from the bottom up according to their local rules 

and conditions, which manifest greater order across many scales and times. 
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Jacobs (1961) was one of the first calling for the science of complexity in the effort to 

understand urban problems better and design solutions consistent with the way the city 

works. Alexander (1964, 1965) said much the same advocating the idea that the city 

should be gradually developed from the bottom up though slow adaptive processes, 'but 

that since the Renaissance, and certainly since the Industrial revolution, this link had 

been broken' (Batty, 2005, p.6). In his more recent work, Alexander (2002b, 2004) has 

brought forward the need for a theory that can cope with the nature of urban complexity: 

'We are surrounded by complexity. The modem city is immensely complex .... It 
would be natural to expect, therefore, that we must have a theory of complexity, 
that we have an effective and sensible way to create complexity. Faced with the 
need, growing everyday, to create successful complex structures all around us, one 
would expect that we have at least asked ourselves how, in general, a complex 
structure may become well-formed' (Alexander, 2002b, p.l80). 

Alexander (2002b) argues that all the well-ordered complex systems we know in the 

world, at least those viewed as highly successful, are generated structures, not fabricated 

structures. According to him, this fundamental law is, to all intents and purposes, 

ignored in 99% of the daily "fabrication processes" of society (see figure 2.25 in 

Chapter Two, and table 3.1 in Chapter Three). If our buildings and cities should reflect 

our worldviews, we must modify them to come closer to what we know about the 

organic universe - 'nonlinearity, emergence, complexity, and self-organization' (Jencks, 

1997, p.159). Otherwise, day by day we will build up an alienated environment with no 

living spatial characteristics. 

1.1.2 The research background and the theoretical motivation 

The motivation for this research stems from two parallel, but related, scientific events 

that happened over three decades ago. The first was the rise of chaotic dynamics in 

domains such as mathematics, cybernetics, and physics during the 1970s and 1980s (see 

Gleick, 1987; Prigogine and Stengers, 1984; see also Chapter Three, section 3.1). The 

second was the discovery of fractal geometry by Benoit Mandelbrot in the 1960s, and in 
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his influential book, the Fractal Geometry of Nature, facilitating the study of many 

irregular and seemingly amorphous man-made and natural patterns (see Mandelbrot, 

1983; see also Chapter Three, section 3.3). Both chaotic dynamics and fractal geometry 

have been employed in a wide range of sciences dealing with self-organised complex 

phenomena, including those related to urbanism (see table 4.1 in Chapter Four). In the 

following statements, Batty (2005, p.5) hints at the relationship between these new 

theories: 

'Processes that lead to surprising events, to emergent structures not directly 
obvious from the elements of their process but hidden within their mechanism, 
new forms of geometry associated with fractal patterns, and chaotic dynamics -
all are combining to provide theories that are applicable to highly complex 
systems such as cities.' 

From the mid 1990s, these two parallel paradigms began to merge under the new theory 

of complexity (see also Flood et ai, 1993; Byrne, 1998; Wilson, 2000), which in the case 

of urban studies led to the proposition of the theory of fractal cities by Batty and 

Longley (1994). While the concern of chaotic dynamics is how a city as a complex 

system behaves, fractal geometry provides subtle views to the study of urban 

morphological complexity. Both subjects playa major role in the construction of this 

thesis, assisting in the understanding of the nature of urban functional and 

morphological evolution. However, as the title of the thesis suggests, the focus of the 

research is on the second paradigm - fractal geometry as dealing with urban 

morphological complexity. 

1.1.3 The fractal analysis of urban morphology and the research focus 

'Urban morphology refers to the study of physical (or built) fabric of 
urban form, and the people and processes shaping it' (Larkham and 
Jones, 1991, p.55). 

There is limited amount of 'research on the physical form of cities' (Larkham, 2006, 

p.118). Moreover, much of this work is on the physical urban form not the processes 
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shaping it. 'Fifty years ago, theories of how cities were structured in spatial tenns hardly 

existed' (Batty, 2005, p.2). The limited amount of research on physical fonn and urban 

evolution draws attention to the lack of appropriate theories, methods, and accurate tools 

in the hand of urban morphologists. 

From the Renaissance architects (e.g. Leon Battista Alberti, 1404-1472) and their 

geometrical and mathematical analysis methods to the recent morphologists (e.g. 

Conzen, 1962, 1988) and their metrological and morphometric analysis methods, the 

linear principles of Euclidian geometry have been the common ground. These methods 

have been based on the detailed measurement of plot and building sizes with especial 

reference to relative proportions of width, length, and height (see Whitehand, 1981, 

1987b, 2001; Slater, 1990a, 1999; Larkham 2004b, 2006; Steadman, 2008). Yet the 

inevitable linearity of Euclidean geometry associated with all of these methods does not 

allow them to explore the subtle complexity existing in urban fonns and patterns (see 

section 2.2 in Chapter Two). 

Over the last fifteen years, there have been a growing number of publications suggesting 

the application of fractal analysis in the study of urban morphological features. These 

include the study of building elevations by Bovill (1996), the analysis of street 

elevations, street patterns and street vistas by Cooper (2000, 2008), the research on 

skylines by Stamp (2002) and Cooper (2003), the work on urban boundaries by Batty 

and Longley (2004), the study of visual preference and structural landscape by Gotou et 

af (2002) and Hagerhall et af (2004), etc (see also table 4.1 for more examples). Some 

also explored the notion of finding a kind of fingerprint for the configuration of shapes 

and structures of a city (Webster, 1995, 2005; Haghani, 2004). 
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However, most of these suggest fractal measurement as a critical tool evaluating an 

urban morphological feature without reference to its change and evolution over time. In 

other words, there is a relative lack of research so far addressing the application of 

fractal analysis in measuring the change in urban morphological complexity. For 

instance, Cooper (2000, 2003, 2008) investigated the potential chaos and fractal analysis 

in examining urban elements at the street level for the city of Oxford. He proposed the 

fractal analysis method for evaluating urban snapshots, and his focus was on physical 

form of the city, not the processes of change and evolution over time. Therefore, this 

thesis examines this less-researched area. It aims to develop a fractal analysis tool to 

measure the processes of change in morphological complexity, and to that extent, it 

focuses on assessing the change in urban patterns. 

1.1.4 The fractal analysis of planned and unplanned/organic urban patterns 

'All cities show some irregularity in most of their parts and are thus 
ideal candidates for the application of fractal geometry' (Batty and 
Longley, 1994, p.2). 

Many analyses of urban form suggest that there are two types of urban patterns -

'planned' and 'unplanned or organic '. While planned cities, or the planned parts of 

them, are cast in the geometry of straight lines (Euclidean geometry), the immediate 

application of fractal geometry is to the latter type. However, city geometry is often 

more complex, marrying the two pure types in modulated and refracted combination (for 

example see figure 1.2). The close fusion of planned and unplanned, regular and 

irregular, elements leads to the assumption that the great majority of towns grow by an 

organic, piecemeal, unplanned process. Conversely, some morphologists (e.g. Slater, 

1990a, 1999) believe that, what seems to be organic or unplanned is often the 

conjunction of 'many small phases of planning activity' (Larkham, 1996b, p.35). 
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Figure 1.2: The plan of Bewdley. The analysis identifies six units of planned 
and unplanned phases of growth. (Slater, 1990a, reproduced in Larkham, 
1996b, p.35) 

Urban pattern analysis, in many cases, shows that what seems "unplanned" is actually 

the result of many phases of planning, some of which are geometric and regular. 

Moreover, less-planned encroachments over several centuries have affected the 

appearance of many places (Larkham, 1996b). However, even the planned parts of a city 

(e.g. Unit IV in figure 1.2) are adapted to their context in more unplanned/organic ways 

once the plan is implemented; and they evolve gradually according to new needs and 

conditions. Thus, in any case, the extent to which urban form is ordered or planned is 

always a matter of degree (Batty and Longley, 1994). Furthermore, even when buildings 

are marshalled like troops along straight lines of an urban grid, the animation in their 

mass and height resulted in picturesque formations believed to be congenital to the 

unplanned/organic city (Kostof, 1991). Therefore, all cities show some irregularity in 

most of their parts, and as Batty and Longley (1994) claim, they are all ideal candidates 

for the application of fractal geometry (see Chapter Two, section 2.2). 

Another important point - seemingly terminological but actually based on the 

conceptual debate between urban morphologists - is to find an appropriate term for the 

gradually grown and evolved urban patterns. Some authors (e.g. Lynch, 1981; Kostof, 

1991) prefer the term "unplanned," as the term "organic" might have biological 



connotations. They argue that the visual and functional analogies between a city and an 

organism - such as streets/veins, parks/ lungs, city centreiheart, etc - can be misleading. 

The confusion stems from the distinction that they assume to be fundamental between 

the city, as an artificial system, and the human, as the driver of urban form and function. 

Lynch (1981, p.95) writes that 'cities are not organisms .... They do not grow or change 

themselves, or reproduce or repair themselves'. According to him, human purpose 

drives the making of cities, whether planned or not. 

The proponents of the term "organic" emphasise the systematic rather than visual 

analogies between cities and organisms, considering cities as open living not artificial 

mechanical systems. Referring to the opening statements of this chapter (section 1.1.1), 

complexity theorists believe that there is a strong inter-linkage between a city, its 

constituent parts, the socio-spatial forces and factors by which they can hardly be 

understood apart. Human activity at local scales and the emergent properties of the city 

at macro scales should be understood together in an inter-dependent complex system 

(see again figure 1.1). If the human activities are seen as part of the whole system, it can 

be argued that city systems have a self-organising nature. 

In this sense, the term "organic" better represents the complex nature of urban change 

and its defining features (discussed earlier in section 1.1.1; see also Chapter Three, 

section 3.2.2). It also implies self-regulating, self-generating, and self-organising 

processes within city systems, while the term "unplanned" does not. Finally, the term 

"organic" conveys the notion of time and gradual change, which is the main property of 

naturally grown patterns. In this sense, "organic pattern," while perhaps may be not 

perfect, is the preferred term for the rest of this thesis - referring to the parts of cities 

gradually grown or evolved over time. 
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1.2 Aims, Objectives and the Research Questions 

1.2.1 Aims and objectives 

'Research aims are at the very heart of the thesis. Thus, they should be a thread, 
which links it together in expressing clearly and precisely the anticipated 
achievements of the original contribution to knowledge, which will be achieved' 
(Oliver, 2004, p.121). 

With the range of issues described earlier, the principal aims supply a broad indication 

of this study. These are: 

a) Identifying the achievements and failures of the geometry of straight lines (linear 

Euclidean principles) as applied to the conventional top down planning, 

architecture, and urban design 

b) Introducing the principles and applications of complexity theory and fractal 

geometry in order to examine their potential in urban morphological and 

functional analysis 

c) Examining the potential of a fractal assessment methods to measure and map 

urban morphological complexity 

The research objectives are: 

a) Developing a fractal assessment tool to identify, classify, and analyse emergent 

urban patterns originating from both organic and planned types of growth 

b) Selecting an area where historical data and record are available, and then 

assessing the fractal dimensions of its neighbourhoods to measure 

mathematically the change in its physical complexity 

c) Producing a fractal map as a tool for architects, planners, and urban designers 

enabling them to reflect better on their design proposals and decisions before 

their real implementation 
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1.2.2 The research questions 

Two set of questions will be explored to achieve the research principal aims and 

objectives. The first set is general but includes important questions related to 

complexity and the nature of urban morphological evolution. These questions 

will respond to the main aims of the research: 

1. Why can Euclidean geometry and its linear principles not explain urban 

morphological complexity? 

2. What does complexity theory mean? What is its relationship with chaotic 

dynamics and fractal geometry? What are the properties of complexity by which 

a complex system can be identified? Moreover, does a city system demonstrate 

these properties? 

3. Is fractal geometry an essential substitute for Euclidean geometry as applied to 

architecture and urban design? 

4. Why does the conventional top down approach to planning and urban design not 

conform to the nature of urban morphological evolution? 

The research will then focus on the specific questions to achieve its objectives. The 

second set explores the applications of complexity theory and fractals as related to city 

form and function to devise a more accurate tool for spatial and morphological analysis. 

The questions are: 

5. How may complexity theory and fractal geometry be applied to urban planning 

and design? 

6. How could urban physical complexity be measured, visualised, and mapped? 

7. How can fractal dimension be referred as a criterion to identify, classify, and 

analyse the change in complexity of urban patterns? 
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1.3 The Research Methodology 

'Quantitative research is considered to be hard-nosed, data-driven, outcome
oriented, and truly scientific' (Yin, 2003b, p.33). 

The research aims to develop a fractal analysis tool in order to assess the change in 

urban morphological complexity, not to evaluate them. Therefore, it follows a 

quantitative methodology rather than a qualitative one. Furthennore, since this research 

is of the data-driven, outcome-oriented type, a case study strategy is appropriate. Yin 

(2003a, p.l) writes: 

'Case studies are the preferred strategy when "how" or "why" questions are 
being posed, when the investigator has little control over events, and when the 
focus is on a contemporary phenomenon within some real-life context.' 

Therefore, among five different possible methods (experiment, survey, archival analysis, 

history, and case study) suggested by Yin (2003a), the "why" and "how" questions 

presented in the previous section are appropriate for the case study method. According 

to this type of strategy, the research should define an appropriate case study, and 

determine the relevant data to be collected and analysed. 

1.3.1 The case study 

Tehran, the capital city of Iran, provides good sample cases to be studied. Morphologically, 

the city is the product of two different patterns of growth. On the one hand, a fast large-

scale expansion of the city imposed its regular grid-like pattern on the suburban areas. On 

the other, the gradual growth of the villages -fonnerly encircling the city gradually 

converted to be significant centres inside the city -generally produces organic patterns. 

This rapid growth, when merged with gradual transfonnation of the suburbs, provides very 

complex urban patterns in the neighbourhoods around these centres. Tajrish, the centre of 

Shemiran - a district located in the north of Tehran - has such characteristics, as it 

demonstrates the contradiction between both patterns of growth. 
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Chapter Five provides a detailed explanation of the criteria that have been considered 

for selecting an appropriate case study and the required sample cases. The fractal 

analysis method employed in this research aims to measure the degree of change in the 

complexity of urban patterns at different neighbourhoods in Shemiran. If this method is 

found to be useful for the selected sample cases, then the same method can be used for 

the entire city of Tehran and other cities too. 

1.3.2 The thesis structure and the stages of the investigation 

The research comprises three main stages, a) the literature review, b) the data collection 

and examination, and c) the data analysis. At each stage, the strategy is to narrow down 

the research according to its main aims, and to focus on the target specified by the 

research objectives. In this section, three stages of the investigation are briefly 

introduced. Figures 1.3, 1.4, and 1.5 illustrate the key elements of each stage. 

1.3.2.1 Stage 1, the literature review: 

This aims to investigate the traditional and conventional approaches towards urban 

form, providing the platform for the application of the fractal concept. Firstly, the 

review intends to identify the traditional views of urban form, and particularly, it 

discuses the role of the science of Euclidian geometry in shaping urban form throughout 

history (Chapter Two). Secondly, the properties of fractals, complexity, and chaos 

theories will be reviewed in order to identify how these new theories provide a more 

realistic insight into the study of urban form and change (Chapter Three). The 

advantages of fractal approach for understanding of urban complexity will be 

highlighted in order to shift our views from the top down deterministic planning and 

design tradition to the more realistic and flexible bottom up approach (Chapter Four). 
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By the end of the literature review, a number of approaches in the application of fractal 

theory in the study of urban form, growth, and change will be outlined to provide a 

backbone for the empirical stage, where the research aims to develop its own fractal 

analysis tool. As shown in figure 1.3, the research will be narrowed down, at this stage, 

from relatively a wide literature to a focused target, refining the research method for the 

empirical stage. 
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Figure 1.3: The first stage of the methodology; the literature review. The arrows indicate the 
overall strategy to narrow down the research and to formulate its target. 

1.3.2.2 Stage II, the data collection and examination: 

Once the research has indentified its target, it follows three sequential steps at the 

empirical stage including case study selection (Chapter Five), pilot study, and case study 

examination (Chapter Six). The first step defines the relevant case study and sample 

cases to be examined according to the research target. The advantages of using remote 

en sing city images, as the data source, will be identified (Chapter Six, section 6.1.1). 

Then, the research develops its fractal assessment tool by using two different software 

program in linkage. It employs Benoit 1.3 (fractal analysis software) to facilitate fractal 
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dimension calculation and ArcMap 9.2 (GIS software) for its mapping, layer-

overlapping capabilities. The latter software will convert numerical data into pictorial 

data in order to visualise spatial fractal dimensions in terms of the fractal map. The 

rationale for using this software is given in Chapter Six (see section 6.1.4.2). 

The important step at this stage is to test the reliability of the method before it is applied 

to the main case study. Therefore, at the second step, the pilot study carries out two 

different tests (Chapter Six, section 6.2). The first is the validity test, which aims to 

calibrate the adjustable parameters of the fractal analysis software. The second test is the 

sensitivity test, which checks urban elements within the image contents in terms of 

appropriateness, and the consistency of the pictorial data in terms of resolution, 

brightness, and contrast. The aerial photos of the selected case study are processed and 

refined based on the result of the pilot study and are prepared for the actual examination. 

--

~ --

Pilol Study 

The Case Study Selection 

The Sample Selection 

Measuring the fractal dimensions of the selected cases 

Tran fer frac tal data to GI software for further analy i 

Figure 1.4: The second stage of methodology; the data collection and 
examination. The second stage of investigation includes the case study 
and sample selection, the pilot study; and the case study Examination. 

The third step carries out the fractal measurement of the case study and the selected 

samples (Chapter Six, section 6.3). The aim is to assess the fractal dimensions of the 

elected areas from the neighbourhood local scales to the district and city scales. Since the 
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focus of the research is at local scales, further examination will be carried out at 

neighbourhood level of the case study to measure the change in the complexity of their 

urban patterns for the period from 1956 to 2002 (determined by the availability of aerial 

photographs). The result of these measurements will be processed into the GIS software 

to be mapped. Figure 1.4 illustrates the main steps that are to be carried out at the stage II. 

1.3.2.3 Stage III, the data analysis: 

The numerical data from the previous stage is transferred to GIS software (ArcGIS) in 

order to be visualised, mapped, and analysed (chapters Six and Seven). The map 

produced suggests a kind of fractal fingerprint for the examined neighbourhoods. This, 

together with the proposition of the fractal Identification code (FNID), provides the base 

for the pattern analysis at the third stage (Chapter Seven, section 7.1). The method will 

facilitate the pattern recognition and classification based on the degree of complexity 

that different neighbourhoods pose. The fractal map also identifies the 

homogeneitylheterogeneity of urban patterns and the areas that the urban patterns begin 

to be transformed or distorted (Chapter Seven, section 7.2). 
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Figure 1.5: The third stage of methodology, the data analysis . It includes the pattern 
recognition clas ification and measuring the change over time. 
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Moreover, several maps from past to present are compared in order to measure the 

degree of change in physical complexity of the selected samples overtime (see Chapter 

Seven, section 7.3). This comparison will reveal the degree of impacts that urban 

interventions have imposed on physical complexity of selected case studies. Finally, the 

potentiality of proposed fractal technique in analyzing future morphological changes 

will be addressed. At this point, the fractal signature (FNID) of each neighbourhood 

provides a benchmark for testing different urban scenarios according to the current 

planning policies, possible architectural proposals, or urban design projects (see Chapter 

Seven, section 7.3.2.1). Figure 1.5 illustrates the main ideas that will be discussed at 

data analysis stage. 

1.4 Chapter Summary 

The introductory chapter highlighted the research main theme and outlined the key 

researches supporting the topic, the less-researched areas, and the focus of the thesis. It 

also introduced the research aims and objectives by which two set of questions were 

fonnulated. As discussed in this chapter, the first set targets the research aims - the 

potentials of fractal geometry as compared to Euclidean geometry in urban morphological 

analysis - which are achievable through the literature review (Chapters Two, Three, and 

Four). However, the second set focuses on the research objectives - the applicability of 

the fractal analysis tool- which requires the case study examination (Chapters Five, Six, 

and Seven). Chapter Two, in particular, reviews the literature through a historical context 

to examine the role, strengths and weaknesses of the geometry of straight lines (Euclidean 

geometry) in shaping architectural and urban forms. The literature review, in general, 

aims to establish some reasons why understanding of urban morphological complexity 

and its evolution over time is beyond the principles of Euclidean geometry, and therefore, 

it requires some further knowledge in the light of complexity theory and fractal geometry. 
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Introduction 

While there are several directions in which urban evolution can be examined based on 

complexity and fractal theories, this research focuses on geometrical rather than 

functional aspects. Therefore, this chapter takes the fIrst step in focusing the research by 

identifying the advantages of fractal geometry in comparison to conventional Euclidean 

geometry in urban morphological analysis. In the fIrst part of the chapter, the geometry of 

straight lines as applied to architecture and urban form will be interpreted. In the second 

part, the strengths and weaknesses of such geometry will be discussed. 

The chapter attempts to review the signifIcance of geometrical approaches towards the 

built environment in various historical periods. This brief review does not cover the 

history of urban forms, instead aiming to emphasise how developments in the science of 

geometry have equipped humans with a mathematical tool to conceptualise their 

environment; and highlighting how the geometry of straight lines - known as Euclidian 

geometry - governs the way we think and build our cities. It will then be argued that even 

though this geometry has gained success in some aspects of architecture and city design 

through history, it has failed to describe the substantial complexity that exists within the 

city fabric; hence a new theory of urban fonn and growth is required that can explain 

more accurately how cities develop and should be developed. In this sense, the main goal 

of this chapter is to establish the reasons why new insights into the evolution of urban 

form require some knowledge of complexity and fractal geometry. 
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2.1 Part One: The Implications and Interpretations of Euclidean 

Geometry as Applied to Architecture and Urban Form 

2.1.1 The origins of geometry and its role in shaping the built environment 

'There is evidence that man always made sense of the world through 
powerful simplifying abstractions which seek out the underlying 
principles and order in our experiences and perceptions' (Batty and 
Longley, 1994, p.1 0). 

According to Batty and Longley (1994), humans have sought such abstraction to simplify 

the world visually and impose a smooth geometry on art so that its meaning can be 

communicated in the simplest and the most effective way. In fact, the science of 

geometry has enabled people to define their relationships with their natural and built 

environment, by measuring spaces and objects within nature and consequently reflecting 

their perception and interpretation on what they created such as paintings, sculptures, 

handicrafts ... , as well as buildings and cities. 

Human kind ___ Geomet0-_________ Nature 

Based on archaeological evidence, today we know that humans attempted to devise a 

simple geometry describing natural phenomena (Janson, 2001). This geometry enabled 

them to simplify and abstract the natural environment into simple lines, circles, and dots. 

This also assists them to make a sense of their environment by measuring the size and 

distance of objects and comparing their proportions (Gardner, 1970). This can be 

observed in cave paintings (15,000 - 7000 Be) and the primitive tools and crafts 

remained from them during this period. Stone Age cave paintings revealed a primitive 
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way of symbolizing nature in very simple geometrical signs (figure 2.1). Humans 

employed geometry in many ways such as: describing natural shapes, creating symbols 

for visual communication, expressing belief, emotion, metaphysical metaphors, and 

imposing mathematical order to defme territories and in shaping his built environment. 

Figure 2.1: The above cave paintings found shows that man improved his ability from naturalistic 
perception of nature (Left, Dordogne, France, 15,000-10,000 BC) to more abstract signs 
imbedded in rectangular format (Right, Standard of Ur, Mesopotamia, 2600 BC). (Left, Gardner, 
1970, p.16; Right, Janson, 2001, p.67) 

Nickolas Salingaros (1997, 1999, 2003, 2005), a mathematician with a broad interest in 

the conceptualization of fractal geometry, believes that 'geometry' as one of two main 

branches of pre-modem mathematics could provide a universal grammar for architecture. 

He states that geometry explains the role of detail, colour, decoration, matching shapes, 

repetition of units, etc; and in traditional architecture, it was a vocabulary for achieving 

coherence. He states that, in the past, the relationship between mathematics and 

architecture was two-way, reinforcing, and mutually beneficial (Salingaros, 1999). 

Symmetry, mathematical proportion in the Renaissance architecture (e.g. Alberti's work), 

and the Golden Section in classical and humanistic architecture, are some examples of 

this key mutual relationship. The next section elaborates some of these examples to 

highlight the role of the science of geometry in shaping the built environment through 

history. 
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2.1.2 A brief history of geometric implications for architecture and urban form 

2.1.2.1 Geometry of antiquity: 

'There is no sense in the written record of any time when man's spatial sense of 
order was less developed than in modem times, although the association of 
geometrical order with science and with the means to impose that order through 
technology has changed substantially since the first urban civilization emerged' 
(Batty and Longley, 1994, p.ll). 

In the long history of city fonns and shapes from western Asia and Mesopotamia to 

today's new towns, the science of geometry has played an outstanding role. While most 

early settlements are marked by 'natural' or 'organic' growth (figure 2.2, left), there are 

some examples of 'planned' developments where a simple but precise geometry was 

employed (Morris, 1994; Kostof, 1991). From the earliest settlements, people have 

sought to impose the notion of visual abstraction and pure geometry on both natural and 

artificial phenomena such as towns. The Babylonian city of Ur, the Egyptian city of Tel-

el-Amarna, Kahun, Mohenjo-Daro in the Ancient Indus Valley, etc, all had elements of 

geometrically ordered streets and buildings and some followed gridiron plans (figure 

2.2). 

Figure 2.2: Geometry of early settlements; the organic plan and schematic reconstruction of Huyuk in 
Mesopotamia (left and middle) as compared to the gridiron plan of Kahun in ancient Egypt (right). 
(Middle Gardner, 1970, p.32; Left and right, Morris, 1994, pp.19, 29) 
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There is no doubt that the Egyptian civilization was also clearly aware of the science of 

geometry, by which they divided agricultural lands, measured the boundaries of the 

annual floods of the Nile and so on. The Egyptians considered the world to be a flat plane 

and that the river Nile passed through its centre. In the Egyptians' mind, the line from the 

South to the North was drawn by the river while the East-West direction was defined by 

the sun, the four basic directions that inspired them to orientate their buildings. Records 

also show that they were clearly aware of the Pythagoras's 3-4-5 proportion to create a 

perpendicular line by which their buildings such as the Pyramids obeyed precise 

geometry (Bianca, 2000). 

However, it was the Greeks who first founded the philosophical approach towards the 

science of geometry and developed it to plan and build their cities. A long line of Greek 

scientists and geometers (e.g. Pythagoras, Plato, Aristotle and Euclid) assembled a 

science that ultimately provided the foundation for later civilizations. They developed our 

visual senses to the point where 'art and science came to be treated as one', and where 

'the imposition of geometry upon the nature was first interpreted though the medium of 

science' that has been continued ever since (Batty and Longley, 1994, p.ll). While 

scientists such as Aristotle (circa 384 BC - 322 BC) contributed to the key ideas and 

concepts of understanding and classifying nature, Euclid (circa 325 BC-265 BC), in 

particular, established the geometrical principles and forms which dominated the history 

of architecture, city planning, and design - known as Euclidean geometry (Pearson, 

2001). 
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Figure 2.3: The Parthenon, Athens (447-432 BC). The geometrical analysis (right) reveals the 
effect of 'Golden Section' (left) on the distribution of elements across the fa~ade (middle). 
(Ching, 2007, pp.303-304) 

In architectural terms, as Ching (2007) describes, the Greek public buildings obeyed 

precise proportions (e.g. golden section, figure 2.3) based on the belief that certain 

numerical relationships manifest the harmonic structure of nature (the Pythagorean 

concept, see 2.15, left). In urban terms, however, ancient Greeks (before 400 BC) tended 

to create a harmonic relationship between the city form and its natural terrain (e.g. 

Athens, figure 2.4). 

According to Benevolo (1980), this concept was applied to early Greek cities, particularly 

those before the classic and Hellenistic eras, where houses developed organically around 

public places and followed natural topographical features of the nature. Although each 

individual public building within an agora (Greek public space) obeyed a pure and 

proportional geometry, their composition at the city scale did not violate the organic 

features of the terrain. Therefore, it can be claimed that the structural and organizational 

order of the city as a whole 'was not the result of any fixed forward planning policy', but 

the result of ' the process of self-improvement' (Benevolo, 1980, pp.71-72). 
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Figure 2.4: Athens' rough plan and a view of its agora during the Roman period which 
reveals its geometrical hannony with natural features. (Benevolo, 1980, pp.92-94) 

In the case of Athens (figure 2.4), for instance, Benevolo (1980, pp.60-72) described the 

geometrical characteristics of the city as follows: 

'Neither the streets nor the walls nor the monumental buildings succeeded in 
concealing the natural contours ... and the lines of the countryside.' 

While this is relevant for the early Greek cities such as Athens and Delos, evolving and 

growing gradually without planning, there was a group of cities, reconstructed later in the 

classic era (480 BC - 323 BC) such as Miletus and Priene (figure, 2.5), which had 

defined plans with specific divisions created by a regular geometry. The latter group 

manifested clearly a shift from philosophical approaches to analytical and socio-political 

views toward geometry and its role in city planning and design. 

Figure 2.5: The imposition of the Hippodamian grid - as opposed to natural lines of surrounding 
nature - in Miletus (left) and Priene (middle, and right). (Morris, 1994, pp.43-45) 
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The influential idea of the gridiron layout was developed by one of the first known city 

planners, 'Hippodamus' (circa 498 BC-408 BC). He proposed a city plan that featured 

order and regularity, in contrast to the intricacy and complexity that were more common 

in earlier Greek cities, and he is called the originator of the idea that a town plan might 

formally embody and clarify a rational social order (Morris, 1994). 

The Romans moved on from Greek philosophy of geometry to practice. The influential 

work by Vitruvius (circa 80 BC - 15 BC) developed the science of geometry to a more 

functional level at both architectural and urban scales. His 'homo quadratus' - the figure 

of a man with extended arms and feet (figure 2.6, left) - fit neatly into the square and 

circle which were considered the most perfect geometrical figures (Ching, 2007). The 

Romans found that these two shapes are structurally stronger and more economical than 

earlier straight post and beam designs, hence which they developed arches, vaults, and 

domes (Pearson, 2001). 

Figure 2.6: Left, circle and square were assumed as perfect geometry in Vitruvian man (drawn 
by Leonardo da Vinci); Middle, three types of Roman vaults based on combination of circle 
and square; Right, plan of the Pantheon, 118-25 AD. (Left, Ching, 2007, p.292; Middle and 
right, Gardner, 1970, pp.211-212) 

At city scales, the Romans established a series of military towns and camps (called 

cas Ira) within their vast empire to be able to control their territories. The main structure 

of a Roman camp obeyed a simple rectangular geometry created by two perpendicular 

long streets (decumanus and the Cardo) with the emphasis on certain buildings (e.g. 
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basilicas) or monumental elements (e.g. statues). This regular urban layout facilitated 

military movement (figure 2.7). Further to the functional purposes, the geometrical 

prototype of this model was a way to express the dignity and power of the empire. The 

pure, straight, and powerful geometry became the master plan of many colonial cities 

after they had been conquered by the Romans, which implied the dominant unity of the 

Romans across their territories (Mumford, 1961). 
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Figure 2.7: Timgad, North Africa (circa 100 A.D.); a typical example of a Roman 
castra. (Gardner, 1970, p.205; annotated by the author) 

Vitruvius is well known not only for his significant contributions to the field of 

architecture and city planning, but for inspiring and motivating other artists and architects 

in the early Renaissance. His significant work 'De Architectura libri decem ' (Ten Books 

on Architecture) is the only complete treatise on arts, architecture and urbanism to 

survive from classical antiquity (Encyclopaedia Britannica, online, undated) . In this 

book, he outlines fundamental considerations to be observed in designing towns and 

describes the features of a city laid out on a circular plan (figure 2.19). 'His ideas were 
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not, however, illustrated by an actual plan ... and this is a fonn never used in practice by 

the Romans for any of the countless military camps and towns they established 

throughout the empire' (Morris, 1994, p.169). Nevertheless, it can be claimed that 

Vitruvius himself was advocating theoretically the concept of ideal city, which later 

influenced on the Renaissance planners who developed his idea. 

2.1.2.2 Divine geometry of dark ages (the Middle Ages): 

The gap between classical antiquity and the Renaissance was regarded 'as a thousand 

dark and empty years' (Gardner, 1970, p.368). During this period (circa 400-1400 AC), 

the science of geometry did not make any significant progress, instead, it was shifted 

from humanistic and naturalistic philosophy towards a divine state of mind under 

Christian spirituality. In architectural tenns, it means: 

'Y ou make each building in a way which is a gift to God. It belongs to God. It does 
not belong to you. It is made to serve God, to glorify God. It is not to glorify you. 
Perhaps, ifanything, it humbles you' (Alexander, 2004, p.304). 

While some elements of mystical and mythical interpretations have been established by 

earlier civilizations (e.g. the Egyptians and the Greeks), divine geometry was enhanced 

through the "Early Medieval", "Romanesque", and "Gothic" periods (Pearson, 2001). 

During these periods, mathematics and abstract geometry were considered the only 

appropriate expression of order and perfection created by God. For instance, in the 

Byzantine Empire, architecture was re-inspired with the ideas of divine proportion and 

mystique of numbers, and developed the Roman fonn of a dome placed on a square to 

create the typical Byzantine cross-in-square church plan (figure 2.8, left) and the Roman 

Basilica to the cross-in-rectangular plan (figure 2.8, right). 
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Figure 2.8: Two examples for geometrical evolution from the Roman forms to 
Byzantine and Romanesque churches. (Janson, 2001, pp.164, 167,218, 276) 

The line of evolutionary change in church architecture continued during the Gothic 

period where the application of the rib vault and the pointed arch provided a sophisticated 

architectural technique. Figure 2.9 shows how the geometrical difference between the 

Romanesque and the Gothic vaults resulted in a lighter, more flexible structural system. 

One of the characteristics of this system is its emphasis on the height with the columns 

and arches featured by several vertical lines (figure 2.10, middle and right) . 

• 

(2) 

Figure 2.9: The geometry of the rib vault (3) as compared to the domical vault (2) is a 
lighter more flexible system, affording ample space for large windows. While the 
height of the semi -circular arch depends on the width of the vault (1) the pointed arch 
can maintain the same height with varied vault width. (Gardner, 1970, p.332) 
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Figure 2.10: The geometrical emphasis on height (Verticality) in the 
Gothic architecture. The buttress structure (left), the Nave elevation 
of Chartres (middle), and the choir vault of Amiens (right). (Janson, 
2001, pp.313-314, marked with red arrows by the author) 

According to Bony (1983), the Gothic architects used height and light to obtain a feeling 

of aspiration toward God and heaven. They did this through the use of pointed arches, rib 

vaults, and the creative wall supporting system called 'flying buttresses' by which the 

weight of the building is placed on outside supports (figure 2.10, left). Since the walls 

were freed from bearing the weight of the ceiling, they could be designed with large 

openings. Artists filled these openings with the stained glass - tiny pieces of coloured 

glass fit together to form images which told the stories of Jesus and the saints. According 

to Bony (1983), 'Lightness' and 'colour', together with 'tall vertical elements' give the 

worshiper an image of he Heaven, an experience of the other world (figure 2.11). 

// 
Figure 2.11 : Chartres Cathedral's interiors; light, 
colour, and verticality in the Gothic architecture. 
(Left, Janson, 2001 ; Right, Branner, 1969) 

30 



Figure 2.12: The geometrical dominance of the medieval cathedrals at city scales: a) a model of 
Mont St Michel; b) Siena, an aerial view of the city centre and the Piazza del Duomo; c) St 
Mark's Square, showing the Palace and the Cathedral. (Benevolo, 1980, pp.307, 321) 

Divine geometry had an impact at city scales too. The fonn of many medieval cities (e.g. 

figure 2.12, left) can be described as compact but nevertheless irregular, where buildings 

sited around central market square and church, following the fonn of the terrain (Lorenz, 

2003). It can be claimed that there was geometrically a monumental competition in the 

townscapes of that time period between the cathedrals and the palaces associating with 

two social groups - clergy and aristocracy (e.g. figure 2.12, right). However, in the most 

cases, the glory and the height of the cathedral are a dominant element in the skyline of 

the medieval city (Mumford, 1961). It is this background that Le Corbusier describes in 

his book - written in 1937 and entitled' When the Cathedrals were White ' (quoted by 

Benevolo, 1980, p.312): 

, . .. Above all the cities and towns encircled by new walls, the skyscraper of God 
dominant the countryside. They had made them as high as possible, extraordinarily 
high. It may seem disproportionate in the ensemble. Not at all, it was an act of 
optimism, a gesture of courage, a sign of pride, a proof of mastery! ... ' 

Urban historians (e.g. Mumford, 1961; Kostof, 1991), however, believe that the theories 

of absolute proportion lost their original significance in planning cities during the Meddle 

Ages. A fair summary of the situation was given by Paul Zucker - the author of "Town 

and Square" - that 'except in the comparatively few planned towns, the organization of a 
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town as a whole was neither understood nor desired by the builders of the Middle Ages' 

(quoted in Morris, 1994, p.1 02). 

According to Morris (1994) and Benevolo (1980), medieval cities mainly did not obey a 

regular predetermined plan, and even some cities originated from the Hippodamian 

schemes or the gridded Roman colonies gradually transformed into less regular and 

randomly oriented patterns (see figures 2.13, and 2.14). There are, also, several medieval 

new towns (e.g. the bastides) or 'medieval planned extensions', which started out from a 

gridiron plan subsequently underwent uncontrolled expansion and change' (Larkham et 

ai, 1991, p.44; and Morris, 1994, p.92). It can be claimed that the initial geometrical 

order in the layouts of this type of medieval cities is due to the convenience of gridiron 

implementation rather than scientific or philosophical planning purposes. 

g .~, 1.r_l!~~;;;;':".;:~~2;;.~~~ 
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Figure 2.13: The Centre of Damascus; the outline of the Islamic city overlays the 
Hippodamian scheme of the Hellenistic city - marked by dotted and dashed lines - changing 
its geometricality. (Benevolo, 1980, p.260) 
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Figure 2.14: Three stages in the development of the city of Regensburg from its Roman frontier 
castra origin. The layout of 1100 AD within the castra perimeter shows little sign of the 
original Roman gridiron. (Morris, 1994, p.l04) 

2.1.2.3 Rational geometry of the Renaissance: 

'The Citta ideale of the Renaissance is really the rationalization of a 
medieval type ... ' (Giedion, 1956, p.45). 

The revival of the classical principles in the Renaissance (between the 14th and 1 i h 

centuries) led to the scientific interpretation of nature, in which divine expressions have 

been replaced by rational analysis. The Gothic period was criticised by the Renaissance 

scientists 'who scorned the lack of conformity of Gothic art to the standards of classical 

Greece and Rome' (Gardner, 1970, p.327). 

In architectural terms, the Renaissance scientists renewed the classical theories of 

proportion based on human form. Leonardo da Vinci (1452-1519 AD) made hi famou 

drawing ofVitruvius's 'homo quadratus' (as shown earlier in figure 2 .6, left), and 

Michelangelo (1475-1564 AD) held that knowledge of the human figure wa vital to a 

comprehen ion of architecture (Pear on, 2001). Leon Batti ta Alberti (1404-1472 D) 

believ d that mathematic could lay the ba i for the beaut of building and urban 

pace, and returned to the Greek mathematical y tern of pr porti n ( hing _0 7; 

al 0 All opp, 1959). 



,-

Figure 2.15: Left, Pythagoras's theory of numerical intervals of the Greek musical scale. 
Right, the geometrical translation of Pythagoras's theory as applied to the Renaissance fayade 
(Santa Maria Novella) by Alberti. (Ching, 2007, p.314) 

Ching (2007, p.314) writes that 'just as the Greeks conceived music to be geometry 

translated to sound, the Renaissance architects believed that architecture was 

mathematics translated into spatial units'. They applied Pythagoras's theory of means to 

the ratios of intervals to develop an unbroken proportion of ratios that formed the basis 

for the proportions of the Renaissance architecture (figure 2.15). Pearson (2001) writes 

that with the new 'Age of Reason' and 'the birth of modern scientific method'; 

architecture also came to be a science, and that each part of a building, inside and out, 

had to be integrated into one system of mathematical ratios. 

Alberti believed that mathematics is the common ground of art and the sciences. In his 

books - 'On Painting' (1435) and 'On Architecture' (1452) - Alberti referred to 

Vitruvius and claimed that architecture is essentially to be governed by mathematical 

laws and proportions (see Allsopp, 1959, pp.27-45; Janson, 2001 , pp.612-613). The 

Renaissance architects not only applied the theories of proportion and mathematical 

beauty to unify the interior and exterior of their designed buildings but to integrate 

eparate buildings and elements in an urban space. They employed Roman-origin arcad 
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as a geometrical means to introduce order into several squares in Italian cities (Giedion 

1967). 
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Figure 2.l6: The arcade of Brunelleschi's Foundling Hospital (left) set the pattern for the later 
enclosure of the Piazza Annunziata (middle, and right) . (Right, Allsopp, 1959, p.18 ; Right, Morris , 
1994, p.l74; Middle and left, Mumford, 1961 , p.277) 

According to Morris (1994), the Pizza Annunziata in Florence is of great significance as a 

work of the Renaissance urbanism; the beautiful arcaded fa9ade of the Foundling 

Hospital (1417-1419 AD) - designed by Filippo Brunelleschi - initiated the pattern for 

the eventual enclosure of the square. The pattern was followed by some other architects 

such as Michelozzo in 1454 and Giovanni Caccini in 1601-1604 to apply unity to the 

unresolved space in front of the church (figure 2.16). The square in front of St. Peter's -

first proposed by Michelangelo (1475-1564 AD) and later completed by Bernini (1598-

1680 AD) - is another example of the Renaissance arcaded squares (figure 2.17). 

Figure 2. 17: Arcade a 
place during the Renai 
19 0, pp.5 5,5 7) 
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Apart from the influence of the rediscovery of the Greek and Roman ideas, the discovery 

of perspective provided a new conception of space - focusing on the eye of the viewer -

that can be interpreted by relating the world to man (figure 2.18, left). Giedion (1967, 

p.31) explains that, 'in linear perspective ... obj ects are depicted upon a plan surface in 

conformity with the way they are seen, without reference to their absolute shapes or 

relations. The whole picture or design is calculated to be valid for one station or 

observation point only'. In a perspective representation, therefore, every element is 

related to the unique point of view of individual inspector (see also Lorenz, 2003; Hersey, 

2000). 

During the Renaissance, principles of perspective became a powerful attitude of mind in 

drawing, painting, architecture, and city design. In architectural terms, it meant that the 

space as an entity with the interactions of thousands of separate elements could be 

coordinated by only one or two vanishing points. Figure 2.18 shows perspective 

principles with one and two vanishing points in the work of two Renaissance artists , and 

the reconstruction of 'Filippo Brunelleschi's (circa 1425) attempt to create a painted 

optical projection of the Florence Baptistry, the Pizza San Giovanni [and Piazza della 

Signoria] in which it stood ' (Hersey, 2000, p.162). 

.. . 

Ii 

Figure 2.1 8: A and B) reconstruction of Brunelleschi's experiment (showing a vi w of Piazza 
della Signoria) . C) An architectural scene in one-point linear per pective by an unknown arti t 

(circa 1470 AD) . D) two-point linear perspective by Ferdinanda Galli (1711 AD). (C, Ben 01, 
19 0, p.523; A, B, and D, Hersey, 2000, pp.162, 163 166) 



The discovery of perspective, together with the revival ofVitruvius' ideas on good city 

fonn, inspired some of the Renaissance scientists from Antonio Filarete (1404-1472 AD) 

to Vincenzo Scamozzi (1552-1616 AD) to develop the theory of ideal cities, and led to 

the concept of radial streets and straight axes a little later in the Baroque period. 

According to Batty and Longley (1994, p.23), 'the need for regularity laid out city blocks, 

ideal town plans that were much more ambitious than anything previously'; and 

therefore, the Renaissance can be called 'the time of high theory for the city of pure 

geometry'. And, Giedion (1957, pA5) interpreted the star-like geometry of the 

Renaissance ideal cities as 'the rationalization of a medieval type' in which the castle, 

cathedral, or main square fonned the core of the town and encircled by several belts of 

houses (figure 2.19). 

Figure 2.19: A) Geometric translation of Vitruvius' idea on good city form; B) the first fully 
planned ideal city by Filarete; C) the ideal city of Danieli Barbaro based on his commentary on 
Vitruvius; and D) Palma Nova, realised by Scamozzi. (Morris, 1994, pp.169-172) 

The Renaissance town planning flourished during the Baroque period (circa 1 t h -18 th 

centuries) when the city became a functional, calculated, homogenous, and 

comprehensive work of art that represents an object of prestige (Lorenz, 2003) . Idealized 

planning principles were also applied to existing cities by the construction of 

geometrically regular fortifications, but also by cutting up the exi ting tructure for 
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installing radial and axial streets (figure 2.20). The star-shaped towns and the Baroque 

axial streets were also a logical response to the Renaissance perspective. As Giedion 

(1957, p.54) describes, it is based on 'a strictly limited range of distance and demands a 

measurable point of optical arrest' in which the horizontal lines along the straight street 

set a focal interest in an architectural element (e.g. an arcade, a statue, a city gate, etc) 'in 

the extreme background as a sort of ultimate target for the eye'. In other words, a focal 

interest tenninates a vista. 

Figure 2.20: The conformity of radial and axial streets to the Renaissance perspective. Left, plan 
of new streets of Rome, following the schemes of Sixtus V. Middle, the three streets that 
converge on the Piazza del Popolo. Right, a masterpiece of perspective in the short street of the 
Uffizi in Florence. (Left and middle, Benevolo, 1980, pp.582, 592; Right, Mumford, 1961, p.276) 

In the 1 i h and 18th centuries, the Baroque style tried to enforce its principle, wherever it 

could, to give a unifonn appearance to an existing unplanned city. Kostof(l991, p.44) 

writes: 

'Baroque city-makers everywhere urged, or legislated when they could, that street 
defining buildings be brought to the edge of their lots in a straight line, and further, 
that they be given identical facades'. 

After the implementation of the radial streets and straight axes in Rome under Pope 

Sixtus V (during the late 16th century), these principles were widely applied to oth r 

European cities uch as the proposed plans for the city centr of London aft r the great 

fire in the late 17th century· the palace park of Ver aille and Karl ruh in th 17
lh 

and 

) 
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18
th 

centuries respectively; Nash's Regent's Park in London during the early 19th century

Haussmann's Paris in the mid-19th century and so on (figure 2.21, from a to e). 

Figure 2.21: The Baroque street layout; a and b) the proposed plans for the city centre of 
London by Evelyn and Wren in the late 17 th century, c and d) the palace park of Versailles 
and Karlsruhe, e) plan of the environs of Paris during the mid 18 th century, and f) L'Enfant's 
plan of Washington DC in the early 19th century. (a, b, c, d, and e, Benevolo, 1980, pp.668-
718; f, Morris, 1994, p.351) 

From the late 18th century onwards, however, it was the application of the pure gridiron 

based plan that became popular again in the planning of many rapidly growing European 

and American cities - except L'Enfant's plan for Washington DC (figure 2.21, f) which 

was claimed to be under the influence of Baroque planning layout (Benevolo, 1980; 

Mumford, 1961). Batty and Longley (1994, p.22) write, 'Cities in the new world 

resembled those in the old until the early 19th century when rapid expan ion led to 

widespread application of gridiron as a matter largely of peed and con enience and 

perhaps through a sense of modernity - a break with the pa t'. 
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2.1.2.4 Pure geometry of modernism: 

From late the 19th century, an important shift from classical geometry caused a massive 

change in architecture. There are indications that two core architectural movements of the 

20th century - a) the overly simplistic strategy of modernists; and b) the anti-traditional 

scheme of deconstructionist philosophers - have separated themselves from mathematical 

beauty in its traditional key aspects (Salingaros, 1999). The modem movements criticized 

the traditional view on proportion, size, fonn and detail. Traditional symmetry (figure 

2.22) was called intellectual laziness, ornaments were considered as an unnecessary veil 

hiding the real face of buildings, and proportions were defined in new ways. 

o 0 o o 0 

Figure 2.22: Traditional symmetry in architecture was 
called intellectual laziness. (Bovill, 1996, p.l) 

In 1908, the Austrian architect Adolf Loos, and a little later in 1917, the Swiss architect, 

Charles-Edouard J eanneret - better known as Le Corbusier - banned ornament from 

architecture: this became a rule followed by other modernist architects. Loos, both in his 

book, Ornament and Crime, and his designs (e.g. in the Steiner Haus, figure 2.23), clearly 

showed an aversion to ornament and found it 'obscene' - to him it was not compatible 

with modernity. Harries (1998, p.32-33) argues that 'Loos's argument parallels one that 

Enlightenment critics had fonnulated against the decoration-obsessed culture of the 

Rococo'. 
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Figure 2.23: Steiner Haus, designed by Adolf Loos in 1910. The 
elimination of ornament in modern movement. (Harries 1998, 
pAl) 

Modernists condemned the material culture of mankind accumulated over millennia from 

around the globe, and instead developed the theories of "minimalism", and "purism". 

They believed that form should be purified from any unnecessary elements, colour, 

ornament, and detailing, and therefore, form needs only to follow its purpose - "form 

follows function" (Baker, 1989). The modernists' belief is well described in the 

following quote: 

'They claimed that machine and other man-made artefacts should respond to 
the same laws of economy and the selection through fitness of purpose that 
are apparent in nature... and nature contains truths of form following 
function' (Bovill, 1996, pp.136-137). 

The pioneer modernists believed that scaling relationship, proportion and organizational 

order are to be restricted to the functionality of the space. The modulor man ofLe 

Corbusier (figure 2.24, left), considering human scale in designing space, ugge ted a 

kind of geometrical order which could be applied to 'a vast range of scale from table to 
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cities'(Hersey, 2000, p.214). Le Corbusier generated a panel exercise of lattices (figure 

2.24, right) to illustrate the diversity of sizes and surfaces that could be obtained with the 

proportions of the modulor. The proponents of his modulor idea believe that he achieved 

a proportional harmony by setting a system of measurements that could govern lengths, 

surfaces, and volumes, and maintain human scale everywhere; Ching (2007, p.319) 

claims that 'it ensures unity with diversity'. 

Figure 2.24: The modulor man (left) and the modulor lattices (right) 
generated by Le Corbusier in 1946. (Hersey, 2000, pp.212, 218) 

2.1.3 Pure geometry and design quality 

2.1.3.1 Purism and critics: 

'Ornament and function are indistinguishable' (Alexander, 2004, p.331). 

The movements after modernism criticized the notion of reductionism and purism in 

modem architecture. The nostalgic view of postrnodernism, looking back to the fonn and 

shapes before modernism (e.g. work by Graves), the detailed structures in High Tech Style 

(e.g. work by F oster, Rogers), the idea of "superimposed layers" and "curved shapes" in 

Deconstruction Style (e.g. work by Eisenman, Hadid), all seek something mis ing: 

'quality', or as Alexander et al (1979, p.28) called it, 'the quality without a name' . 



The critics believe that the modulor idea of modernism - associated with purism and 

minimalism - was more in favour of easier, faster, stronger, and cheaper construction 

rather than making fonnal proportional and scaling relationship between the components 

and the structure. Salingaros (1999) argues that purism does not suggest "depth" and 

"richness" in design. He claims that, while the idea may seem an action of merely 

economic and stylistic interest, it has indirect but serious consequences: the elimination of 

ornament. It removes all structural differentiation from the range of scales 5mm to 2m or 

thereabout. He believes that the lack of textural progression under 2 metres makes a 

modem fa9ade cold. Other critics have raised the same point in different phrases such as: 

' ... that is why some modem architecture never accepted by general public. It is 
too flat' (Bovill, 1996, p.6). 

'It is obvious that we immediately feel when a building is too simple, raw and 
without depth. We say it lacks character, or is impoverished' (Jencks, 1997, p.75). 

, ... the lack of interest in formal composition in modem architecture is one of the 
causes of its lack of scaling features' (Crompton, 2002, p.459). 

Alexander (2002,2004) also raises a similar point and provides a comparative example. He 

criticises the minimalistic concept and the modulor proportion in Le Corbusier's Marseilles 

block apartments (figure 2.25, right) as compared to the hierarchy of scale in tile-work at a 

Mosque (figure 2.25, left), and states that it lacks some essential 'levels of scale' 

(Alexander,2002a, 149). He believes that a good design tends to have fine details at its 

different scales tenned 'levels of scale'. He defines the tenn as: 'a beautiful range of sizes 

exist at a series of well-marked levels, with definite jumps between them' (Alexander, 

2002a, p.145). In other words, there should be a proportional relationship between 
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constituents of a space or a piece of architectural design, linking each level of its 

hierarchical structure to the next level and to the whole . 

. . 
Figure 2.25: Left, profound hierarchy of scale in tile work at a mosque in 
Meshed, Iran. Right, poorly developed levels of scale in Le Corbusier's 
Marseilles block of apartments. (Alexander, 2002a, p.149) 

2.1.3.2 Scaling relationships and fractal concepts: 

The brief historical review reveals that designers have long sought the 'scaling 

relationship' between the whole and the constituent parts of a complex form to find an 

arithmetical and geometrical basis for what was thought to be good design. This notion 

can also be traced in theories of complexity and fractal geometry, which will be defined 

and elaborated in the next two chapters. However, in the first instance, it is helpful to 

imply how simply these seemingly difficult terms might be understood just by 

interpreting the Ruskin's thought of good design: 

'all good ornaments and all good architecture are capable of being put into 
shorthand; that is, each has a perfect system of parts, principal and subordinate, 
of with, even when the complemental detail vanish in distance, the system and 
anatomy remains visible' (Ruskin, 1904, vol.3, p.208). 

Crompton (2002) and Unrau (1978) argue that Ruskin's belief about good ornament and 

good architecture can be interpreted as a fractal concept. 'In hort ornament ought to 
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reveal new details and fonns as one gets close. Of course a fractal is well adapted to do 

just that; indeed in their most developed fonn, fractals look the same from whatever 

distance they are viewed' (Crompton, 2002, p.456). 

The notion of 'lack of scaling features' - raised by some critics - echoes the similar 

advice given by Ruskin (1904) about producing composition with scaling rules. Whether 

it is an ornament, a building or an urban space, Ruskin (1904) stated that: 

'An ornament should be designed so that it is meaningful when seen at long, 
intermediate, and close range' (quoted in Crompton, 2002, p.456). 

Having this quote of Ruskin, Crompton (2002, p.456) believes that Ruskin's argument is 

well expressed by his dislike of the decoration on Constitution Arch in London (figure 

2.26), 'where there is a big jump in scale between a patch of intricate cast-iron decoration 

and the mass of smooth stone in which it is set'. 

Figure 2.26: Constitution Arch in Hyde Park, London, designed 
by Decimus Burton in 1828. The lack of intermediate scale 
causes a big scale jump between a patch of intricate cast-iron 
decoration and the mass of smooth stone. (Quoted from 
Crompton, 2002, p.456; the photo taken by the author, June 
2008) 
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This view is also emphasized by Cooper (2000, p.177), who writes that' ... in order to 

maximise visual interest a building should have a "cascade" of detail that is revealed in 

greater and greater distinction as the viewer approaches', which is exactly what 

Alexander (2002a) means by "levels of scale", and Bovill (1996) means by "the 

progression of texture". Figure 2.27 shows one of wonderfully diverse residential projects 

designed by Lucien Kroll incorporating the progression of texture. 

Figure 2.27: Three levels of scale at a residential project designed by Lucien Kroll. It shows 
the progression of texture revealed as the viewer approaches the fafYade. (Bovill, 1996, p.186) 

Bovill (1996, p.5) suggests that' Architectural composition is concerned with the 

progression of interesting forms from the distant view of the fac;ade to the intimate 

details. This progression is necessary to maintain interest. As one approaches and enters a 

building, there should always be another smaller-scale, interesting detail that expresses 

the overall intent of the composition' . As experts in fractal theory suggest, this is 'the 

fractal concept', which is the formal study of this progression of self-similar detail from 

large to small scales. 
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2.2 Part Two: The Failures of Conventional Geometry 

Part one of this chapter highlighted some of the key achievements in the science of 

geometry through the history of architecture and urban form and its impact on shaping the 

built environment. Despite the conceptual diversity between the styles at different historical 

periods, it can be claimed they have been all developed under dominance of one common 

influential concept: "the Euclidean geometry of straight lines". The principles of the 

conventional geometry of Euclid have been used whenever human have attempted to 

regulate and order the built environment. As exemplified in part one, the geometry of 

straight lines in general, and the gridiron layout in particular, have been largely applied to 

all types of the cities that can be termed "planned", but not to those which are named 

"unplanned" or "organic". In urban terms, Euclidean geometry can be argued to have the 

following advantages and disadvantages: 

1. While Euclidean grammar can describe the relationship between the constituent 

parts of a planned urban context, it fails to explain the irregularity existing in a city 

or parts of a city grown organically without a predetermined plan. 

2. While Euclidean geometry can impose order to an existing organic urban context, 

simultaneously, it creates thousands of mistakes! 

The second part of this chapter will elaborate the above argument by comparing the main 

differences between the geometry of planned and organic cities. This contributes to the 

main goal of this chapter to establish some reasons why new approaches towards city fonns 

and shapes are essential in the light of the theories of complexity and fractal geometry . 
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2.2.1 The strengths and weaknesses of Euclidean geometry in interpreting planned 

and organic city form 

'Man walks in straight line because he has a goal and knows where he is going' 
(Le Corbusier, 1924, quoted by Kostof, 1991, p.95). 

For years and years, the idea of a planned city with pure geometry was believed to be an 

ultimate utopia for a city, and therefore, the planning goal was to reduce irregularity to 

achieve more order (Batty and Longley, 1994). At its purest, a planned layout would be a 

grid, or else a centrally planned scheme like a circle or a polygon with radial streets which 

are issued from the centre; however as Kostof(1991, p43) claimed 'the grid is by far the 

most common pattern for planned cities in history'. Le Corbusier (1924) believed that the 

reason for wide applicability of the grid in the history is that its planning is often simple 

and pragmatic, and so he claimed that the concept could be still valid in designing of the 

modem cities. He claims that no better urban solution recommends itself as a standard 

scheme for disparate sites to create order. 

Further to some successes that the geometry of straight lines has achieved through the 

history of urban forms (as discussed in part one), Kostof(1991, pp.95-157) claims that the 

grid, in particular, has served human needs through the following purposes: 

• Practical purposes (e.g. it facilitates movement in working areas in city both for 

pedestrian and vehicle) 

• Political purposes (e.g. it has been employed to control both internal and external 

treats) 
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• Economical purposes (e.g. it serves well the need for fast development when time 

and money are in shortage) 

• Social purposes (e.g. a means for the equal distribution of land or the easy 

parcelling and selling of real estate) 

• Finally, it is claimed to be an exceedingly flexible and diverse system of planning; 

the orthogonal street pattern of grid systems makes parallel street lines, which are 

not immutable. The system can curve around irregularities on the ground without 

betraying its basic logic. 

It is true that the science of geometry in general and the gridiron in particular have had 

some successes through the history and served human needs, but perhaps it is also true to 

claim that the geometry of Euclid as applied to city forms has always associated with the 

conventional thought of reductionism and simplicity. However, as Batty and Longley 

(1994, p.2) argued, 'planned cities are cast in the geometry of Euclid but by far the 

majority, those which are unplanned or planned less, show no such simplicity of form'. 

This brings up some immediate questions: 

1- Can Euclidean geometry explore the forms beyond a planned city and explain the 

spatial relationship between the constituent elements or morphological features 

within an organic city? 

2- Even planned cities experience evolution and change; are Euclidean principles still 

valid and capable of interpreting urban forms after they have been changed? 

3- While the shape of a planned city is usually determined only in two (horizontal) 

dimensions, can Euclidean geometry analyse the third (vertical) dimension of urban 

forms in its city panorama? 
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Clearly, the answer to the fust two questions would be negative. The majority of cities 

display a mixture of both types - planned and unplanned - which their form would not be 

seen as being regular and purely geometric; thus, it cannot be analysed by Euclidean 

grammar. Furthermore, the regularity in planned cities is not usually consistent. Cities 

may sometimes start with sustained regular plans, but more commonly, their form 

involves continuous unpredictable processes of evolution over the time (Marshall, 2009). 

It can be claimed that 'no two planned cities are exactly alike' (Kostof, 1991). As Batty 

and Longley (1994, p.2) explain, the reason is that 'even planned cities are adapted to 

their context in more natural ways once the plans come to be implemented'. Since the 

forces that engender it are many, the new form does not display the clean lines and 

continuity of the original, and thus, it is not explicable in every detail by Euclidean 

geometry any longer. 

Figure 2.28: Geometrical evolution in ground plan of Baghdad during the 8
th 

and 9
th 

centuries. (Kostof, 1991, p.13) 

An example of such changes can be seen in the famous round city of Baghdad by Caliph 

ai-Mansur in 8th century (figure 2.28). It hardly ever existed more than a century in the 

perfect shape conceived for it (Kostof, 1991). Another obvious example can be ob erved 
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in some Roman cities. As figure 2.29 illustrates, the initial regular Roman form was 

evolved vividly towards the Middle Ages period in a way that the latter form offers the 

merest similarity to the original layout (see also the examples shown earlier in figures 

2.l3 and 2.l4). 

Figure 2.29: The gradual transformation of a gridded Roman colony into an Islamic city. (Kostof, 
1991, p.49) 

The answer to the third question would also be negative because the spatial pattern of 

elements composing a planned city in terms of its networks, buildings, and spaces are 

defined through its geometry mainly, but not exclusively, in two rather than three 

dimensions. While the shape of a planned city is determined in two dimensions at 

somewhat large city scales, its third dimension is usually formed from many individual 

decisions at much smaller scales (architecture or urban design level). In this sense, streets 

that can be read as straight and uniform on the city plan might be seen irregular in their 

elevation. Even where some restrictions are applied to an urban facade by planning 

policies, the buildings' height and their facades are usually the product of a negotiated 

ever-changing design between individual owners and the planning authority. 
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Although there are also places, where urban designers attempted to apply order to the 

third dimension (e.g. identical facades during Baroque), these are usually limited to the 

small city scales such as a square or a street and might be seen less regular if observed at 

larger scales. Nonetheless, it can be claimed that, in most cases, the cities were only 

planned in two (horizontal) dimensions. Kostof (1991, p.44) stated that 'the regularity of 

the planned city is conditional .... even when buildings are marshalled like troops along 

straight lines of an urban grid, the degree of animation in their mass and, more 

essentially, variable height can result in picturesque formations believed to be congenital 

to the unplanned city'. 

Therefore, in any case, the extent to which city-form is ordered or planned is always a 

matter of degree. In this sense then, all cities show some irregularity in most of their 

parts, which are not explicable by Euclidian geometry. Instead, as Batty and Longley 

(1994) suggest, they are all ideal candidate for the application of fractal geometry. 

2.2.2 The association of mistakes with the application of Euclidean geometry 

It was discussed that the ultimate goal of designers in creating order where a city exhibits 

irregularity, came to be realised by the wide application of Euclidean geometry. In his 

recent essays on "The Nature of Order", Alexander (2002b, 2004) raises a very important 

point stating why the application of the conventional geometry as applied in planned 

cities creates 'mistakes'. The main reason has to be sought in the contrast between the 

geometry of planned and unplanned settlements, and hence, lies in the intrinsic 
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incapability of Euclidean geometry of straight lines to adapt the existing environmental 

factors when a city or a part of a city is planned "all at once". 

In a planned settlement, the physical variables (length, area, volume, angle, etc) are 

usually fixed by rigid straight lines imposed on every dimension. They are designed at 

once or in a very short period by one person or by a design team. Inevitably, such a 

design process and its output are deterministic. This means physical elements such as 

lines, edges, and positions are strictly determined by planners and designers on their 

drawing boards and as Alexander (2004) explained, the result is fabricated. 

By contrast, in an organic structure, its plan is generated over a history extended in time, 

which is not made by central decision of an authority. It is evolved gradually by decisions 

made by individual people (Kostof, 1991). Each existing line, surface, and space is 

refined based on changes in the occupiers' needs and through step-by-step adaptation 

according to socio-economic factors and the environmental conditions of the place, and 

the house such as topography, climate, etc. Therefore, the main differentiation between 

planned and organic city forms lies in the process creating them. The vast superiority of 

the geometry of organically generated plans as Alexander (2002b, p.86) noted is that it 

avoid mistakes; He claims that, 'in all fabricated plans, the overwhelming majority of 

possible mistakes are actually committed', but how? 

Each element of an object represents a decision. At architectural scale, decisions should 

be made about part, line, edge, position, colour, size, etc. At urban scale, decisions are 
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about streets, house groups, courtyards, party walls, paths, blocks, etc. Furthermore, if we 

accept that each line has created space on either side of an element (in and out), and each 

represents four or five possible decisions about space (through size, convexity, adjacency, 

organization, etc), then it can be claimed that each decision as applied to each line has the 

possibility of being wrong. It means that the element as placed, sized, and oriented, may 

be well adapted to its neighbours, to the space around it, to the conditions, which exist, 

and to the conditions arising from the structure of surrounding elements - or it may be 

badly adapted to the neighbours, conditions, spaces, arising from surrounding elements. 

= 
Figure 2.30: Left, a generated organic structure, Shilnath, India. Right, a 
fabricated planned structure designed by B. V. Doshi, Vatsu Shilpa. 
(Alexander, 2002b, pp.182, 184) 

Providing an example of an organic plan (Shilnath, figure 2.30, left) and an example of 

fabricated plan (Vastu Shilpa, figure 2.30, right), Alexander (2002b) argued that, in a 

plan like that proposed for Vastu Shilpa which is composed of 400 hundred houses, 

hence about 1600 line/elements, and as each line is associated with five decisions, the 

total number of decisions that must have been made, can be roughly estimated a : 

5 x 1600 = 8000 
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In the proposed plan of Va stu Shilpa (in two dimensions), more than 8,000 possible 

decisions have been made; however, many more decisions should be made to determine 

the third dimension of the city. Each of these decisions was associated with potential 

mistakes in a deterministic planned scheme, and by that Alexander (2002b, p.187) means 

that: 

'the line was drawn on a drawing board, without any opportunity for the line to be 
modified, or adjusted, according to realistic perception of actual difficulties and 
opportunities on the place itself. ... in a professional planning/design/development 
process, this failure of adaptation is inevitable, and that at the time of its creation no 
process was put in place to remove these mistakes.' 

By contrast, in Shilnath, each line represents a decision that was put down by people once 

at a time over a history extended in time. Because of this relatively slow decentralised 

process of decision-making associated with the needs of the situation each of five 

possible mistakes that existed in Vastu Shilpa, is here corrected, by adaptation and 

careful adjustment of each line. 

In general, an organic structure emerges out of a generating process. The generating 

process - through iterated, repeated, sequence of transformations - makes it 

progressively 'more and more profound, more and more living' (Alexander, 2004, p.95). 

This creates a quality that is the result of self-generating process, which causes a complex 

city form, becomes eventually something more than sum of its components. As 

Alexander (2002b, pp.182-20 1) suggests, this is the quality of "deep complexity", and 

according to Batty and Longley (1994), the geometry that represents such complexity can 

not be Euclidean: it must be fractal. 



In short, the compositions and the plans that designers propose at once for a city or part 

of a city, inevitably, do not have such quality. It is impossible to generate a complex form 

at once by simply adding its components together. Euclidean geometry is only capable of 

creating linear relationships between the components of a design, which the resultant 

form cannot be called deeply complex. As they are planned through a rather short process 

of design, they never reach a high level of complexity. Finally, there is always a risk of 

removing the complexity at anytime when an urban intervention imposes its pure 

geometry of Euclidean forms on an existing organic city context. That is why complexity 

theorists advise that urban interventions are to be avoided at large urban scales (Marshall, 

2009) and are to be carried out with extreme caution even at a small city scales (Batty, 

2008). 

2.3 Chapter Summary 

This chapter began with pointing out the significance of the mathematical and 

geometrical approach in studying architecture and urban forms. The literature was 

reviewed to highlight some of the key achievements of the science of geometry at 

different historical periods and its impact on the way human shaped his built 

environment. The conventional geometry of straight lines - known as Euclidean 

geometry - was shown to be the main and powerful tool in the hand of planners and 

designers at any time they attempted to apply order to city forms. However, the 

credibility of this geometry in analyzing the way a city changes and evolves was called 

into question. 
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Some of the failures of the conventional geometry of Euclid were discussed to establish 

the reasons why a new realistic insight into urban morphology is required in the light of 

the theories of complexity, and fractal geometry. However, before asking how these new 

theories may be applied to city forms, the questions that remain to be answered are: 

What are the definitions for the terms "complexity" and "fractal"? What is the 

relationship between these terms? Moreover, can Euclidean geometry be replaced by 

fractal geometry in designing objects from small architectural elements to large city 

forms and shapes? 

The research seeks to find some answers to above questions in the following chapters. In 

chapter three, the origins and definitions of the terms fractal and complexity will be 

explored through the recent literature. It also will be discussed that, even though cities are 

man-made, but dissimilar to other artefacts, they are better understood in terms of 

nonlinear and living self-organized systems rather than conventional linear and 

mechanical approaches. 
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CHAPTER THREE 



Introduction 

In the previous chapter, it was argued that the conventional geometry of Euclid fails to 

describe many real physical and functional aspects within cities - particularly those aspects 

characterized as organic change. Recent developments in complexity, chaos, and fractal 

theories have opened new windows for the researchers studying complex systems, both in 

their form and in function. These researchers claim that cities are to be considered as 

complex systems demonstrating chaotic behaviour in their subsystems; and, hence, the 

pattern or the geometry which emerges out of such chaotic behaviour is fractal not 

Euclidian. In order to examine the credibility of this claim and to verify how a city can be 

observed as a self-organizing complex system, the principles underlying chaos and fractal 

theories and the way they are related to the science of complexity will be discussed in this 

chapter. 

The chapter comprises three main parts. The first part explores the terms, the origin, and 

the main parameters by which the concept behind chaos theory can be defined. In the 

second part, complexity theory and its relationship with chaos theory are discussed; then, 

the literature will be reviewed to investigate the properties and characteristics of complex 

living systems. This review is essential to show why cities are to be viewed, studied, and 

treated as self-organizing complex systems. The third part of the chapter will focus on the 

geometry of complexity - fractals. Some examples of fractal phenomena will be discussed 

to explore the notion of non-integer fractal dimension as opposed to integer Euclidean 

dimension. Finally, among the methods of measuring fractal dimension, those which will 

be employed at the empirical stage of this research will be explained in more detail. 
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3.1 Part One: Chaos Theory; Literature Review 

3.1.1 Understanding of chaos and complex systems 

The science of chaotic complex systems is relatively new, particularly as applied to urban 

systems. It is, therefore, necessary to begin with an understanding of what it means in 

theory. "Chaos" is one of the key terms in studying complex systems. Some classic 

publications frequently used the term "edge of chaos" to refer the tendency of complex 

systems to self-organize to a state roughly midway between globally static (unchanging) 

and chaotic (random) states. However, the term "chaos" has become unpopular with 

many mathematicians and scientists who, instead, find the word "dynamics" to be more 

appropriate to their own particular part of academia (Byrne, 1998). Nonetheless, this 

chapter refers to the term "chaos" firstly because it is a key word in the work of the 

pioneer scholars who developed later the notion of complexity, and secondly because it is 

more relevant to the notion of complexity and has a wider implication than the term 

"dynamics." 

Experts in chaos and complexity theories precisely reject 'reductionism and the validity 

of analytical strategies in which things are reducible to the sum of their parts' (Byrne, 

1998, p.14). Price (1997), however, claims that these theories are neither "reductionism" 

nor "holism" in the conventional sense of the words. 'Holism typically overlooks the 

interactions and organization, whereas complexity theory pays attention to them' (Price, 

1997, p.1 0). Complex system theorists have defined it as a science dealing with living 

structure with emergent properties (Wallczek, 2000). This means that the complex system 

is not created merely by interaction of densely coupled systems, or by some magic 
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probabilistic occurrence, but comes into being through the self-organized nature of its 

own living structure (Batty, 2005; and Alexander, 2004). 

An important aspect of chaos and complexity is "nonlinearity". This refers to changes 

that do not occur in a linear fashion in living systems. These systems are not 

characterisable by linear or first-order equations, but by any variety of complex, 

reciprocal relationships, or feedback loops. As Byrne (1998) states, in nonlinearity, small 

changes in causal elements over time do not necessarily produce small changes in other 

particular aspects of the system, or in the characteristics of the system as a whole. Either 

or both may change in ways which do not involve just one possible outcome. 

A further significant aspect of chaos and complexity - as opposed to mechanical models 

- is "time irreversibility". In reality, the crucial dimension along which change occurs is 

'time'. This means that we are dealing with processes, which are fundamentally historical 

(Byrne, 1998). They are not time reversible. Therefore, complexity theory involves an 

explicit rejection of the Newtonian concept in which time is reversible (see also 

Kauffman, 1993; and Philips, 1994). That is why some scientists replace the clock - as 

the iconic symbol of the modem - with the heat engine leading to thermodynamics 

(Prigogine et ai, 1984). 

Jencks (1997) summarized the history of complexity in figure 3.1 and wrote that, in the 

19th century, the new sciences of thermodynamics and ecology introduced directionality 

and holism into the equations. 'Between 1900 and 1927, quantum and relativity theories 
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overturned detenninism. In the late 1940s general system theory, plus a series of life 

sciences and computer sciences started to grow, and by late 1970s, the trickle become a 

flood, yielding a new consistent paradigm. Continuing the Post-Modem perceptions of 

cosmos, chaos theory, fractals ... have arrived on the scene. All this can be generally 

conceived as the sciences of complexity, or nonlinear dynamics, or self-organizing 

systems' (Jencks, 1997, p.124). 

1800 
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1950 

'SOFT SCIENCES' 'HARD SCIENCES' 
Fourier 

Ecology 
Thermodynamics 

Poincare defines chaos mathematically 

QUANTUM PHYSICS RELATIVITY THEORY 
MorphogenesIs 
Semiology Genetics 

Gestalt Psychology 
Emergence Theory 
Organic Mechanism (Whitehead) 
Ethology Quantum Theories 
Holistic Theories 
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Cognitive sciences 
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Anthropic Principle 

life Sciences 

Cybernetics 
System Theory 

Sociology of Knowledge (Kuhn) 

CHAOS SCIENCES 

Neutral nets 
Fuzzy Logic 

Holography 

Nuclear PhysIcs 
(DNA) 

Fractals 

Non Ergodic systems 

Big Bang Cosmology 

Nonlinear dynamics 
Weather prediction Superstrings 
Feigenbaum sequence 

Figure 3.1: Post-Modem Sciences of Complexity start with a trickle in the 19
th 

century, then 
become an interconnected river delta by the end of 20th century, with nonlinear dynamics and 
chaos theory. (Jencks, 1997, p.l24; "Neutral nets" in this figure is incorrect, and ''Neural 
nets" would be more appropriate) 

Although the concepts of chaos and complex systems are relatively new - less than half a 

century old - they should be understood with a review of modem scientific developments 

in physics, and as most literature suggests, from a little earlier than the discovery of linear 

mechanics and thennodynamics - the scientific revolution of the 1 i h 
century. This review 

has adopted the three steps that Gribbin (2004) claims to be essential for under tanding of 

chaos\complexity theories : "order out of chaos", "chaos out of order" and "at the edge of 



chaos". However, this discussion will also be broadened to other available papers written 

on complexity where further explanations are required. The three steps are elaborated as 

follows: 

3.1.1.1 Step I: Order out of chaos (Linear Dynamics) 

The conventional definition for 'chaos' based on what people use and as given in 

dictionaries is a state of complete disorder and confusion, which is a quite different way 

from the way in which the term is used by scientists today. 'Before the scientific 

revolution of the 17th century, the world seemed to be ruled by chaos ... in the same way 

that most people still apply the word' (Gribbin, 2000, p.5). There was no suggestion that 

there might be simple, orderly laws underpinning the confusion of the world. Gribbin 

(2000, p.5) argued that 'the nearest anyone came to offer a reason for behaviour of wind 

and weather, the occurrence of famines or the orbit of the planets, was that 'they resulted 

from the whim of God, or the gods'. 

Following the attempts of scientists in the early Renaissance to produce mathematical 

approaches for understanding underlying order in the nature, new models for the universe 

were developed. Galileo (1564-1642) followed the sun-centred Copernican model at a 

time when the theological belief of the Catholic church of 16th century could not accept 

it. He also developed the notions of 'motion' and 'acceleration' in a scientific way, which 

led to the greatest discovery of the 1 i h century: Newtonian universal laws of motion and 

gravitation. Gribbin (2000) has interpreted this progress as a new way of scientific 

understanding of 'order', born out of the notion of 'chaos' which was already believed to 

rule the universe. 
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Newton (1642-1727) developed a new branch of physics, called "Linear Dynamics", that 

deals with the effects of energy and forces on the motion of physical obj ects in a 

Euclidean space. He believed that nature could be described as a closed causal system of 

'matter in motion' and governed by detenninistic equations of motion. To the Newtonian 

view, perfect foresight based on predictability of dynamic systems is possible, if the 

necessary data and proper specifications of such systems are available. 

Referring to the principles of the Newtonian view, Laplace (1749 - 1827) believed that all 

phenomena within the universe would follow the rules of mechanics. He claimed that 

given the Newtonian laws of motion, the initial conditions of the universe and enough 

time to perfonn the computations based on linear cause and effect relationships, he could 

predict the future of the universe. This view was thought to be applicable to all 

macroscopic systems in the nature; and, up to the early 20th century, scientists thought 

that they were dealing with an unchanging set of laws' (Jencks, 1997, p.124). 

\ " "- " Time 1 \ / \ / 1 Time 

/ \ I \ 
{) ~ 

I \ / \ 
Figure 3.2: The picture looks equally plausible whichever way 
we draw the arrow of time. (Gribbin, 2000, p.l8) 

One of the key principles in the Newtonian universe is that the direction of time did not 

matter; equations worked just as well backwards as forwards. It means that time i 

"reversible" without violating the laws of motion, or in other words Newton' law are 
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independent of the "arrow of time" (figure 3.2). Accordingly, this makes precise 

prediction possible. However, one after another, modern sciences started to challenge this 

static picture of the universe. Among them, the second law of thermodynamics is the 

first, which started the challenge showing that such a precise prediction is not possible in 

many real systems. 

3.1.1.2 Step II: Chaos out of order (Thermodynamics) 

The second law of thermodynamics was, in fact, bad news for those who believed firmly 

in absolute order. 'Everything tends toward disorder. Any process that converts energy 

from one to another loses some as heat. Perfect efficiency is impossible and ' the universe 

is a one-way street' (Gleick, 1987, p.308). This inefficiency was called "Entropy}} (for 

definition see appendix A). The second law of thermodynamics revealed that the 

phenomena such as gas in a balloon, liquid cooling in a container or wood burning in a 

stove moved from states of low to states of high entropy and were said to be irreversible. 

Thermodynamics seemed to point to an 'arrow of time ' (irreversibility), contrary to 

classical mechanics, where all phenomena had been considered reversible in time. 

Figure 3.3: the picture shows an open system model shifting from an 
equilibrium state to a non-equilibrium one. (Gleick, 1987, p.25) 

Figure 3.3 illustrates a simple example of increasing entropy in an open system in which, 

if a liquid or gas is heated, the fluid tends to organize itself into cylindrical roll (figure 
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3.3, left). Hot fluid rises on one side, loses heat, and descends on the other side (the 

process of convection). However, when the heat is turned up further (figure 3.3, right), 

'an instability sets in, and the rolls develop a wobble that moves back and forth along the 

length of the cylinders; at even higher temperatures, the flow becomes wild and 

turbulent' (Gleick p.2S). The above example is a model of what happens in a real open 

system such as a weather system. Exchanging energy can increase entropy and turn a 

equilibrium state to a non-equilibrium one. The entropy is multiplied as the process 

continued until it reaches the stage of strange and unpredictable behaviour which Gribbin 

(2004) interpreted it as 'the return of chaos '. 

In the light of all this, thermodynamics, and in particular the idea of increasing entropy, 

became statistical ideas; in the real world, given the number of particles involved, it is 

overwhelmingly probable for entropy to rise but it is also possible to fall. This was not 

something that all physicists found easy to live with at first. Two centuries after Newton 

and only seventy-five years after Laplace, they were being told that the world is not 

deterministic in the simplest sense after all, and that chance and probability must be taken 

into account when trying to describe, or calculate, the behaviour of many microscopic 

and macroscopic systems (Gribbin, 2004). 

The mechanistic worldview indeed ended at the beginning of the 20
th 

century. If the 

entropy in the second law of thermodynamics was bad news for Newtonian physics, 

relativity and quantum theories completely changed the Newtonian view of absolute 

space/time. As Ho (1997, pp.44-4S) states: 

'Einstein's relativity theory broke up Newton's universe of absolute space and time 
into a multitude of space-time frames each tied to a particular observer, who 
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therefore, not only has a different clock, but also a different map.... Quantum 
theory demanded that we stop seeing things as separate solid objects with definite 
(simple) locations in space and time. Instead, they are delocalized, indefinite, 
mutually entangled entities that evolve like organisms'. 

The profound implications of this decisive break were recognized by some intellectual 

philosophers of the early 20th 
century such as Henri Bergson in 1916, and the English 

mathematician Alfred North Whitehead in 1925 (Ho, 1997). Between them, they 

articulated a philosophy based on organics in place of mechanics. In table 3.1, Ho (1997) 

summarizes some of the major contrasts between this new philosophy of organic universe 

organisms and the Newtonian mechanical universe. 

Mechanical Universe Organic U Diverse 

Static, Deterministic, fabricated* Dynamic, Evolving, generated* 

Separate, absolute time, universal absolute space and space-time 

for observer (process )-dependent inseparable, contingent 

observers space-time frames 

Insert objects with simple locations Delocalized organisms with 

in space and time mutually entangled space-times 

Nonlinear, heterogeneous, multi-
Linear, homogenous space and time 

dimensional space-times 

Non-local causation 
Local causation 

[local-global interaction] 

Given, non-participatory and hence, Creative, participatory; 

impotent observer entanglement of observer and 

observed 

Table 3.1: The table compares the properties of a system III the orgamc 
universe with a system in the mechanical universe. (Ho, 1997, pA5; the 
property asterisked was added by the author) 
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3.1.1.3 Step III: At the edge of chaos (Nonlinear dynamics) 

During the mid 20
th 

century, there were wide-ranging attempts to uncover the statistical 

regularities hidden in processes of natural systems that otherwise appear random, such as 

turbulence in fluids, weather patterns, population fluctuation, etc. These systems -later 

termed "nonlinear systems" - manifest that, they are seemingly obeying Newtonian laws 

of motions and gravity in principle, but can behave in a chaotic and unpredictable fashion 

in practice. 

Most literature relating to chaotic system (e.g. Gleick, 1987; Blackwell, 1989) attributes 

its first discovery to a meteorologist, Edward Lorenz, who recognized strange patterns 

while working on his model for a weather system. In the early 1960s, Lorenz was seeking 

an accurate system for modelling and analysing of weather patterns and he developed a 

system based on a set of twelve linear equations that he would use to test various 

predictive models. The early outcomes run by his primitive computer were satisfactory 

and, as he expected, the weather repeated itself. 

However, one day, he decided to examine one sequence of the model in more detail. He 

took the shortcut, and instead of starting the whole run over, he started midway through. 

To give the machine its initial conditions, he typed the numbers in it straight from the 

earlier printout. When he returned an hour later, he saw something unexpected. The new 

run should have exactly duplicated the old, but the weather pattern was rapidly diverging 

from the last run (figure 3.4). He repeated the test several times and only on the occasion 
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when he did not type the shortcut numbers himself and the machine used its own 

database the result was as expected. Soon he realized that his computer's memory stored 

the data with six decimal places (e.g. 0.506127) but on the printout, to save space, just 

three of them appeared (e.g. 0.506) and in his shortcut modelling, he had entered the 

shorter one, rounded-off numbers, assuming that the difference was inconsequential 

(Gleick, 1987; Cooper, 2000; and Gribbin, 2004). 

I I 

Figure 3.4: from Lorenz's 1961 printout, The graphs of what seem to be identical, 
dynamic systems appear to diverge as time goes on until all resemblance disappears. 
(Gleick, 1987, p.l7) 

Based on a Newtonian belief, small influences can be neglected, as they do not have large 

effects on the behaviour of a system. Lorenz, therefore, assumed that these minor changes 

could be ignored. However, in Lorenz's model, a small error proved to make a huge 

difference. Lorenz (1963) showed that the small change in the initial input - as small as 

one part in a thousand - was amplified in the course of two months' simulated weather 

until the difference was as big as the signal itself. Figure 3.4 illustrates how two weather 

patterns from nearly the same starting point, as Lorenz observed on his computer, 

produced patterns that grew further and further apart until all resemblance vanished. 
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'It was this observation that ultimately led to the concept of sensitivity to initial 

conditions and to the coining of the term Butterfly Effect' (Cooper, 2000, p.25). It means 

that very small variations in the initial condition of some systems result in huge, dynamic 

transformations in their consequent events. In weather, for example, 'this translates into 

the notion that a butterfly stirring the air today in Peking can transform storm systems 

next month in New York' (Gleick, 1987, p.8). 

Bhutta (1999) wrote that, perhaps the most identifiable symbol linked with the Butterfly 

Effect is Lorenz's Attractor. Lorenz was looking for a way to model the action of the 

chaotic behaviour of a gaseous system. Hence, he took a few equations from the physics 

field of fluid dynamics, simplified them, and got the following three-dimensional system: 

dx/dt = ~ (y-x) 
dy/dt = rx-y-xz 
dz/dt = xy-bz 

(Equations 3.1) 

If one were to plot these three differential equations on a three-dimensional plane, no 

geometric structure or even complex curve is produced; instead, a weaving object 

appears. Because the system never exactly repeats itself, its trajectory never intersects 

itself. Instead, it loops around forever. Figure 3.5 illustrates this phenomenon showing 

that the path through state space taken by Lorenz's attractor (the system's trajectory) 

never crosses itself. If it did so, it would return to an equilibrium state alike periodic 

system. Attractors of chaotic systems are called strange attractors. A strange attractor -

like the one illustrated in figure 3.5 - never repeats itself on a similar path and therefore 

does represent a non-periodic (aperiodic) behaviour. 
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Figure 3.5: Three-dimensional model of 
Lorenz's attractor. (Bhutta, 1999, 
unpaginated) 

3.1.2 Interpretations of Chaos Theory 

'Chaos theory is the study of complex nonlinear dynamic systems' 
(Bhutta, 1999, unpaginated). 

As discussed earlier, the word 'Chaos' as a scientific term conveys a meaning different 

from that to which the ancients referred, or even what we mean in everyday conversation 

today. In the conventional use, the term is defmed as 'completely random and 

unpredictable even in principle', whereas the scientific use is 'nonlinear behaviour of a 

complex system with underlying deterministic order' (Valle, 2000, p.2), which is 

predictable in principle but limits our prediction in practice. Gribbin (2004, p.70) argued 

that 'it is just that in practice it is impossible to predict in detail what is going to happen 

more quickly than events unfold in real time'. For instance, as seen in Lorenz's work in 

weather forecasting, one would be able to predict such system just in a short term. 

Before advancing into the more technical areas of chaos and complexity it i u eful to 

review some basic definitions suggested for 'Chaos Theory'. Although some indi idual 
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attempts had been made by earlier scientists in studying chaos theory, it only became 

possible to understand it in the 1960s (e.g. through the work by Lorenz), with the advent 

of powerful and fast (by standards of those days) electronic computers. These new 

developments began to emerge into wider public awareness from the mid 1980s with the 

publication of the book titled "Order out of Chaos" by Ilya Prigogine and Isabelle 

Stengers (1984), and then of James Gleick's (1987) "Chaos". 

Gleick (1987, pp.l4 7 -305) collected some formal definitions given by a diverse range of 

scientists, such as biologists, meteorologists, chemists, ecologists, economists, etc. Gleick 

(1987, p.307) wrote, 'whatever their particular field, they have made important 

contributions to understand complexity itself ... they believe that some systems that seem 

to have simple deterministic behaviour could breed complexity'. He added that such 

systems are too complex to be examined just by Newtonian laws of traditional linear 

mechanics. 

A helpful commentary on the word "chaos" has been provided by Hayles (1991). 

According to her, whilst chaos, in its popular usage, is to be understood as a description 

of anti-order, to all intents and purposes as a synonym for randomness, in its scientific 

usage, chaos is seen as containing and/or proceeding order. Hayles (1991, p.1) also 

remarks that, 'in both literature and science, chaos has been conceptualized as extremely 

complex information, rather than as an absence of order'. She suggests that, while the 

word has its origin in the Greek for "void", the contrast between chaos as disorder and 

order is a continuing dichotomy in the western mind-set. One is concerned with the order 
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that lies hidden within chaos (US based). The other, European based and represented 

particularly by Prigogine et al (1984), focuses on the order that emerges from chaos. 

Chaos theory is a developing scientific discipline for studying nonlinear dynamics and 

complex systems. According to one of the clearest definitions given for "Chaos Theory" 

by Bhutta (1999, unpaginated), 'Chaos theory is the qualitative study of unstable 

aperiodic behaviour in deterministic nonlinear dynamic systems'. Bhutta (1999) explains 

that "aperiodic" is simply the behaviour that never repeats; "nonlinear" implies recursion 

and higher mathematical algorithms; and "dynamic" implies non-constant and non

periodic (time variables). Thus Chaos Theory is the study of forever changing complex 

systems based on mathematical concepts of recursion, whether in form of a recursive 

process or a set of differential equations modelling a physical system (Bhutta, 1999). 

The most important feature of chaotic systems is that they are 'very sensitive to their 

starting conditions'. This is the character of many actual events in nature where small 

causes produce enormous consequences. As Gribbin (2004, p.3) suggests, what really 

matters is simply that some systems are 'very sensitive to their starting conditions, so that 

a tiny difference in the initial push you give them causes a big difference in where they 

end up'. This kind of behaviour is called "chaotic". 

The other important feature of a chaotic system is that there is always positive and 

negative "feedback", so that what a system does, affects its own behaviour. This feature 

turns a system into becoming nonlinear. Therefore, chaos has been defined as nonlinear 
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behaviour that occurs in complex systems. Grace (1991) wrote that "Chaos" is the study 

of a complex system with seemingly irregular and unpredictable behaviour rather than 

trying to reduce it to linear cause-and-effect relationships. Since most processes in nature 

are not linear, it is in fact, the study of how most things behave (Saunders, 1997). 

This feature, together with other characteristics of chaotic complex systems, will be 

elaborated more in part two of this chapter. However, it should be emphasised here that 

all of the above definitions indicate a duality of order and disorder, which exists within 

the behaviour of a system considered as deterministic chaos. One of the best and classic 

examples demonstrating this duality can be found in the logistic equation developed by 

James Yorke, Robert May, and Mitchell Feigenbaum during 1970s. Explaining in detail 

what they found in their studies on population change occurring in nature, Gribbin (2004, 

p.72) declares that their studies are based on 'a very simple equation called the logistic 

equation': 

Logistic equation: xn+! = Bx(1-xn) (Equation 3.2) 

The equation 3.2 describes well how the population of a species changes from one 

generation to the next and how 'the behaviour of a system can change from being 

completely ordered to being completely chaotic' (Cooper, 2000, p.33). 

Simply, it can be assumed that there is some kind of insect population where a population 

contains x individuals and each insect lays B eggs. Therefore, the new #population will 

be Bx. However, what (I-x) implies is the fact that the process is nonlinear and acts as a 

controller parameter, which (in our example) represents the death rate. Gribbin (2004, 
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p.73) wrote 'this death rate depends on the size of the original population - the more 

individuals there are, the harder it will be for each of them to get enough food and harder 

to survive'. The Feigenbaum diagram (figure 3.6) shows how the logistic equation 

behaves strangely with a small difference in values selected for parameter B that can be 

translated as a small change in the initial condition of the system. 

x 

Figure 3.6: The Feigenbaum diagram (left) , and the self-similar 
pattern in the period-doubling (right). (Gribbin, 2004, pp.76-77) 

~~Y'TATE I 

PERJOD FOUR 

Figure 3.7: Three main transition phases in the Feigenbaum 
diagram (Gleick, 1987, p.7l). 

B = 0 means extinction. If B is less than 1, it means the population fails to reproduce 

it elf from one generation to the next and it must eventually die out whatever the original 
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value of x between 0 and 1. Interesting things happen when B is larger than 1. Figure 3.7 

illustrates three transition states of the logistic equations when any larger value than 1 is 

selected for B. Each phase is explained well in Gribbin's (2004, pp.72-80) book, Deep 

Simplicity, which can be summarised as follows: 

Phase one, steady state (period one): For 1 < B < 3 after a large number of generations 

the value x settles down to a steady level and when it is close to (but less than) 3, value x 

settles down at 0.66, corresponding to 2/3 of the maximum possible population (see the 

steady state in figure 3.7). 

Phase two, periodic state (period two up to period four): As soon as B is 3 or just a 

little larger than 3, the pattern changes and the single attractor splits in two levels in 

alternative generations (bifurcation). This means that in one year there is a large 

population, which eats all available food, resulting in many individuals starving and 

dying without reproducing. Therefore, the next generation has a small population, all of 

which find plenty of food and lay eggs - and so on. However, the single attractor only 

switches between two predictable constant levels (see period two in figure 3.7). 

Phase 3, chaotic state (after period four): If B is increased further, the result will be 

amazing. At a value ofB = 3.4495 the system oscillates between four different 

populations (period 4). At B = 3.560, each of these attractors splits in two again, and the 

popUlation jumps about between eight different levels. At 3.569, another doubling gives 

sixteen possible population levels. Developments from May's early work show that at 
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3.56999 the number of attractors available to the populations becomes infinite: this is 

genuine deterministic chaos. 

However, there is more. Although it is mostly chaos for values of greater than 3.56999, 

there are small ranges of values for B where order is restored, a kind of clear window 

among the confusion of the chaos. For 3.8< B <3.9 the system seems to settle down to a 

stable state and then, just for a little bit higher 3.9, once again repeated bifurcations can 

be observed, resembling the behaviour when B was just above 3. Soon, the system goes 

through all the same stages as before and chaos reappears. Interestingly, it can be 

concluded that 'in the midst of order there is chaos; but in the midst of chaos, there is order' 

(Gribbin, 2004, p.76). This statement conforms to the definitions presented earlier for the 

term "deterministic chaos" and suggested by Hayles (1991) and Gleick (1987). That is 

perhaps why Waldrop (1992) subtitled his popular book, "Complexity", as "The 

Emerging Science at the Edge of Order and Chaos" by which he meant that the account 

of bifurcation in complex systems suggests that there is a domain between deterministic 

order and randomness, which is complex. 

In short, two important outcomes can be concluded from the Feigenbaum experiment and 

the resultant diagram. Firstly, the experiment shows how the behaviour of a system shifts 

from being completely ordered to being completely chaotic and vice versa. Secondly, the 

Feigenbaum diagram (figure 3.7) reveals the self-similar pattern under! ying its chaotic 

behaviour. As figure 3.8 illustrates, a smaller version of the pattern (at its smaller scales) 

in the Feigenbaum diagram is similar to the whole pattern (at its full scale). In other 
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words, it repeats itself. These self-similar patterns are called fractals; in this sense, 

"Fractal Theory" can be understood as subset of chaos theory and can be called the 

"Geometry of Chaos/Complexity" which is the focus of part three of this chapter in part 

three. 

Figure 3.8: Simplified representation of self-similar branching seen 
in the Feigenbaum diagram. (Gribbin, 2004, p.80) 

The final point about this example is that it clearly shows how chaotic behaviour appears 

out of a simple equation and with just one variable (B). 'Calculating all the iterations for 

just one value of B is boring enough, and in order to look closely at what happens near 

the critical value B=3, you need to carry out many iterations for many slightly different 

values of8' (Gribbin, 2004, p.75). Now imagine how hard it would be to calculate a 

complex system, which consists of many subsystems, each of which has more than one 

variable. This is straightforward enough to explain, but very tedious to calculate. That is 

perhaps why the study of chaos theory and fractals would not have been possible without 

the advent of computers. 
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3.2 Part Two: Complexity, Characteristics of Chaotic Complex 

Systems, and their Analogies to Urban Systems 

The aim of this part is to define the term complexity and its suggested properties to verify 

whether the concept and its characteristics can be observed in an urban system. To 

achieve this aim, the research investigates through the literature, firstly to define the term 

and secondly to examine the properties of complexity in the work of complexity theorists 

(e.g. Gribbin, 2004; Philips, 1994; Flood and Carson, 1993; Cilliers, 1998). In parallel, it 

also explores the literature discussing the concept in urban studies in particular (e.g. 

Batty, 1994, 2005, 2008; Cooper, 2000; Byrne, 1998; Wilson, 2000; Alexander, 2002, 

2005). The parallel review provides a backbone for the next chapter where the application 

of these theories to urban planning and design will be elaborated. 

3.2.1 Complexity theory and its relationship with chaos theory 

The concept of "complexity" as a technical term applies to a system that is entirely 

different from the familiar linear system encountered in Newtonian physics. It should be 

emphasised that the concept is not difficult or complicated but neither is it simple. 

Perhaps one should not be surprised if the concept cannot be given a simple definition. 

Batty (2008, p.8) recognizes the difficulty in finding a precise definition for complex 

systems, 'which lies at the basis of any attempt to understand such complexity'. Some 

suggested definitions are as follows. To begin with, Webster's Third International 

Dictionary (online, undated) proposes two following commonsense definitions for it: 

1. Having many varied interrelated parts, patterns, or elements and consequently 

hard to understand fully. 
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2. Being marked by an involvement of many parts, aspects, details, notions, and 

necessitating earnest study or examination to understand or cope with. 

According to Flood and Carson (1993, p.25), 'The definitions suggest that complexity 

can be understood by studying (1) the number of elements and (2) the number of 

relationships between the elements'. However, it should be noted that a complex system 

is not constituted merely by the sum of its components, but also by the intricate 

relationships between these components (Cilliers, 1998). 

Williams (1997, p.234) suggested that 'a complex system is one in which numerous 

independent elements continuously interact and spontaneously organize themselves into 

more and more elaborate structures over time. Complex systems can naturally evolve to a 

state of self-organized critically, in which behaviour lies at the border between order and 

disorder'. In similar way, Ward (2003) suggests that "complexity theory" is the science 

of studying the interactions of local systems, which their organization as a whole is in 

transition between order and randomness (termed edge of chaos or deterministic chaos). 

According to a definition given by Flake (1998), complexity theory is the study of how 

critically interacting self-organizing components form potentially evolving structures, 

exhibiting a hierarchy of emergent system properties. Luhmann (1995, p.25) suggests that 

'complexity entails that, in a system, there is more than one possibility that can be 

actualized'. Complex systems can also be defined by the fact that they may be generated 

by a relatively simple set of sub-processes: a few things interacting, but producing 
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tremendously chaotic behaviour. As the Nobel Laureate Murray Gell-Mann phrased it: 

"Surface complexity arising out of deep simplicity" (Gribbin, 2004). 

A useful definition has been provided by Batty (2007). He states that' a complex system 

is a system that is composed of complex systems. This recursion makes considerable 

sense when we ponder systems such as economies and cities for their elements -

individuals - clearly have the same order of complexity as any aggregation in groups or 

institutions' (Batty, 2008, p.2). He also suggests that complexity can be understood 

mathematically in the same way that the simple rule and randomness coexist in the 

logistic equation (equation 3.2) - as explained earlier in the previous section. He suggests 

that complexity can be demonstrated through the notion of variety, defining a system in 

terms of a number of components, say n, and the number of states, say m, which each 

component can take on. The simplest demonstration is to compute the number of 

combinations of states when a state can exist or not, given by the combinatorial C: 

c = 2::=1 (n!k!(n - k)!) (Equation 3.3) 

'This number of combinations could be elaborated in countless ways and 
although it can be reduced simply by introducing constraints on what is 
feasible and what is behaviourally acceptable, it is still huge and to all intents 
and purposes infinite. This is one of the key challenges of complexity theory: 
understanding, grappling, and managing this sort of combinatorial explosion' 
(Batty, 2008, pp.8-9). 

The above equation is probably the best, and mathematically the simplest, expression of 

complexity, which explains chaotic behaviour of a system governed by many subsystems. 

Subsystems interact among each other in a nonlinear manner. As a comment on the 

equation 3.3, one could say that, (I-K!) or n!(n-k)! shows the "recursive property" of a 

system - also called the "positive feedback" (Flood and Carson, 1993). It means that 
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when a criterion increases or when a subsystem progresses within such system, there is 

always one or some other criteria\subsystems, which progress in the opposite way to 

control the overall behaviour of the system. They may prevent its further progression to 

help the whole system remains stable. A control system must have adequate variety or, as 

Ashby (1973) called it, "the law o/requisite variety", 'if the system is to have guarantee 

of remaining under control' (Flood and Carson, 1993, p.1S). 

Comparing equations 3.2 and 3.3, one can see clearly the similarity and difference 

between chaos and complexity. "L'" in the latter equation, discloses the difference 

between them. While chaos theory is about the strange behaviour occurring in one 

chaotic system, complexity theory is about the interactions between multiple chaotic 

systems controlling each other to create a variety of states within a bigger system. That is 

perhaps why Batty (2008) states that a complex system is a system that is composed of 

complex systems. In this sense, as Ward (2003) suggests, chaos can be considered as the 

subset of complexity. 

The definitions suggested for "complexity" usually associated with the terms synthesis, 

cross discipline, edge of chaos, nonlinear dynamics, self-organising systems, etc (see 

Appendix A for their definitions). Each of these terms conveys an aspect of complexity. 

However, the concept remains elusive as the given definitions constrained its full 

meaning. According to Batty (2007), while there is no single widespread agreement as to 

precise definition, there is a consensus about the definitions of the characteristics that a 

complex system displays. Therefore, instead of trying to coin a single definition for the 
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tenn, an analysis of characteristics of complex systems can be attempted in order to 

develop a general understanding of the theory. 

3.2.2 Characteristics of complex systems, and their analogies to urban systems 

While some theorists reduced the properties of complexity to only two main features of 

chaos, 'sensitivity to the initial conditions' and 'feedback' (e.g. Gleick, 1987; Gribbin, 

2004), some other complexity theorists believe that a system must associate with more 

features to be considered complex. For instance, Durlauf (2005), himself a mild sceptic of 

complexity theory, identifies four key features, which such systems must portray to be 

seriously considered as complex: non-ergodicity, phase transition, emergence, and 

universality (see also Batty, 2008). Valle (2000, pA) suggests six characteristics for such 

system and states that complexity can be characterised by: 

a) A large number of similar but independent elements or agents 

b) Persistent movement and responses by these elements to other agents 

c) Adaptability so that the system adjusts to new situations to ensure survival 

d) Self-organization, in which order in the system forms spontaneously 

e) Local rules that apply to each agent 

f) Progression in complexity so that the system gradually becomes larger and more 

sophisticated 

However, Cilliers (1998, pA) provided a rather more complete list and outlined ten 

characteristics for a complex system. According to his list, complex systems have "a 

large number of elements" (1), which have to interact "dynamically" (2), and are "richly 

connected" to each other (3). The interactions are also "nonlinear" (4). Such interactions 
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usually have low range (local interaction) although long-range (global interaction) is not 

impossible (5). There are loops in the interactions termed "recurrence" or "feedback" (6). 

They are usually "open systems" which interact with their environments (7). They are far 

from equilibrium with "phase transition" (8). They have history and "evolve" through 

time (9). Finally, each element has limited capacity of information (locality of 

information) which is ignorant of the behaviour of the system as a whole (10). 

Identifying a series of eight features for complexity - "Unpredictability", "Emergence", 

"Self-organization", "Irreducibility", "Adaptability", "Interconnectedness", " 

Complexity through Rules", and "Form Versus Process" - Cooper (2000, p.8) suggests 

that 'all can arguably be observed in the city' too. A similar vocabulary has been found in 

work of those authors who suggested cities are to be considered as self-organising 

complex systems (e.g. Batty, 2005, 2008; Portugali, 2000; Wilson, 2000). According to 

what have been used commonly and frequently in the literature, this research suggests 

that the following 12 characteristics of complexity are essential in understanding of the 

theory. 

1- Variety (Large number of components with dynamical interactions) 

2- Irreducibility 

3- Deterministic chaos (duality of determination and randomness) 

4- Positive and negative feedback 

5- Sensitivity to initial conditions (the butterfly effect) 

6- Limited predictability 

7- Emergence 



8- Self-organization 

9- Adaptability 

10- Interconnectedness (Synergy) 

11- Hierarchy and levels of scale 

12- Self-similarity and fractal pattern (the image of complexity) 

3.2.2.1 Variety (Large number of components with dynamical interactions): 

Complex systems consist of a variety of subsystems or a large number of elements. When 

the number is relatively small, the behaviour of the elements can often be given a formal 

description in conventional terms. However when the number becomes sufficiently large 

they cease to assist in easily understanding the system. Cilliers (1998, p.3-4) states that 'a 

large number of elements are necessary, but not sufficient. ... in order to constitute a 

complex system, the elements have to interact and this interaction must be dynamic'. He 

adds, 'the interactions do not have to be physical; they can also be thought as transference 

of information'. 

Therefore, the grains of sand on a beach do not make a complex system, because 

although they are numerous there is no interaction between them. Conversely, in a 

complex system such as Lorenz's weather model (discussed in section 3.1.1.3), the 

system consists of differential equations (equations 3.1) which interact dynamically and 

make the system change with time. According to Cilliers (1998, p.6), the most obvious 

example can be seen in the economic system of a city as 'the economically active people 

in a city certainly comprise a large amount of elements, usually several millions. The 
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various individuals interact by lending, borrowing, investing and exchanging money and 

goods. These relationships change continually'. 

3.2.2.2 Irreducibility: 

'2+2:;t 4; rather 2+2 = apples' (Morgan, 1923; quoted by Jenks, 1997, p.61). 

'A non-linear system cannot be reduced to its components parts because the 
whole pattern, due to its interconnected nature, cannot be seen as a single 
element' (Cooper, 2000, p.lO). 

Another feature of nonlinear complex systems is irreducibility. While a complex system 

consists of a large number of elements, components, or subsystems, it cannot be 

reconstructed by simply adding its elements together. The notion that in general systems 

theory known as "gestalt" implies that system structure emerged from the parts but that is 

not simply a process of adding up the bits to get the whole (Batty, 2008). The whole 

system is more than sum of its parts, and as the Nobel laureate Philip Anderson (1972, 

p.393) wrote, 'more is different'. Examples can be found in many biological, ecological, 

and sociological phenomena. A human being is not an aggregation of bodily parts, nor is 

a business an aggregate of management functions, nor a society an aggregate of social 

groups. In each case, things come together to form 'wholes' whose properties are 

di fferent from the parts. 

In all complex phenomena, the "wholeness" is the important thing. According to 

Alexander (2002a, p.80), 'the local parts exist chiefly in relation to the whole, and their 

behaviour and character and structure are determined by the larger whole in which they 

exist and which they create' life or quality. The implication is that, in complex systems, 

we are dealing with systems that have purposeful parts and some final worth - or intrinsic 
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quality - and for which traditional reductionism is inappropriate. The holistic approach 

rejects the modernist mechanical view of a city in which the position of every element 

can be determined in advance and their composition creates the entire city (the failures of 

reductionism view in modernist planning will be discussed in more detail in chapter 

four). 

For instance, Cooper (2000, p.l 0) suggests that 'land use zoning as planning tools 

represent a form of reductionism, isolating what should be, in a non-linear system, a 

"linked element", thus breaking the linkage that would make the area richer and more 

diverse'. Another example has been suggested by Meijers (2008, p.2323) who states that 

'summing small cities does not make a large city'. His research reveals that the more 

polycentric a region is - as opposed to mono-centric - the fewer cultural, leisure and 

sports amenities are present. 

3.2.2.3 Deterministic Chaos (Duality of Determination and Randomness): 

Einstein's famous question: 'Does God plays dice with the universe?' 
(Gleick, 1987, p.314) 

As discussed in the previous part of this chapter, the behaviour of the agents in a 

nonlinear complex system is neither completely deterministic nor completely random; 

indeed, it exhibits both characteristics. This duality is termed deterministic chaos or 

'complexity through rules' (Cooper, 2000, p.ll). While a simple deterministic system 

with only a few elements can generate random behaviour, in a complex deterministic 

system, random behaviours are generated without violating the overall rules of the whole 

system (Crutchfield et ai, 1988). On the one hand, it allows us to bring increasingly into 
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the deterministic framework of classical science broad areas of phenomena; on the other, 

it represents a limit to the complete testability of the classical paradigm, which seemed to 

resist such inclusion. 

This means that there are some ruling equations, which determine the system's behaviour 

- the way agents interact - and preserve the quality, the position, or the general character 

of the system. Cooper (2000, p.ll) suggested that the source of order in the case of a city 

'could be planning policies, building regulations, rules governing of granting financial 

credits', etc, all of which will determine the behaviour of the system. Nevertheless, at the 

same time, random behaviours are also allowed within the limits set by such regulations. 

The main source of the randomness - but not exclusively - is unpredictable decisions and 

actions of human users (individuals or communities) as free agents who act within the 

rules' limits in an urban context. For instance, every time designers (who are also human) 

make a decision to change or not a shape; add, move or remove an event; or rearrange 

overlaps, they are creating completely new interface patterns (Arida, 2002). 

3.2.2.4 Positive and Negative Feedback: 

Feedback is the most important feature characterising a complex system. This feature is 

also called the "recursion" or "recursive property" and can be described mathematically 

as seen earlier in the equations 3.2 and 3.3 (represented by I-x or n-k!). Feedback 

describes the consequences of change in a system. It means that feedback occurs where 

the behaviour of an element influences on the way other elements act or react, but 

through a series of relationships, the effect of its initial influence feeds back on itself. 
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INPUT TRANSFER OUTPUT 
-- FUNCTION --- (a) 

TRANSFER OUTPUT ---_ ... 
FUNC TION 

INPUT 
(b) 

FEEDBACK 

Figure 3.9: Transfer function without feedback (a) and 
with feedback (b). (Flood and Carson, 1993, p.14) 

If those mechanisms that create a behaviour are lumped into a single "transfer function" 

(TF), Flood (1993) claims that in a linear relationship the action on an input produces an 

output without receiving any feedback from TF (figure 3.9a). However, in a non-linear 

relationship, the output is used as the input in the next calculation (figure 3.9b). As the 

positive or negative feedback (depending on the type ofTF) occurs repeatedly, the system 

reaches a critical threshold far from equilibrium, which moves from a phase state to another 

- phase transition - while returning to the initial state becomes impossible (Batty and Xie, 

1999). That is why Cilliers (1998, pA) claims that 'complex systems have a history' (e.g. in 

the case of a city, the transition from agricultural city to industrial city). 

Feedback occurs in all nonlinear systems but not all systems with feedback are nonlinear. 

While positive feedback can cause instability in a nonlinear system, negative feedback tends 

to stab lise such a system. The insect population model (explained earlier in section 3.1.2) is 

an example of a nonlinear system with negative feedback. As soon as the population of 

insects increases, the portion of available food for each insect decreases, which feeds back 
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and controls the population of insects, stabilising it, bringing it back close to earlier numbers 

(but not exactly the same), and allowing the system to return to its balance. If the output 

numbers are not exactly the same as the earlier conditions, this balance is fragile and the 

system keeps its nonlinearity. If the negative feedback brings the output of the system back 

exactly to the initial condition of the system, the system lose its nonlinearity and turns to a 

linear periodic status. 

However, According to Byrne (1998, p.172), the significance of positive feedback - as 

opposed to negative feedback - 'is that it is not boundary defending, but is likely to lead to 

boundary breaking and transition to a new phase state'. Flood and Carson (1993) believes, 

positive feedback helps to achieve contained contraction or replication and growth or leads 

to uncontained and unstable contraction or growth. It should be also noted that 'positive 

feedback occurs when a change tendency is reinforced rather than damped' (Byrne, 1998, 

p.172). As seen in the Lorenz's weather model, 'the butterfly effect is an example of series 

of positive feedback within the system' (Cooper, 2000, p.8). 

Positive feedback may be desirable but can be lead to structural changes and possibly to 

structural collapse. Both desirable and undesirable cases are illustrated in the following 

example: 

'When we run, we need to increase oxygen intake and lung ventilation by 
increasing respiration rate. Positive feedback loops in the body temporarily 
dominate bringing about desirable increase in respiration that enables the running 
to happen. In healthy people, however, the limits of human capability are dictated 
by negative loops, so that we can only run so far for so long. This is for our own 
good and prevents us from burning out. If the negative loops are broken leading ~o 
an undesirable domination by positive ones, as happens when athletes take certain 
types of drugs, super human achievements can be realized. The history books 
report a number of tragic cases where the biological processes of [these] athletes 
may lead to collapse and death' (Flood and Carson, 1993, p.15). 

90 



In the case of a city, Arida (2002, p.153) claims that, human users are the main source of 

feedback: 'through their interpretation of interface patterns in their environment they act 

or react - from the simplest act of planting a tree (to embellish their front yard) to that of 

shopping (in response to a well-lit shop window display, for example). Eventually many 

people react similarly, building up into a resonance that can, for instance, affect the 

investment value of real estate, with all its physical consequences ... .' 

3.2.2.5 Sensitivity to Initial Conditions (The Butterfly Effect): 

One of the most essential features ofa chaotic system is what Lorenz (1963) called 'the 

sensitivity to initial conditions'. This means that infinitely small changes in the starting 

condition of a complex nonlinear system will result in dramatically different outputs for 

that system. An example of this, known to the world as The Butterfly Effect, was 

explained by Lorenz's experiments while he was formulating his model for weather 

forecasting (see Gleick, 1988, pp.16-32). It describes how a tiny action such as the 

flapping of a single butterfly'S wing in the Indonesian coast, can be magnified through a 

month's time of cause and effect process, resulted in a hurricane hitting Miami rather 

than its expected target of Fort Lauderdale, for example. 

Hamdi (2004) discusses the ingenuity of the improvisers and the long-term, large-scale 

effectiveness of immediate, small-scale actions. In the case of a city, a series of cause and 

effect processes of change often starts with small beginnings, which have emergent 

potential - as small as a bus stop, a pickle jar, a composting bin, or a standpipe. As an 

example, Hamdi (2004, pp.73-76) explored the emergence potentials of a bus stop to act 

as an initiator of other positive effects cultivating a community and writes: 
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'We had observed elsewhere the density of life and commerce which clusters around 
places where buses stop. People gather and wait for substantial periods and so, often, 
and in small steps, small shops and coffee houses will open to serve them, shoeshine 
boys and other street hawkers will appear ... and spread their baskets on the ground to 
sell what they can to passer-by while they wait. At fIrst, a small market emerges .. " ' 

No one designed this market place, which has the potential to motivate a vibrant 

community which sprouts, and grows around it. It can eventually tum to be a local centre 

or even, through some positive effects, improve housing, health, and education in that 

area. All these huge changes originate from small and often simple beginnings, which 

even though small, they are many, acting in order to induce others to act. 

The bus stop example in an urban system is analogous to The Butterfly Effect in a 

weather system. Byrne (1998) explains that it occurs when a small apparently 

insignificant change in one agent has a knock-on effect on another agent, that is in tum 

has an effect on another agent, that in turn has an effect on another and so on in a 

multiplier effect with the potential result of a massive change occurring to the system. 

3.2.2.6 Limited Predictability: 

'The only limit to our realization of tomorrow will be our doubts of today'. 
(Franklin D Roosevelt, quoted in Hamdi, 2004, p. xv) 

Chaos imposes fundamental limits on prediction. If we could know exactly the laws of 

nature and the precise situation of a system at its initial moment, we might be able to 

predict exactly the situation of that system at a succeeding moment - as Laplace had 

claimed (discussed earlier in section 3.1.1.1). However, this precision does not exist in 

real systems. There is always uncertainty about the outcomes of processes of change that 

originate from the bottom up (Batty, 2005). A very small diversion at its initial condition 



- not at once but gradually - is turned to a huge diversion. Therefore, we might arguably 

be able to predict a chaotic complex system in the short term but not definitely in the long 

term. 

According to Waldrop (1992), when the number of elements/agents increases, it becomes 

even more difficult to predict accurately the outcomes of their interactions. Referring to 

Waldrop's (1992) statements, Cooper (2000, p.8) suggests that 'cities have a large 

number of interdependent agents which makes them unpredictable'. Therefore, the 

ultimate shape of the city as a product of unpredictable actions and interactions between 

these elements/agents is also unpredictable. Batty (2005) states that the conception of the 

city as a complex system changes from one where we assume that all things about the 

system are ultimately knowable to one where this assumption is no longer tenable. The 

notion of limited predictability of the urban system calls into question the conventional 

planning approach of master planners who attempt to apply determinist blueprints for 

cities (see Chapters Four and Five for details). 

3.2.2.7 Emergence: 

'Emergence is a characterisation' (Flood and Carson, 1993, p.18). 

Complicated and unexpected patterns and behaviour emerge within complex systems 

with no apparent cause or design (Waldrop, 1992). Having explored some of the 

attributes of a complex system, Cilliers (1998, p.91) stated that 'the system's individual 

components only operate on local information and general principles. The macroscopic 

behaviour emerges from microscopic interactions that by themselves have very meagre 

infonnation content (only traces) but after simple interactions this results in complex 
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behaviour when viewed macroscopically' . Cilliers (1998) interprets this behaviour as the 

emergent property of a system as a whole, and Alexander (2002b) called it "unfolding 

wholeness". 

According to Alexander (2002b), the wholeness occurring in space necessarily unfolds in 

such way as to create more and more life and, through these transformations, larger 

wholes are created. "Emergence" means that new systems appear with new properties, 

which are not to be accounted for either by the elements into which they can be analyzed, 

or by the content of their precursors (Alexander, 2002). That is, perhaps, why no two 

complex systems are alike (Flood and Carson, 1993), or no two cities are exactly alike, 

even if they have a similar history. For instance, each Roman colonial city had its own 

identity while its overall layout follows the' castra ' pattern, as discussed in chapter two. 

Philips's (1994) work on features of complexity provides an example to illustrate 

emergence in the form of a residential segregation model constructed by Schelling (1969, 

1978): 

'A grid of squares represents homes in a mixed community made up of two 
groups of residents. At each prescribed period each household make a 
decision to stay or move to another square based on a programmed 
preference for living next to households of the same group and, as the time 
periods pass, pattern of residential segregation emerge. These pattern were 
not designed, they emerge by the action of a rule .... In the same way, the 
land-use of Oakland, California, emerge from the many decision taken by 
individuals influenced by the market, politics, the environment, fashion etc' 
(Cooper, 2000, p.9). 

The emergent pattern demonstrated in Schelling's model is a classic example ofhmv 

global order and unpredictable spatial pattern emerges from the bottom up and from the 

random actions of highly localised neighbourhoods. Batty (2005, 2008) and Silva et al 
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(2005) presented a simulated version of this model using Cellular Automata (CA). In 

their experiment, two social groups in the Schelling model are rendered in red and green 

on a [me lattice of cells . Then some simple rules are programmed at neighbourhood scale 

for making decisions (e.g. based on a preference for living next to the households of the 

same group), each cell maintains its initial colour state or converts into the other (each 

household decides to remain, or move). As illustrated in figure 3.10, after running the 

iterative program, unpredictable patterns of segregation emerges out of the initial random 

distribution of red and green cells. 

Timet=l t=2 t=5 t=20 

Figure 3.l0: Emergence of extreme segregation from local cellular automata rules implying a 
mild preference for living amongst one's own kind. (Batty, 2008, p.17) 

3.2.2.8 Self-organization: 

'The capacity for self-organisation is a property of complex systems 
which enables them to develop or change internal structure 
spontaneously and adaptively to cope with, or manipulate, their 
environment' (Cilliers, 1998, p.90). 

As Cooper (2000) stated, not only does a complex system as a whole emerge, but its 

structure and organisation also apparently emerge without pre-design. It means that the 

structure and behaviour of such a system is not determined in a preliminary way by the 

properties of individual components of the system, but are the result of complex pattern 

of interaction between itself and its environment. 'An example of self-organization in ity 

growth is the development of local governmental systems. These were not imply 



designed and then implemented, they evolved, and changed, self organizing in response 

to changing needs, particularly in terms of safeguarding public health and welfare. ' 

(Cooper, 2000, p.9) 

Complex systems require a form of control mechanism to maintain their integrity 

(Flood and Carson, 1993). They can self-organise through their own controlling 

centres of their subsystems. Alexander (2004, p.328) claims that the whole system 

'controlled by the field of centres, is not made up by rearranging fixed 

components. It is a structure which allows the evolution of space itself, a process 

in which the space changes qualitatively, step by step, through the intensification 

of the centres in it'. The intensification of the centres in subsystems means that a 

complex system becomes more complex through an evolutionary process. 

This increase in complexity implies a local reversal of entropy - created by the recursive 

process or feedback - that necessitates a flow of energy or information through the 

system. The information is stored in forms or patterns within the system, conveying a 

kind of memory (Cilliers, 1998). If this information conforms to new circumstances, it is 

stored, and even enhanced; otherwise, it fades away, and is replaced by new information 

or a new pattern. Therefore, a self-organizing system always has a history. This may also 

form part of the explanation why self-organising complex systems tend to age. One of the 

obvious examples can be observed in the street patterns of a city. Old urban plots are 

sustained only if they can serve a new population with new needs; otherwise, they are 

changed, evolved, or replaced gradually by new sized plots in response to adaptations to a 

changing environment. 
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3.2.2.9 Adaptability: 

Self-organizing complex systems have the ability to adapt to new situations in their 

environments. Adaptation is the result of evolutionary processes whereby a system will 

simply not survive if it cannot adapt to new circumstances. Flood and Carson (1993, 

p.13) wrote that: 

'Darwinian evolution of life forms is a theory of adaptation. Similarly, 
certain management and organization theory has argued that a commercial 
firm needs to adapt to external changes - e.g. adaptation to changes in 
demand patterns, competitors' actions, and technological change; and to 
significant changes on the international scene like oil price increases or 
cuts, and wars. Adaptation is necessary for survival where the environment 
is subject to change. Adaptation occurs to deal with environmental change. 
If an environment is largely constant, then a system's survival is not 
threatened. But in other circumstances, changes in an environment will 
occur and throw the system out of balance. ' 

Mixed-species woodlands are an ecological example of an adaptable system that 

safeguards the survival of the whole system by allowing for change through variety. A 

mixed woodland can respond to climate change more readily than single-species 

woodland. If a change takes place that destroys one species, then the system as a whole 

will be affected but not destroyed, as another species will fill the gap left, either as an 

immigrant to the system or by expanding within the system. If the same destruction was 

to occur in a single-species plantation, the whole system will be destroyed. Cooper (2000, 

p.IO) draws an analogy between single/mixed-spices woodland and single/mixed-use 

zone in a city and writes: 

'Translating this ecological example to urban design, the single-species area 
could relate to single-use zone in a city, or a company town, if its economic 
base collapses then so does the area as a whole, it then requires a larger scale 
alteration to again become viable. Eventually the city as a system will re
colonize the area but it will take much longer than if the area had contained a 
mixture of uses and building types. ' 
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The unpredictable morphological change occurring in 'a redevelopment of a plot or a 

series of plots within the existing street system without the introduction of new streets' _ 

known in Conzenian terminology as 'adaptive redevelopment' - explicitly reveals the 

ability of a city system to adapt to the new situations in its environment (Larkham and 

Jones, 1991, p.l3; see also Conzen, 1962). Figure 3.11 illustrates an example of adaptive 

redevelopment, in which the street system has evolved without pre-design in respond to 

changing uses over time. 

SIDE AND DEAN STREET 
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Figure 3.11: Adaptive redevelopment in central Newcastle upon Tyne 
(Larkham and Jones, 1991, p.13) 

3.2.2.l0 Interconnectedness (Synergy): 

'Cities present situations in which several dozen quantities are varying 
simultaneously in subtly interconnected ways' (Jacobs, 1961, p.433) 

Another feature of nonlinear complex systems is interconnectedness. It indicates a quality 

similar to what is called synergy in management and organisation theory referring to the 

benefit of group working (Flood and Carson, 1993). The components of a complex 

system are connected closely together at the local level and to the environment at the 

global level (figure 3.12). Philips (1994, p.6) writes that 'a nonlinear system is woven 
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into its environment so closely that we now speak of co-evolution - the system, and its 

environment evolving together' (quoted in Cooper, 2000, p.l 0). 

Jane Jacobs (1961) argued that a city is fundamentally a living organism with complex 

inter-linkages and holistic behaviour. Alexander's theory of pattern language describes 

well the interconnectedness characteristics of a city system. Alexander et al (1977) 

suggested that buildings, neighbourhoods, cities, and metropolis, are the product of a 

language of patterns. According to his theory, doors, windows, buildings, squares, 

neighbourhoods and cities, are interconnected by "patterns" in a way similar to words, 

concepts, sentences, paragraphs, chapters, and stories. A natural spoken language has a 

set of elements (words), and a set of rules, which define the possible arrangements of 

words. In an urban context, 'each pattern is a rule, which describes the possible 

arrangements of the elements' and even the arrangements between patterns (Alexander, 

1979, p.185). As in spoken language, the built environment is the product of a 

conversation between a large number of elements and pattern languages, which are the 

means with which they are interconnected. 

3.2.2.11 Hierarchy and levels of scale: 

'It is not the complexity itself that is important; it is the level of that 
complexity that is important' (Cooper, 2000, p.ll). 

A complex system self-organises by creating an ordered hierarchy of interconnections on 

several different levels of scale. Figure 3.12 shows a hierarchical organization at a 

number of levels, which is a logical representation of complex phenomena as systems of 

subsystems. A simple example of a hierarchic structure can be observed in a city street 
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network. The organisation network fonnation follows a strict order: starting from the 

smallest scales (footpath), and processing up to the higher scales (roads of increasing 

capacity). 

(a) 

(d) 

Figure 3.12: Interconnectedness and levels of hierarchy. a) A subsystem, b) a complex 
system of some sub-systems, c) the hierarchy of complex systems within an environment, 
and d) the hierarchical environments within a wider environment. (Flood and Carson, 
1993, pp.9-17) 

However, a hierarchical structure does not always create complexity. Alexander (1965) 

defined two types of hierarchy: the tree and the semi-lattice. Both the tree and the semi-

lattice are ways of thinking about how a large collection of many small elements or sub-

systems goes to make up a system with hierarchical structure, but only the latter leads to 

complexity. In the tree structure, each subsystem is fully independent from all other 

subsystems of its level, and it can thus interact with them only via higher order 

subsystems (figure 3.13, right). In the semi-lattice structure, however, there are overlaps 
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between subsystems of the same order, so that interaction can occur vertically, 

horizontally and in oblique fashion (figure 3.13, left). As noted by Alexander (1965), it is 

not only the overlap which makes the difference, but more importantly, the semi-lattice is 

potentially a much more complex and subtle structure that the tree. He writes: 

' ... a tree based on 20 elements can contain at most 19 further subsets of the 20 , 
while a semi-lattice based on the same 20 elements can contain more than 
1,000,000 different subsets' (Alexander, 1965; quoted in LeGates and Stout, 
1996, p.122). 

123456 123456 

4 5 6 

Figure 3.13: Alexander's semi-lattice hierarchy (left) as compared with the tree-like 
hierarchy (right). (LeGates and Stout, 1996, p.122) 

Such a hierarchy (the semi-lattice) can rarely be established all at once, and if any 

connective level is missing, the urban web is pathological (Salingaros, 2005). This also 

echoes Jane Jacobs' (1961) notion about 'problems in organised complexity' in which, 

'those areas seen as unsuccessful will be those that have source-rules that break down or 
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simplify the natural level of order necessary for healthy urban development' (Cooper, 

2000, p.ll). Alexander (1965) claims that our modem attempts to create cities (e.g. 

Levittown, Chandigarh, and the British New Towns) create mostly a tree like hierarchy 

and therefore are less successful as compared to those with semi-lattice structures which 

have arisen more organically over many, many years (e.g. Siena, Liverpool, Kyoto, and 

Manhattan) . 

3.2.2.12 Self-similarity and Fractal pattern (the image of complexity): 

From a morphological point of view, the most interesting characteristic of a chaotic 

complex system - and probably the most important one - is self-similarity, which has 

been termed 'fractal' by Mandelbrot (1983). Gleick (1987, p.l03) wrote, 'Self-similarity 

is symmetry across scale. It implies recursion, pattern inside of pattern .... when a chaotic 

system is represented graphically, the resultant object is fractal'. Symmetry across scales 

means that the patterns or images that appear at each level of scale in a complex system 

are self-similar to the whole. The elements, which form these patterns, are interconnected 

in a nonlinear way exhibiting non-integer dimensions not explicable by Euclidean 

geometry. This is the geometry of nature (Mandelbrot, 1977, 1983); the image of chaos 

(Gleick, 1987, 1990); or 'the geometry of complexity' (Alexander, 2002b, p.180). 

All complex systems consist of such patterns with 'generated structure'. According to 

Alexander (2002b, p.180), 'it is a fundamental law for creation of complexity' and he 

explains that 'a generated structure is something that has a certain deep complexity and is 

created in some way that appears to be almost biological, and reaches deeper levels of 
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subtle structure than those we commonly associate with design or designed objects. This 

is the particular visible physical character of complexity. It may be identified as the sign 

that a complex system has been made by a generated and nonlinear process. 

A clear example of the process of generating fractal patterns can be observed in the 

logistic equation. In part one of this chapter, it was explained that such a pattern is the 

result of the feed back process in an open system. As shown earlier in figure 3.8, the 

patterns on smaller scales are similar to the original pattern appearing as a whole. In other 

words, the whole pattern repeats itself at its smaller scales. Bhutta (1999, unpaginated) 

writes: 

'Mathematically, fractals are pictures that result from iterations of nonlinear 
equations, usually in a feedback loop. Using the output value for the next 
input value, a set of points is produced. Graphing these points produces 
images. Again, by creating a vast number of points using computers, 
mathematicians discovered these wonderfully complex images, which were 
called fractals. ' 

Bamsley (1993) suggested that the examples of fractal patterns could be found 

everywhere from the microstructure of organisms, bacteria, crystals, flowers, feathers ... 

to mega-structure of clouds, Mountains, coastlines, galaxies, etc. In the introduction of 

his book, Fractals Everywhere, he claimed that 'one would see everything differently, 

once he could speak with the new language of fractals'. As this property of complexity is 

our focus, the definition, meaning, and examples of fractal geometry in real life - in 

general - will be explained in the next part of this chapter and its application in 

architecture and urban studies will be elaborated in the next chapter. 
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3.3 Part Three: Fractals; Geometry of Complexity 

'This is a geometry of order on many scales, a geometry of organised complexity' 
(Batty and Longley, 1994, p.57). 

As discussed in the previous part, the fractal property can be understood as one of the 

characteristics of complex systems, and therefore, can be identified as 'the image of 

chaos' or 'the geometry of complexity'. The theory of fractals has been developed in 

parallel to chaos and complexity theories, but not necessarily by scientists with the same 

background. For instance, while the meteorologist, Lorenz (1963), is one of the pioneers 

in studying chaos, the mathematician, Benoit Mandelbrot (1977), is well known for his 

discovery of fractals as the real geometry of the nature. This research attempts to explore 

the overlaps of these parallel studies to enhance a better understanding of complexity 

theory. 

Fractal structures have existed in many real world areas, such as the weather, the stock 

market, the universe, clouds, etc. An increasing number of papers on fractals appears in 

journals, books, conference outcomes and so on. Scientists and researchers of different 

backgrounds, from pure or applied sciences to arts, hold seminars and conferences to 

share their findings on fractals. These attempts demonstrate that our knowledge of fractal 

theory is gradually improving and is by no means complete. What follows is a general 

review of the theory of fractals, explaining the main concepts behind fractal, as opposed 

to Euclidean, geometry. It then focuses on calculating fractal dimension as a 

mathematical means of measuring the level of physical complexity that a fractal object 

exhibits. 
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3.3.1 Fractal; Terminology, meaning and definition: 

A child draws a cloud, a smoothly rounded bulk, perhaps with wavy or 
scalloped edges. A child's tree is a green mass sits atop a brown trunk. As 
children or adults, we own a repertoire of such stylized form. Our mental 
lightning bolts are Z's; our volcanoes are inverted and decapitated cones; our 
rivers are lines. Nature's objects are not so simple ... These are not what 
really exist in the nature. The rivers, the clouds, the snowflakes of our usual 
perceptual tool kits miss much of nature's complexity (Gleick, 1990, 
unpaginated). 

One wintry afternoon in 1975, seeking an appropriate word for his discovery, the 

mathematician, Benoit Mandelbrot, came across a Latin word, the adjective fractus, from 

the verbfrangere, which could be defined 'to break'. 'The resonance of the main English 

cognates -fracture andfraction - seemed appropriate'; therefore, 'Mandelbrot created 

the word (noun and adjective, English and French)fractal' (Gleick, 1987, p.98). The term 

also implies the meaning 'irregular and fragmented', which Mandelbrot found to be 

useful, describing the obj ects which seemed to us irregular in geometric terms. He 

showed that many of irregular and fragmented patterns around us in nature could be 

described by fractal geometry. It helps us to study those forms that Euclid leaves aside as 

being formless or morphologically amorphous. While we use classical geometry to 

communicate the designs of technological products and a first approximation of physical 

objects, fractal geometry describes the forms of natural creations. Therefore, it can be 

claimed that 'fractal geometry is an extension of classical geometry' (Barnsley, 1993, 

p.l ). 

Bhutta (1999) suggests that there are two important properties of fractals by which the 

tenn can be defined: self-similarity and fractional dimension. Based on the first property 

(self-similarity), a useful definition is provided by Feder (1988, p.ll): 'a fractal is a shape 
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made of parts similar to the whole in some way'. In another words there is self-similarity 

over different scales of a fractal object. However, based on the second property, 'fractal' 

can be defined as: 'Every set with a non-integer dimension is a fractal' (Mandelbrot, 

1983, p.15). While our minds have become used to the conventional integer dimensions 

of Euclid over the last 2500 years, Mandelbrot suggests that most objects around us in 

nature exhibit non-integer dimensions, called fractal dimensions. The next section 

explains the notion of non-integer fractal dimension, as it is an essential part of 

understanding the theory and its applications. 

3.3.2 Fractal Dimension 

The term 'fractal dimension' indicates that there are fragmented or "non-integer" 

dimensions in nature, as opposed to the "integer" dimensions of Euclidean objects (one, 

two or three dimensions and so on). We all remember that 'the line has one dimension, 

length; the plane has two dimensions, length, and width; the cube has three dimensions, 

length, width, and height' (Cooper, 2000, pAO). Koch (1993) provides the following 

illustration (figure 3.14) to show the difference between integer and non-integer 

dimensions. 

Straight line 
One dimension 

I I ---+ I I I I 

-length. 

Square D ~ Two dimensions ---+ 
- length & width 

../ ../ 
Cube ---+ 
Three dimensions I-' 
-length. width & depth V v 

~ 

Figure 3.14: the conventional mteger dlmensIOns known 
as Euclidean dimensions (Koch, 1993, reproduced in 
Cooper, 2000, pAO) 
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As figure 3.14 shows, there is a logical scaling relationship between the whole size of a 

Euclidean shape and its subdivisions, by which mathematically one could fmd the 

dimension of an object. The following simple equation shows this relationship (Bovill, 

1996, p.27): 

D = 10gN 
1 

log-
S 

or; D = log Nx (log S-Ir l (Equation 3.4) 

The above equation reveals the power law relationship between the number of elements 

existing in different scale of an object; where D represents 'Dimension', N shows 

'Number of elements' countable at a specific scale, S means the respective 'Scale' of an 

object. For example, to find a dimension (D value) of a square shape, we can divide a 

square into nine (N=9) equal smaller squares (as shown in figure 3.14) in which each 

smaller square is similar to the whole at the scale of one third (S= 1/3). Placing the values 

of Nand S in the equation, the result will be two (D=2) which implies that this shape is 

two-dimensional. 

D = log 9 = log 9 = 2 
log _1_ log 3 

1/3 

(Equation 3.5) 

Ifwe examine the square shape at other scales (1/4, 1/5, etc), the result will not change 

and remain at the integer dimension of two. If we repeat the calculation for a line shape 

and a cube shape, the equation shows the values of one and three for D (D= 1, and 0=3) 

respectively, which are again integer. However, in a fractal shape the result of calculating 
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its dimension (D f) will be usually non-integer. Figure 3.15 provides a classical example 

of fractal shape known as the 'Koch Curve' . 

Sf .. p" 

Sttp3 

S'C'P 2 

S'C'P I '----- Generator 

Stf'pO ------------ Initiator 
Figure 3.15: The Koch curve (Peitgen et ai, 
2004, p.89) 

The Koch curve clearly manifests the property of self-similarity at its different sizes and 

scales. Anyone-third part of the curve is similar to the whole image. The figure shows 

five levels of the shape's complexity. Comparing any two sequential levels reveals that 

the curve repeats itself 4 times (N=4) at any 1/3 section (S=3). According to Euclidean 

Law, any line has one dimension (D=1) irrespective to be straight or curvy. However, 

Mandelbrot (1983) argued that nearly all fractals represent higher dimensions (D f > D) 

and, in the case of the Koch curve, D
f 

= 1.26. A non-integer fractal dimension such as 

the Koch curve can be calculated by equation 3.4 in the following way: 

log4 
1 

log 1 
3 

= log 4 :::::: 1.26 
log3 (Equation 3.6) 
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Fractal objects exhibit different dimensions as they unfold in the space. In the physical 

world, their dimensions may vary between 0 <Df < 3. For instance, fractals illustrated in 

figures 3.l6, 3.17, and 3.18 represent the values of 0.6309, 1.8928, and 2.7268 

respectively. 

Figure 3.16 illustrates another classic example of a fractal known as the Cantor set (also 

called the Cantor dust). Mandelbrot saw the Cantor set as a model of the occurrence of 

errors in an electrical transmission line (Gleick, 1987). The paradoxical qualities of error 

and error-free periods in electronic transmissions were a concern of mathematicians in 

the 19th century. It is generated by repeatedly removing one-third from the centre of a line 

with one unit length. In other words, as Gleick (1987, P.93) instructed, 'Begin with a line; 

remove the middle third; then remove the middle third of the remaining segment; and so 

on' (figure 3.l6). 

- - - -• • • • • • • • .. .. .. .. .. .. .. .. 
"" "" "" 1111 1111 "" 1111 "" 
1111 "" 1111 1111 1111 1111 1111 1111 

JIll 1111 "" 1111 1111 1111 1111 1111 

Figure 3.16: The Cantor set. (Mandelbrot, 1983, 
p.80) 

In the Cantor set, at each one-third section (S= 113), there are only two segments (N =2). 

Therefore, based on the logarithmic equation 3.4, its fractal dimension will be 

approximately 0.6309 (D f). 

D f = log 2/log 3 ~ 0.6309 (Equation 3.7) 
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A few mathematicians in the early 20th century conceived monstrous-seeming objects 

made by the technique of infinitely adding or removing many parts. For instance, in 

1916, Wraclaw Sierpinski (1882-1969) developed two abstract fractal shapes, the 

Sierpinski triangle, and Sierpinski carpet. Both are essentially flat, but have three-

dimensional analogues (Mandelbrot, 1983). The Sierpinski carpet (figure 3.17, left), can 

be constructed 'by cutting the centre one-ninth ofa square' (Gleick, 1987, p.lOl). Then 

the remaining parts will be equal to eight; again cutting out the centres of the eight 

smaller squares; and so on. 

Figure 3.17: The three steps of generating the Sierpinski carpet (Left) and its three
dimensional analogue - called the Menger sponge. (Mandelbrot, 1983, pp.144-145) 

Each of eight (N=8) is similar to the original square but one third smaller (s= 1/3). 

Therefore, its fractal dimension will be 1.8928. 

D I = log 8/log 3 ::=: 1.8928 (Equation 3.8) 

The three-dimensional analogue of the Sierpinski carpet is called the Menger sponge 

(figure 3.17, right), a solid-looking lattice that has an infinite surface area, yet zero 

volume. The number of similar cubes at each level of its third scale (s= 1/3) will be 20 

(N=20), and therefore its approximate dimension is 2.7268. 

D I = log 20/log 3 ~ 2.7268 (Equation 3.9) 

Figure 3.18 (left) illustrates the three steps of generating the Sierpinski triangle and its 

three-dimensional analogue. A triangle\pyramid is repeatedly divided into four congruent 
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triangles and the centre triangle is removed. Therefore, in the case of Sierpinski triangle 

three (N=3) similar triangles will be the result at half-scaled level (S=1I2). Thus its fractal 

dimension is approximately 1.5849. 

D f = log 3/log 2 ~ 1.5849 (Equation 3.10) 

Figure 3.18: The Sierpinski triangle (Left) and its three-dimensional 
analogue (a fractal skewed web). (Mandelbrot, 1983, pp.142-143) 

In some rare cases, a fractal object may have an integer dimension. For instance, the 

skewed web showed in figure 3 .18 (right) is a fractal with the dimensional value of two 

(D f = 2). It is the three-dimensional analogue of the Sierpinski triangle, but the number 

of similar pyramids at each level of its constructs is four (N=4) at any half-scaled levels 

(S= 112), and therefore, according to the logarithmic equation, its fractal dimension is 

exactly two. 

D
f

= log 4/log 2 = 2 (Equation 3.11) 

3.3.3 Types of Fractals 

Fractal geometry involves identifying systems in which elements are repeated in a similar 

fashion from scale to scale (Batty and Longley, 1994). If this similarity is strong in a 
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geometric sense, then it is referred to as self-similarity or in its weaker fonn as self

affinity. Fractals can be well typified by the degree of similarity or randomness that they 

exhibit in tenns of "linear self-similar fractals" or "nonlinear self-affine fractals" (see 

also Mandelbrot, 1983, pp.166-167). 

3.3.3.1 Linear fractals (Self-similar fractals): 

Mandelbrot (1983, p.166) suggested that the study of 'fractal geometry must begin by 

dealing with the fractal counterparts of straight lines ... called linear fractals'. He defined 

them as 'fully invariant under similitude or, at least, nearly self-similar'. According to 

Gleick (1988, pp.21-22), linear fractals are classical fractals and 'if you look at a very 

small part of a fractal's overall shape; it looks exactly like the original fractal, only 

smaller'. These types of fractals can be constructed mathematically through some simple 

rules defined by one or more equations. That is why they are also called mathematical 

fractals. Cooper (2000, p.4l) writes that 'mathematical fractals are mathematical 

constructs, objects fonned by the repetition of a simple geometric instruction'. 

The Koch curve, Cantor set, Sierpinski carpet, and the Menger sponge - described earlier 

as classical fractals - are examples of linear fractals. The Koch snowflake is also another 

example of this type, which can be constructed by arraying of three Koch curves around a 

triangle (figure 3.19). To construct it, ' ... begin with sides oflength 1. At middle of each 

part, add a new triangle one-third the size; and so on' (Gleick, 1987, p.99). The repetition 

of this simple rule creates an amazing structure similar to a snowflake. An interesting 
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thing about a fractal shape is that the boundary length is infinite. In the case of the Koch 

snowflake, the length of its boundary is 3 x 4/3 x 4/3 x 4/3 ... - infinity. Yet its area 

remains less than the area of a circle drawn around the original triangle. Thus, an 

infmitely long line surrounds a finite area (Gleick, 1987). 

Figure 3.19: The Koch snowflake (above), which is the triangular version of 
the Koch curve (below). (Gleick, 1987, p.99) 

3.3.3.2 Nonlinear Fractals (Self-affine fractals): 

It might be argued that fractals are fully invariant under the notion of self-similarity. 

However, according to Mandelbrot (1983, p. 166), 'such is emphatically not the case'. In 

some cases, varying regions of a fractal object appear as twisted or skewed scale copies 

of the original, while still other regions have shapes that bear no resemblance to the 

original. In fact, 'objects which are stretched or distorted and scaled in the manner of 

fractals at successive scales are still fractals in our use of the tenn, although their scaling 

is said to embrace the property of self-affinity rather than self-similarity' (Batty and 

Longley, 1994, p.63). Therefore, they are called self-affine fractals. As Wahl et at (1998, 
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pp.22-23) explain, 'the overall appearance of a nonlinear fractal closely resembles some 

of its smaller parts, but always with some variation'. 

Since the shape of this type of fractals is generated by a nonlinear transformation, they 

are also called nonlinear fractals. In a linear fractal, the calculated fractal dimension 

remains constant at all scale levels, while it varies in a nonlinear one. In fact, the 

randomness is part of the formation process of this type, which creates this variation 

(Wahl, 1998). That is why the fractal dimensions exhibited by different parts of a 

nonlinear fractal are usually varied. Random fractals, 'natural, stochastic, or statistical 

fractals' are the other names given to this type of fractals (Cooper, 2000, pAl). 

Levell Level 2 Level 3 

Figure 3.20: Bifurcation in a bush as an example of natural fractals. (Lorenz, 
2003, unpaginated) 

Nonlinear fractals can be divided into two groups: mathematical fractals and natural 

fractals. Many nonlinear fractals look organic - as can be seen in biological forms (e.g. 

human lungs) or in many other organically shaped phenomena in nature. Bifurcation in a 

bush displays the self-similar characteristics of a natural fractal object (figure 3.20). The 

whole tree displays irregularity in Euclidean terms but made up smaller similar versions 

114 



of it as you zoom in on any branches. These branches are themselves made up of smaller 

similar versions but, in fact, are not exactly the same. 

Today, many of the fractal phenomena in nature can be mathematically constructed 

through advanced computer simulation techniques. Mathematicians and experts in 

computer simulations have succeeded in modelling the self-similarity existing in 

nonlinear natural fractals through simple mathematical equations (e.g. Wahl et ai, 1998; 

Russ, 1994). As nonlinear fractals are derived from the equations that do not produce 

straight -line segments, in order to generate them, one must specify a generator and 

diverse other rules (Mandelbrot, 1983). The Mandelbrot set and Julia sets are the classical 

examples of mathematically generated fractals (figure 3.21). According to Cooper (2000, 

p.43), 'in mathematical fractals, this self-similarity can be repeated over an infinite 

number of scales, while in natural fractals it is repeated over a limited number of scales' . 

In the case of the bush, for example, its self-similarity is only four levels deep . 

. ,. 

Figure 3.21: The Mandelbrot set (left), and the Julia sets (right) as examples of nonlinear 
mathematically generated fractals. (Left, Mandelbrot, 1983, p.188; Right, Gleick, 1987, 
p.222) 

. A set of converging points of a plane when tested with the equation Z = Z2 + C 

(equation 3.5), creates the Julia sets with varying Z values (figure 3.21, right) (Wahl el ai, 
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1998). The Julia sets are calculated by iteration with a programme that repeated the 

feedback loop (Gleick, 1987). To iterate them, an initial value is selected and will be 

applied to a fixed operation repeatedly, until some desired patterns are obtained. Different 

patterns usually appear through the equation 3.5. The resulting patterns either 'converge 

to a certain point or grow without bound escaping to infinity' (Wahl et ai, 1998, p.111). 

In 1979, Mandelbrot discovered that he could create an image (the Mandelbrot set) in the 

complex plane that would serve as a catalogue of all Julia sets (figure 3.21, left). To 

iterate the Mandelbrot set, a constant Z value with varying C values is tested through the 

equation 3.5. To test a point, take an initial number (Z); square it (Z2); add the original 

number (C); square the result; add the original number; square the result and so on. 'If the 

total runs away to infinity, then the point is not in the set. If the total remains finite (it 

could be trapped in some repeating loop, or it could wander chaotically), then the point is 

in the set' (Gleick, 1987, p.224; for more detailed explanation see also Mandelbrot, 

2004). 

By repeating the above procedure, 'the Mandelbrot set emerges'. In Mandelbrot's first 

crude computer printouts, a rough structure appeared. As the quality of computation 

improved, he could gain more detail. Interestingly, the resultant pattern in the Mandelbrot 

set is the index of all Julia sets in which 'each point on the Mandelbrot set corresponding 

to an individual Julia set' (Wahl et ai, 1998, p.121). 
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3.3.4 Fractal generators 

The fact, which should be emphasized again, is that fractal objects usually originate from 

very simple shapes at the initial level of their hierarchical structures by which their 

fonnation at different levels is determined. These simple shapes are called 'generators' 

(Mandelbrot, 1983). We can easily find the generators of the previous examples given for 

linear fractals (e.g. see the level one in figure 3.20 or the step one in figure 3.15). 

However, when there are random orientations in the structure of a fractal object (in the 

nonlinear type), it might be a little more difficult to perceive the self-similarity at a glance 

and recognize its pattern generator (e.g. in Julia and Mandelbrot sets). 

Random Koch curve orientation 

The Generators or 

v 
level 1 level 2 

level 3 level 4 

Two other random Koch curves at level 3 

Figure 3.22: Random Koch curves created through random 
selection of two simple generators. (Wahl e/ ai, 1998, p.143) 
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In some nonlinear fractals, there may be more than one generator allowing random 

orientations in the process of generating them. Random distribution of one or more fractal 

generators can turn even a linear fractal to nonlinear one. Wahl et al (1998, p.143) 

illustrate an experiment of this with a Koch curve (figure 3.22). 

Coastlines are the popular examples of randomly generated fractals. Mandelbrot (1983, 

pp.210-245) illustrated some mathematically constructed coastlines and islands with 

random walk generators (figure 3.23). Their shapes are similar to the random Koch 

curves. It can be claimed that the random Koch curve 'has much of the complexity which 

we would see in a natural coastline - folds within folds within folds, and so on' (Peitgen 

et ai, 2004, p.88). Therefore, the boundary length of a coastline - as that was seen earlier 

in the Koch snowflake (figure 3.19) - is infinite, while the area bounded by the coastline 

remains finite. Mandelbrot (1983, p.25) stated that 'coastline length turns out to be an 

elusive notion that slips between the fingers of one who want to grasp it.' 

Figure 3.23: Random coastlines. The Squig Curve (Left), the Squig Coastline (middle), and 
the Squig Island. (Mandelbrot, 1983, pp.228-230) 

The reason for such an elusiveness lies in the fact that more and more details appear as 

one observes a fractal phenomenon from closer and closer distances. For instance, 

looking down on the coastline of Britain from a great distance one cannot see all the 
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small inlets which will come up in a closer observation - for example when walking 

along the beach. Therefore, measuring the length of the coast of Britain becomes varied 

at the various scales (see figure 3.24, section 3.3.5.1). 

The boundaries of cities are similar to the outlines of the coasts - e.g. the changeover 

from the city to the natural environment, from high-density built-up areas to low-density 

areas, from regions of dwelling houses to regions of one-family houses, and so on 

(Lorenz, 2003). Hence, if one wishes to compare different fractal boundaries from the 

viewpoint of their extent, 'length is an inadequate concept' (Mandelbrot, 1983, p.25). 

Instead of the length, measuring the fractal dimension suggests a more valid base for such 

a companson. 

3.3.5 Methods for measuring fractal dimension 

There are several methods for calculating the fractal dimension(s) of a complex shape. 

Based on the type of the shape or structure we are dealing with (nodes, lines, boundaries, 

curves, surfaces, spaces, etc), one or more of the following five methods might be 

appropriate: 

1. Box Counting method (grid dimension) 

') Structured Walk method (ruler dimension) 

3. Perimeter-Area method 

4. Infonnation dimension method 

5. Mass dimension method 
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All of the above methods follow the same principle built on the logarithmic equation 3.4 

and seek to formulate a power law relationship between the size (e.g. length, area, 

volume) and the various scales at which the fractal dimension of an object is measured. 

Among these methods, Box Counting and Structured Walk methods have wide 

applicability in measuring fractal dimensions of urban forms including urban patterns and 

city boundaries, which are the focus of this research at the empirical stage. An 

explanation for these two methods is given below (see appendix B for a brief explanation 

of other methods). 

3.3.5.1 Box counting method (grid dimension): 

The box dimension is defined as the exponent Db in the following relationship: 

1 
N(d)~- or 

d Db 
(Equation 3.12) 

In equation 3.12, N (d) is the number of boxes of linear size d necessary to cover a data 

set of points distributed in a two-dimensional plane. The basis of this method is that, a 

number of boxes proportional to lid are considered to cover a set of points lying on a 

smooth line, and proportional to 1/ d 2 to cover a set of points evenly distributed on a 

plane, and so on. 

This dimension is sometimes called the grid dimension, because for mathematical 

convenience, the boxes are usually part of a grid. It is obviously a very difficult 

computational problem to find the configuration that minimizes N(d) among all the 

possible ways to cover the set with boxes of size d. Instead, one could define a box 
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dimension where the grid is placed at any position and orientation, to minimize the 

number of boxes needed to cover the set. 

Levell Level 2 Level 3 Ltvel4 Levd5 

Figure 3.24: The fractal dimension of the coastline of Britain using Box Counting method 
(Lorenz, 2003, unpaginated) 

In practice, Db can be measured using various map scales or varying the box sizes (d 

values) while the scale of the map is maintained. To obtain points that are evenly spaced 

in log-log space, it is best to choose box sizes d that follow a geometric progression (e.g. 

d = 1, 3, 6, 12, .. . ), rather than use an arithmetic progression (e.g. d = 1, 2, 3, 4, ... ). For 

example, the Box Counting dimension of the coastline of Britain (figure 3.24) can be 

measured using varied sizes for d (l/3d, 1I6d, 11l2d ... ) as reflected in table 3.2. The 

average of the dimensions calculated for five levels of scale will be 1.241 . 

--
level 

1 

2 

3 

4 

5 

lunity size "lid" 

r;)= 1/3 

I d(2)= I 116 I 
I 

-
d(3)= r1ll2 I 
d(4)= 1124 I 
d(5)= 1/48 

log lid "N" pieces 

0.477 N(1)= 12 

0.778 N(2)=' 28 
I 

1.079 N(3)= 77 
-

1.380 N(4)= 157 
-

1.681 N(5)= 374 

log(N) Box dimension 

l.079 Db 

I l.447 r D(dl-d2)= 1.222 
-

1.886 D(d2-d3)= 1.459 
-

2. 196 D(d3-d4)= 1.028 

2.573 D( d4-d5)= 1.252 

Db (slope)= 1.241 

Table 3.2: The fractal dimension measured for the coastline of Britain u ing the Box 
Counting method. (Lorenz, 2003, unpaginated) 
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Graphicall y, the Box Counting dimension can also be calculated by transforming the 

result in the table 3.2 to a log-log graph. As shown in figure 3.25, the number of boxes 

(Nd) of linear size d, necessary to cover the whole boundary of Britain d, are counted; 

and the logarithm of N d (on the vertical axis versus, is plotted against the logarithm of 

lid (on the horizontal axis). The slope of the resulting line of the logarithmic graph is the 

fractal dimension of the image. 

In the most cases, the result is not a straight line. Only in a linear fractal with absolute 

self-similarity (e.g. the Koch curve, figure 3.19) in which the calculated fractal 

dimensions remain stable, the resultant line is straight. In a self-affme fractal (e.g. the 

random Koch curves, figures 3.22 and 3.24), the gradient of the line is varied at different 

examined scales. However, a replacement-line can be calculated for the latter (figure 

3.25, right), which runs straight to represent the average of the dimensions measured at 

different scales. 

The Koch Curve The Coastline of Britain 
3 3 

2.5 
/ 

2.5 

~ 2 2 

< 
OJ) 1.5 1.5 
0 

1 1 

0.5 0.5 -+ ---

o . 1 o 4 
log I I 

d 
0 0.5 1 1.5 2 0 0.5 1 1.5 2 

Figure 3.25: The gradient of the line in the log-log graphs indicates the fractal dimen ion 
a sessed at different scales. The gradient of a self-similar fractal (the Koch curve, left) icon tant, 
while of a self - affine fractal (the coastline of Britain, right) is varied. 



3.3.5.2 Structured walk method (ruler dimension): 

The Structured Walk is another method of estimating the fractal dimension of a jagged, 

self-similar line such as a coastline, a mountain ridge, or a city border. This method is 

also called ruler dimension (Dr) defmed through the following equation, where N(d) is 

the number of steps taken by walking a divider (ruler) of length d on the line. 

or, Dr = 10gNd x log fa (Equation 3.13) 

In practice, to obtain Dr one counts the number of steps N(d) taken by walking a divider 

(ruler) of length d on the line, and plot the logarithm ofN(d) versus the logarithm of d. It 

should be noted that in general, a ruler of length d will not cover exactly the line, but we 

will be left with a remainder. 

Levell Levd2 Levd3 Levd4 LevelS 

Figure 3.26: The fractal dimension of the coastline of Britain using the Structured Walk method 
(Lorenz, 2003, unpaginated) 

Referring again to the coast of Britain, the perimeter can be replaced by different 

polygons (figure 3.26). The first one (level!) is a polygon with seven 300 km straight-

line segments which amount to a total length of 2289 km (the length of each segment 
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equals to the radius of each circle drawn in figure 3.26). This total length of the polygon 

increases by 232 km if the single polygon-line is reduced to 200 km (level 2). In the same 

way, 165 pieces of 25 km polygon-line are required to close the coastline, which enlarge 

the total length to 4120 (leve15). Therefore, the measured length of the polygons 

replacing the coastline increases when the scale, length of segments of polygons, 

becomes smaller. Table 3.3 shows the result of fractal dimensions measured with 

different walk-dividers using equation 3.13. 

i unit length Length Ruler dimension 
:-~ I Number of ------

i level "d" (lun) I lid se~~~~ts (kIn) I 

i--]-Moor 11300 F(~1-~~1-2~ D, --

I 2 I d(2)= 1200 I 11200 ~(2)=1 12.6 I 2521 I D(dl-d2)= 1.239 

3 Id(3)=II00/ 1/100 F(~)=I 29.1 I 2906 G(d2-d3)= 1.205 1 

I-H----~~;o I 1I50f~)~T------i;~-~-- -' __ 3_3~~-r ~(d3-d4)= F;09] 

: ___ ~ ____ 1~(5!: 1251_~25 __ =F(:)=i __ 165_~! _ 4]:OTI~ D,(d4s]-od5)_~ __ II_l~2~~j 
Dr (slope)= 1.231 

--------- ~ 
Table 3.3: The fractal dimension measured for the coastline of Britain using the Structured 
Walk method. (Lorenz, 2003, unpaginated) 

Lorenz (2003) writes that as the straight-line segments are getting smaller and smaller, 

the polygon representing the coastline of Britain more and more approaches its shape as 

can be seen in the real world. It also means that the exactness of a map of Britain depends 

on the scale of the map and limits to the size of the single straight-line segments used to 

draw that map. The replacement polygons are similar to the iterations of mathematical 

fractals, where the fractal curve is getting longer and longer from one iteration step to the 

next (e.g. the iteration steps creating the Koch curve, figure 3.15). 
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3.3.6 Fractals in everyday life 

What is the infonnation content of a picture? Measures, pictures, dreams, 
chaos, flowers - the hours of the days keep rushing by; do not let the beauty 
of all these things pass by too (Bamsley, 1993, unpaginated). 

The advice given by Bamsley (1993) for a desired daily experience can be interpreted as a 

recommendation to see fractals in our environment. He suggests that fractal dimension, as 

the density of occupation, gives an indication of the liveliness of a space. Crompton (2001, 

2006) expands this further and shows what happens if we explore our everyday 

environment and perceive it fractally. He suggested that 'if the size ofa space is measured 

by counting the number of places available for particular activity, rather than using an 

absolute measure such as the square metre, then small people may find the world larger' 

(Crompton, 2001, p.243). 

Crompton compared the result through the power law logarithmic relationship (Equation 

3.4) to measure the fractal dimension of a space. He concluded that we might perceive the 

space as larger when we were younger. In other words, 'the subjective size, to a certain 

extent, is independent of its area in square metres' (Crompton, 2001, p.253). Furthermore, 

Crompton (2001, pp.253-254) suggests that designers can create a usable space from 

nothing - that appears larger even for adults - by increasing the fractal dimension of space 

rather than increasing its metric size. 

Crompton (2006) has also found that our familiarity with a place influences our mental 

estimation of a walking distance, which is in fact another indication that our everyday 

experience of environment is fractal. He observed that estimates of walking distances up to 

2 miles along a busy road were correlated with the length of time, between 2 and 26 
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months, that participants had been acquainted with the route in question. It was discovered 

that perceived distances increased the longer participants had known them. 

Cooper (2000, 2003, 2007) carried out a series of projects to fmd linkages between 

fractals and the urban environment at street level. He believes that 'fractal analysis of 

street vistas by calculating their fractal dimension assist us to gauge levels of visual 

variety [physical complexity] present in everyday streets' (Cooper, 2007, p.13). To 

validate the result, Cooper carried out a subjective in parallel to physical fractal survey, 

which led him to assess the homogeneity of visual variety perception. 

The above evidence implies that there is something in common between constructs in nature 

and the biological constructs of our mind, which encourage us to call them beauty. Mikiten 

et al (2000, unpaginated) claimed that 'the brain is known to be a structured system of 

hierarchically-organized modules ... , [and] the modules contain within them yet other sub

modules which communicate among themselves. This pattern is repeated at several different 

levels of scale, culminating in what is a molecular and biochemical fractal of interacting and 

communicating systems. In a similar way, we can conceive of the mind as consisting of self

similar complexes of hierarchically arranged modules linked together in a way that can be 

expressed according to some algorithms'. They concluded that the systems of organization 

that characterize both mind and brain are at least partially fractal in nature. 

According to a conversation between Salingaros and Padron (2000, unpaginated), 'We are 

affected by what we see. Our environment affects us, and this may well be why our mind is 

fractal, because our environment is fractal. Human beings have been surrounded by fractal 

structures for millions of years. A great deal of our mind's structure comes from this 
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ancient relationship. It is only recently that we are surrounded by structures that are not 

fractal'. There is no other experience better than realizing that something that has happened 

in our mind exactly corresponds to something that happens in nature (Donahue, 1999). 

Cooper (2000, p.41) writes that 'it resonates to the way Mandelbrot believes nature 

organizes itself, that is also believed to be the way in which human perceive the world'. 

The view that our mind responds to a degree of complexity is perhaps best summed up in 

the following statement by German physicist Gert Eilenberger: 

'Why is it that the silhouette of a storm bent leafless tree against and evening sky 
in winter is perceived as beautiful ... The answer seems to me, even if somewhat 
speculative, to follow from the new insights into dynamical systems. Our feeling 
for beauty is inspired by the harmonious arrangement of order and disorder as it 
occurs in natural objects - in clouds, trees, mountain ranges, or snow crystals. 
The shapes of all these are dynamical systems jelled into physical forms, and 
particular combinations of order and disorder are typical of them' (Cooper, 2000, 
p.4l; also quoted in Gleick, 1987, p.117). 

3.4 Chapter Summary 

According to the first stage of the research methodology (Chapter One, section 1.3.2.1), the 

literature review aims to highlight the advantages of fractal concept as compared to the 

conventional Euclidean approaches towards urban pattern and form (aim a and b). This 

review provides a theoretical backbone for the empirical sections in the following chapters, 

where the applicability of the proposed fractal analysis method is examined (aim c). 

Chapter Two highlighted the failures of Euclidean principles in morphological analysis, 

suggesting that new theories are required that can deal with the complex nature of urban 

evolution. For this purpose, Chapter Three attempted firstly to define the terms chaos, 

fractals, and the key vocabularies of complexity theory. Secondly, the relationship between 

fractals, chaos, and complexity was discussed. Thirdly, the differences between the 

mechanical and organic universe were highlighted to reveal the main concept behind 
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complexity by which the theory might be better understood. More importantly, the 

characteristics of complex systems and their analogies with an urban system were 

identified to establish reasons why a city system should be viewed, studied, and treated as 

a self-organising complex system. In the last part (Part Three), the chapter focused on the 

geometry of complexity - fractals. The notion of non-integer fractal dimensions was 

explained to reveal its potential to analyse the organic forms, which is more accurate than 

integer dimensions known in Euclidian geometry. 

In short, it can be concluded that both chaos and fractal theories are to be understood as 

subsets of complexity theory. While chaos theory explains the strange behaviour of the 

elements and components, which interact within a nonlinear complex system, fractal 

theory provides an explanation of the complexity emerging in the form and structure of 

such a system (see section 3.2.2.12). Complexity theory and fractals have a wide 

applicability to many natural and artificial systems whose dynamics - the interactions of 

local agents - generate highly ordered global patterns. These theories explain the 

evolutionary dynamics of systems whose temporal and spatial "fingerprints" or 

"morphological signatures" are fractal. As cities exhibit the characteristics of complex 

systems, they are good candidates for the application of complexity and fractal theories, 

which is the subject of the next chapter. 

128 



CHAPTER FOUR 

~oon'_· . 
~ 

~~~~ 



Introduction: 

The application of complexity theory in architecture, urban planning and design is 

essentially interdisciplinary (Wilson, 2000). Its foundation is in the both physical and 

social sciences. These sciences deal with a range of approaches from large contextual to 

small elemental scales including physical geography, human geography, social sciences, 

planning, real estate, urban design, landscape design, and architecture (Cooper, 2000). 

Researchers in each field have simultaneously explored the idea of complexity from their 

own viewpoints and made tremendous progress in the last 35 years. Each reinforces the 

others and improves our understanding of the city. However, the integration of such wide 

approaches in one comprehensive theory is difficult, if not impossible. This may seem 

problematic, and as Wilson (2000) states: different perspectives have not been forced 

together to create an adequately articulated body of theory. 

Nevertheless, there is an increasing number of papers and projects developing the theory 

of complexity, claiming to be a firmer foundation for the critical ideas that relate the 

theory to the evolution of cities. In fact, the more we understand how complex systems 

behave, the more we find them applicable in the study of cities. Rosser (1994) and 

Cooper (2000) undertook a survey of contemporary research that sought to explain the 

developments that have been made in linking the theories of complexity and fractals to 

the field of urban science (table 4.1). 
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3: Urban Geomorphology Malanson, Butler and Walsh (1990), 

= Geography Culling (1985) 
t') Glacial action Oerlemans (1981) .., 
Q 

~ Patterned ground Vitek and Tarquin (1984), Ray (1983), 
tD 

(JQ Gleason 1986), Lorenz (2003 *) .... 
Q Rainfall dynamics Rodrigues Iturbe {l989) = = Terrain analysis and modelling Batty {l992), Musgrave (1992) -rJl Avalanche study Butler and Walsh (1990) 
t') 

= Subsurface convection cells Kellog and Tumcote (1990) -tD Models of forest communities Hudson et af (1988) rIJ 

Multi fractal analysis of topography Lavallee Lovejoy, Schetzer, and Ladoy 
(1992) 

Fractal analysis of geologic time Plotnick and Pretergaard (1992) 
series 
Fractal analysis of geography, Goodchild and Klinkenberg (1992), 
channel, and river networks Phillips, Barbera and Roso (1992), Batty 

(1992), Veltri (2004*) 
Fractal analysis of Urban growth Batty (1991,1992,1995,2005*), Batty and 

Longley (1994a and 1994b), Batty 
Fractal urban structure Longley, Mesev and Xie (1995), Batty and 

Xie (1994), Batty, Steadman, and Xie 
Land use pattern (2004), Makse Havlin and Stanley (1995), 

White and Engelen (1994), Wieldlich 
Scaling behaviour, size, shape and (1994*), Peterson (1996), Klinger and 
density distribution Salingaros (2000*), Benguigui (2001 *), 

Chen and Zhou (2003*,2004*), Ikuo and 
Masanori (2003*), Rui and Penn (2004*), 
Salingaros (1999*, 2003*, 2005*), Lorenz 
(2003*), Matsuba (2003*), Yanguang and 
Yixing (2004*) 

Simulation techniques and urban Tobler (1979), Witten and Sanders (1981 *, 
Modelling (e.g. CA, DLA, CAST, 1983 *), Coucelis (1985, 1988, 1989), 
Cristal city, and SIMCity for real) Phipps (1989), Cecchini and Viola (1990, 

1992), Batty and Xie (1994), Xie (1994), 
Langlois and Phipps (1995*), Rasmussen 
and White (2002*), Liu and Andersson 
(2003*), Batty (2005*,2007*,2008*), 
Melin and Castillo (2002*), Martin et af 
(2008*), Jankovic et af (2005*), Silva and 
Clarke (2005*), Clarke and Birkin (2008*) 

Fractal analysis of aerial Longley (1995*,1996*, ,1997*, 2001 *, 

photography, GIS, and satellite 2003*), Nelilis and Briggs (1989), Lam 

Imagery (1990), De Cola (1994), Batty et all 

~ (1995), Shiode (1998*) .... 
~ Surface analysis Broscoe (1992), Batty, Longley, Mesev 
rJl and Xie (1995), Yfantis, Gallitano and 
t') 

= Flatman (1992) -tD Weather system Lorenz (1960) rIJ 

Human Rank size and hierarchy formation Beaumont et al (1981), Dendrinos (1985), 

Geography 
Wong and Fotheringham (1990), Rosser 
(1994), Haag (1994), Wiedlich (1994). 
Allen et al (1978), Camagni et al (1986), 
Hakken (1977), Beckman and Puu (1985), 
Puu (1987,1993), Dendrinos (1994), Batty 
et al (1989), White and Engelcn (1994) 

City as a self-organization system Hakkcn (1977), Portugali (2000*), 
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Salingaros(1999*, 2003*, 2005*) 

n Central place theo_ry Arlinghaus (1985, 1992) _. 
Railways networks Benguigui and Daoud (1991) ~ 

r.F1 
Systems theory Motloch and Woodfin (1993) 

f) Social Predictability Loye (1995), Loye and Eisler (1987), ~ - Science Portugali (2000*), Batty (1980*) tD 
rIJ 

Conceptual application Deneke (1989), Feber and Koppelaar 
(1995), Byrne (1998*, 2001 *), Melin and 
Castillo (2002 *) 

Economics Allen et al (1978), Camani et at (1986), 
Baumol and Benhabib (1989), Zhang 
(1991,1994), Cilliers (1998*), Durlauf 
(2005*) 

Arms races Saperstien (1984), Grassmal and Mayer-
Kress (1989) 

Planning Dynamic complex systems planning Jacobs (1961 *), Cartwright (1984), Wilson 
(2000*), Byrne (2003*, 2005*), Hamdi 
(2004*), Shane (2005*), Chettiparamb 
(2006*), Mashhoudi (2007*), Batty 
(2006*,2007*,2008*), Briassoulis 
(2008*), Marshall (2009*) 

Fractal analysis of street network Thibault and Marchand (1987), 
and urban traffic structure Frankhauser(1998*, 1997*, 1994), Mizuno 

and Kakei (1990), Saligaros (1997), Jiang, 
Xiao-yan, and Qing-sheng (2002 *) 

Urban L-system as means of design and Robertson (1992, 1995) 

Design using fractal to indicate character 
Fractal assessment and evaluation Cooper (2000*,2003*,2005*,2008*), 
of urban elements Haghani (2004*, 2006*) 
Fractal analysis of skylines Oku (1990), Kamei (1992*), Cooper 

(2000*), Stamps (2002*) 
Complexity and Conceptuality of Alexander (1977*, 1987*,2002*,2004*) 
urban Design 

Architecture Complexity as a style Jencks (1997, 2002*), Kavannagh (1992), 
Smith (1990), Salingaros (1999*, 2000, 
2005*), Lorenz (2003*) 

n Fractal evaluation of building Bechhoefer and Bovill (1995), Bovill 
-. facades (1996), Trivedi (1989) 
~ Computerized fractal Architecture Hanna (2002*), Jeffery (2004*), Crompton a: (2001*,2002*,2006*) -. 
f) 

Architecture and Complexity Kavannagh (1992*), Jencks (1997, 2002*), "'I 
Q 

Alexander (2002*,2004*), Joye (2007*) 
r.F1 
f) Landscape Fractal analysis and simulation of Prusinkiewics and Lindenmeyer (1990) 
~ - Architecture plants tD 
rIJ 

Fractal analysis and landscape Milne and Wiens (1989), Milne (1991), ---Q preference Gotou, Sakuragi and Iwakuma (2002*), 
f) 

~ Hagerhall, Purcell, and Taylor (2004*) -'-' Complexity and fractal geometry as Motloch and Woodfin (1993), Thwaites 
a style (1996), Jenks (2005*) 

Table 4.1: A summary of applications of complexity, chaos and fractal theories in different 
scales of urban studies from city regional to architectural scales. (Derived from Rosser, 1994, 
p.553; Cooper, 2000, p.215; updated by the author, 2008 - the updated entries marked with 
asterisks) 
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The number of publications in related fields is an indication of the broad range of 

approaches, which itself supports the belief that fractals and complexity are universal 

theories, and particularly, shows their tremendous potential in the better understanding of 

the city system. The dates of the published papers (cited in table 4.1) reveals the trend to 

link cities and the new theories of complexity, chaos, and fractals to be increasing year by 

year during the last 4 decades. This reflected in the following pie chart: 

• before 1977 

.1977-1986 

D 1987-1996 

01997-2007 

Figure 4.1: The pie chart compares quantitatively the cited papers 
in table 4.1 according to their publication dates. 

It is not the intention here to present any of these in detail, but rather to summarise the 

main ideas as platforms for the research at the empirical stage. In the previous chapter, 

the meaning and the principles of complexity, chaos, and fractal theories and the 

relationship between them were presented. It was also argued that cities can be better 

understood through these new theories as their forms and functions exhibit the main 

features of complex systems. In this chapter, the literature will be reviewed to see how 

these theories may be applied to architecture, planning, and design. The chapter, 

therefore, comprises two main parts highlighting some of these applications under the 

terms fractal architecture and fractal cities. 



4.1 Part One: Fractal Architecture; Applications of Complexity 

Theory and Fractals in Architecture 

4.1.1 Applications of fractal concept in architectural design 

Although there is no generally acceptable definition for the term fractal architecture, 

broadly speaking, two different mainstreams can be identified in the recent literature. 

Fractal-designed architecture and fractal assessments of architectural products are the 

focal interests of two groups of architects, designers, and researchers who have 

investigated the possible application of fractal geometry in architecture. They have 

approached the concept from two different viewpoints: 

1. The fractal concept as a critical tool: The approach seeks to measure the 

complexity in the form of a design project. It is based on calculation of the 

fractal dimension of architectural design outputs to enable their assessment 

and evaluation. 

2. The fractal concept as a design tool: This approach attempts to simulate 

natural forms or apply similar shapes of different sizes at the different scales 

of a design project. It seeks to create a complex form underlying subtle order 

at different layers of an architectural structure, claiming a resemblance to what 

happens in the creation of natural forms. 

In both approaches, fractal geometry provides a quantifiable tool to describe the 

complexity in the physical appearance of an architectural product and the extent to which 

it qualifies as 'fractal'. The following two sections discuss each approach in more detail. 
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4.1.1.1 The fractal concept as a critical tool: 

Fractal dimension measurement suggests a quantifiable tool to judge mathematically the 

extent of complexity (fractal quality) manifest by a design. A number of researchers have 

measured fractal dimension to evaluate critically architectural and urban elements, such 

as work by Bovill (1996) for comparisons of building facades, Cooper et al (2008) for 

evaluation of street vistas, and Stamps (2002) for analysis of urban skylines. Bovill 

(1996, p.119) suggests that the fractal dimension of a design can be measured and used as 

a critical tool. He claims that 'the lack of textural progression could help explain why 

some modem architecture was never accepted by the general public' (Bovill, 1996, pp.5-

6). 
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Figure 4.2: Left, box counting grids placed over the elevation of Frank Llo~d 
Wright's Robie house. Right, the front elevation of Le Corbusier' Villa Sa oye WIth 

a box counting grid over it. (Bovill, 1996, pp.l20, 140) 
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Box counting, as explained in the previous chapter, is a convenient method to measure 

fractal dimensions of complex fonns such as architectural elevations and urban facades. 

For instance, Bovill (1996) has employed this method to compare two facades, one from 

Frank Lloyd Wright's Robie house (figure 4.2, left) and the other from Le Corbusier's 

Villa Savoye (figure 4.2, right). In both cases, he counted the number of boxes occupied 

by details that can be perceived at a range of box sizes. The results are summarised in 

Table 4.2. 

The Elevation of Robie house The Elevation of Villa Savoye 

Box count grid size grid dimension box count grid size grid dimension 

50 1116 12 feet 100 1114 8 feet 
140 1/32 6 feet 268 1128 4 feet 

80 1/64 3 feet 675 1156 2 feet 

Table 4.2: left, the result of box counting for the elevation of the Robie house. 
Right, the result of box counting for the elevation of the Villa Savoye. (Derived 
from Bovill, pp.119, 141) 

Bovill calculated the fractal dimensions of the facades by simply using these data in 

equation 3.4 (see Chapter Three, section 3.3.2). The calculation reveals that the Robie 

house has fractal dimensions of 1.485 and 1.441, while Villa Savoye has fractal 

dimensions of 1.422 and 1.333. These figures show that within the range of scales from 

12 to 2 feet, the Robie house has a slightly more complex form. However, the differences 

will be more obvious when we examine the two cases from a closer view, from 2 feet to 

1.5 inches. This result is summarized in following table: 

Box counting at the window scale Box counting at the window scale 

of Robie house of Villa Savoye 

Box grid size grid 
count dimension 

box count grid size grid 
dimension 

31 6 6 inches 29 12 2 feet 

102 12 3 inches 68 24 1 feet 

315 24 1.5 inches 136 48 6 inches 

Table 4.3: The result of box countmg for the Robie house (Left) and for the 
Villa Savoye (Right) at the range of scales from 116 to 1148. (Derived from 
Bovill, pp. 11 9, 141) 
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Again, fractal dimensions can be calculated based on the tabulated information. 

Interestingly the sequential dimensions are 1.721 and 1.626 for the Robie house 

while they are 1.233 and 1.00 for the Villa Savoye. Bovill (1996, p.143) has made 

the following important comment: 

'At these smaller scales, where the box counting dimension for the Robie house 
remained high, the dimension of Villa Savoye dropped off to 1.00, indicating a 
lack of progression of detail. Wright's organic architecture called for materials 
to be used in a way that captured nature's complexity and order. Le Corbusier's 
purism called for materials to be used in a more industrial way, always looking 
for efficiency and purity of use. ' 

Fractal analysis of the Robie house shows that Wright designed the building with a 

cascade of detail from the organization of the building'S overall form to the stained glass 

designs for the windows. Bovill (1996, p.127) states that 'when Wright was practicing 

architecture and writing about it, the concept of fractal geometry and its relationship with 

natural forms did not exist'. However some of his writing approaches the concept very 

closely: 

'Quite a different form may serve for another, but from one basic idea all the 
elements of design are in each case derived and held well together in scale and 
character. The form chosen may flare outward, opening flower like to the sky; 
another, be noncommittal or abruptly emphatic, or its grammar may be deduced 
from some plant form that appealed to me .... But in every case the motive adhered 
to throughout so that it is not too much to say that each building aesthetically is cut 
from one piece of goods and consistently hangs together with an integrity 
impossible otherwise' (Wright, 1955, quoted in Bovill, 1996, p.127). 

Providing a fractal interpretation of Wright's statement, Bovill (1996, p.128) writes that 

'the last sentence in the quote brings to mind images of the fractals like Julia sets [see 

figure 3.21, Chapter Three]'. Julia sets display a wealth of detail at any level of 

magnification. This wealth of detail is the result of a very simple central concept, 

iteration'. The first sentence in the quote calls for all the elements of the design to be held 

together in "scale and character" by one basic idea. Bovill commented that •... this brings 
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to mind the simple rule systems that are used to generate fractal forms like the Koch 

island that are at once very complex and very simple, since any small part is similar to the 

whole'. 

In the middle of the paragraph, Wright (1955) refers to the natural source of form 

generating his ideas. He clearly used nature for inspiration, however, as Bovill (1996) 

states, his buildings do not look like trees or bushes. Instead, he was looking beyond the 

outward appearance of natural forms to the underlying structure of their organization. 

According to Bovill (1996, p.128), 'this is a fractal concept. .. One of the central features 

that fractal geometry tells us about nature is that the nature is not flat. Nature displays an 

almost infinite number of scales of length. There is a never ending cascade of interesting 

form that comes in clusters and only rarely displays perfect symmetry' . 

In short, what Bovill suggested is that natural forms do have an underlying organizational 

structure, and fractal geometry provides a clear method of understanding and describing 

that structure. This method can also be used as a design tool for creating fractal structure 

in architecture. As Jencks (1997, p.43) stated, ' ... those who style themselves organic 

architects often mimic nature's patterns of organization and, in designs, naturally repeat a 

formal idea at many scales and, just as inevitably as a flower, provide several foci'. The 

ideas and examples of this type of approach are discussed in the next section. 

4.1.1.2 The fractal concept as a design tool: 

'Could Fractals produce rich architectural ornament that could be cheaply 
computer produced? Could fractals be used as paradigms for individual buildings 
or conurbation design? Could they be a formula for automatically achieving that 
extreme degree of variety recognized as essential to human well being ~ but 
impossible to specify manually?' (Smith, 1990; quoted in Cooper, 2000, p. 177) 
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In addition one could also ask: should fractal geometry be employed as an essential 

substitute for Euclidean geometry in architecture and urban design? To answer these 

questions, the following sections will examine two groups of buildings to which the 

fractal concept could have arguably been applied. The first can be categorised under the 

tenn fractal style referring to the concept through the idea of "self-similarity", while the 

second expresses the idea of "fractal rhythm" as a visual quality or richness in design. 

Both categories have arguably the potential to provide a tool for designers to create 

something in coherence with the environment. 

I) Group one, the idea of self-similarity: 

'It is a truism that all organisms and architecture must show some self
similarity ... ' (Jencks, 1997, p.43). 

'Fractal design and its use in architecture is potentially one of the most obvious, 
practical and applicable uses of the new sciences' (Cooper, 2000, p.l78). 

Although the role of self-similarity in producing fractals is relatively a very new concept, 

throughout history there are many examples in which the idea has been applied. Before 

1970, architects had no idea about fractals and just used the self-similarity technique to 

build up a hierarchical structure imitating forms in nature. Joye (2007, p.3ll) writes that 

'The deployment of fractal principles in art and architecture seems to be a phenomenon 

of all times, and is in no way restricted to the period after the systematic mathematical 

understanding and description of fractals from the 1970s onwards'. 

Figure 4.3 illustrates the idea of self-similarity in two Hindu temples. Their surfaces are 

similarly rough, no matter which scale is used, and some of the architectural elements 

have gone through a transformation by which their size and position have been changed. 

For example, the completely parabolic fonn of the temple can be found in a modified 
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way in smaller parts on the surface. These are, in fact, the characteristics that we see in 

fractal objects. 

i ......... 
(a) (b) (e) (d) 

Figure 4.3: Self-similarity in Hindu Temples. a) The Dharrnaradscha Rath in Mamallapuram, 
India. b) The fractal attractor drawn by Lorenz shows how the overall shape generated. c) 
Temple of Rajarani, in Bhuvanesvar, India. d) Fractal interpretation of the temple, the 
simulation created by Trivedi. (a, b, c from Lorenz, 2003, unpaginated; and d from Trivedi, 
1989, p.252) 

Fletcher (1975), Crompton (2002) and Lorenz (2003) examined the detailing features of 

Greek and Gothic styles, comparing them with some mathematically produced fractals, 

and revealed amazing geometrical analogies. The prominent examples of self-similarity 

patterns can be observed in Gothic architecture. In the Cathedral of Cologne, for instance, 

the pointed arch is transformed in size and position and can be found in the entrance, 

above windows and all over the external and internal surfaces (figures 4.4c, 4.4d). 

Figure 4.4: Self-similar patterns in Gothic elements (pointed arch, gable, etc). Left (a, b). 
the Cathedral of Lincoln, England. Right (c, d), the Cathedral of Cologne, Germany. 
(Lorenz, 2003, unpaginated) 
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The Lincoln Cathedral, in England, is another example in which the fractal concept of 

self-similarity can be observed. In the tracery of the Angel Choir (figure 4.4, a, b), the 

lower level contains eight small but high vertical cuts, formed by the mullions, in each 

case two together with a quatrefoil crowned by a pointed-arch. As Lorenz (2003, 

unpaginated) describes, 'In each case such a pointed-arch also holds together two of the 

remaining four combinations'. This means that the fractal concept exists at all levels of 

scale. The order underlying the bifurcation of vertical elements - whether perceived as 

"Y -shape" or "pointed arch-shape" (figure 4 .5a) - is dominant at all scales on both 

interior and exterior surfaces. It forms the columns, arches, gables, spires, ribbed-vaults, 

etc (figures 4.4 c, d, 4.5 a, b). 

The interesting fact in Gothic style is that each element consists of rich detailing layers. 

Small details obey the same principle as the large elements. The window of Saint Mary's 

chapel of the Cathedral of Wells (figure 4.5c), for instance, has a three-pointed curved 

structure repeated at different scales - similar to the Sierpinski Gasket, but in this case the 

middle part is not taken away (Lorenz, 2003). The rose window of the Cathedral of 

Chartres is another example of a self-similar pattern (figure 4.5d). The main circle around 

the whole rose window is reduced and repeated in the middle part and surrounded by 

twelve small circles. Schneider (2003) explained in detail how each circle has been 

embedded one in another following a geometrical order. He claims that the whole 

structure of cathedral is proportional to the rose window; he also writes that 'the 

geometry of this window is an integral part of the design of the entire structure, which 

was composed as an interconnected whole .... I suspect that the whole front is an 

expanded version of the window'. 

1 ... 1 



a 

b 

c 

d 

Figure 4.5: Self-similarity of Gothic style from the whole to its parts at 
varied scales. a)Y -shape vertical bifurcation in Gothic. b) self-similar pointed 
Arch structure. c) The tracery of the "Angel Choir" of the Cathedral in 
Lincoln, Great Britain. D) Rose windows of the Cathedral of Chartre . 
(Lorenz, 2003, unpaginated) 
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Crompton (2002) has found an interesting analogy between the well-known fractal, the 

Koch island, and the plan of a Gothic column (Figure 4.6). In both the column and the 

fractal, the solid portion resembles the negative space. Crompton (2002, pA55) states that 

'Gothic mouldings are scaling forms although there must be principles of proportion and 

ordering at work that go beyond the scope of the algorithm, they seem to be fractal'. 

Figure 4.6: Koch island and Gothic column compared. (Crompton, 2002, 
p.455) 

In Figure 4.7, Crompton (2002, p.452-454) provides another analogy between a Doric 

cornice and the well-known fractal 'the devil's staircase' produced first by Mandelbrot 

(see Mandelbrot, 1983, p.80). In the case of the Doric cornice (figure 4.7, left), its shape 

roughly repeats itself inwardly over four stages. Figure 4.7 (right) shows similar stages of 

self-similar steps in the Devil' s staircase where the parts in the boxes are stretched to the 

proportions of the original. 

Figure 4.7: A denticular Doric entablature (left) and the Devil's staircase (right) 
compared. (Crompton, 2002, pp.452-453) 
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The famous British architectural critic, John Ruskin, gave some advice, which Crompton 

(2002) interpreted to what we now call fractal design. Ruskin (1903) appreciated natural 

forms and encouraged architects to apply the laws of nature in their work - what he called 

'laws of composition'. In fact, the first written description of self-similarity was by him 

(Crompton, 2002; Unrau, 1978). Ruskin (1903) believed that the "continuity" in nature is 

the result of "successive similar shapes" accompanied by some gradual change. He 

explained it in the following statement: 

, . .. an orderly succession to a number of objects more or less similar ... most 
interesting when it is connected with some gradual change in the aspect or 
character of the objects' (Ruskin, 1903, vol. 15, pp. 170-171, also quoted in 
Crompton, 2002, p.457). 

The image produced from Ruskin's advice in1858 (figure 4.8) well illustrated what he 

meant about 'hierarchy and similarity', and surprisingly, it is very similar to what 

Mandelbrot drew by computer in 1967, and called a 'fractal tree'. 

Figure 4.8: Ruskin's fractal tree - Sketch by a clerk of the works 
drawn in 1858. (Crompton, 2002, p.458) 



Crompton (2002, p.451) argues that 'a building is fractal if it repeats and multiplies a 

form, such as a pointed arch, over several orders of size. Gothic buildings aside, not many 

buildings actually do this'. While he believes that the memorial at Thiepval by Lutyens in 

1925 (figure 4.9, left) is an example of fractal design, it might be argued that this is not 

exactly similar to what we see in nature. Crompton (2002) admits that modern examples 

with fractal quality are even harder to find. He suggests that 'the well known flats in west 

Amsterdam by architects MVRDV (figure 4.9, right) repeats a box shape over three 

stages'. While this example clearly shows the attempt of its architects to produce a piece 

of fractal architecture, the opportunity to carry the progression below the size of the 

balcony is not taken and therefore it misses the small-scale detailing that we see in nature. 

Figure 4.9: Left, Thiepval memorial by Lutyens in 1925 demonstrates three stages of 
self-sameness. Right, The Amsterdam housing by MVRDV in 1995 (1995) demonstrates 
three stages self-similarity. (Crompton, 2002, pA51) 

It should be also recalled that a fractal shape contains the property of ' self-similarity ' -

not self-sameness. Jenks (1997, p.43) clearly makes this distinction: 'Self-similari ty is a 

transfonnational similitude - not an exact replication.' In this sense, the fonn in the 

Thiepval memorial can be considered more as self-sameness while The Am terdam 

housing demonstrates self-similarity. Nevertheless, it can be argued that neither achie ed 

a ufficiently high level of physical complexity to be called fractal architecture. 
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The Price house designed by Bruce Goff can be claimed to be exemplary in tenns of self-

similarity (figure 4.10). Jencks (1997, p.44) described this house in the following way: 

'Self-similar triangles, hexagons, and trihexes organize his Price house - from 
very large to very smallest detail. Sixty degree angles, their mUltiplication and 
subdivision, recur in all sorts of fonns and materials ... . its conversation "pit" is 
hexagonal, the wall of the music room is triangular to deflect sound, and various 
self-similar wedge shapes emerge from the ceiling in the form of acoustic 
decoration' . 

Jencks' description emphasises two key factors by which a piece of architecture can be 

considered as fractal: 'self-similarity' and 'details'. As can be seen in the Price house 

show these two properties over a wide range of scales, from small to large. Following 

some simple geometrical rules, every element has been connected to the element next to 

it and to the whole. However, there is no sign of an exact replication or symmetry. Each 

element, each part, and each comer has its own character. It has a holistic order, but it 

also has a higher degree of complexity, since the pattern is everywhere slightly different. 

In short, the various shapes are harmonic, related and self-similar, but hardly ever self-

same. 

Figure 4.10: Bruce Goff, Price house, interior (Left), exterior (Center) and plan (Right). 
Fractal shapes extend through the glass cullet, details and structure. (Jencks, 1997, pp.42, 
44) 
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Figure 4.11: Daniel Libeskind, proposed addition to the Victoria, Albert Museum (V & A), 
London, 1996. Six tilted trapezoids spiral through each other and fonn a new, structurally 
sound shape. Tiles in V- and L-fonns are in different scales and colours - self-similar 
fractals. (Jencks, 1997, p.13) 

Some contemporary architects and designers deliberately have tried to apply self-

similarity to their designs. In a project for an addition to the Victoria, Albert Museum in 

London (figure 4.11), Daniel Libeskind has attempted to produce a fractal architecture 

that jumps out of the ground in a series of six leaps. Six boxes push through each other, 

part cubes, part rhomboids. The flat walls, as calculated by the engineer Cecil Balmond, 

actually become the structure, allowing column-free interiors, so the crushing shapes 

have a functional rationale. Jencks (1997, p.13) described Libeskind' s work as : 

'A set of six fractal shapes at the large scale are supplemented by smaller 
"fractiles" at three lesser scales. These self-similar tiles are shaped like an angled 
L- or V -boot, something not far from the larger rhomboids, so there is a unifying 
pattern. The L-fonns dance over the surface in minor-image, flips and rotations -
standard steps, as shown by the million tiles within the V & A. ' . 

Whether we accept Jencks ' claim and call this project ' fractal architecture' or not, it 

demonstrates how a well-known architect tried to employ self-similarity to produce 

omething more complex and sophisticated. An example where we can apparently find an 

expression of the fractal concept is the interior refurbishment of Storey Hall in Melboum 

(figure 4.12). On the walls, stage, and the auditorium ceiling (figure 4.12d) the fractal 

grammar based on complexity theory is played at different scales. The architect ha u ed 
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computer assistance to derive a new grammar; however, he could not extend the same 

discipline to the whole volume of the existing building structure (figure 4.l2c). 

b 

e 
Figure 4.12: Storey Hall, by ARM group (Ashton Raggatt McDougall) in Melbourne, 1993-
96; fractal forms are based on the aperiodic tiling pattern devised by Roger Penrose - a new 
always-changing order for urbanism. (Jencks, 1997, pp.l79-181) 

Having analysed some of the works of contemporary designers who have referred to self-

similar fractal as a design style (the first group), the second group provide another 

perspective towards fractal architecture which is more related to the idea of organic 

archi tecture. 

II) Group two, the idea of fractal rhythm (unity with variety): 

' an understanding of fractal rhythms can open up an endless supply of design 
ideas for the architect or designer, interested in expressing a more complex 
understanding of nature ' (Bovill , 1996, p.6). 

The second group of buildings that have fractal quality are those having a nwnber of 

elements obeying a kind of rhythmic order at different levels of scale. In other word , 

they exhibit "unity with variety" rather than "self-similarity". This method treat a 
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building like a landscape where elements of a particular scene are related without being 

necessarily self-similar. For instance, Such potential can be seen in the work by Lucien 

Kroll (figure 4.13) where a deep cascade of shape and detail is displayed in the diverse 

residential designs. In this sense, most old buildings could also be claimed to have fractal 

quality because they exhibit variety according to a number of elements, layers and shapes 

used to construct an overall unity. 

Figure 4.l3: A deep cascade of shape and texture is displayed in the diverse residential 
designs of Lucien Kroll. (Bovill, 1996, p.8) 

This is an easier way for a building to be fractal than if all its parts are made to have 

something in common. However, 'most modem buildings are not fractal even in this 

easier sense because they use large blank surfaces, avoid decoration, and use simple 

forms, such as single block, rather than one broken into subsidiary volumes' (Crompton, 

2002, p.452). Even the examples given in figure 4.9 would hardly considered a fractal 

architecture. Although they illustrate three stages of self-similarity they do not expo a 

range of mall-sized detailing lower than 2 metres. Crompton (2002, p.452) conclud d 
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that 'these reasons why modem architecture is not fractal are the same reasons that are 

often given to explain why it can appear oppressive and unnatural' (refer back to the 

discussion in part two of chapter two). 

Figure 4.14: Left; an elevation of Aalto's home and office. Right; a fractal planning grid with 

only the vertical rhythm lines laid out. The rhythms in this figure are based on D f = 1.7. 

(Bovill, 1996, pp.112-1l3) 

Nonetheless, there are some modernists that could be considered as naturalists (e.g. 

Aalto, Wright) who produced some rhythms similar, and in response, to what exist in the 

environment and the site of projects. It can be claimed that they achieved a type of fractal 

complexity in coherence with the environment without even being familiar with the term 

fractal or even without restricting their work to the concept of self-similarity. While they 

designed well before the science of fractals was articulated, nevertheless it can be 

claimed that they virtually invented fractal architecture (Jenks, 1997). For instance, much 

of Alvar Aalto's work displays the complex rhythms of nature. Figure 4.14 (left) 

illustrates an elevation of Alto's home and office and Figure 4.14 (right) is a fractal 

rhythm with the dimension of D f = 1.7; as Bovill (1996) noted, it is similar to the tree 

spacing in the background of Aalto's home and office. He writes: 

'Note how the variation in window and wall panel size echoes the variability of 
tree spacing in the forest' (Bovill, 1996, p.112). 
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As nature has fractal geometry (shown by Mandelbrot), an architect intending to design a 

project in coherence with its natural environment can imitate the fractal rhythm existing 

in that environment and distribute the lines and elements of his design with the same 

rhythm to capture its complexity. Inspired by Alto's work, Bovill (1996, p.6) also 

suggested that 'the fractal dimension of a mountain ridge behind an architectural project 

could be measured and used to guide the fractal rhythms of the proj ect design'. If both 

heights and widths of each house have been varied according to the fractal distribution of 

the natural forms in the background (figure 4.15), the project design and the site 

background would then have a similar rhythmic characteristic. 

I I I I I I I I I I I [[] 
Figure 4.15: Fractal distribution of height and width for a row of townhouses. 
(Bovill, 1996, p.6) 

This type of approach is similar to what can be seen in 'organic architecture'. 1 encks 

(1997, pA3-45) suggests that virtually the work of all who are interested in organic 

architecture should show fractal characteristics such as 'self-similarity', 'unity with 

variety', 'strange attractor', etc. The Bavinger, Garvey, and Price houses designed by 

Bruce Goff - in 1950, 1952 and 1956 respectively - are exemplary in this respect. In the 

Bavinger house (figure 4.16), for instance, Goff uses a spiral shape to organize a flow of 

movement around and up a ramp which is interpreted by lencks (1997, pA5) as 'strange 

attractor' similar to fractal patterns in complex systems. It exhibits the dynamic, local and 

non-local interconnections, simultaneously unfolding and enfolding in the gesture of 

attractors in a living system (compare it with Lorenz's strange attractor, figure 3.5). 
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Figure 4.16: Bruce Goff, the interior of the Bavinger house. (Jenks, 1997, 
pA5) 

Cooper (2000, p.178) also refers to the Bavinger house and states that' ... visually it 

seems to have fractal characteristics, but how, other than by being interesting to look at, 

does it contribute to planetary survival? How does it feel to live in? Is the fonn energy 

efficient?' in other words; can fractal architecture contribute to sustainability in order to 

make better places to live in future? 

'If a constructive answer is not forthcoming then "fractalian architecture" is 
in danger of being seen as just another abstract design style' (Cooper, 2000, 
p.178). 

To explore these questions further, a deeper picture of fractal architecture and its 

characteristics are required; otherwise, as Cooper suggested above statement, the fractal 

concept is in danger of being seen as just another abstract design style. 

4.1.3 Fractal architecture 

Are there any architectural products - buildings or urban spaces - that can be called 

' fractal architecture'? If so, are there any criteria by which an architectural product may 

be a signed as fractal? Based on the discussion and examples in section 4.1.2, the an wer 

to the first question is explicitly 'yes'. However, a precise and common- en e an wer to 

the econd question is not available. There is no generally accepted definition to a ure u 
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as to what kind of properties or criteria can be assigned to distinguish typologically 

fractal architecture. This can cause ambiguity. We may think that a designed object has 

fractal quality whereas it has not. To overcome this problem, it might help to reverse the 

question and ask, "What is not fractal architecture?" 

4.2.3.1 Non-fractal architecture: 

Some of the seemingly complex buildings with self-similar patterns appear to be flat at 

closer observation, hence, should not be called fractal. For instance, The Jewish museum 

in Berlin and the Cinema Center in Dresden (figures 4.17, 4.18) might be mistakenly 

interpreted as if they have fractal property. Jencks (2002, p.247) believes that ' self-

similar forms, angles, slashes and lines' in these two buildings exhibit a fractal grammar. 

However, in both cases, if they are observed at short distances (e. g. 3 -4 metres), their 

forms and elements do not reveal any further self-similarity, details or textural 

progression. At that level, in fact, they seem to be flat ; and the self-similarity did not 

progress more than two stages. 

Figure 4.17: Jewish Museum, Berlin, Designed by Daniel Libeskind, 1989-2000. At the fir t 

impression may seem fractal while it is not. (Jencks, 2002, pp.246-248) 
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Figure 4.l8: Cinema Center, Dresden, Designed by Coop Himmelblau, 1993-1998. Exterior, 
Interior and the section reveal some self-similarity but not create fractals . (Jencks, 2002, 
p.239) 

The complex of Federation Square in Melbourne (figure 4.19) is another example where 

the architects - LAB with Bates Smart - attempted to employ fractal geometry as an 

organizing tool, but failed to apply it to the whole project successfully. The architects 

claim that 'the building dissolves the city grid to the north into the parkland to the south 

using fractal geometry at several scales to do so' (quoted in Jencks, 2002, p.262). What 

features of the form might create this impression in their minds and encourage them to 

make this claim? The seemingly dynamic texture does not make a logical relationship 

with the overall shape. It is just a repetition of a triangular Euclidian shape, and does not 

create the structural depth that we see in a fractal object in nature. 

~ FEDEFafFOt'1 
Figure 4.19: Federation Square, Melbourne, designed by LAB with Bate Smart, 1997 -~002 
The fractal concept in the mind of architect could not cr ate fracta l archit cturc. (Jcnck ' , 

2002, p.239) 
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In the same way, the examples given in the figure 4.20 cannot be called fractal 

architecture. Neither within their own structure, nor in the way their forms communicate 

with their environments, do they exhibit structures like fractals. In the following 

statement, Alexander (2002b) argues that the language used in these examples is not 

useful for creating a successful textural progression or what he calls a living structure. 

'The Piano and Libeskind examples show idiosyncratic modernistic 
forms ... which are not suitable as a source of schemata for living structure' 
(Alexander 2002b, pp.440). 

Figure 4.20: Some avant-garde examples of architectural language in the twentieth-century 
creating fabricated structure, not living structure. Daniel Libeskind's Felix Nussbaum 
Museum in Osnabruck (left), Renzo Piano's Center for Science and Technology in 
Amsterdam (middle), and Frank Gehry's New Guggenheim Museum in Bilbao (right). (Left 
and middle, Alexander, 2002, pp.439-440; Right, Jencks, 2002, p.239) 

Alexander (2002) argues that even some of the attempts by modernist and postmodernist 

architects to create organic architecture are likely to fail. In the Community Center in 

New Caledonia (figure 4.21), for instance, the fonns very roughly resemble (in outward 

shape only) their foreground natural context - a self-similar branching structure -

however, 'its characteristics ... still does not correct the essential problem, the lack of 

unfolded geometry' (Alexander, 2002b, ppA00-401). According to Alexander (2002b), 

'unfolded geometry' means that their fonns are not generated in a step-by- tep adaptation 

process which accepts changes over time. 

155 



Figure 4.21: Community Center, New Caledonia, Designed by Renzo Piano, Seemingly 
organic architecture, but can not considered as fractal architecture. (Alexander, 2002b, 
p.441) 

A typical problem in modem architecture is that fonns are not generated but ' fabricated ' 

(Alexander, 2004). In short, a building or an urban space, which contains only one feature 

of complexity (e.g. self-similarity) but does not fulfil other aspects, cannot be considered 

as fractal architecture. In the following section, the research attempts to establish some 

features by which, a piece of architecture or an urban space can be evaluated as being 

fractal. 

4.l.3.2 The key features of fractal architecture: 

A number of theorists have suggested a list of properties to define the tenn 'good 

architecture' - e.g. Ruskin's (1903 , pp.l59-188) 8 rules for composition, Jencks' (1 997, 

pp.167-170) eight criteria for architecture, and Alexander' s (2002a, pp.143-242) 15 

fundamental properties for living structures. However, none of the expert in fractal 

theory have yet provided an integral list of criteria by which the term' fractal 

architecture" can be explicitly defined. The list of criteria suggested in thi not 
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claimed to be comprehensive, but is intended to distinguish a fractal architecture from a 

non-fractal one. 

Criterion 1 - Integrity and Multiplicity: A small number of elements cannot make 

complexity (see Chapter Three, section 3.2.2.1 for details). A fractal form exhibits 

complexity and its complex form is composed of a large number of elements from large 

to small scales. 'Its elements are impossible to count' (Crompton, 2002, p.459). Its 

complexity is revealed gradually - more and more detail and elements appear - as one 

gets closer. However, this multiplicity is not anarchic but follows an integral structure 

obeying some certain rules, which create similar patterns - fractal patterns. This echoes 

Ruskin's (1904) advice about good composition with scaling rules (see figure 4.8 in 

section 4.1.1.2). He suggested that an ornament or a building should be designed in a way 

that it is meaningful when seen at long, intermediate, and close range (see also Chapter 

Two, section. 2.1.3.2). This is only possible by applying details at different scales so that 

considerable numbers of elements work together in an integral whole. 

Criterion 2 - Self-similarity/Self-affinity: This is the most familiar feature of fractal 

complexity, which the previous chapter discussed using a range of examples. Fractally 

designed objects contain self-similar patterns repeating at different sizes and scales. In 

other words, their small, medium, and large elements are proportional to the whole, 

following some mathematical or geometrical rules which create a logical hierarchy in 

fonn and structure. As Ruskin (1903) suggested, it is exactly what a good composition 

calls for - 'an orderly succession to a number of objects more or less similar' (Ruskin, 

1903, vo1.15, p.170). This also responds to Alexander's idea of 'levels of scale'. 
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However, self-similarity might be mistakenly described as rhythm, proportion, or simple 

repetition. Many successful architects apply some proportional order in their designs - for 

example 'the modulor' concept ofLe Corbusier obeys rules of proportion (see the 

discussion ofLe Corbusier's human scale in Ching, 2007, p.318). But they are not self

similar; they are more self-same. Simple repetition creates monotony, while self

similarity leads to variations while retaining overall integrity. However, this criterion 

alone is not enough to create a fractal space. 

Criterion 3 - Fractality (the degree of physical complexity): Chapter Three suggested that 

fractal shapes show higher geometrical dimensions than straight lines and pure shapes in 

Euclidian geometry. A fractal shape does not lose its complexity when perceived at closer 

distances (e.g. the Robie house, figure 4.2). However, some seemingly complex forms 

demonstrate flatness if observed at smaller scales (e.g. Federation Square, figure 4.19). 

Fractality is, of course, a matter of extent. One fractal shape may exhibit a higher level of 

complexity than another. Therefore, the calculation of fractal dimension provides the 

most legitimate and accurate method for assessing the degree of physical complexity 

(fractality) of an object. It can be measured by one of the methods introduced in the 

previous chapter (see also appendix B). 

Criterion 4 - Hierarchies of connections: There is a rank-size distribution in fractal 

objects in which large elements are less in numbers as compared to small elements but 

are more complex as formed by the combination of sub-elements (see Salingaros 1999, 

2005; Chen and Zhou, 2004). The complementary elements of roughly the same size are 

coupled strongly to form an element of the next-higher size. In this sense. in a fractal 
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object, hierarchy is a power law relationship between elements with different sizes, which 

creates the whole. Batty and Longley state that: 

'Hierarchies generate power laws and that power laws are one of the bases 
of fractal geometry' (Batty and Longley, 1994, p.52). 

Different types of connections tie elements of different sizes together, so that every 

element is linked to every other element. The stronger connections are local (close range) 

ones. Connections might also be between internal sub-elements of distinct groups, but 

they might be weaker than the elements in one group. Figure 4.22 illustrates two types of 

hierarchy, a tree-like pattern and a semi-lattice pattern. The latter generates power law 

relationships which usually occur in complex fractal patterns (see also section 3.2.2.11, 

figures 3.12, 3.13). 

Figure 4.22: The tree like (left) and semi-lattice (right) hierarchies. The 
latter occurs in complex patterns. (Alexander, 1965; the figure 
reproduced in Batty and Longley, pp.53-54) 

Alexander's (2002a, p.15l) property of "strong centres", and Ruskin's (1903, vol.15, 

p.164) "law of principality" also imply the importance of hierarchical relationships. Both 

advise that designers should arrange their material so that one element would be more 

important than the rest, and that the others would group with it in subordinate positions. 

Thus, in order to conceive the coherence and the congruence of any design, the structural 

hierarchy of its components must be clear and correspond with that of the whole object in 

the eyes of the viewers according to the multi levels of conditions and the circumstances 

of magnification (changing the scale). 
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Criterion 5 - Change over time/space: Changing character and size can be seen in many 

fractals. According to Ruskin (1903, vol. 15, p. 171), 'if there is no change at all in the 

shape or size of the objects, there is no continuity; there is only repetition. It is only the 

change in shape which suggests the idea of their being individually free ... from the law 

that rules them, and yet submitting to it'. Crompton (2002, pA57) referred to Ruskin's 

(1903) rules of composition and stated that it is the essence of a fractal that it cannot be 

simply periodic. The simple formal repetition results in an array of self-sameness while 

the small changes create self-similarity/self-affinity. 

The processes of creating a fractal object accept change over both space and time. The 

change over space in a fractal architecture means that the designer provides the observer 

who explores the building from inside and outside with a variety of perspectives. In other 

words, 'elements of e.g. a fa9ade - columns, capitals, base, architraves etc - can be 

grouped in a way that there is more than one equivalent interpretation presented to the 

observer' (Meiss, 1991, pA5). An example of this quality can be found in the 

Eurhythmics Center designed by Enric Miralles (figure 4.23, right); the resulting sections 

reveal a sequence of varying perspectives as one walks from section A to G and H to P. 

However, the change over time means the user of the building or, in the case of a city, the 

people who use the city space, can change some parts of the original design in order to 

adapt it to new needs (see also unfolding property suggested by Alexander, 2002b, 

ppJOO-322, 400-401). Time has an important role in the degree of complexity that a 

building or an urban space demonstrates. Having referred to Victor Hugo's statement, 
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"Time is the architect", Jencks (1997, p.74) wrote that that the details which were added 

over time would give 'organizational depth' to that space. 

In Chartres Cathedral, for instance, change was allowed after two destructions by fIre, 

which is very obvious in its two spires; one belongs to the Romanesque period and the 

other was built later in the Gothic style (fIgure 4.23, left) . Furthermore, the cathedral was 

not built in a day; it took one hundred and fIfty years of concentrated passion of many 

building campaigns to create layers of details at the building's different scales. More 

examples can be found in places that were renovated or even converted to adopt new 

functions. In fact, if a building or an urban place can adapt to a new situation and can 

serve many different purposes over time, it lives more, and thus contributes to its 

sustainability - (see also the quality of "robustness" in urban design terms; Bentley et aI, 

1985). If not, it will inevitably die after a few years of use. 
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Figure 4.23 : An example of change over time, Chartres Cathedral's spires, Fra~cc (left) .. n 
example of change over space, the plan, and sections of Eurhythmics Cent r, Ahcant, pam, 
de igned by Enric Miralles (right). (Left , Bony, 1983, p.97; Right, Jencks, 1997, p.174) 
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To sum up, it can be claimed that a piece of architecture or an urban space can be 

evaluated as fractal, if its fractal dimensions remain high at different scales of observation 

and the components of its hierarchical structure obtain more if not all of these features: 

"integrity and multiplicity", "self-similarity", "hierarchies of connections", and "change 

over time/space". To maintain the focus, this research will not go beyond this point. 

Further research would be needed to explore the idea of fractal architecture to make valid 

evaluations possible. 

4.2 Part Two: Fractal City; Applications of Fractals and Complexity 

Theory in Urban Planning and Design 

The first part of this chapter discussed the applications of fractals and complexity theory 

in the field of architecture. The literature related to the theory of fractal cities will now be 

reviewed. The literature review revealed three themes in which the applications of the 

complexity theory could be identified: a) conceptualizing city complexity, b) simulating 

city complexity, and c) measuring city complexity. Reviewing all of these in detail is 

beyond the focus of this research. However, it is essential to explore briefly each of these 

themes in order to understand the nature of urban evolution, in terms of the title of this 

thesis. 
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Therefore, this part comprises three main sections. In the fIrst section, complexity in 

planning and design is conceptualised by highlighting the essence of the transition from 

conventional planning (top down land-use policy and planning) to complex systems 

planning (bottom up fractal base planning). The weaknesses of traditional planning 

approaches in the 20
th 

century will be outlined to show how the new views based on 

complexity theory may change the way we plan and design our cities. Later in this part, 

the core idea behind fractal cities will be discussed as applied in city simulation and 

urban measurement. The second section introduces some basic simulation models, and 

the third section will focus on measuring urban complexity as it contributes to the 

empirical stage of this research. 

4.2.1 Conceptualizing city complexity 

In chapter two, the failures of conventional (Euclidian) geometry in analyzing city form 

and change were discussed. By identifying the features of complexity and their analogues 

to urban systems in chapter three, it was argued that cities should be viewed as complex 

systems. In this section, the literature will be reviewed to argue that conventional theories 

in planning and design have failed to understand the complex nature of cities, and 

therefore, the methods taken from such views and implemented in practice today have 

also failed to achieve their goals in predicting and controlling effectively urban shapes 

and behaviours. 

Mashhoudi (2007, p.55) argues that humankind's efforts through history in designing 

new urban settlements have always raised a signifIcant question. "How can one person or 

a group of people control the change or decide on the shape of a city that is supposed to 
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accommodate numerous people with a wide variety of activities for a long time, while 

having an efficient system?" According to Shane (2005, p.305): 

'The belief that one person can control a whole city or urban situation, marks a 
crucial difference between Modernist designers (who affIrmed it) and 
postmodernist designers (who do not) .... The attempts of the structuralist and 
rationalist designers to construct a language of urban architecture that included 
all the traditional elements of the city as a Newtonian clock coordinating the 
universe by simple laws - all organized around an unanswered question of 
control. ' 

The utopian blueprints prescribed in the last century to encompass the distinct features of 

societies in order to control urban change have been the main goal of contemporary 

master planners. Cilliers (1998, p.112) who also rejects the validity of utopian 

approaches, states that: 

'Whether or not we are happy with calling the times we live in 'postmodern', there 
is no denying that the world we live in is complex and we have to confront this 
complexity if we are to survive, and, perhaps, even prosper. The traditional (or 
modem) way of confronting complexity was to fInd a secure point of reference that 
could serve as foundation, a passe-partout, a master key from which everything else 
could be derived. Whatever that point of reference might be - a transcendental 
world of perfect ideas, the radically sceptic mind, the phenomenological subject'. 

Cilliers (1998) believes that following such a strategy constitutes an avoidance of 

complexity. In fact, the obsession to find one essential truth blinds us to the bottom up 

self-organising nature of complexity. The core discussion here is that the notion of a "top 

down controller" is simply impossible given the degree of complexity that modem cities 

manifest, and thus any successful control must probably operate from the bottom up. The 

chief consequence of this bottom up revelation, according to Shane (2005, p.305), is that 

there will be 'no longer a place for a master plan or a master planner'. 

Jacobs (1961) is one of the first theorists who attacked modernist city planning and its 

solutions in which idealistic orders of blueprints are prescribed. She argued that this kind 
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of planning, which treated the city as a machine, could not handle the nature of the city as 

"organized complexity". Even 45 years after Jacobs wrote' The Death and Life of Great 

American Cities " it remains the classic book on how urban planners and their linear 

simplistic models have destroyed functioning cities. It is widely known for its incisive 

treatment of those who would tear down functioning neighbourhoods and destroy the 

lives and livelihoods of people for the sake of groundless but intellectually appealing 

modernistic utopian ideas. Shane (2005, p.307) argues that 'even Lynch (1981), who was 

critical of modernism, retained the modernist planners' overview, drawing beautiful 

sketches of views from 30,000 feet and helping by his diagrams eradicate Boston's red

light district in Scollay Square'. The modernists' notion of "top down land use planning" 

and their "linear-equilibrium urban models" still dominate city planning in practice (see 

Batty, 2007; Verburg et ai, 2004; Briassoulis, 2008; Byrne, 2005). 

The idea of controlling city changes through deterministic and top down oriented plans 

was the modernist planners' solution for the poor living conditions of the industrial cities 

of the 19th century. In the last century, the science of planning responded to city problems 

through two major transitions (table 4.4). In the first half of the 20th century, the 

prominent view was of the "City as a Machine" (the first transition) and the prevailing 

view in the second half was of the "City as a System" (the second transition). In the 

following sections, these two transitions should be addressed in order to highlight the 

failure of top down planning approaches. It will then be discussed how the science of 

complexity can make the third transition in terms of bottom up complex systems planning 

(see also table 4.1, the sections related to planning at regional and city scales). 
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Planning 
in 

Transition 

Transition 1 

City as Machine 

1900s-1950s Howard (1989, 1902) 
Geddes (1915) 
J eanneret - Le 
Corbusier (1929) 
Bauer (1934) 
Mumford (1938) 

Transition 2 

City as System 

Transition 3 

City as Complex 
System 

1---------1 Stein (1951) 
1960s-1980s ~ Q~~~~~!~q? ~(1~~~~5i~~~ -L~ch-(f960,-f98-1)----1 

Crane (1966, 1977) : 
McLoughlin (1969) ~-Ja~~b~-(i96-{j---------

Chadwick (1971) : Alexander (1977, 
Faludi (1972) : 1987) 
Dennis (1970, 1972) : Chadwick (1977) 
Davies (1972) : Battv (1985\ 

-------------------------~----:.~-------j-----------
1990s-2000s : Alexander (2002, 

: 2004) 
: Batty et af (1991, 
: 1992, 1994, 1995, 
: 1999,2005,2007, 
: 2008) 
: Byrne (1998, 2001, 
: 2003, 2005) 
: Briassoulis (2000, 
: 2008) 
: Cooper (2000,2003, 
: 2005, 2008) 
: Cilliers (1998) 
: Hamdi (2004) 
: Healey (1997, 2003) 
: Marshall (2009) 
: Mashhoudi (2007) 
: Portugali (2000) 
: Wilson (2000) 

Table 4.4: Plannmg transitions m the 20th and 21 st centunes and some key references 
of each period. 

4.2.1.1 Transitions in urban planning and design 

4.2.1.1.1 City as a Machine - Planning transition I: 

'The city as a machine can grow, and it can do so in generally predictable 
directions and in large, mechanical increments' (Shane, 2005, p.46). 

From the early years of the twentieth century, the trend of urban planning (particularly in 

the UK and US) was towards comprehensive plans with certainty, under the influence of 

pioneers such as Ebenezer Howard and Sir Patrick Geddes (Hall. The proposition of the 
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utopian concept of the "Garden City" was, in fact, a reaction to the poor living conditions 

of industrial cities in the 19
th 

century. Byrne (1998, pp.141-142) states that the blueprint 

suggested by Howard was based on the idea that 'land use planning was an effective 

mechanism for achieving physical health through separation of people from pollution, a 

notion of considerable contemporary relevance in the late 20th century'. Based on 

Howard's (1898) idea, the growth ofa metropolis (e.g. London) should be halted by 

repopulating the countryside and building self-sufficient settlements around the main city. 

'These settlements were to have much open space; their economic and social structures 

were to be controlled' (Larkham, 1991, pA2). They were to be connected by tramway 

and high-speed train systems, and the location and the size of every land use were to be 

determined such as: 

• Industry, schools, housing, greens, etc - each in its own allocated areas as planned 

• Commercial, club, and cultural places - usually in centre(s) 

According to the theory of the garden city, each of these small towns was to be ofa 

certain size encircled with a belt of green agriculture. The green belt was to be managed 

to prevent it from ever becoming urbanised. The town, in its totality, was to be 

permanently controlled and protected by the public authority to prevent speculation or 

supposedly irrational changes in land-use, population, density, and size - the maximum 

popUlation, for instance, was to be held to 32,000 and 58,000 inhabitants for each of the 

small towns and the central older city respectively (see Osborn and Mumford, 1965). 

Geddes (1915) extended Howard's concept to the planning of whole regions. Under such 

regional planning, garden cities would be rationally distributed throughout large 

territories, merging with natural resources, balanced against agriculture and woodland, 

forming one logical whole (Welter, 2002). 
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The ideas of Howard and Geddes were followed by many planners and designers during 

1920s and afterwards, such as Lewis Mumford, Clarence Stein, Henry Wright, and 

Catherine Bauer. Even planners with no particular interest in the idea of the garden city 

were intellectually governed by underlying principles of the garden city (Jacobs, 1961). 

The most radical mechanistic idea of city planning was suggested by Le Corbusier in the 

1920s. In his dream city, the Radiant City, he proposed a vertical version of a Garden 

City, an idea of skyscrapers and super-blocks within a great park (figure 4.24). In Le 

Corbusier's vertical city, all social and spatial elements were determined: 1200 

inhabitants per acre, the land occupied by high density skyscrapers mainly 

accommodating low-income people, high-income people would be in lower, luxury 

housing around courts, and the ground level left for restaurants and theatres, etc. Most of 

the ground could remain open for green space and transportation including great arterial 

roads for express one-way traffic. 

Figure 4.24: The sketch for the centre of Paris proposed by Le Corbu i r bas d on hi 
theory of the Radiant City. (Jeanneret, 1929, pp.174, 175,200,280) 
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Jacobs (1961) claimed that up to the mid-20th century, an increasing number of housing 

refonners, zoning planners, highway planners, legislators, land-use planners, and 

modernist architects popularised such simple mechanistic and easily comprehensible 

ideas of super-blocks, project neighbourhoods, and the unchangeable plan. The result, in 

fact, was 'anti city planning', she argued: 

'the mechanistic way in which cities were conceived and planned was entirely 
counter to the diversity that made up vibrant and living cities, with the result 
that post-war urban planning (and modem architecture) were killing the 
heterogeneity and diversity that characterized urban life' (Jacobs, 1961, pp.21-
22, also quoted in Batty, 2007, p.7). 

It was, in fact, a mechanistic and Laplacian version of urban planning in which the future 

would be predicted and determined if comprehensive research was undertaken on the past 

and the present. Batty (2007) referred to Jacobs' statements and marked the failure of 

such superficial mechanistic view of modernist planners. He pointed out, 'In the mid-20th 

century, the prevailing view of society was one which treated social structure akin to the 

way machines functioned ... the metaphor of the city as a machine ignored self-

detennination and was only barely applicable in the most cursory ways to social 

problems' (Batty, 2007, pp.3-7). Norman Mailer described the image of American cities 

in the early 1960s as: 'the runway destruction and development creating empty 

landscapes of psychosis' (quoted in Jencks, 1997, p.77). 

4.2.1.1.2 City as System - planning transition II: 

Before the mid-20th century, it was believed that the city must be designed in a specific 

area and its future expansion must be controlled. With the influence of systems theory in 

the 1960s, predicting the growth and change in activities of cities as the main intention of 

traditional urban plans became obsolete. The concept of dynamic systems theory 

169 



motivated planners to revise traditional urban planning. In Britain, for example, 'the 

approach sustained by developments in planning theory and method was popularised in 

various texts such as McLoughlin's (1969) Urban and Regional Planning: A System 

Approach, Chadwick's (1971) A Systems View o/Planning, Faludi's (1972) Planning 

Theory and so on' (Batty, 2007, p.7). 

The systems approach can be considered as the second transition in planning in the 20th 

century. The former methods - in which master plans, with their architectural projects 

were fixed - were replaced by "plans with policies" to provide more flexibility to the way 

in which cities were developed in the future. Byrne (1998) marked this as an important, 

logical, and practical progress in planning: 

'The move in the post-Second War period towards a system conception of 
planning, embodied in the UK's planning system by a shift from "map-based 
land use" planning to the "document-founded structure plans", was a perfectly 
logical development of planning as practice' (Byrne, 1998, p.142). 

The aim of designing new cities was to create a system that would easily encompass all 

the activities of numerous people, while having the power to be flexible in favour of the 

dynamic concept of a city. New issues such as structural theories and systems theories 

contributed to the understanding of the city as a system in a new way, where numerous 

subsystems interact to create the whole. Based on this view, urban design and planning 

were aimed at predicting the structure of a city that could accept growth and change. A 

revision in size and capacity can be seen in the cities designed after the Second World 

War - especially in the UK (see Larkham, 1997,2003, 2008). 'In designing the new city 

of Milton Keynes with a free-economic system, the goal was to create a structure with the 

maximum capability for flexibility and development', and 'the designers of Islam Abad 

and Saadat city followed this aim too' (Mashhoudi, 2007, p.56). 
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According to systems planning, the city was no longer viewed as a simple element with a 

clear definition. In designing a city, a system was discussed as being flexible, expansible 

and without former traditional limits. Thus the structural approach to systems discarded 

the method, which took the city to be complete and outlined every element. This new 

view of the city inevitably changed the principle of urban planning and how goals must 

be achieved. Design and change in this view should obey a hierarchical structure. 

Therefore, planners set up some priorities in order to maintain and enhance the main 

structure of the city and to develop other parts in more flexible but still in a coherent way 

according to the whole structure. 

In 1977, 'David Crane proposed that urban designers and planners priority should be to 

create first the public element of a city (the element in which the public sector will 

invest). These elements and the factors that are controlled by the public sector, will then 

guide the activities and the factors of the private sector, which stand at a lower 

hierarchical level ' (Mashhoudi, 2007, p.57). This made the distinction among elements 

that playa structural role in the city. The goal was to define a systematic and hierarchical 

relationship among structural elements by which any change or evolution in any other 

element of the city is to correspond to the construction of whole system structures and 

become harmonious with the main structure. 

4.2.1.1.3 Advantages and limitations of systems planning: 

Indeed, as soon as the systems approach was articulated, its limits became evident - in 

both the spatial and social urban aspects. From the social point of view, it ignored the 

rationality which interpreted working-class action (local) as the basis for the universal 
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progress in a city (global). Byrne (1998) argued that despite systems planning claiming to 

assert value neutrality, in practice it served capitalist development interests - those 

involved in the construction and development industries. From the spatial point of view, 

this approach thinks of cities as systems in "equilibrium" with planning aimed at 

maintaining this equilibrium (Chadwick, 1971). This clearly conflicted with innovation, 

competition, conflict, diversity and heterogeneity; all hallmarks of successful democratic 

city life which led us to the new paradigm of "complexity theory" (Batty, 2007). 

In theory, planners as engineers were aware of the potential of systems theory; however, 

in practice, they usually took up more simplistic and linear models of the systemic 

approach where they were generally incapable of directing spatial understanding and 

social evidence in the formation of objectives. According to Batty (2007), casting most 

urban problems into such narrowly defined domains was simply not sensible and feasible, 

and much of our understanding and their planning remained beyond the systems 

approach. 

'Intellectually too, it was clear that what had emerged was a rather narrow view 
of the way systems behaved: most systems were not in quiet and passive 
equilibrium but in tunnoil much of the time while the idea of evolution to new 
conditions implying different structures and behaviours was simply beyond this 
kind of thinking' (Batty, 2007, p.7). 

However, the system-based structure planning process was not a disaster as it had a 

representative democratic element, a considerable element of public consultation, if not 

participation (see Dennis 1970, 1972; and Davies, 1972). 'The planning disasters, which 

played an important part in the discrediting of planning as part of collective intervention, 

were largely the work of simplistic architects and road engineers, both in partnership with 
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civil engineering capital' (Byrne, 1998, pp.142-143, see also Hall, 1980). In summary, 

the main advantages and limitations of systems planning can be outlined as: 

• It demonstrated some democratic elements in terms of public consultation 

- but not public participation. 

• It considered the free interaction of subsystems generating flexible local 

forms as private elements - but only within a hierarchical framework of 

relationships with the public elements as the main structure of an urban 

system, in which their positions should be predetermined. 

• It revised fixed land use-based master plans to more flexible policy-based 

master plans - but still through the top down view with predictable 

outcomes, trying to keep the system in equilibrium (within certain targets). 

In designing a city, a system was discussed as being flexible, expansible and without 

former traditional limits. In this sense, it can be claimed that the systems approach was a 

more realistic version of master planning. Nevertheless, its overall view remains the same 

following top down deterministic logic. 

4.2.1.1.4 Planning in the conventional top down approach: 

In fact, from the Renaissance to the Modem Era, rationalism and utopian ideas have been 

dominant (Cilliers, 1998). The idea that urban form and function could be 'controlled' 

and 'planned' to meet certain goals and targets was a natural extension of such logic. 

Absolutism of modem science and the persistence of rationalists and structuralists in 

obtaining a certain, definite, and the unchangeable image for the laws of existence 

became the base for studying the city in the 20th century. The most common fact in 
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mechanical rationalism (the first transition) and systematic structuralism (the second 

transition) is that both have a top down routine. 

The city planners of the 20
th 

century tried to imagine conversation between urban factors 

from a top down perspective and to create overall structures to serve local actors' needs. 

The top down routine sometimes has political expediency - particularly in developing 

countries. In such cases, the plan will not have a practical purpose; hence obviously it 

does not serve local actors' need at all. However, even in the cases where top down 

planning follows practical purposes, mostly it cannot satisfy the ground problems at local 

level. It can be claimed that the conventional planning is a long process short on product, 

despite the demand from most poor people for the opposite (see Byrne, 2003; and Hamdi, 

2004). That is one of the fundamental problems of top down master planning. The 

following example given by Hamdi (2004) describes what is usually happening in 

conventional planning practice: 

' ... somewhere along the way a few projects will have got started - some housing 
will have been built, a road, a clinic, an upgrading project or two or an outmoded 
sites and service project - but not enough to make a real difference because, by 
the time you have done all planning and thinking, you will have probably run out 
of money anyway for the doing. In any case, in the time it has all taken, the 
government will have changed, the international Inational focus will have moved 
on to some other new agenda of priorities, the cease fire amongst warning 
factions will have been called off and your favourite mayor will have been 
moved on or been displaced. And probably, in the time it has all taken, the 
problem on the ground at local scale will have changed or disappeared or 
managed by local people in their desperation, and other problems will have 
appeared. Local problems and issues will, therefore, be reshuffled and redefined 
to fit the strategy plan which, by this time, will be too expensive or too difficult 
to change' (Hamdi, 2004, p.l04). 

After all, if master planning, in its conventional top down routine, is not working 

properly, then, the principal question is "where is planning best placed?" (Hamdi, 2004) 
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In chapter three, it was concluded that cities demonstrate the characteristics of 

complexity, and therefore, they are to be studied and treated as complex systems. Batty 

(2007), Briassoulis (2008), and Byrne (2003) clearly state that a clear planning transition 

is taking place away from classical thinking (positivism, reductionism, linear and static 

worldviews) towards complex systems thinking (alternative epistemologies, holism, 

nonlinear, and dynamic worldviews, which are all the hallmarks of complexity theory). In 

fact, this is 'the concentrated action of millions of individuals and agencies that generate 

structures of complexity that are virtually impossible to manage, control or redesign from 

the top down' (Batty, 2007, pp.3-4). 

4.2.1.2 City as complex system (planning transition III) 

Cities should be identified, understood, and treated neither like simple 
mechanical systems nor like disorganised complex systems, but as 
'organized complexity' (Jacobs 1961, p.434). 

From the two earlier transitions, urban planning, as a science, has been significantly 

developed to serve many aspects of city life. However, it has not yet coped with the 

uncertainty and intrinsic complexity of the city system. Despite the recent theoretical 

developments in understanding of urban complexity, the linear top down planning 

approach with absolute authority over the time-place dimensions - inherited from the last 

century - is still dominant in practice. This approach would reduce the complexity and 

dynamics of the urban systems to a series of "static slides" designed once with certainty 

(certain targets), and this would be far from the fact that cities are not systems in 

equilibrium (Bak and Sneppen, 1993; Bak, 1996). 
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Planning practice, therefore, calls for another transition responding to the dynamics of the 

complex city system. The third transition suggests that views of planning must change 

from the city whose physical form and function can be determined, designed and 

manipulated (the city system in equilibrium) to the city whose temporal and spatial 

characteristics is far from equilibrium (the city system in fragile equilibrium). 'This is a 

switch from thinking of cities as being artefacts to be designed to thinking of them as 

systems that evolve, that grow and change in ways that might be steered and managed but 

rarely designed from the top down' (Batty, 2007, p.3). 

4.2.1.2.1 Planning as a complex bottom up approach: 

'[ cities] are to be viewed and manipulated like a living systems with the 
implication that life, hence city form, emerges from the bottom up following the 
Darwinian paradigm of evolution' (Batty, 2007, p.9). 

Since the late 1980s, there has been a growing trend towards complex systems planning 

(see table 4.4) suggesting a radical shift from top down and centralized structures of 

government and management to much more decentralized organizations (see in 

particular, Batty, 2005, 2007, 2008; Byrne, 2001, 2005; Briassoulis, 2000, 2008; Healey, 

1997,2003). These writers suppose that effective actions and decisions come from the 

individuals and agents who respond to their environment and each other, competitively 

and collaboratively from the bottom up. Therefore, urban planners and designers have 

been advised to shift their focus from top down control to bottom up. The main 

challenge, however, is "how?" 

There are two views about how such a shift should be applied to planning. While the 

radical approach is based on a complete abandonment of top down control, the moderate 
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approach suggests an active planning, somewhere between the bottom up and top down 

processes of decision-making. Nevertheless, both approaches follow very similar 

principles, but with a different emphasis. While the fIrst group emphasizes chaos theory 

and transitions from order to emergent chaos (e.g. Cartwright, 1991; Byrne, 1998,2003; 

Shane, 2005), the second group emphasizes complexity theory and the importance of 

transitions from chaos to complex order (e.g. Cilliers, 1998; Hamdi, 2004; Batty 2005, 

2007; Mashhoudi, 2007). 

The first group of proponents of the complexity theory deny the validity of 

comprehensive approaches in terms of master planning or other authoritarian centralisms 

and instead emphasized on a kind of 'incrementalism' as the only appropriate planning 

approach. In fact, This fIrst group reject the need for an overall control in terms of 

'master plans' in a belief that cities are to be controlled only through the bottom up logic. 

Cartwright (1991) and Shane (2005) showed such a belief in the following statements: 

'With hindsight, we can see the post-structuralist and deconstructivists were 
right to describe the city as a chaotic situation of competing systems .... The 
chief consequence of this revelation was that there was no longer a place for a 
master plan or a master planner. The complexity of city's various autonomous 
systems, each with its own logic, meant that nobody could coordinate 
everything' (Shane, 2005, p.305). 

'On an incremental or local basis, the effects of feedback from one time period 
to another are perfectly clear. This is a powerful argument for planning 
strategies that are incremental rather than comprehensive in scope and that rely 
on a capacity for adaptation rather than on blueprints of results' (Cartwright, 
1991, p.54). 

To incrementalists, planning will have been calling for "public participating", "self-

re!:,rulating", and "self-policing" strategies, which are emerging from bottom up processes, 

resulting in a flexible matrix of possibilities to operate without central control. David 
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Byrne, who has investigated the application of complexity theory in social engineering an 

urban system, proposed a complex-based social model in which the collective agency of 

free citizens as 'the proper actor of democratic modernity' chooses a future that would be 

fonned from the range of possibilities that might be. He wrote that: 

'An engineering of bottom up process applied to social sciences is based on 
understanding of how things became as they are and simulation of how they 
might be in the future' (Byrne, 1998, p.167). 

According to Byrne (1998, p.143), 'The condition space defines possibilities - the plural 

is crucial - planning is about which outcome is achieved .... This method is about 

alternatives; about different way in which things might be done in order that different 

sorts of futures might come into being. The following statements from Shane (2005) and 

Byrne (1998) show where this kind of approach to complex system planning may take us. 

The important thing about planning is that it is about choices and the important 
thing about chaos/complexity programme in relation to planning is that it 
provides a rational framework, which is not based on simplistic determinism but 
rather is explicitly founded on reflexive social action .... what is interesting is that 
a chaos/complexity perspective on the governance of cities suggests that mass 
participatory processes are not only morally preferable but actually represent the 
only process through which the achievement of unificational non-divisive urban 
forms may be possible .... It is perhaps where complex general system might take 
us - a decent sort of utopia after all' (Byrne, 1998, pp.142-143). 

'We can also see that this chaotic situation has an emergent logic of its own, 
produced non-centrally by actors designing systems across vast territories 
without regard for other's decisions, each adding their own system as a new layer 
to existing topography, historic structures, and landscapes .... Each actor follows 
their own logic, creating a life-world that is a mixture of the usual urban 
concerns: land and property, trade and market share, social and political position. 
Each actor forms their own hybrid priorities and sets goals in the face of 
competing actors, contesting for territory' (Shane, 2005, p.306). 

From this point of view, developments take place by successive and often incremental 

adjustments, and therefore, only bottom up control makes logical sense. They argue that 

local and global actors on the ground meanwhile create independent lines of 
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communication using their own logics, unimaginable by large-scale plans. While the 

view of this group asserts the bottom up planning process of competing actors as the only 

possible and valid approach, there is also another view on the implication of complexity 

theory for planning in which the need for overall top down controls is not completely 

rejected. 

The second group join with the first in rejecting the validity of top down conventional 

master planning and focusing on the bottom up. However, while the first group claims 

that the higher controls do not have any function, the second group believe that the 

control from the top down and bottom up should be considered side by side - with the 

emphasis on the latter. According to the second group, controls, whether local or global, 

are not to be imposed by the blueprints of a planner or a group of planners but from the 

bottom up through hierarchical control systems of individuals, groups, local communities, 

institutions, organizations, and governments. 

'No one would pretend that cities and societies only grow in competitive and 
uncoordinated fashion from the bottom up for individuals act in groups, they 
form institutions with governments of various kinds acting in top down fashion 
but at different levels .... Complexity theory just changes the focus from top 
down to bottom up, but with structure and order emerging as much, if not 
more, from the bottom up' (Batty, 2007, p.4). 

The supporters of the second view admit that actions for planning and developments must 

be taken at both local and global levels. However, they believe that this requires a 

hierarchy of levels of control in which some sort of top down and bottom up processes 

interact in a feedback loop to control and facilitate the process of change in city. 'There is 

a need to drive imperative of rights, to connect practical work with strategic work, 

freedom with order, small-scale organizations with large-scale organizations, top down 
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coordination, and bottom up design' (Hamdi, 2004, p.93). This view recognizes the need 

for both opposites, not one or the other alone. 

4.2.1.2.2 Conceptual complex planning models: 

The conceptual complex planning models call for the features that constitute the city as 

complex system. In Chapter Three, the characteristics of complex systems and their 

analogies to this urban system were identified, including "Deterministic Chaos", 

"Feedback", "Sensitivity to Initial Condition", "Limited Predictability", "Emergence", 

Self-organization", "Adaptability", "Hierarchy and Levels of Scales" and "Fractal 

Generated Patterns". Any constructive attempts to apply complexity theory to planning 

and design have to acknowledge and incorporate these features not as epiphenomena, but 

as the constitutive elements of complex systems. These features are central to any 

complex urban modelling in its all related fields from physicallhuman geography, socio

economic studies to planning and urban design. Hamdi (2004) and Mashhoudi (2007) 

propose two conceptual planning models (Action Plan and Fluid Plan respectively) that 

define the role of planning in a way that serves both local and global actors. What follows 

is a summary of these two models. 

a) Action plan: 

The planning model suggested by Hamdi (2004) defines the planning role where it can 

serve both local and global actors in a cycle of a top down and bottom up process as 

opposed to the conventional planning model with only a top down approach (figure 

4.25). 
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In figure 4.25 (above) Hamdi shows the routine in conventional planning. As illustrated, 

following data collection and analyzing existing situation, objectives and priorities are set 

based on what planning deems necessary or desirable, or both, in the national or even 

global interest. The strategic plans then will be set up by a series of policies. It can be 

assumed that if good policies are made, good programmes will somehow follow. these 

policies aim to reflect the local needs. Then the larger order of structure will be designed 

first into which projects must fit, denying all the novelty discovered in the community 

(local scale). Such a process is top down. The relationship between the top and the 

bottom is awkward at best and is sometimes in stark and open conflict. All this is 

reinforced by the planning process itself. 

Instead, Hamdi (2004) suggested that the order of work can be reversed (figure 4.25, 

below). The loop of policy planning will then concentrate on problems, opportunities and 

priorities derived from the ground (Local scale). This will be on the assumption that the 

bigger picture, the larger order of plan or policy, if it is to serve the interests and needs of 

people, will derive from all small and successful initiatives going on in the community. 

'And so working with local counterparts, starting small and starting where it counts, we 

build up the larger plan for social enterprise and good governance based on new fonns of 

mutual engagement, a revised policy of land tenure, a spatial structure plan of 

infrastructure development, etc' (Hamdi, 2004, 105). 

The planning model that Hamdi suggested is based on the fact that the larger plan is built 

up through bottom up processes associated with alternatives. The analysis of each 

alternative will reveal the gaps in our knowledge, an assessment, and provide a better 



understanding of what impacts we are likely to achieve, what harm it might do. This may 

lead us to more targeted data searches or surveys that will better inform our planning 

about local problems, opportunities and local risks and that, in turn, may demand 

revisiting our goals and priorities and so on. The process is, therefore cyclical and Hamdi 

(2004) claims that it is more likely to lead us to a policy environment which is at once 

connected to issues on the ground and which facilitates emergence (bottom up processes), 

rather than determine the future. 

b) Fluid-plan: 

Mashhoudi (2007) also referring to the failure of conventional planning, suggests a 

conceptual fractal-planning model named the Fluid Planning Model. He claims that his 

model reflects the city complexity in which: 

'Firstly, the city will be viewed as a chaotic system with all its resulting 
features including, emergence, creativity, unpredictability, sensitivity to its 
initial conditions, etc; and sees disorder and uncertainty as a unique basis for 
order that stems from the complexities of the environment. 

Secondly, the new decisions are constantly made by citizens. Therefore the 
spatial system will itself receive input of conflictive data which needs 
interpretation by the system to be accepted as constructive (informative) or to 
be discharged as destructive (noise). 

Thirdly, the role of planners is interpreting the data which is collected from the 
interaction of individuals and society to recognize them positive or negative 
feedback. However, the final decision makers are not the planners, but the 
people. This is only possible by formulating a cognitive framework of 
subsystems' (Mashhoudi, 2007, pp.61-62). 

According to Mashhoudi (2007), a cognitive framework is a semi-topologic scheme 

of the city in clear layers to understand the qualities in the urban system as potentials 

for remaking and renewing the organization of the city. This framework can be used 

as an outlet to facilitate the flow of information between Macro-systems and Micro-

systems, in order to have a firm base for planning of the city. The Fluid Plan docs not 
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detennine the functions and land use of the city; instead, it presents some alternative 

images for the future of the city, without detennining them as final. It allows 

infonnation to flow between different hierarchical organizations. This increases the 

divergence of scenarios during planning and interactions' process of subsystems to 

achieve the optimum time-place situation (choosing the best option at the relevant 

time and place). Mashhoudi' s (2007) model also includes two particular suggestions 

about urban morphology: 

1- Eliminating unrealistic official borders and Euclidian boundaries that 

separate the areas, district, and regions, instead, drawing a map 

based on its real morphological qualities. 

2- Asserting qualitative/quantitative structural laws as fractals in order 

to create flexibility as well as composing shapes and fonns without 

imposing a simplistic view (e.g. reductionism) on the innate 

complexity of the urban environment. 

While the systems approach of the late 20th century suggested "public consultation" as 

part of the planning process, both Hamdi's action-plan and Mashhoudi's fluid-plan 

emphasise public participation. However, their models are very rough and still at very 

conceptual level. They did not elaborate how the models might work in practice. 

Nevertheless, both models certainly demonstrate some of the main features of the 

complexity approach such as processing data from the bottom up, which are essential for 

a "constructive realism" ~ as Mashhoudi (2007, p.59) noted: 

'The complexity theory signifies the active chaotic urban syst~m a.s an 
independent and open organization, opposing to the certainty of utopian Views. 
Hence, "constructive realism" can provide a firm basis for the natural growth 
of the city and individual and social dynamics.' 
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4.2.2 Simulating city complexity: 

'Computer-based simulation modelling, e.g. Cellular Automata (CA), is based on 
a precise recognition of the non-linear character of city systems. It provides a 
new systems-founded rationalism in planning as a process' (Wyatt, 1996, p.650). 

In a world where global interventions fuse in subtle and diverse ways with local 
action, CA (Cellular Automata) looks like a paradigm for the 21 sl century, 
resonating with everything from the postmodem mathematics of fractals and 
chaos to the cry of development theorists 'Think globally, Act locally' (Batty, 
Couclelis, and Eichen, 1997, pp.160-161). 

Since the 1980s a number of different simulation models have been suggested based on 

the features of complex systems such as CA (e.g. Couc1elis, 1985, 1988, 1989; Phipps, 

1989; Cecchini and Viola, 1990, 1992; Wu, 1996; Batty et ai, 1994, 1998, 2005), DLA 

models (e.g. Kadanoff, 1986; Bunde and Havlin, 1991; Batty et ai, 1994, 1997, 2005), 

Correlated Percolation (CP) models (e.g. Makse et ai, 1995; Peterson, 1996), CAST 

(Jankovic et ai, 2005), and so on. The main feature of all simulated urban models is that 

the algorithms of such models should allow bottom up data processing. The cells are 

usually conceived as occupying spaces with processes for changing the state of each cell 

through time and space. This means that data and choices run through by cells, with their 

positions and relationships, are not determined in advance. Conventional models, 

however, largely determine the scenarios that involve top down intervention. The other 

important feature of such simulative models is termed dynamic interaction. Change in 

one cell cascades across the city to many other cells, largely uncontrolled from outside. In 

other words, changes in one part of city have an impact on other parts. 

The most famous simulation models are known as Cellular Automata (CA) dated back to 

the very beginnings of digital computing in the early 1950s. Turing (1952) and von 

Neumann (1966) who pioneered the notion of self-reproducible machines suggested that 
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'organic development might be susceptible to computation' (Batty, 2005, p.67). Their 

ideas inspired many computer experts and mathematicians including John Conway 

(reported in Scientific American by Gardner, 1970) whose model, "Game of Life", 

combined all notions of CA and simulated the key element of self-reproduction. 

According to him, life could be modelled on an infinite grid of cells, those which were 

active or alive being subject to a series of local rules pertaining to the birth of new cells 

and the death of existing ones. 

Conway's Game of Life model was then developed by a number of other researchers. 

'Tobler (1979) argued that CA could be applied to geographic investigation, Couclelis 

(1985, 1988, 1989) has used CA to model spatial dynamics, Phipps (1989), Cecchini and 

Viola (1990, 1992) have applied CA to a variety of geographic phenomena' (Cooper, 

2000, p.136). CA and DLA (Diffusion-Limited Aggregation) are modelled on a grid of 

cells, which are subject to a series of rules governing the behaviour of each cell in 

relation to the behaviour of its neighbours. The essence of such modelling consists of the 

following four distinct principles, as Batty (2005, pp.68-76) states: 

1- There are a grid of cells - named by i {i=l, 2, 3, ... , N}- representing a spatial or 

functional character (e.g. building blocks), and manifesting some adjacency or 

proximity to one another. 

2- Each cells can only take one state at anyone time - named by Di(t) - from a set of 

states (D) that define the outcome of the system. (For the most usual and simple 2 

dimensional grid case, the cell can take either states of Di(t)=O or Di(t)= L 

indicating whether the cell is dead/empty or alive/occupied respectively). 
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3- The state of any cell depends on the states and configurations of other cells in the 

neighbourhood of that cell (named by Qi), as the immediately "adjacent set of 

cells" - cells that, in some sense, are nearby or next to the cell in question. 

4- Finally, there are transition rules (J) that drive changes of state in each cell as 

some function of what exists or is happening in the cells' neighbourhood. Then, 

the most basic mathematical interpretation of such transition rules at any time (t) 

will be: 

(equation 4.1) 

Through the transition rules (J), the above equation determines temporarily the state of 

each cell as follows: 

a) Death in isolation: 

If the cell has less than two active neighbours, then it will become inactive - it will die in 

isolation. 

L DK(t)<2 ~ Di(t+ 1)=0 (equation 4.2) 

b) Steady state: 

The cell remains alive if there are two or 3 live cells adjacent to it. However, the cell with 

only two live neighbours is alive but does not give birth, which implies a steady state. 

L DK(t)=2 ~ Di(t+l)=l (equation 4.3) 

c) Birth-growth: 

If there are exactly 3 live neighbours next to the cell in question, that cell is not only 

alive, but actively gives birth. 

L DK(t)=3 ~ Di(t+ 1)= 1 (equation 4.4) 
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d) Death-overcrowding: 

If a live cell is surrounded by more than three active neighbours, then it will die from 

overcrowding. This rule acts as a system feedback which controls the growth (Compare it 

with feedback in logistic equations 3.2 and 3.3 in chapter 3). 

L DK(t»3 ~ Di(t+ 1)=0 (equation 4.5) 

The dynamics of applying the rules can be visualized on a screen within an interface 

environment provided by a computer program. It is possible to program them in 

spreadsheets such as Excel, Lotous, Quattro-Pro or within the graphic capability of CAD 

and GIS software (Wu, 1996). For visualization, pixels represent the cells and they are 

allowed to accept states (on/off). Different fractal patterns emerge through running 

programs according the rules given to them. 

Figure 4.26: Structural (Sierpinski) order in one
dimensional cellular automaton. (Batty, 2005, p.81) 

188 



For instance, one of the very basic CA models can be created by using a one dimensional 

string of cells where K=3 (the number neighbourhoods) and D=2 (the number states), 

with the central cell as Di= I and all others equal to zero. This leads to the fractal pattern 

shown in figure 4.26 known as the Sierpinski triangle (see also figure 3.18 in Chapter 

Three). 

Neighborhood Type 1 2 3 4 5 6 7 8 

Configuration 111 110 101 100 011 010 001 000 

Transition Rule 0 I 0 1 I 0 1 0 

Table 4.5: the rule behind a one-dimensional cellular automaton, known as 
the Sierpinski triangle. (Batty, 2005, p.80) 

An interpretation of the rule leading to this pattern is given in table 4.5: 'For any cell that 

either "on" or "off', then if there are no other cells "on" in its neighbourhood, the cell is 

switched off (dying from isolation) ... If both the other two neighbours are "on" then the 

cell also dies from overcrowding. However if one of the cells in its neighbourhood is 

"on", then the cell either stay "on" - remains on - or is switched on' (Batty, 2005, p.81). 

However this very organized fractal pattern with apparent order illustrated in figure 4.27, 

will behave strangely in which 4 types/classes of dynamics may emerge if the program is 

run indefinitely within a closed system. Figure 4.27 illustrates these for types as; I) limit 

points or with point attractor; II) periodic structure which recur over fixed limit cycles 

with simple attractor; III) chaotic patterns with strange attractor; IV) and highly localized 

ordered patterns that reveals complexity. (Compare the diagram and illustrations in 

following figure with the Feigenbaum diagram illustrated in figures 3.6 and 3.7 in 

Chapter Three) 
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Figure 4.27: Four types of dynamics for a two-state, three cell, one-dimensional CA 
model. (Batty, p.84) 

Diffusion-Limited Aggregation (DLA) models follow similar principles as CA models. 

DLA technique was suggested first by Witten and Sanders (1981, 1983). It was explored 

by Batty and Longley (1994) using the technique in greater depth to simulate urban 

growth. Batty (2005) illustrated its wider potential experimenting with a scaling model of 

urban form. The experiment of the DLA model involves planting a seed in a central place 

- at the centre of a two dimensional space (called a lattice) and building up a cluster 

around this seed by launching particles at some distance far away from the edge of the 

cluster (figure 4.28, Left). Each particle makes a random walk on the lattice until it 

reaches a lattice point adjacent to one already occupied by a particle where it sticks, or 

until it leaves the system by crossing its boundaries where it is deemed to have 

disappeared or been destroyed. 

Figure 4.28: Left, the mechanism of diffusion-limited aggregation. 
clu tcr dcveloped from one seed. Right, DLA clusters d loped from man 
(Left, Batty and Longley, 1994, p.255; Right, Batty, 2005, p.130) 
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Figure 4.28 illustrates the resultant clusters when only one seed or many seeds were 

developed. The area of the city would expand in proportion to the square of the radius of 

the c1uster( s) developed by one or more seeds. Batty and Longley (1994) argue that D LA 

is similar - not the same - to a simple urban growth model, where the city grows by 

individuals locating next to or near individuals who have already clustered about the 

central point. Although DLA simulations are not identical to real urban structures, their 

similarities are strong and they can be used as a basis for comparison (Batty and Longley, 

1994, p.244). 

In summary, DLA models have advantages in presenting the characteristics of a complex 

organic growth. Their generated structures are familiar tree-like forms grown from the 

seed, manifesting self-similarity of form across several scales, and whose properties of 

scaling suggest that they are fractals. The great power of these techniques is that they link 

growth to specific geometrical forms. They can be easily generalized to other forms such 

as those with the characteristics of percolation clusters (see Makse et aI, 1995; Peterson, 

1996). They are consistent with the sorts of scaling found in the physics of critical 

phenomena, particularly in structures which are far-from-equilibrium (see Feder, 1988; 

Batty and Xie, 1999). More importantly, the DLA model suggests a technique to define 

urban structures and to measure urban densities more accurately than existing quantitative 

models. For instance, populations can be measured more accurately at actual point 

locations, not over areas or volumes. 

In the last 10 years, more advanced models using simulation techniques have been 

developed. Langlois and Phipps (1995) examined how land uses restructure themselves to 
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fonn self-organizing but segregated fractal patterns. More recently, the applications of 

such segregated patterns emerged from explicit migration models have been developed 

by other scholars (e.g. Vanbergue et aI, 2000). While these applications mostly focus on 

processing data, on one factor of the city - such as in "SimCity for Real" created by 

Clarke et al (2008) for simulating population patterns, - the City Analysis Simulation 

Tool (CAST) developed by Jankovic et al (2005) took a step forward to process many 

factors together including economics, land-use and transport (figure 4.29). What follows 

is a summary of how CAST processes data. 

Like other cellular based models, CAST uses a raster-based grid, which divides the city 

into cells. The classification of the cell type is based on the main land-use types (22 

types). These are not separately mapped; rather they are treated as infrastructure of the 

cells. Central to the operation of CAST is the fact that in general there are not many top 

down imposed rules; instead the processes within the cells are free to evolve based on the 

rules within the cells. The model considers several flows within the city, but the key one 

for the CAST is the flow of money, the income of cells, gained through employment and 

from taxation (Jankovic et aI, 2005). This flow of money (fitness) connects the cells and 

drives the changes: 

• Decrease/increase in fitness of cells 

• Intensification/decline of current activity within cells 

• Change of use of cell type (land-use) 

Jankovic et al (2005) claimed that CAST recognizes the city as an open system too and, 

therefore, some external rules such as planning policies such as sets of limits on height 

and density of buildings, or even the global actions such as the state of the world 

economy, can be imported to influence action within the cells. 
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Figure 4.29: Left, the diagram of flows in CAST. Right, examples of CAST output: a) the 
interface with cell expansion in progress, b) the interface with attractors and repellents, c) road 
flowing, obtained as an emergent property of the model, d) expansion of the land-use over time 
e) two-dimensional land use with major and minor roads, f) a dynamic simulation with GIS 
data. (Jankovic et ai, 2005, pp.9-12) 

The project was funded by the EU and its detail is not available to the public, and its 

validity has not been tested more widely by scientists and practitioners outside the lab. 

However, taking into account the limitation of any simulation models (CA, DLA, 

SimCity, CAST ... ), it can be argued that all these models somehow resemble the 

processes of change or growth in cities, but it can hardly be claimed that they can predict 

growth or change. This is firstly because the transition rules governing the growth of a 

city in reality are much more complex than those used in the proposed models, and 

secondly because of the nature of random behaviour in both CA and the real situation in a 

city, where given slightly different initial conditions, the outcomes of the process would 

be hugely different, and therefore, impossible to predict. 

In thi sense, the main advantage of these models is at most in exploratory cenano 

making rather than forecasting (Wilson, 2000). Nevertheless, simulation method can 

provide a more realistic and accurate vision on how systems beha e and therefor , th 



are much more suitable for analyzing urban systems than the traditional deterministic 

methods. Wyatt (1996) stated that: 

'It should be fairly obvious that such a computationally intensive approach is 
far more flexible and adaptive than traditional modelling methods' Wyatt 
(1996, p.650). 

4.2.3 Measuring city complexity 

'Fractal measurement is useful as a method of simulating and testing design 
production incorporating the levels of complexity that typify urban development' 
(Cooper, 2000, unpaginated). 

Many authors refer to the fractal dimension as a means of measuring the physical 

complexity of city elements. Fractal measurement methods have been shown to be useful 

for studying urban forms from global scales (e.g. regional geography) to local scales 

(architectural design). At large city scales, Batty and Longley (1994) employed fractal 

measurement to reveal the complex and seemingly irregular physical urban form such as 

urban boundaries and city edges. At building scales, Jencks (1997), Bovill (1996), and 

others applied fractal dimension as a means of evaluating of architectural products, as 

discussed in the first part of this chapter. At the middle ground of city scale, however, 

Stamps (2002) and Cooper (2003) tested the concept on fractal skylines, Taylor et al 

(2001), Gotou (2002) et ai, and Hagerhall et al (2004) linked fractal dimensions and 

landscape preferences, and Cooper and Oskrochi (2008) employed fractal dimension as a 

potential tool for assessing levels of visual variety in street vistas. 

Cooper's (2000) work is a key reference in studying of urban morphological complexity. 

It explores comprehensive fractal measurements of different urban elements at the 

neighbourhood scale (street level) of the city of Oxford, including street vistas, street 

elevations, skylines, and building lines. To establish his argument, Cooper (2000) 



compared the results of fractal measurements to a morphological survey of networks and 

streets, and to a subjective survey presenting expert perceptions of the sample in terms of 

penneability, legibility, visual variety, and enclosure. He concluded that the new sciences 

- fractals and chaos - are useful to urban design in tenns of evaluating the complex 

nature of urban fonns as a means of character assessment. More recently, Cooper and 

Oskrochi (2008) provide an example of how fractal analysis can measure the complexity 

of street vistas linking the calculation of fractal dimension to the perception of levels of 

visual variety present in everyday urban streets. 

(a) (b) 

(a) (b) 

Figure 4.30: Above, a greyscale image and its edge detected pixels of a street in Oxford 
which has a low fractal dimension (Db) of 1.434 with low visual variety. Belo,:", an~thcr 
street in Oxford which has a high fractal dimension (Db) of 1.825 with hIgh VI ual 
variety. (Cooper and Oskrochi, 2008, p.356) 

Cooper and Oskrochi (2008) employed the "box counting" technique - introduced earli r 

in chapter three - for calculating fractal dimensions (Db) of textures extracted from 240 



greyscale images of selected streets in the city of Oxford. According to his survey, the 

resultant Db values for the 240 individual cases range from 1.434 to 1.825 (figure 4.30). 

By asking the respondent to score the visual variety of 26 sets of images, Cooper and 

Oskrochi (2008, p.360) concluded that 'assessing the correlation between average visual 

variety scores and fractal dimension scores suggests that there is strong association 

between these two measures'. They also argued that the fractal concept can be a formula 

for automatically achieving the degree of variety recognized as essential to human 

wellbeing. Cooper (2000, 2003, 2005) carried out similar examinations for a series of 

urban elements such as skylines, street elevations, street edges, etc and found that the 

fractal dimension responds sensitively to the spatial characteristics (e.g. permeability, 

legibility, visual variety). Accordingly, he succeeded to demonstrate the fractal 

measurement as a useful technique to quantify the urban design qualitative. 

At the city scale, Batty and Longley (1994) also presented a number of ways in which 

fractal measurement could be applied in studying urban structures, including urban 

boundaries and edges, fractal distribution of land-use and population, and fractal analysis 

of city size, growth, and change. In the case of the city boundary, they measured the 

fractal dimensions of urban boundaries of Cardiff in 1886, 1901, 1922, and 1949. Batty 

and Longley (1994, p.181) explained that 'these times have been chosen because of the 

rapid urban growth of the city from a population of 80,000 to 230,000 during this period. 

This period also marked the development of tramway system ... predominant style oflate 

Victorian worker housing ... the pinnacle of industrial prosperity in Cardiff. 
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Figure 4.31: The city boundary of Cardiff in 
Longley, 1994, pp.175, 181) 

1886, 1901, 1992, and 1949. (Batty and 

Batty and Longley (1994) fust created a digitized fonnat ofCardiffs boundary maps at 

these dates (figure 4.31), followed by calculating fractal dimension through four different 

methods: the Structured (Ruler) Walk, Equipaced Polygon, Hybrid Walk and fmally Cell-

Count methods. The results are summarized in table 4.6. 

~ Fractal Dimensions 
Years Structured walk Equipaced Polygon Hybrid Walk Cell-Count 

1886 1.239 1.236 1.248 1.267 

1901 1.184 1.178 1.190 1.200 

1922 1.186 1.172 1.190 1.209 

1949 1.267 1.293 1.308 1.274 

Table 4.6: The results of the fractal calculation of Cardiff city's boundary by four 
different methods from 1886 to 1949. (Batty and Longley, 1994, pp.189-197) 

Based on the results of their fractal survey, Batty and Longley (1994) concluded that: 

firstly, the city boundary is multi-fractal across a range of scales; secondly, the fractal 

dimension decreases with the scale of control whenever and wherever the greater control 

had been instituted over physical development building technology and land development 

at smaller scales. Finally, they argued that it would be less clear how the fractal 

dimension changes at larger scales, although increasing mobility and accessibili ty could 

imply to decrease it through time. 

Batty and Longley (1994) have also carried out another survey to analy e fractall th 

growth of London from 1820 to 1962 (figure 4.32). They have sugge ted that the chang 
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in fractal dimensions can be used as a sensitive indication of the change in urban form 

and the way a city grows. 

1.322 

1.585 

1.415 

1.700 

1.737 

1 taO 

Figure 4.32: The growth of London from 1820 to 1962 and the chang in th 
value of the fractal dimension. (Batty and Longley, 1994, p.239; the Fb 
values are added to the sides of the figure by the author) 
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Batty and Longley (1994, p.236) state that 'the increase in values during thi tim quit 

con istent with our analysis of the growth of Cardiff . ... as cities grow, they com to fi II 



their space more efficiently and compactly (or at least homogeneously) due to better 

coordination of development, and increased control over physical form due to better 

technology'. Their observation, together with the similar work by Frankhauser (1997, 

1998) and Smith (1991), provided further evidence for their theory of fractal cities. The 

result of their work is summarized in table 4.7. 

Settlement name Dimension D SeHlement name Dimension D 

Urban development patterns Urban growth patterns 

Albany 1990 (Chap 7) 1.494 london 1820 (Dox/Ab) 1.322 
Beijing 1981 (FrQ) 1.93 london 1 840 (Dox/ Ab) 1.585 
Berlin 1980 (Fro) 1.73 london 1 860 (Dox/ Ab) 1.415 
Boston 1981 (Fro) 1.69 london 1880 (Dox/ Ab) 1.700 
Budapest 1981 (Fro) 1.72 London 1900 (Dox/ Ab) 1.737 
Buffalo 1990 (Chop 7) 1.729 London 1914 (Dox/ Ab) 1.765 
Cardiff 1981 (Chop 8) 1.586 london 1939 (Dox/ Ab) 1.791 
Cleveland 1990 (Chap 7) 1.732 london 1962 (Dox/ Ab) 1.774 
Columbus 1990 (Chap 7) 1.808 
Essen 1981 (Fro) 1.81 Berlin 1875 (Fro) 1.43 
Guatemala 1990 (Sm) 1.702 Berlin 1920 (Fro) 1.54 
london 1962 (Dox) 1.774 Berlin 1945 (Fro) 1.69 
London 1981 (Fro) 1.72 
los Angeles 1981 (Fro) 1.93 Transport networks 
Melbourne 1981 (Fro) 1.85 
Mexico City 1981 (Fro) 1.76 Suburban Roil 
Moscow 1981 (Fro) 1.60 Lyon I 1987 (T & M) 1.88 
New York 1960 (Dox) 1.710 Lyon 1/ 1987 (T & M) 1.655 
Paris 1960 (Dox) 1.862 lyon III 1987 IT & Ml 1.64 
Paris 1981 (Fro) 1.66 Paris 1989 (B & D) 1.466 
Pittsburgh 1981 (Fro) 1.59 StuHgart 1988 (Fro) 1.58 
Pittsburgh 1990 (Chop 7) 1.775 
Potsdam 1945 (Fro) 1.88 Public bus 
Rome 1981 (Fro) 1.69 Lyon I 1987 (T & Ml 1.45 
Seoul 1981 (Chap 9) 1.682 Lyon II 1987 IT & M) 1.00 

Stuttgart 1981 (Fro) 1.41 Lyon III 1987 (T & M) 1.09 
Sydney 1981 (Fro) 1.82 
Syracuse 1990 (Chap 7) 1.438 Drainage utilities 
Taipei 1981 (Fro) 1.39 Lyon I 1987 (T & M) 1.79 

Taunton 1981 (Chap 7) 1.636 Lyon II 1987 (T & M) 1.30 

Tokyo 1960 (Dox) 1.312 Lyon III 1987 (T & M) 1.21 

Table 4.7: The preliminary evidence of the assessed fractal dimension for some cities 
around the world. (Batty and Longley, p.242) 

At regional scales, there are also a number of authors who have examined the applicability 

of fractal measurement in analyzing urban and geographical patterns such as the city as a 

surface (Broscoe, 1992; Batty et aI, 1995); urban traffic network patterns (Jiang el aI, 2002); 

river network patterns (Veltri, 2004; Schuller et aI, 2001); and population density and 
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distribution (Chen and Zhou, 2004; Clarke et ai, 2008). For instance, Chen and Zhou (2004) 

employed fractal measurements as a tool to reveal the scaling relationship between rank and 

size distributions of American cities based on Zipfs model. By making a set of simple 

models of multi fractal measure, they provided further evidence for symmetry law's of 

nature in geographical evolution. Chen and Zhou (2004, p.804) concluded that a) the multi

fractal measures reveal some strange symmetry in the regularity of urban hierarchical 

systems similar to the symmetry laws of nature; b) multi-fractal structure of urban 

hierarchies results from the contradictory action of the opposites between entropy

maximization and its counteraction in the urban system; and c) the result shows how order 

assorts with disorder, how the macro-state assorts with micro-state of urban systems, and 

thus nature harmonizes randomness process with the ordering principle by means of some 

simple self-organizing rules. 

4.3 Chapter Summary 

This chapter has examined the meaning of complexity, chaos, and fractals in the context of 

urban form and function. Fractal theory interprets the physical complexity of urban forms, 

while chaos theory could explain the functional complexity in the behaviour of urban actors. 

Recent developments related to the application of complexity theory to urban form and 

function were reviewed to show how architects, planners, and urban designers could shift 

their views towards what is claimed to be more realistic in terms of fractal architecture (part 

one) and fractal cities (part two). 

The first part explained the difference between the application of the fractal concept as a 

design tool and as a critical tool. The notion of fractal architecture was discussed through 

different examples employing fractal geometry as a design tool. It has also been argued that 
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some buildings may only exhibit a sort of self-similarity which might be misinterpreted as if 

they have a fractal quality. Euclidian geometry seems to be an inevitable part of their design 

processes, and in the most cases, they are arguably just a sophisticated design style rather 

than embodying principles of fractal geometry. Fractal quality is the product of gradual 

adaptation to environmental factors, and cannot be achieved all at once. The first part of this 

chapter suggested a list of criteria by which fractal and non-fractal architecture could be 

better distinguished. This list is not claimed to be comprehensive; however, it assists 

architects to approach the concept as a design quality rather than a design style. 

The second part of the chapter focused on the applications of complexity theory and fractals 

at the city scale to show how they contribute to conceptualise, simulate, and measure of 

urban complexity. Complexity theory forges a more conclusive link between physical fonn 

of cities and the various socio-economic processes that are central to their functioning. It 

teaches us that incremental bottom up behaviours of individual citizens and developers as 

urban actors at architectural scales play the main role in shaping complex urban patterns at 

micro city scales, and in generating emergent properties at macro city scales (see emergent 

self-organising properties of complex systems; Chapter Three, sections 3.2.2.7 and 3.2.2.8). 

Predictability and certainty as the traditional hallmarks of the top down urban planning have 

been criticised widely by the complexity theorists. In complex systems thinking, there is 

always the possibility that such systems can evolve to emergent forms and patterns. 

Complex systems theory suggests that cities evolve through the incremental actions of local 

agents, which generate highly ordered global patterns, and a small change in the behaviour 

of local actors may result in unexpected properties and patterns (see also Chapter Three. 

sections 3.2.2.5 and 3.2.2.6). Furthennore, on a global basis, cities as chaotic systems an: 
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unpredictable because of the cumulative effects of various kinds of feedback. Cell-based 

urban simulation models provide detail analysis of the micro behaviour oflocal actors (cells) 

acting individually and interactively with a series of feedback effects. 

Therefore, cities are predictable only on a local basis; and the patterns that "emerge" from 

local interaction and random decisions of individuals are not possible to be determined by a 

comprehensive master plan. However, the bottom up nature of urban change has been 

ignored by many modernist planners in the 20th centuries. Their proposed master plans have 

mainly followed a deterministic top down routine with predictable and certain outcomes 

simplifying urban problems for purposes of control (see also Chapter Five, sections 5.1.3 

and 5.1.4, where it examines the failure of top down master planning in particular case 

studies of Iranian cities including Tehran). 

Experts in complex systems planning have proposed new planning models to replace top 

down urban planning with a bottom up approach (Chapter Four, section 4.2.1.2.2), however, 

their attempts have been only at theoretical and laboratorial levels. There are few practical 

tools available to provide this shift and to promote these models to a practical level. Fractal 

simulation models together with fractal assessment tools including the one developed during 

the course of this research contribute to the above need. This chapter reviewed some of the 

recent work of the researchers who employed fractal dimension as a means of measuring the 

physical complexity of urban forms from global to local city scales. The fractal assessment 

methods are shown to be useful in analysing the levels of complexity that an urban element 

poses. The following chapters aim to examine and analyse the research case study through 

the principles of complex systems thinking and fractal geometry in order to promote the 

current fractal analysis method to a more practical level. 
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Introduction 

The previous chapter discussed theoretical aspects of the inefficiency of the conventional 

planning methods to adapt themselves to real city behaviour and change. This chapter 

follows two main purposes: The first is to identify the inadequacy of the conventional top 

down urban planning in controlling the patterns of urban growth in the particular case of 

Tehran. The second is to select some sample cases that are appropriate for testing the 

capabilities of the fractal analysis tool, developed through the course of this research. 

Selection of a case study at the city and district scales will respond to the first purpose, 

and selection of appropriate samples within the case study at the neighbourhood scale 

will respond to the second one. 

This chapter, therefore, consists of two main parts. The first explores the changes 

occurring in the last two centuries in Tehran city's structure and elaborates the failures of 

conventional planning approaches to predict or control these changes. The second part, 

however, will focus on selected samples at a neighbourhood scale. The factors that have 

led to those selections are discussed. Both parts together will provide the means for the 

fractal examination and analysis of the selected cases in subsequent chapters. 
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5.1 Part One: The Impacts of the Conventional Master Plans 

(comprehensive plans) in Controlling Urban Change in Tehran 

and Other Iranian Cities 

The previous chapter highlighted some weaknesses of master plans as implemented under 

the utopian and deterministic views of modernist planners and system theorist planners 

during the last century. Proponents of complex systems planning claim that reducing the 

flexibility of urban planning and policies by imposing limits through a top down process, 

in order to maintain an urban fabric in equilibrium, could not cope with the reality of the 

change in urban systems which are, in fact, far-from-equilibrium. 

The failures of conventional master plans in Iranian cities in general, and the case study 

of Tehran in particular, confirm that claim. Urban growth and change in Tehran are 

briefly reviewed to understand why conventional planning approaches mainly failed to 

achieve their goals. Tehran has experienced enormous morphological changes -

incorporating both planned and organic developments - making it a good case study for 

analysing the consequences of top down master planning and measuring quantitatively 

the degree of urban morphological change (see also section 5.2.1). 

5.1.1 The history of urban growth, large scale planning, and interventions in 

Tehran 

Tehran's main planning efforts relate to four periods whereby large-scale infrastmcture 

projects set the framework for the city's growth and development: a) before 1786 when 

the village of Tehran developed into a small town and was walled for the first time, b) 
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between 1786 and 1925 when it became the Iranian capital city and the walls were 

expanded, c) from 1925 up to 1965, when the walls were removed and the city nenvork 

expanded based on grid patterns, and finally d) after 1965, when a series of modernist 

planning attempts built a new urban infrastructure. 

5.1.1.1 The initial period (pre-1786): 

In the 16th century, Tehran was only a small village, outside the ancient city of Ray, 

which lay at the intersection of two major trade highways: the east-west historic Silk 

Road along the southern edge of Alborz Mountains and the north-south route that 

connected the Caspian Sea to the Persian Gulf. Ray had been inhabited for thousands of 

years and was the capital of the Seljuk dynasty in the 11 th century; however, it declined at 

the end of the medieval period, when Tehran began to grow (Lockhart, 1960). 

Tehran was known for its comfortable climate, and therefore it drew the attention of 

some Safavid kings who passed through while travelling. King Tahmasb ordered its 

fortification in 1553. It is, in fact, the first large-scale planning with the construction ofa 

bazaar and city walls, which were square and had gates on four sides, in accordance with 

the pattern of ancient Persian cities (Barthold, 1984; Saeednia, 1991). 

In the 1 t h century there were only five thousand houses and, as illustrated in figure 5.1, 

these formed four distinctive neighbourhoods. As with other Iranian urban structures, all 

neighbourhoods met up with the main axis of the bazaar. The branches of the main bazaar 
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became transformed into a bazaarcheh (small cluster of shops and stands) as the main 

street of each neighbourhood (Faghih, 1977). 
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Figure 5.1: The first map of Tehran in 1841 (Berezin Map). 
(Habibi and Hourcade, 2005, p.66) 

5.l.l.2 The second period (1785-1920): 

The selection of Tehran as the capital city of Iran in 1785 by the rust king of Qajar was 

the starting point for other developments (Saeednia 1991; Habibi 1995). From a 

popUlation of 15,000 at the end of the 18th century, Tehran grew tenfold by the 1860s. 

After nearly a century of slow and organic growth, a new plan was drawn up in 1871 , 

which was, in fact, the second large-scale planning transformation for the city. Faghih 

(1977) states that the N aseri plan 1 was based on the concept of an ideal Renaissance city: 

a perfect octagon similar to the 18th century walled cities, with twelve gates. In other 

words, Tehran was enclosed in a neat and orderly fashion (figure 5.2). At this time the 

popUlation was 150,000 and the city included ten neighbourhoods (Saeednia, 1991). 

I The name refer to Naser-e-Din Shah, one of the kings of the Qajar dyna ty, who ordered an octag nal 
. hape for Tehran' plan. 
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Figure 5.2: Map of Tehran drawn by Abd-ol-Ghafar Khan in 1891. The new 
octagonal wall, as compared to the footprint of the initial city wall, indicates the first 
planned expansion of the city in a neat and orderly fashion. (Sahab, 1991, p.291 ; 
reproduced in Habibi and Hourcade, 2005, p.68, the initial city walls marked by the 
author) 

Selection as the capital city, and the new transfonnations which included a new central 

square, new streets, a bank, an Institute of Technology (Dar-al-Fonoon), a hospital, a 

telegraph house, hotels and European style shops, were - according to the Briti h 

observer Curzon (1892, p.300) - a 'twofold renaissance ' for Tehran. Howe er, on th 

contrary, the organically grown neighbourhood patterns remained unplanned, which wa 



interpreted by another English traveller, William Jackson (1903), as: "east and west [of 

the city] combine imperfectly in its mixed civilization" (quoted in F aghih, 1977, p.4 7). 

5.1.1.3 The third period 0925-1965): 

After the decline of Qajar and with the dominance ofPahlavi in 1925, fundamental 

changes were imposed to the structure of the city by Reza Pahlavi (the first king of the 

Pahlavi dynasty). Modernisation was the main aim of the new regime resulting from the 

constitutional revolution of 1906. A modem municipality was established in 1910, 

transforming the old system of urban governance, and cutting the links to the past. 'In 

1930, a new urban strategy, similar to Haussmann' s ideas for Paris, was approved by 

Municipality of Tehran' (Municipality of Tehran, 2004, p.69). The city walls were 

destroyed and new boulevards were built on the ruins of the walls and moats, as part of a 

transport network of 218 km of new roads. During the 1930s there were also widespread 

street-widening schemes that tore apart the historic urban fabric, making areas accessible 

to motor vehicles. Western industrial cities became the prototypes for a changing Tehran 

(Municipality of Tehran, 2004; see also Hourcade and Adle, 1997). 

The city of Tehran thus went through its third large-scale transformation by 1937. It was 

'radically re-planned and re-built' (Lockhart, 1939, p.ll). At this time, retailers were 

encouraged to move to the new streets and abandon the old ones around the bazaar. As a 

result, a considerable part of Tehran's residential sector (belonging to the new middle 

classes) also moved from the older to the new sections of the city (Faghih, 1977). During 

this period, the introduction of the international style led to the creation of a street-
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oriented urban architecture, and the idea of residential blocks was introduced to the city. 

The walled royal compound in the city centre was fragmented and replaced by new 

governmental buildings (Habibi, 1996). 

Apart from the main changes in the city centre, the city walls were destroyed between 

1932 and 1937, and the city was completely transformed with the imposition of the new 

transportation network. The new street network was imposed on the winding streets of 

old neighbourhoods with the aim of unifying the space of the city. It was a major step in 

laying the foundation for further modernization and future expansion of the city. Figure 

5.3 illustrates the urban growth from 1891 to 1953. 
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The changes in the concept of planning, both in the overall image of the city and the 

architecture of the individual buildings, had drastic implications for neighbourhood 

pattern and structure. There are two different views of these changes. While many have 

criticised the destruction of historical buildings including 12 beautiful city gates 

(Saeednia 1991; Habibi 1996; Abrahamian, 1982), some have emphasized its positive 

aspects (Kariman, 1976; Faghih 1977). For instance, referring to the urban changes up to 

the 1960s, Faghih (1977) pointed out that city life as a whole became much more active 

and gave the new urban pattern a broader expression. She listed the urban design 

characteristics found in some residential areas as pedestrian continuity, exposed 

architectural details, and elements at street level, rows of building with orderly layout, 

clearly defined open spaces and mixed land use. 

The immediate result was a dramatic population growth; from 310,000 inhabitants in 

1932 to 750,000 in 1941, then to 2.8 million in 1966, and to 4.5 million 1976. In just 35 

years, the population increased six fold (Habibi, 1989, p.18). More important than 

demographic change was the impact of socio-economic forces which sometimes resulted 

in paradoxical spatial developments. Embracing the market economy divided the city 

along the lines of income and wealth, tradition and modernity. Rich and poor, who used 

to live side-by-side in the old city, were now separated. Modernizers welcomed living in 

new neighbourhoods and frequented new streets (the city north), while traditionalists 

continued to live and work in older parts of the city (the city south). 
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5.1.1.4 The fourth period (after 1965): 

A modern type of planning emerged in Tehran in the 1960s, preparing plans to regulate 

and manage future change. The city had grown in size and complexity to such an extent 

that its spatial management needed additional tools, which resulted in increasing 

complexity of the administration of municipal organization, and the preparation of the 

first comprehensive plan for the city following some of modernist principles of the 

master plans - 'planning through land-use regulation' (Madanipour, 2003, p.144). 

The 1966 Municipality Act provided, for the first time, a legal framework for the 

formation of the Urban Planning High Council (UPHC) and for the establishment of 

land-use planning in the form of comprehensive plans (figure 5.4a). In 1968, the UPHC 

approved the Tehran Comprehensive Plan which was produced by a consortium of Aziz 

Farmanfarmaian Associates of Iran and Victor Gruen Associates of the United States, 

under the direction ofFereydun Ghaffari, an Iranian city planner (Ardalan, 1986). 

The proposals were mostly advocating physical change (Farmanfarmaian and Gruen, 

1968), such as: 

• Attempting, in a modernist sprit, to impose a new order onto this 

complex metropolis, incorporating the following features. 

• Growing westward in linear polycentric form. 

• Reducing the density and congestion of the city centre. 

• Assigning a new city boundary to be formed by 10 large urban 

districts with about 500 thousand inhabitants each. 
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• 

• 

• 

• 

Separating districts by green belts. 

Subdividing district (mantaghe) into a number of areas (nahieh) 

and neighbourhoods (mahaleh). 

Allocating a high school, a commercial centre, and other necessary 

facilities for each area with a population of about 15 to 30,000. 

Allocating a primary school and a local commercial centre for a 

neighbourhood with its 5000 inhabitants. 

• Linking these districts by a transportation network - this included a 

hierarchy of streets, motorways, rapid transit routes, and bus 

routes. 

Almost all of these features can be traced to the fashionable urban planning ideas of the 

time, which seemed to be largely influenced by mechanical approaches - especially the 

zoning idea of modernism, in which everything was determined and fixed. 

Unsurprisingly, it resembled Gruen's (1965) "metropolis for tomorrow," which had 

suggested a central city surrounded by 10 additional cities, each with its own centre. It 

had also the elements of the Howard's idea of the "garden cities" in which a central city 

was surrounded by a cluster of satellite settlements separated by green belts (Howard, 

1902). The use of neighbourhood units of limited population - focused on the 

neighbourhood centre and primary school - was widely used in new towns based on the 

Howard's suggestions, but was particularly developed in the 1920s in the United States 

(Mumford, 1954). 
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As discussed in Chapter Four, structuralism as part of the systematic view of urban 

planning was developed in the second half of the 20th century. It was based on the belief 

that urban design and planning aimed to create and maintain a core structure for a city 

instead of outlining every element and providing a maximum flexibility for other 

developments linked to the main structure. In Tehran, based on this structural approach to 

the city system, two major planning exercises were carried out initially in 1970s and 

more comprehensively in 1990s (Madanipour, 1998, 2003). 

In the 1970s, the British consultant Llewelyn Davies proposed a plan which included the 

partial development of a new high-rise residential centre, Shahrak-e Gharb, and the 

planning of a new administrative and business centre for the city, Shahestan, as a 

systematic way to control the change and growth (figure 5.5). However, the latter was not 

developed before 1979, the Islamic revolution (Madanipour, 1998; Mashhoudi, 2007). 

Fi~e 5.l · i:~; The model of Shahestan-e Pahlavi ' an admi~stra ~i e ZO? w~th 
ministry' offices on both sides. Right; Shahrak-e Gharb; High n e re Id ntlal 
complexes in the north-west of Tehran (Hourcade and Adl , 1997, p.240) 

Other examples of structural planning in Tehran are the Ekbatan Comple (1975-1 

and the Navab Project (1993-2003). The Ekbatan complex wa built in 3 pha e 
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years (figure 5.6, left). It is the largest residential complex in the west of Tehran and 

planned on a self-contained town. In the poorer area in the south, a major redevelopment 

project, Navab, cut a motorway through the dense and decayed urban fabric; and imposed 

mega-structural building blocks on each side (figure 5.6, right). 

Ii'W:D'V.dIf.<k.::::JU.>.J!.. oM-

Figure 5.6: Two examples of structural planning in Tehran. Left; Ekbatan Complex (1975-1995). 
Right; Navab Project (1993-2003). (Municipality of Tehran, 2004) 

In the1990s, the first comprehensive plan's 25-year period ended. A f1m1 of Iranian 

consultants (A-Tech) proposed a plan for Tehran for the period of 1986-1996. However, 

this plan was revised by the municipality in 1993 before being implemented. The final 

approved plan also focused on growth management, linear spatial development, and a 

policy-based strategy rather than the former land-use plan (Municipality of Tehran, 

2004). The new plan consisted of the following main features: 

- Polycentric development in the city 

- Creation of new parks and green spaces 

- Development of cultural and community centres 

- Increasing residential densities 

- Improvement of urban spaces by implementing regeneration project 

- Assignment of 22 districts within the 5 sub-regions each with it own r lC 

_ Development of the transportation network to ea e mo ement in the city 
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5.1.2 Tehran's current condition 

Population growth continued during the recent decades, mostly due to the large-scale 

immigration. Tehran's population including its suburban residential districts increased 15 

times - from 210,000 in 1931 to 10.3 million in 1996, of which 6.8 million live within 

the city limits of Tehran and the rest within Tehran metropolitan region (pRCTN 

[Planning and Research Centre of Tehran], 2006). In the same period, however, the total 

population of Iran increased only 6 times - from 9.8 million to 60 million. 

Tehran, which had only a 2% share of the country's whole population in 1931 , now 

incorporates more than 15%. This is the result of migration due to the capital's unique 

attractions - more than 40% of the nation's economic activities take place there. It is 

anticipated that the population of Tehran with its suburban districts will reach around 14 

millions in the year 2011 (ACAUP [Atec Consulting Architects and Urban Planners] , 

2002). The density of different residential districts is very varied. However, the average 

population density is nearly 105 persons per hectare. The following bar chart clearly 

shows the population explosion in the second half of the 20
th 

century (SCI [Statistical 

Centre of Iran], 2001). 
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Figure 5.7: The demographic growth in Tehran city and it metropolitan rcgi n. 

(SCI, 2001, unpaginated) 



The consequence of this population explosion in the 20th century was the huge expansion 

of the city boundary. The city administrative boundary was expanded twice, fITst outward 

and then westward, to encompass 22 district municipalities in 720 km 2 • Tehran's area 

increased from 46 km 2 to 250 km 2 just in 42 years (1934-1976); and for just 22 years 

thereafter (197 6-1998), irrespective of the suburban areas, the area of the city increased 

to 720 km 2 (Zanjani, 1999). Many housing developments were built inside and outside 

Tehran's boundaries. The expansion of the city required new roads. Several motorways 

and arterial roads were added to the previous street network of the city and were extended 

to the peripheral - new suburban - areas (figure 5.8). 

'l"' ... r ... L •. ~ 
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Figure 5.8: Tehran's growth up to 2004 .and its.new network system; the rapid growth of! . hr~ 
ha transformed the city to a metropolIs donunated by a network of motorway . (Habib! a 
Hourcade, 2005, p.60) 



The fITst planning priority for these new parts of the city has been ease of car access. 

Therefore, the regular grid street layout is the dominant planning concern of almost all 

these areas. Nearly all of the new streets are wide enough to be responsive to future 

population growth. New housing developments are mostly located on the gap between 

the earlier city boundaries and the old villages around the city. Many of the new 

developments are established by specific governmental offices to accommodate their 

employees and therefore have a popUlation with a common occupation. Shops and urban 

facilities have gradually developed in clusters around roundabouts or main street comers. 

Figure 5.9: Shemiran in 1957 (left), and in 2005 (right). (Left, Kariman, 1976, p.S3; Right. 
the photo taken by the author, February 2005) 

Most of the new buildings, irrespective of whether developed by the private or public 

sector, are four or five stories high. There are also considerable amounts of high-rise 

buildings, which have been developed in recent years. As a result, the face of the city 

particularly in the northern parts (figures 5.9 and 5.5, right), was transformed in a hort 

period now consisting of medium to high-rise buildings connected through wide tre t 

and motorways similar to Le Corbusier's Radiant City (see al 0 appendix D). How r. 

in the most cases sufficient open and green spaces have not been pro ided. 



5.1.3 The overall comments on the former master plans of Tehran 

The key urban planning stages in the 20th century (1930s, 1960s, and 1990s) mark the 

periods of relative economic and political strength, in which urban development 

flourished, and the government felt able to manage the growth. Since Tehran became the 

Iranian capital (1785), several large-scale plans have been produced. Although they 

succeeded, to some extent, in steering the course of events and developed a more 

sophisticated approach to planning, these plans all have much that has remained 

unimplemented. 

Yet the intensity of speculative development - especially since the Second World War -

and the speed of events seem to have left the city authorities and citizens alike feeling 

trapped in tunnoil, lagging behind the events, and unable to manage change 

(Madanipour, 2003; Mashhoudi, 2007). The intensified social and physical segregation 

destroyed suburban gardens and green spaces in a way that left the city managers feeling 

powerless. A deputy mayor of the city in 1962 commented that: 

, ... the buildings and settlements [in Tehran] have been developed by 
whoever has wanted in whatever way and wherever they have wanted' 
(quoted in Nafisi, 1964, p.426). 

None of the laws and urban policies that have been imposed by Tehran's master plans 

helped to control the growth and changes. Land use patterns were determined in a static 

way and were unable to adapt and absorb the new needs and changes. Some other 

weaknesses of conventional master plans of Tehran can be outlined as: 

Even though since 1990, there have been some democratic elements in Tehran's 

master plans, they have shown strong modernist tendencies, with centralising 
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governance where urban interventions remaining their favourite device similar to 

previous planning generations (see also Hourcade, 2000). 

There are many high-rise residential complexes and offices, which lack urban 

facilities, such as proper road accesses and defmed parking spaces. 

The most consistent problems relating to the city has been traffic and air pollution 

(add a figure showing the traffic). Tehran's air is currently among the most 

polluted in the world (Bahrainy, 1989; Ghiasodin, 1999; PRCTN, 2006). 

There are no defined open spaces for social activities and human attraction, 

except for a few local parks or playgrounds for children. 

The metropolitan city of Tehran grew during the last two centuries in a way that 

provided diverse, fragmented, disjoined, and contradictory urban patterns. 

Many researchers have argued that citizens are in favour of having a sense of community 

and neighbourhood identity (Tavalai et ai, 1992; Homayouni, 1995; Bahrainy, 1989). 

However, the new residential developments in Tehran have no distinctive character. 

Tehran has experienced the destruction of its past visual order and harmony by new and 

modern developments during the last century (Hourcade and AdIe, 1997). This caused the 

city to lose its pre-modern characteristics without offering a new integral identity for the 

whole city (figure 5.1 0). 

In the city of Tehran, there is a huge contrast between the ideals of the proposed master 

plans and the realities on the ground. An important question to ask is \vhy 'the gap 

between planned ideal and reality is almost always great' (Larkham, 2006, p.123). Is it 
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the result of bad management (the inability of Tehran's authorities to implement the 

comprehensive plans), the lack of expertise of the planners who proposed the plans, or 

the consequence of the top down deterministic planning approaches that failed to cope 

with ongoing urban changes on the ground? In the next section, the records in relation to 

the master plans proposed for other Iranian cities will be explored to fmd a reliable 

answer to the above question. 

1 

3 

Figure 5.10: A caricature illustrating changes to street 
the 20lh century. (Hourcade and AdIe, 1997, p.251 ) 
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5.1.4 The failures of the top down master planning in managing change in other 

Iranian cities 

In 1994, Zista Consultants conducted an important study for the highest planning 

authority in the government - the Budget and Planning Organization. The study aimed to 

assess the achievements and inadequacies of conventional master planning in Iranian 

cities in the last 25 years. Eighteen major cities were initially selected and classified in 

seven categories based on the following criteria: population, population growth, the 

economic basis of them at city scale, their economic potentials at regional scale, climate, 

and geographical features. 

One sample city was selected from each category (Shiraz, Arak, Yazd, Maragheh, Bandar 

Abbas, Rasht and Zahedan). All seven had two master plans and the study was based on 

the comparison between the goals of these plans and the reality after their 

implementation. According to the survey undertaken by Zista Consultants (1994), what 

actually happened in reality is far from the earlier plans' goals and predictions of the 

proposed plans. This survey is briefly reviewed below. 

5.1.4.1 Economic studies and predictions: 

The general economic pattern shows a lack of success in the plans. As shown in table 5.1. 

predictions in the three economic activity groups are as follows: 

a) The predictions of employment in the agriculture sector differed from 0.1 to 2.2 

times the actual. 



i 

b) The predictions of employment in the industrial sector varied from 42% less to 

63 % more than the actual. 

c) The predictions of employment in the services sector varied from 50% less to 

300/0 more than the actual. 

• 
Agriculture Industry Services 

Sample Predictions Actual Predictions Actual Predictions Actual 
Cities (Ideal) Census (Ideal) Census (Ideal) Census 

(Reality) (Reality) (Reality) 
Zahedan 3.6% 2.1% 24.5% 42.5% 71.9% 55.4% 

Arak 3% 1.47% 52.5% 38% 44.5% 39% 

Shiraz 1% 2.2% 37% 23.4% 37% 74.4% 

Rasht 20% 2% 45% 27.5% 35% 70.5% 

Bandar 2.5% 1.7% 41% 35.8% 60.4% 58.1% 
Abbas 
Yazd 4.5% 3.8% 58% 72.3% 63.5% 55.2% 

Table 5.1: Increase rate of employment (percentage). The predictions for the year 1991 
were compared with what actually has happened. (Derived from Zista Consultants, 1994) 

5.1.4.2 Population: 

The results of the study show that the predictions of population growth in the sample 

cities were 65-143% more than the actual numbers. 70% of the predictions were grossly 

mistaken, ranging from 30% less to 43% more. Only in 15% of the cases were the 

predictions reasonably accurate. 

5.1.4.3 Prediction in settlement land-use: 

Table 5.2 shows a summary of the correspondence of the predictions and the actual 

figures at which assessed at the end of the plan (per capita). In general, green areas, 

sports, recreational, and non-profit lands were less than predicted. 



Sample Cities Residential Roads Parks Public Commercials 
& & Services & 

Streets Sports Private Sen-ices 

Maragheh 920/0 135% 95% 58% 78% 
Arak 112% 113% 131% 32% 40% 
Rasht 960/0 840/0 60/0 500/0 30% 
Zahedan 70% 121% 23% 39% 135% 
Yazd 121% 129% 93% 44% 140% 
Shiraz 82% 82% 5% 106% 127% 
Bandar Abbas 53% 55% 115% 95% 24% 
Average 90% 103% 530/0 60% 82% 
Table 5.2: The percentages per capIta mdIcatmg the difference between the proposed 
plan (ideal) and actual figures (reality). (Derived from Zista Consultants, 1994) 

5.1.4.4 Assessment of the directions and zones the city has expanded: 

Table 5.3 presents a summary of the result of the survey regarding the growth and 

developments inside and outside the sample cities' predicted boundaries. In all of them 3 

to 26% of expansion was outside the planned areas, while 10-40% of lands in the areas 

were not built despite of what had been planned. 

Ii I I 

Maragheh Arak Rasht Zahedan Yazd Shiraz Bandar Average 
Abbas 

Percentage 
constructed 20% 8% 15% 15% 20% 26% 3% 15°0 

outside the zone 
Percentage 
un-constructed 30% 40% 19.5% 22% 10% 30% 22% 23% 

inside the zone 
Table 5.3: The built-up area InsIde and outSIde the proposed boundary. (Denved from Zlsta 

Consultants, 1994) 

5.1.4.5 Assessment of network expansion: 

Table 5.4 provides a summary of the conformity between the prediction and actual cvcnts 

in relation to the changes which have occurred in the street network. On average, only 

24% of the proposed streets were built within the planning period and the others have not 

I 



been constructed yet. Meanwhile, 160/0 to 83% of the built streets were not mentioned in 

their proposed master plans. 

Percentage of built Percentage of built street :\ote 
streets without planning 

Maragheh 25% - -
Arak 26% 32% -
Rasht 22% 28% -
Zahedan 21% 83% -
Yazd 30% - -
Shiraz 25% - 2 of the streets that 

should have been 
built in the plan have 

been omitted. 

Bandar Abbas 16% 16%> -
Average 24% 23% -

Table 5.4: the percentage of the streets constructed based on the proposed plan (Derived from 
Zista Consultants, 1994) 

5.1.4.6 The correspondence of proposed densities with the actual occurred densities: 

The changes in built-up, net residential population, and population density were also 

studied. Built-up densities at the end of plans were an average of 15% lower than what 

had been predicted. Net residential density at the end of plan was from 17% lower to 42% 

higher of the predictions. The survey revealed that only in one case the prediction was to 

some extent came true; however, in others the error ranges from 17% to 60%. 

5.1.4.7 The changes in the city structure: 

In all cases, the master plans had proposed a modem layout of urban patterns where the 

zones for land-uses were determined and services had been planned in the centre of local 

areas at neighbourhoods' level, far from main roads. However, the analysis revealed that, 

in all cases, the cities did not follow the plan, and the services were dispersed at local 
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area centres or along the major roads based on the scale of the business and the market 

needs. 

5.1.5 The overall comments on the conventional urban planning in Iran: 

In short, the studies on the master plans of Tehran and this sample of cities revealed that 

what actually occurred, in reality, hardly ever corresponded to the original objectives of 

the plans. Mashhoudi (2007, p.3) concludes that: 

'It seems that the city itself evades all instructions and planning, and reaches a 
point of defiance where anything that "should not be", imposes itself on those 
that "should be". The city apparently uses its own creativity to go anyway 
except the one planned for it.' 

Zista Consultants (1994) reported that the failure of the master plans cannot be blamed on 

lack or inadequacy of data, nor can planners be blamed for their lack of expertise, nor can 

the authorities be blamed for their inability in implementing the plans. In fact, the 

cognitive methods of urban planners had no conformity with the complex nature of urban 

evolution and their efforts to recognise the urban complexities by simplifying and 

general ising the problems only worsened the crises. Zista Consultants (1994) concluded 

that the roots of the failures lay in the following reasons: 

Impossibility of accurate prediction of changes, particularly in economic and 

social issues 

Ignorance of the changes in citizen needs during the planning implementation 

period and their role in actively participating in making decisions 

Ignorance of the change in physical potentials of the environment 

Rigidity of the plans in determining the land uses, zone' boundaries, and 

enforcing certain sizes and population limits to the cities 
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Zebardast (2004) has also noted the impracticability of the conventional planning 

methods. He believes that land-use restrictions within the city, rigid municipal 

boundaries, insufficient investments in infrastructure that commensurate with new needs , 

and the rigidity of the urban planning system in Iran to adapt to fast demographic change, 

have resulted in the overspill of low income groups into the periphery. Therefore, the 

formation of informal settlements in Iran has more to do with inflexibility of urban 

planning regulations than with the weak administration and management. This has also 

been reflected by the W orId Bank: 

'It is the inflexibility of urban planning regulations and the inability to 
integrate areas on the periphery that renders most of these settlements [urban 
fringes] informal' (World Bank, 2002, p.lS). 

The failures of the master plans in Iranian cities in general, and in the case study of 

Tehran in particular, conform to the outcome of the theoretical debate discussed in the 

previous chapter, in which the top down and deterministic approaches in conventional 

planning were criticised. In fact, without shifting our planning methods from utopian and 

deterministic ones - from the city in equilibrium - to more flexible, democratic, and 

complex ones - the city in a fragile equilibrium - planning, and management of Tehran 

and other cities remain less effective. 

5.2 Part Two: The Case Study of Shemiran and Sample Selection 

In Part One, the history of urban growth in Tehran was briefly reviewed. It was 

. ' d' h 'JOth 
mentioned that Tehran experienced a huge expanSIOn of Its suburbs urmg t e_ 

century. However, this was in a disjointed manner in all directions, along the roads. 



integrating the surrounding towns and villages (Madanipour, 2003). Reviewing the 

history of urban growth in Tehran reveals two different growth patterns. On the one hand, 

there was a fast and huge expansion of the fonner city towards its suburbs, and on the 

other, a gradual organic growth of the villages, which lay around the city in the past but, 

are now within the city. Therefore, its morphology consists of a number of towns 

connected to each other in an inappropriate way. As a result, rapid urban growth has 

produced controversial neighbourhood patterns in different parts of the city including the 

northern parts (Shemiran). Shemiran with its unique historical, geographical, and social 

characteristics is a good exemplar of urban pattern diversity. 

5.2.1 The factors of case study selection and sample selection 

One of the main proposals of this research is that the fractal dimension measurement can 

be used as a sensitive tool to assess urban morphological change and to identify pattern 

classification. In order to test this proposal, the following two factors are to be taken into 

account: 

(a) The case study should exhibit elements of both planned and 

organic growth with a variety of building type and age. One 

representative from each type is required to make comparison 

possible. 

(b) As the focus of the research is on measuring change over time, 

the morphological data, maps, and photos of the selected cases 

should be available from the past to present both at large and small 

scales. 
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As discussed earlier, the urban morphology of Tehran experienced both gradual and rapid 

growth over the last two centuries. Shemiran, a district in the north of Tehran, meets the 

above two factors due to its structural and morphological diversity and historical data 

availability. The organic neighbourhood pattern of Tajrish (centre of Shemiran) and the 

new grid neighbourhood pattern ofVelenjak (a new residential development in 

Shemiran) are appropriate required samples for a comparative pattern analysis. Tajrish is 

considered as the main sample, because its historical data is available for the change 

analysis over time (figure 5.11). 

Figure 5.11: Areal photo of Shemiran. Tajrish (right frame) is the main sample case for fractal 
examination and Velenjak (left frame) will provide the comparative sample. 

5.2.2 Historical and geographical interpretation of the urban pattern in Sbemiran 

There is an influential geographical reason behind the existence of diverse urban pattern 

in Ray and Shemiran. Shemiran, in the north of Tehran is located on the mountain ide of 

the Alborz chain towards the north of Iran. However, Ray in the south of Tehran i clo 

to the desert, Dasht-e Kavir (figure 5.12) . The terminology of the e place al 0 di cl ' 

uch a climatic diversity. "Shemir-" means' cold " and "-an" mean place": th re~ r 



"Shemiran" means a "cold place". In contrast, Tehran, in the south, is said to be derived 

from "Teh-r" and "-an" which means a "wann place" (Hourcade and Adle, 1997, p.14). 
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Figure 5.12: Tehran's unique geographical location - between the desert 
and Caspian Sea. (Habibi and Hourcade, 2005) 

This is a geographical advantage for Shemiran as it is located on the mountainside _ 

about 800 metres higher than Ray in the south. Due to the different heights of the land, 

the temperature and rate of rainfall varies remarkably in the north (Shemiran) and the 

south of the metropolis (Ray) as shown in table 5.5. Therefore, Shemiran with its 

moderate climate in the summer gradually became a recreational place for residents of 

Ray and Tehran who had built their private gardens there (Shahri, 1992). 

The rate reported for the 
years 

North of Tehran 
(Shemiran\Tajrish) 

City of Tehran 
(Centre) 

South of Tehran 
(Ray) 

between 1996 and 2003 

Average temperature (C) 23 29 
Maximum Temperature (C) 36 42 
Minimum temperature (C) -17 -6 
Annual rainfall (mm) 104 43 

Table 5.5: The rate of annual temperature and rainfall in Tehran for the y a 
and 2003. (IRIMO, 2004) 

30 
43 
..oS 

42 



Such a big differentiation in the geographical and climatic features within Tehran has had 

an obvious impact on the way in which the city and its suburbs have evolved over time. 

These influential factors made a clear distinction between the plot layout in the north and 

in the south of the city (figures 5.13 and 5.14, right). The old urban patterns in the south 

(city of Tehran and Ray) followed an inward oriented layout of buildings with courtyards 

(figure 5.13), similar to other Iranian traditional housing located in a hot and dry climate 

(Hourcade and Adle, 1997). Conversely, old housing patterns in Shemiran, in the north, 

adopted the Iranian traditional garden layout (figure 5.14, right). An Iranian garden 

traditionally is divided in four parts by two crossed water paths with a building (Kooshk) 

at their intersection. It was, in fact, an outward layout where the Kooshk faced outwards 

(figure 5.14, right) surrounded with rows of fruit trees, planted in a regular manner 

(Shahri, 1992). 

However, from the first master plan of Tehran (1965) to the present, a new policy (60% 

land occupation) has imposed a new building layout (figure 5.l4, left), which has 

followed neither the traditional logic nor the climatic and geographical diversity in 

Tehran. Based on this policy, only 600/0 of a plot can be occupied by building and the rest 

must be left free for a front garden. Hourcade and Adle (1997, pp.252-254) argue that 

'this policy seemed to be in the favour of modem grid pattern of urban growth rather than 

traditional socio-cultural Iranian values'. A few gardens have remained from the past as 

illustrated in figure 5.16: however, the majority have been divided into smaller plots to 

construct modem buildings according to the policy of permitted land occupation. 



.--... 

Figure 5.l3 : A traditional inward plot layout in the south of Tehran, which 
responds to hot and dry climate in the south of Tehran. (Hourcade and Adle, 
1997, p.253) 
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Figure 5.14: Left, the new plot layout has been in force since the fir t rna tcr 
plan of Tehran - 1968. Right, the typical layout of Persian garden rc ' pond ' 
to the climate in Shemiran. (Left, Hourcade and Adle, 1997 p.254; Right, the 
sketch drawn by the author, April 2008). 



5.2.3 Fractal interpretation of the organic urban pattern of Tajrish (the centre of 

Shemiran) 

In Shemiran, the parts, which have developed organically, are mainly around its centre, 

named "Pol-e Tajrish". Tajrish has the largest traditional shopping mall (bazaar) in the 

north of Tehran. The origin of the bazaar and the early residential neighbourhoods in 

Tajrish are linked to the construction of the Shrine - Imamzadeh Saleh - in 11 th century 

(Aboutorabi, 2005, p.66; Sotoudeh, p.200). Figure 5.15 illustrates the Bazaar and its 

surrounding neighbourhoods. 

The majn spine (Rasle) of the ba.laar 

The 

Figure 5.15: Tajrish Bazaar and its surrounding neighbourhoods in 1981 (Aboutorabi, 
2005, p.60; the names marked by the author) 

Since the Municipality of Tehran aimed to transform the city from a mono-centric 

structure into a polycentric one and also to encourage hierarchical distribution of urban 

facilities (PRCTN, 2006), Tajrish has been designated as the main centre in the north and 

therefore has experienced fast morphological change during recent decade. Only a ~ v 

old buildings and gardens have remained from the pa t; howe er, it exi ting organi 

treet patterns can be seen as obvious evidence of it long hi tory of organic grov th 

(figure 5.16). 



Building 

Front Yard 

Garden 

Figure 5.16: Building and plot layout in the neighbourhood area of Tajrish, Shemiran. The 
gardens have been gradually divided into smaller plots in which the position of buildings and 
yards have been significantly changed (Municipality of Tehran, 2003, unpaginated; 
remaining gardens are coloured in dark green by the author). 

At a glance, there seems to be no regularity in the neighbourhood pattern of Tajrish; 

however, on closer observation, some similarity in the building orientation begins to be 

evident. As figure 5.17 illustrates, a semi U-shaped unit, repeated at different scales and 

sizes, exists in the urban fabric of Tajrish. This similar unit could be considered as a cell 

generator creating the site morphological pattern, like the generators of fractal shapes 

explained in Chapter Three. This self-similar semi U-shape pattern reveals the existence 

of an underlying geometrical order dominating in the neighbourhoods of Tajrish (figure 

5.18). 

The preliminary evidence of organic growth with fractal characteristics in Tajri h 

provides the main sample required for the empirical section of thi re earch. Th ne. t 

ection explains how fractal measurement can be useful to interpret and t t th diver It 

of urban patterns in different districts of Tehran, which al 0 a i t n f 

appropriate case studies for further exploration at the empirical tag 



Figure 5.17: Above; Tajrish neighbourhoods in the north 
of Tehran. Below; self-similar semi U-shape pattern 
originated from organic urban growth exists at different 
scale and size of the selected neighbourhood in Tajrish. 
(Haghani, 2004, p.5) 

Figure 5.18: A graphic presentation of the distribution of 
semi U-shaped fractal pattern existing in urban fabric of 
Tajrish. (Haghani, 2004, p.5) 

5.2.4 The case study and sample selection by measuring fractal dimen ion 

Not only a morphological and historical review, but also mea uring the fra tal dim n 1 n 

of an urban fabric, reveals which district con i t of di er e urban patt m ' and b t med 

- ( 



factor (a) discussed earlier in section 5.2.1. Chapter Three explained that the box 

counting method can be used for measuring fractal dimension, and can be referred to as 

an indication of the existence of self-similar shapes (homogenous patterns) or the 

existence of self-affine shapes (heterogeneous patterns) in a fractal object. As shown in 

figure 3.25 (Chapter Three, section 3.3.5.1), the logarithmic graphs produced by the box 

counting method indicate how fractal dimensions assessed for the Koch curve are 

constant while for the coastline of Britain are varied from large to small scales (figure 

3.24, and table 3.2). This indicates that the coastline of Britain consists of heterogeneous 

fractal patterns. 

In a similar way, the fluctuation of calculated fractal dimensions indicates the degree of 

heterogeneity of urban patterns in an urban fabric. Having produced such logarithmic 

graphs for the 22 districts of Tehran, the places with maximum and minimum pattern 

diversity can be identified (refer to appendix C for the graphs of all 22 districts). Each 

logarithmic graph in figure 5.19 plots the number of occupied pixels, as representative of 

built up areas, on a graph of which different city scale levels (the horizontal axis) is 

illustrated. The comparison of the graphs reveals that the developed patterns in district 

no. I (Shemiran) and district no.3 are more heterogeneous than the urban patterns in other 

districts (figure 5.19). Conversely, the stability of the assessed fractal dimensions 

represented by some of the graphs (e.g. district no.II) is an indication of homogeneity 

(self-similar urban patterns). Therefore, districts no.1 and no.3 are better candidates for 

being selected as the research case study and better satisfy factor (a). However, between 

these two districts, data, photo and maps, are more readily available for Shemiran 

(District no. I ), and therefore, it meets factor (b) too. 
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Figure 5.19: Three districts of Tehran with the lowest (abov ) and highc t (middle and bel w) 
degrees of pattern diversity according to their respective logarithmic graph. (The graph: an.: 

produced by employing the fractal analysis software, Benoit 1.3) 
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5.3 Chapter Summary: 

The chapter achieved its main goal by selecting appropriate case studies at city/district 

scales (Tehran, Shemiran) and at local neighbourhood scales (Tajrish, Velenjak). As 

discussed in Part One, recent surveys of Tehran showed that the earlier plans failed to 

control urban growth and change. It was discussed that the failures have less to do with 

the weak administration and management than the employed planning methods. In fact, 

the comprehensive plans of Tehran followed utopian deterministic approaches that were 

far from what occurred on the ground. In other words, the high expectations of these 

plans do not conform to the unpredictable and complex nature of actual urban evolution -

as discussed theoretically in chapters Three and Four. 

One of the main objectives of this research was to measure the degree of change in 

physical complexity of urban patterns at a neighbourhood scale. Both historical and 

geographical features of Shemiran suggest that the existing urban patterns are the result 

of diverse, fragmented, disjoined, and contradictory growth patterns. The initial fractal 

measurement also reveals the existence of such diversity. Two sample cases at 

neighbourhood scales of Shemiran were selected to be examined in more detail at the 

research empirical stage - one with organic and the other with planned origins. The 

organic growth pattern of Tajrish, the old centre of Shemiran, and the main sample, and 

the new planned development ofVelenjak seemed to be appropriate candidate to be 

examined in more detail at the research empirical stage. 
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Introduction 

Chapter Six narrows down the research by formulating a specific target (see figure l.3 in 

Chapter One). Therefore, the chapter will specify an urban morphological feature as its 

target to be examined. It will attempt to devise a fractal analysis tool to measure more 

accurately the degree of physical and spatial complexity that the selected case studies 

exhibit. To achieve this goal, the chapter is comprised of three main parts: a) the research 

refinement, b) the pilot study, and c) the case study examination. 

In the first part, the main outcomes of the previous chapters will be reviewed to formulate 

the research target and to refine the research method for the empirical stage. The 

advantages and limitations of the suggested method will also be identified. In the third 

part, the steps of data processing, image processing, and the preparation the fractal 

analysis tool will be discussed. In the third part, the fractal dimensions of the selected 

case studies will be measured in order to produce a fractal map. This map would then be 

a base for comparing and analysing the morphological changes taking place o\cr both 

place and time. 
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6.1 Part One: The Research Target and the Refinement of Method 

One of the issues discussed in Chapter Three was that small changes occurring at a local 

level in a city could become significant changes at a global level (the butterfly effect). 

Thus, developing appropriate techniques to observe and measure small-scale changes will 

help to find better ways to analyse the sequence of changes that shape urban patterns at 

larger scales. At the end of Chapter Four, it was concluded that the views of city 

complexity in the area of planning and design should focus on bottom up approaches and 

therefore "architectural and neighbourhood scales" should be the major concern for 

decision makers. In that chapter, the literature was reviewed to identify the current 

approaches to urban complexity addressing directly the use of fractal analysis in 

measuring the complexity of urban elements at architectural and local urban scales. 

However, there is little research on the potential of fractal dimension in measuring urban 

morphological "change" over time. Therefore, this research seeks to cover this less 

researched area, and to devise a fractal analysis technique addressing the above issues 

and measuring morphological change at neighbourhood scales. The objectives, therefore, 

can be elaborated as follows: 

I) assessing the fractal dimension of different urban patterns within the case study and 

comparing the results with the degree of homogeneity or heterogeneity that they 

display. This will provide a fractal map leading to the fractal classification of urban 

patterns. 
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II) Selecting an area within the case study where historical records and data are 

available and then calculating its spatial fractal dimensions in order to observe and 

analyse the change in urban shapes and patterns caused by individuals, planning 

policies, or design proposals. 

The latter objective addresses the concerns of complexity theorists related to the changes 

imposed by large-scale planning and urban design proposals (also known as urban 

interventions). Chapter Two discussed that Euclidian geometry is the tool in the hand of 

an architect, urban designer or a planner while planning and drawing proposals, and the 

imposition of this geometry - particularly on an old urban context - will inevitably create 

mistakes. It was also suggested that urban interventions are to be treated with extreme 

caution (Chapter 4), as they may reduce the level of complexity existing in urban system. 

Therefore, from a morphological point of view, there is a need to develop techniques to 

measure the degree of changes enforced by an urban intervention in order to evaluate 

which proposal or urban alternative is better adapted to its existing context. However, no 

research, so far, has developed such practical techniques; hence, the main goal of the 

present research is to devise a practical tool that responds to this need. 

This chapter develops a fractal analysis tool to assess urban morphological change at a 

neighbourhood level. In Chapter Five, the case studies in the north of Tehran were 

selected for a detailed fractal examination. It was explained why these cases could be 

appropriate to the research aims. The next section will discuss which morphological 



features of the selected case studies best fulfil the above task and why aerial photos are 

used as the main source of data. 

6.1.1 The source of data for measuring urban morphological evolution 

A list of those morphological elements and their properties which can lend themselves to 

fractal measurement was suggested by Cooper (2000). Fractal dimension measurement 

can be either applied to each of the elements listed in Table 6.1 or a combination of them 

can be arranged to be analysed from a fractal point of view. For measuring changes, the 

important factor is that not only the contemporary data, but also data from the past must 

be available. For instance, it is possible to measure the degree of change in the fractal 

dimension of a street favade only if the historic images of the buildings' elevations of that 

street are available. 

Scale Element type Variable properties 

Street Level of connectivitylintegration, position in hierarchy, level of 
predictability/regularity, orientation, skylines irregularity. 

r-- Pattern: street12attern*. 
Plot Size: width, length, shape, proportion, orientation. 

Z Pattern: ownership patterns and legal basis, level of connection to the 
~ street,J~lot...2.attern* . .... r--- IJCl 

Size: width, depth, height, proportion, shape. =- Building 
C'" 

Texture of elevation: materials, color, ratio of walls to openings. 0 

= Other criteria: level of access, adaQtability . 
., 
=->----
0 

Size: width, length, shape, orientation, area*, perimeter*. 0 Block 
c. 

Pattern: block pattern. rJ) 
~ 

Natural* Topography (degree and variety of slope), sea and river edges, green ~ -(j ~ 
Element ~aces (parks, woodlands, and vegetation) .... 

~ Land use Scale of use: extent, intensify and degree of variety. 
rJ) 

Pattern: Pattern of land use distribution. ~ 
~ 
;' Landmark* Type, size, level of visibility, level of accessibility, distribution 

pattern. 
Boundary* City/district boundaries and edges. 

, , , Table 6.1: Measurable morphologIcal elements at CIty scale and local neIghbourhood scak. 
(Cooper, :WOO, p.223; the elements and properties asterisked were added by the author) 
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As the objective of this research is to measure fractal dimensions of urban morphological 

patterns at a local urban scale (see Chapter One, section 1.2.1), it has led the research: 

a) To focus on the local neighbourhood scale rather than large city 

scale elements with one exception. The exception is that the survey 

will require measuring both small-scale and large-scale urban 

patterns as part of necessary data for formulating a kind of fractal 

fingerprint for urban neighbourhoods in the next chapter (see section 

7.2.1). 

b) To use remote sensing city images taken through aerial cartography 

as the main source of the empirical survey. Aerial photos, in fact, 

consist of mixture of blocks, plots, and street patterns, which makes 

linkages with the research objectives. Greenery as part of the urban 

physical landscape that forms urban patterns was not excluded from 

the images at the empirical stage. This is also due to the outcome of 

chapter 5 where the role of greenery conservation as part of 

Shemiran's physical identity was emphasised. 

Using aerial photos as a data source has three advantages: accessibility and reliability of 

data source, quality of data in the remote sensing survey, and availability of the records. 

Firstly, the aerial photos have been taken originally by the National Cartographic Centre 

of Iran (NCCI) and the copies are accessible from the Tehran Geographic Information 

Centre (TGIC). The advantage of working with this kind of data is that the research can 



be tested, experimented, and extended by other scholars or practitioners. Secondly, the 

quality of aerial photos is better than similar images taken by satellite and can pick up the 

elements as small as 50 centimetres. It would assist testing which resolution better suits 

the employed method. Finally, the other advantage of using aerial photos as compared to 

satellite photos is that their history is available. The aerial photos of Tehran - taken and 

recorded every 10 years since 1956 (see Appendix E) - provide the essential data 

required for measuring change over time. 

6.1.2 Fractal mapping 

The main goal of this chapter is to produce the fractal map of the selected case studies -

as they are today - based on the fractal dimensions of their urban patterns. Since the 

research target is to devise a fractal analysis technique to assess changes occurring in 

urban patterns, the fractal map provides a benchmark by which changes over time to the 

urban patterns can be measured. The quantitative data that is obtained by assessing fractal 

dimensions of the patterns at different periods will be converted to pictorial data to 

identify the potential of the suggested fractal assessment technique in illustrating the 

evolution of urban patterns. 

It is worth emphasising that this research aims to develop only a fractal analysis tool -

not an evaluative tool - to assist decision makers to measure more accurately the degree 

of physical changes. This will assist urban specialists to assess quantitatively the physical 

impact that an urban intervention or even a new urban policy impos~s on an ex isting 

urban fabric (see Chapter Seven, sections 7.3.'2.1 and 7.3.2.2). As each individual case 



has its own unique properties and characteristics, it would be the responsibility of 

decision makers to judge, evaluate and approve any changes caused by the urban 

development proposals. 

6.1.3 An introduction to the employed method and data processing steps 

The research suggests a method by which fractal dimensions can be mapped. For this 

purpose, it has employed fractal analysis software (Benoit 1.3) linked with ArcGIS 

software (ArcMap 9.2). Benoit 1.3 is used for its ability to calculate fractal dimensions of 

urban patterns at different scales (producing quantitative data). Then, ArcMap 9.2 is 

employed to convert the quantitative data into pictorial data (producing a fractal map). 

The Case Study Selection 

+ 
The Pilot Study 

Guide Samples Sensitivity Test 

Image Control Software Calibration 

+ 
The Case Study Examination 

Validity Test 

Fractal 
Calculations 

Case Study Preparation (Image Processing) 

Fractal Dimension Measurements 

Fractal Patterns Mapping Procedure 

+ 
The Case Study Analysis 

Figure 6.1: The main steps of the examination method, the pilot study 
and the case study examination. 

As figure 6.1 shows, the method comprises two main stages: the pilot study and the case 

study examination. At the pilot stage, the fractal analysis software should be calibrated 
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and the input images adjusted. At the examination stage, the fractal dimension of the 

selected cases will be calculated, and the result will be processed into Arc Map to be 

mapped (forming a fractal map). The fractal map will be produced based on the most 

recent aerial photos - taken in 2002 - to identify and typify fractally urban patterns 

within the case study. The fractal map will then provide a benchmark for data analysis in 

the next chapter, where the contemporary urban fractal pattern of the present will be 

compared to that of the past and future. 

6.1.4 Advantages and limitations of using Benoit 1.3 and ArcMap 9.2 

6.1.4.1 Fractal analysis software, Benoit 1.3: 

Many fractal software programs have been developed to calculate fractal dimensions 

including, Benoit 1.3, FracLac 2.0, HarFa 4.9. This research has employed Benoit 1.3 due 

to its advantages. Firstly, the other software only uses one method for measuring the 

fractal dimension; while Benoit 1.3 provides multiple choices of using any of five 

different methods that were introduced earlier in Chapter Three (see section 3.3.5). The 

user can select an appropriate method depending on the particular type of data selected 

for analysis. For instance, the ruler method is appropriate for measuring fractal 

dimensions of a city boundary while box counting or mass dimension methods are more 

appropriate to deal with urban density or population. 

Secondly, Benoit 1.3 has resolved one of the common problems that the other programs 

encounter when using the box counting method. The software provides an option to alt~r 

the minimum and maximum grid size depending on the subject scale. For instance. 



architectural scales (e.g. building elevations) and urban scales (e.g. street elevations) 

require different box size arrangements. The Benoit interface provides adjustable 

parameters, and the user should adjust them (by running a pilot test) in order to achieve 

an optimum result. 

Thirdly, Benoit 1.3 not only measures fractal dimension but also the SD (Standard 

Deviation). As explained earlier in chapter three, the SD is a criterion by which a pattern 

composed of self-similar components can be distinguished from a pattern consisting of 

diverse elements. Finally, Benoit 1.3 also provides a logarithmic graph, illustrating both 

fractal dimensions and standard deviations. 

Having explained the advantages of using Benoit 1.3, there are also some constraints as 

follows. Currently, none of the available software programs can measure fractal 

dimensions of 3D urban spatial patterns; therefore, the research is limited to two

dimensional examination and analysis of the case studies. The other constraint is that the 

software only performs a binary - black and white - image analysis. Therefore, some of 

the gray scale data information may be missed during examination. To overcome this 

limit, the contrastlbrightness of the input images should be controlled according to the 

result of the pilot test to ensure that the main morphological elements - composing an 

urban pattern - are not missing. 

The other limitation of using Benoit 1.3 is that it accepts only a bitmap image fonnat. 

therefore the program cannot distinguish the difference between urban morphological and 
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non-morphological elements in an image - for example the difference between a car and 

a statue. Therefore, the unnecessary data must be removed manually from an image 

before examination. 

6.1.4.2 GIS software, ArcMap 9.2: 

This research uses one of the latest versions of GIS software, ArcMap 9.2, due to its 

following advantages: 

It is capable of importing both numerical and pictorial data. 

Some data such as census, statistics and geographical data related to the selected 

case studies are in formats (e.g. ".shp", ".shx") which are readable by ArcGIS 

software. 

It has mapping capabilities by which quantitative data can be mapped. 

It has the capability of comparing different data layers according to their attributes 

and locations. This enables comparison of fractal data with other morphological 

data such as size, age, etc. 

The process of importing data from Benoit software, adding attribute data, creating new 

shape-files, and projecting fractal maps require a number of sequential steps to be 

undertaken. This is a long process, difficult even for an expert operator. In this research, 

the process of producing a fractal map is applied to the selected cases in the north of 

Tehran. Application of the same method to produce a fractal map for the whole city of 

Tehran requires either an intermediate software program in order to process the datI 

automatically, or a number of operators that the task can be divided between them. 
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6.2 Part Two: The Pilot Study 

The pilot study aims to achieve two objectives: fIrstly, the employed fractal software, 

Benoit 1.3, needs to be calibrated according to the required "scales" at which the 

measurement will be carried out. Secondly, the aerial photos are to be tested in terms of 

"image resolution", "image contrastlbrightness" and "image contents" in order to obtain 

optimum results (Figure 6.2). The latter test aims to pick appropriate morphological 

elements from the images and remove the elements, which may have a negative impact 

on the validity of the results . 

.-------- Pilot Study --------, 

Image Control Software Calibration 

Resolution ContrastIBrightness Image Contents Number of calculations Side Length Coefficient Decrease 

Pilot study's flowchart 

I 
Software Calibration 

I 
Validity Test •• ---

Fb andSD 
Calculation 

1 
Image Control 

, 
---+-. Sensitivity Test 

Figure 6.2: The pilot study; the steps of software and image 
configuration (above) and its flowchart (below). 

6.2.1 Software Calibration - the validity test 

A key issue for calculating fractal dimensions is the number of scale levels to be 

examined. As explained in chapter 3, in the case of regular fractals, calculation of fractal 

d'·· . fIt uentl'al scale levels Howe\ ~r, in ImenSlOns reqUIres element countmg 0 on y wo seq . 

the case of random fractals, where the fractal dimension varies at different sL~al~ lc\'cls. 
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usually more than two scale levels are to be examined. Therefore, it is important to verify 

how many scale levels are required to obtain an optimum result, and which scales are 

more appropriate according to the research target. 

As explained in Chapter Three (see section 3.3.5.1) , fractal dimensions can be calculated 

by the Box Counting method which requires a number of scale levels (N) of the targeted 

object. In the case of measuring fractal dimensions of urban patterns, this research targets 

neighbourhood scales. Increasing the number of scale levels (N) will focus on 

architectural elements (too detailed) and decreasing N will lead to the city scale levels 

(too large). Benoit 1.3 provides an adjustable interface to adjust the number of required 

scale levels required in this research. Figure 6.3 illustrates the interface of Benoit 1.3 and 

its adjustable parameters. 

:" ~ '4' '" .. 

1.-06 Y=3 07e+05·X~1 87 
of bo~ size Decrease ((UI 
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.. 
0 
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::> 
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10 

10 100 
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Figure 6.3: The adjustable parameters in Benoit 1.3's interface. 

Benoit 1.3 provides two parameters (SL and CD) by which the number of desired scale 

levels of the examination (N) can be defined. The "Side Length" of the largest box (SL) 



can be adjusted based on the area of the examined pattern, and the smallest box is 

adjustable by controlling "Coefficient Decrease" of box size (CD). An appropriate 

combination of SL and CD will define the number of scale levels (N) to cover all desired 

scale levels. For instance, when SL is altered from 25 metres to 50 metres, either one 

more scale level will be added with a CD of2.0; or two more scale levels will be added 

with a CD of 1.41. 

.-
Figure 6.4: The pilot samples, neighbourhood no.5 in Tajrish 
(Left), and neighbourhood no.1 in Velenjak (Right). The 
neighbourhood area size of both cases is 200 x 200 metres. 

Two pilot samples, one from Tajrish (the research main sample) and one from Velenjak 

(the research comparative sample) were selected in order to calibrate the above 

parameters (figure 6.4). At each step of the calibration, one of the parameters is tested by 
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different values while the other parameter is kept constant. The pilot test was carried out 

on the guide samples with different possible values for SL and CD parameters. Tables 6.2 

and 6.3 present the final test results. 

Pilot Samples Side-Length Coefficient Number Fractal Standard n 
Sample 1: of largest box of box size of scale dimension Deviation 

::r 
(") 

Tajrish N5 per Pixel* Decrease levels 
(") 

box method :><;" 

Sample 2: (Pb) 3: 
Velenjak Nl (SL) (CD) (N) 

III 
(SD) * Sample 1 200 2.0 8 1.7147 0.0507812 xx 

Sample 2 1.3562 0.0421610 x 
Sample I 100 2.0 7 1.8710 0.0017158 x 

Sample 2 1.4898 0.0954492 xx 

Sample 1 50 2.0 6 1.8879 0.0005078 -.J 
Sample 2 1.3777 0.0423040 -.J 
Sample 1 25 2.0 5 1.8900 0.0004991 -.J 
Sample 2 1.2505 0.0080866 -.J-.J 
Sample 1 10 2.0 4 1.8481 0.0005692 .y 
Sample 2 1.1542 0.0000735 x 

Sample 1 5 2.0 3 1.8079 0.0000788 -.J 
Sample 2 1.1627 0.0000518 x 

Sample 1 3 2.0 2 1.78847 0.0000000 x 

Sample 2 1.1579 0.0000000 xx 

* Each pixel in this test is equal to one metre. xx Very poor, x Poor, ~AcceDtable ~~Good 

Table 6.2: CalibratIOn of Fractal analysis tool; the result of the pilot test when the 
side-length of the largest box (SL) varies, and coefficient of box size decrease (CD) 
is constant. 

Pilot Samples Side-Length Coefficient Number Fractal Standard n 
::r 

Sample 1: of largest box of box size of scale dimension Deviation (1) 
(") 

Tajrish N5 per Pixel* Decrease levels box method :><;" 

Sample 2: 3: 
(N) (Fb) (SD) 

III 

Veleniak Nt (SL) (CD) 
.., 
:><;" 

Sample 1 25 3.5 3 1.8960 0.0001781 -.J 

Sample 2 1.2862 0.0031649 x 

Sample 1 25 2.5 4 1.8871 0.0005154 .y 

Sample 2 1.2653 0.0067514 x 

Sample 1 25 2.0 5 1.8900 0.0004991 -.J 

Sample 2 1.2505 0.0080866 -.J 

Sample 1 25 1.7 7 1.8492 0.0059931 ~ 

Sample 2 I 1.2141 0.0130100 \ 
~ ~ 

Sample 1 25 1.5 ~ j 1.8598 I 0.0008817 ' . 

Sample 2 - i 1.2472 0.0083793 -)v 

Sample 1 25 1.4 10 I 1.8761 : 0.00ii314-~· 

Sample 2 I 1.2199 0.0136986 x 
~~-.. 

Sample 1 25 1.3 13 j 1.8555 0.0059920 'I 
I - ---~-.-. 

I 
1.2083 0.0144382 x 

Sample 2 
\i \Good 

j 

* Each pixel in this testis_~al to.Q!l~ metre. xx Very poor, x Po~r, 'lAc." pl.lhk. 

"" "" Table 6.3: Calibration of Fractal analysls tool: The result of the pilot test whc.:n ~hc.: 
side-length of the largest box (SL) is constant, but the coefficient of the box sIze 

decrease (CD) varies. 



The following factors are to be considered about the results of the tool calibration test: 

1- The preliminary test carried out in Chapter Five reveals that the two selected cases 

morphologically consist of similar urban patterns. Therefore, the selected 

parameters are valid where their output demonstrates low Standard Deviation (SD). 

2- The test shows for each pilot sample that the fractal dimension output (Fb) 

fluctuates while different parameters were tested. It can be concluded that each 

fractal dimension output, which is far from the mean (the average), is not valid. 

Based on the above factors, the acceptable parameters were marked by the green signs (~ 

and ~~ ) in the above tables and the following comments can be made: 

Comments on table 6.2: While SL can be adjusted between 3 to 200 pixels - according to 

the area and the resolution of sample cases - the pilot test shows that only an SL between 

3 and 50 gives valid results; and when the largest SL is equal to 25, the optimum result 

can be achieved. The morphological interpretation of this is that the fractal anal ysi s 0 fa 

neighbourhood area of 200metre x 200metre squares will be covered with a range grid 

sizes beginning with 25 metres decreasing to 0.75 metre while the coefficient decrease 

parameter (CD) equals 2. 

Comments on table 6.3: CD values ranging between 1.3 to 3.5 were tested while the 

largest SL is 25. The best result was obtained when CD is 1.5. Morphologically, it means 

that the software is to be programmed to pick up elements sized between 0.75 metre and 
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25 metres in an urban context of 200metre x 200metre squares and to calculate the fractal 

dimension over 8 levels of scale with coefficient decrease scale values of 1.5. 

6.2.2 Image Control - the sensitivity test 

The second part of the pilot study reveals that the quality and contents of input images do 

affect the results. Therefore, before running the main examination, all images are to be 

controlled in terms of the resolution, contrast, and brightness to ensure that all have the 

same quality and that the fractal analyser is sensitive enough to their contents. It should 

be noted that Benoit 1.3 recognises only white pixels as occupied boxes; therefore, all 

images should be inverted to negatives before being examined. 

6.2.2.1 Contrast/Brightness test: 

The other criteria that affect fractal calculations are the contrast and brightness of input 

images. The brightness/contrast of each pilot sample was adjusted by Photoshop 

software. As shown in table 6.4, the fractal dimensions of the samples are decreased 

significantly by decreasing the contrast or increasing the brightness; and inversely, their 

fractal dimensions are increased by increasing their contrast or decreasing their 

brightness. 

Two factors are to be considered in order to obtain valid results; a) the maximum 

visibility of urban elements b) the equality of contrastibrightness for all images. The pilot 

test revealed that the original aerial photos have similar quality and there is no need to 

change their brightness/contrast. The only exceptions are the aerial photos of Tajrish for 



the years 1956 and 1970 in which the contrast were increased by 25% and 18% 

respectively to enhance their visibility to become of equal quality to the other photos. 

Pilot Samples N F(b) Brightness Contrast 
Percentage Percentage !:~ 

~ =-
of change of change .... ~ 

';::'';::' 

Tajrish N5 25 1.5 8 1.7867 -%30 -%30 x 

1.6027 %0 -%30 xx 

Velenjak Nl 25 1.5 8 1.2106 -%30 -%30 x 

1.1674 %0 -%30 xx 

Tajrish N5 25 1.5 8 1.8598 %0 %0 

1.9243 %0 +%50 xx 

1.5805 +%50 %0 xx 

Velenjak Nl 25 1.5 8 1.2472 %0 %0 

1.4936 %0 +%50 xx 

1.0966 +%50 %0 xx 

Tajrish N5 25 1.5 8 1.8879 +%30 +%30 

1.7185 +%30 %0 xx 

Velenjak Nl 25 1.5 8 1.2889 +%30 +%30 

1.1571 +%30 %0 x 

xx Very poor, x Poor, Acceptable, -J Good 

Table 6.4: The pilot test; the sensitivity to the changes in the contrastlbrightncss of 
the pilot images. 

6.2.2.2 Resolution test: 

The aerial photos used for the pilot test provide resolutions up to 400 pixels per the area 

of each neighbourhood (200metre x 200metre squares) equal to two pixels per metre. In 

other words, the fractal analysis tool can identify any elements with 50centimetre x 50 



centimetre squares size or larger. This level of resolution may also be problematic 

because the elements which are not considered as morphological (e.g. people walking in 

the streets) will be processed by the software while counting the occupied boxes. Table 

6.5 shows the impact of changing the resolution of pilot samples on the calculation of its 

fractal dimension. 

Pilot Samples SL CD N F(b) 

100 x 100 200 x 200 300 x 300 400 x 400 
Ipxl=2m lpxl=lm Ipxl=O.7Sm Ipxl=O.Sm 

Tairish N5 25 1.5 8 1.7014 1.8598 1.8942 1.9142 
Velenjak Nl 25 1.5 8 1.1238 1.2472 1.3401 1.4101 

Table 6.5: the pIlot test, the sensitivity to image resolutions. The acceptable 
resolution is in the grey box. 

The resolution of one pixel per square metre will cover main morphological elements 

existing at neighbourhood scale (as presented earlier in table 6.1). At this level of 

resolution, the non-morphological elements, those of lengths lower than one metre, will 

not be visible; this reduces their negative impact. However, this level of resolution does 

not reduce the negative impact of the existing vehicles, and therefore, they are to be 

removed manually from the images. 

6.2.2.3 Contents test: 

Benoit 1.3 analyses binary black and white images and therefore cannot automatically 

pick up the targeted elements from a gray scale image. Therefore, the contents of all 

images must be controlled to ensure that built-up spaces are not mixed up with open 

spaces. The roads, outdoor parking spaces, and swimming pools in black and white 

image format are represented by black pixels similar to buildings. However, th~s~ 

elements are part of open space patterns not built-up urban patterns. Therefore. these 
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elements are to be inverted to white pixels similar to other open spaces to avoid 

misinterpretation during the research analysis. 

" - ,.. 
Figure 6.5: Image ~diting. NeighbourhoodT-NlO in Tajrish and th~ steps of adjustments of it 
~onten~s; a) ?riginal aerial photo, b) vehicles removal and element match, c) road inversion, d) 
Image InVerSIOn. 

Table 6.6 presents the result of tests before and after content adjustment for the pilot 

samples. Neighbourhood no.1 ° of Tajrish (figure 6.5) contains the main bus terminal in 

the north of Tehran and one of the major roads passes through it, and therefore, it was 

added to the pilot samples to be tested. 

Pilot Samples and Tajrish NIO SL CD N F(b) SD Check 
Mark 

Tajrish N5 before contents adjustment 25 l.5 8 1.8598 0.0008817 x 

Tajrish N5 after contents adjustment 25 l.5 8 1.8329 0.0008712 ..J 

Velenjak N1 before contents adjustment 25 l.5 8 1.2472 0.0083793 x 

Velenjak Nl after contents adjustment 25 l.5 8 l.2166 0.0076443 ..J 

Tajrish NlO before contents adjustment 25 l.5 8 l.7296 0.0031395 xx 

Tajrish N 1 0 after contents adjustment 25 l.5 8 1.5366 0.0026130 ..J..J 

Table 6.6: the pilot study - contents test. Road and parking spaces are Inverted to 
white pixels indicating that they are part of the neighbourhoods ' open spaces. 

The pilot test reveals that roads and streets, as part of an urban pattern have great 

influence on the fractal dimensions; but should be adjusted to be accounted a part of 

urban open space in order to obtain more accurate result . The importance of th cont nt 

adjustment is more obvious in neighbourhood no.l 0, which contain a main road and a 

large-scale bus terminal (figure 6.5) . 



6.3 Part Three: The Case Study Examination 

This part comprises case studies' preparation, fractal dimension measurement, and 

mapping fractal dimensions. The main objective of this part is to create fractal maps for 

the research case studies including Tajrish as the main sample case and Velenjak as its 

comparator. Figure 6.6 illustrates the sequence of image/data processing in order to 

produce fractal maps. 

Benoit t.3 

I..----~··I Software Calibrati on I 
I I~==~I Fractal Measurement I ~ I 

.... I [mage preparation I ,.-'L--___ --l 

Benoit 1.3 Ardlap9.2 

Data proce II1g I ~ 1,--_Frn_c_tal_M_3_P _...J I The result of pilot tests I 
I 

Pbot05hop 8.0 

Figure 6.6: the case studies' examination; the flow chart shows the sequence of image/data 
processing at each steps and the employed software programs. 

6.3.1 Case studies' preparation and image processing 

The aerial photos related to the case studies are prepared for actual examination according to 

the suggestions made by the pilot study. The images are processed using the three following 

stages (figure 6.7). Firstly, all input images are to be controlled in terms of resolution and 

contrast\ brightness as discussed in sections 6.2.2.1 and 6.2.2.3. Secondly, the vehicles 

should be removed from the images and the open space elements (e.g. roads, streets) are to 

be merged into one layer in white as explained in section 6.2.2.3. At this stage, also, all 

images should be inverted to negatives, because Benoit 1.3 considers white pixels a 

occupied boxes and count them against the black pixels in the proces of fractal dimen ion 

calculation (see also figure 6.5). Thirdly, aerial photos like any other kind of photo are 

u ually out of scale. The ArcGIS-software has a geo-referencing tool by which the aerial 

photos of the selected case studies (Tajrish, and Velenjak) can b re ized to fit int the 



scaled map of these areas (as a valid point of reference). This assists defming metrically the 

size of each neighbourhood unit, and to divide the aerial photos to 24 equal 200metre x 

200metre square (see also figure 6.4). Figure 6.7 illustrates clearly the sequential steps 

undertaken at each stage. 

r-------- Image Processing 

~mage-Adj usting 
I.Resolution __ -J 

2.Brightness/Contrast 

~ C Image-Editing~ ~ 
3.Car removal 

4.Element match 
5.Road inversion 
6.1mage inversion 

C Image-Dividing J 
7.Geo-referencing 

8.Dividing neighbourhood 

Figure 6.7: The required steps of image processing according to the results of the pilot study. 

6.3.2 Fractal dimension measurement 

6.3.2.1 Experiment one (fractal assessment at the neighbourhood scale): 

Having calibrated the fractal analysis software - according to the result of the pilot tests -

the fractal dimension (Fb) of each neighbourhood can be measured. Tables 6.7, and 6.8 

show the result of fractal dimensions measured for 24 neighbourhoods of Tajrish and 

Velenjak respectively. 

Neighbourhood T-Nl T-N2 T-N3 T-N4 T-N5 T-N6 T-:'Il7 T-N8 
ID 
Fractal Dimension 1.8502 1.7239 1.7458 1.7898 1.7329 1.7016 1.7460 1.7554 
(Fb) 
Standard Deviation 0.001997 0.000434 0.001787 0.000881 0.000871 0.000307 0.001886 0.000936 
(SO) 

Neighbourhood T-N9 T-NI0 T-Nll T-N12 T-:'Il13 T-N14 T-:'Il15 T-:'Il16 
ID 
Fractal Dimension 1.7758 1.5366 1.7106 1.6346 1.7593 1.7808 1.7882 1.7846 
(Fb) 
Standard Deviation 0.001656 0.002613 0.000151 0.003155 0.001956 0.001589 0.001871 0.004460 
(SO) 

Neighbourhood T-N17 T-N18 T-N19 T-N20 T-:'Il21 T-:'Il22 T-:'Il23 T-:'Il24 
ID 
Fractal Dimension 1.7500 1.7849 1.7567 1.7751 1.7768 1.7141 1.7388 1.6996 
(Fb) 
Standard Deviation 0.001678 0.001053 0.006038 0.002449 0.000408 0.005234 0.000418 0.000576 
(SO) 

The average for 

Fb = I (Fb)n = 1.7421 SD = I SDn =0.001850 - -
(Fb ) and (SD ) 

n I N n~1 N 
.. 

~ ~ Table 6.7: Fractal calculation at neighbourhood scale of TaJnsh, neIghbourhood an.:a sIze 
200rnx200rn squares. The aerial photos of year 2002 were used for this examination. 
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Neighbourhood V-Nt V-N2 V-N3 V-N4 V-NS V-~6 V-~7 V-~8 
ID 
Fractal Dimension 1.2166 1.2394 1.3345 1.3882 1.2583 1.1911 1.3338 1.3897 
(Fb) 
Standard Deviation 0.007644 0.003876 0.003183 0.000548 0.000142 0.002920 0.003211 0.010245 
(SD) 

Neighbourhood V-N9 V-NtO V-Nll V-N12 V-N13 V-N14 V-~lS V-~16 

ID 
Fractal Dimension 1.4275 1.3680 1.4048 1.4511 1.3547 1.4590 1.4225 1.5321 
(Fb) 
Standard Deviation 0.004830 0.001143 0.000281 0.000677 0.002934 0.005923 0.010325 0.000297 
(SD) 

Neighbourhood V-Nt7 V-Nt8 V-Nt9 V-N20 V-N21 V-N22 V-N23 V-~24 

ID 
Fractal Dimension 1.5261 1.2612 1.4277 1.3785 1.1516 1.1898 1.3065 1.3938 
(Fb) 
Standard Deviation 0.005769 0.000841 0.003318 0.000252 0.000104 0.000405 0.000698 0.000884 
(SD) 
The average for 

Fb = f (Fb)n = 1.3245 SD = f SDn = 0.002935 - -
( Fb ) and ( SD ) 

n=l N n=l N 
Table 6.8: Fractal calculatIOn at neIghbourhood scale of Velenjak, neighbourhood area size 
200metrex 200metre squares. The aerial photos of year 2002 were used for this 
examination. 

6.3.2.2 Experiment two (fractal assessment at the local scale): 

In another experiment, if the fractal assessment is carried out at the local scale rather than 

neighbourhood scale, then the results will be as shown in table 6.9. In this experiment, 

the fractal dimensions and the standard deviations measured (Fb and SO in table 6.9) are 

higher than the average of these values measured in the first experiment ( Fb and SD in 

tables 6.7 and 6.8). 

The research SL CO N F(b) SO 
case studies 

Tajrish 250 1.5 8 1.8047 0.030144 

250 1.5 8 1.4659 0.007985 Velen.iak 
Table 6.9: Fractal dimenSIOns measured at local scales (the 
area size of 1200metrex 800metre squares) for Tajrish and 
Velenjak using the aerial photos of the year 2002. 

The initial comments on tables 6.7, 6.8, and 6.9 are as follows. Firstly, in both 

experiments (both at local and neighbourhood scales), the measured fractal dimensions 

for Tajrish are higher compared to those for Velenjak. In other words, the gradual 
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development or the organic urban pattern of Tajrish demonstrates a higher degree of 

physical complexity than the newly developed and planned pattern ofVelenjak (see also 

figure 6.8). Secondly, the difference between Fb and Fb - measured in the above 

experiments - implies that macro scales have a higher degree of complexity than micro 

scales. In other words, the fractal dimensions - as the mathematical indicators of physical 

complexity - increase while zooming out from architectural scales to city scales . 
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Figure 6.8: The histogram shows the dispersion pattern of the fractal 
dimensions assessed for the neighbourhoods in Tajrish as compared to 
Velenjak. 

6.3.3 Mapping fractal dimensions, data processing to fractal maps 

While the numbers in the previous tables might seem complicated or difficult to ompare, 

converting them to a range of colour scales and creating fractal map pro ide a much 

clearer basis for pattern analysis and comparison . The ArcGIS oftwar ha mapping 
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capabilities enabling quantitative data to be converted to pictorial data .. The research 

carried out the following steps to create fractal maps: 

1- Creating a new shape file: A new morphological layer in the format of new 

shape files (.shx) were created equal to the case study area sizes. 

2- Dividing the shape: Each shape-file was divided into 24 equal 200metre x 

200metre square subdivisions. 

3- Assigning fractal attributes to the shape file: the fractal attribute, as a new 

feature, was assigned for each subdivision by transferring the fractal 

dimension data from Benoit 1.3 to the new created shape file in ArcMap 9.2 

(figure 6.9). 

4- Mapping the fractal data: the fractal attributes were added to the existing 

parcel data layer, which contains morphological data (figure 6.10). 

21~12 

11,·.11-

Figure 6.9: Fractal shapes created for Velenjak (left) and Tajrish (ri ght). ~hey h.a c bc~n created 
by converting quantitative data to pictorial data by ArcGIS oftware. Tajn h n 19hbourh d '. a 
compared to Velenjak, demonstrate higher fractal dimen ions e cept the area that marked \\ Ith 

red circles. 
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Figure 6.10: The fractal map of Velenjak (left) and the fractal map of Tajrish (right) for the 
year 2002. 

Having carried out the above steps, the fractal maps were produced for the research 

sample cases (Tajrish and Velenjak). Steps one to three explain how 'the fractal shapes' 

were created (figure 6.9); and step four indicates how these shapes were converted to 

fractal maps (figure 6.10). It should be emphasised that the fractal dimensions have been 

calculated by neighbourhood, not by plot. Therefore, both figures 6.9 and 6.10 represent 

fractal dimensions at the neighbourhood level, however the latter is the map version of 

the first. 

Figure 6.11: The fractal map of Shemiran for 2002 including th . fra 
ample case studies, Tajrish and Velenjak, wi th th ir fuzzy boundant.: . 
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The same method can be applied to produce a fractal map for the whole district of 

Shemiran and even for the entire city of Tehran. Figure 6.11 illustrates the first fractal 

map produced at the district scale based on the aerial photos of2002. Having produced 

the fractal maps for the case studies, the following initial comments can be made. As 

figure 6.10 illustrates, the examined neighbourhoods in Tajrish generally have higher 

fractal dimensions than those in Velenjak. In other words, the urban patterns of Tajrish 

demonstrate significantly a higher complexity than those of Velenjak. This conforms to 

the research assumption that organic patterns are more complex than planned patterns. 

The observation also suggests that the areas around the centre of old neighbourhoods 

have generally high fractal dimensions. This implies that the older is more complex (see 

figure 7.9 in the next chapter). The observation also reveals that parks and gardens 

demonstrate higher fractal dimensions (see also section 7.3.3 in the next chapter). 

The fractal shapes created for the neighbourhoods of Tajrish indicate generally high 

complexity with two exceptions. The fractal dimensions assessed for two 

neighbourhoods - marked with red circles in figure 6.9 - are low in comparison to the 

others. This might be due to recent large-scale urban interventions and developments 

around Tajrish Square such as the bus terminal, car parking (see figure D.2a, 

Appendix D), and the recent regeneration plan for the sites close to the shrine of 

Imamzadeh Saleh. As figure 6.11 shows, the fractal patterns of the neighbourhoods in 

Shemiran have fuzzy boundaries. It means that it is impossible to draw precise lines 

around the neighbourhoods with the same physical complexity (see Chapter Seven, 

section 7.2.1 and figures 7.5, 7.6 and 7.7). 
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Further to the above initial comments, fractal maps reveal other valuable infonnation for 

analysing urban morphological features including urban patterns. They can be used for 

pattern identification, comparison, and classification. The fractal map also provides the 

basis for measuring the changes occurring in urban patterns over time. These issues will 

be elaborated at the research analytical stage in the next chapter. 

6.4 Chapter Summary 

The chapter demonstrated both mathematically and graphically the degree of physical 

complexity of urban patterns in Tehran. Fractal examination of the selected case studies 

reveals that fractal dimension is a sensitive criterion showing mathematically the degree 

of urban physical complexity. This chapter also developed a fractal assessment technique 

to illustrate such a complexity in a map format (the fractal map). The fractal calculation 

software (Benoit 1.3) and the GIS software (ArcMap 9.2) were linked to produce the 

fractal maps of the case studies. The advantages and limitations of using each software 

were identified. The method of the fractal examination was tested and the steps of data 

processing, image processing, the preparation the fractal analysis tool (software 

calibration) and finally, the fractal examination of the case study was carried out in order 

to produce the fractal map (figure 6.12). 
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Figure 6.12: The summary of the sequential steps explained in this chapter to produce the 
fractal map. 
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Therefore, the chapter achieved its main goal of devising a fractal analysis technique to 

produce the fractal maps of the selected case studies. The maps explicitly show the 

differentiation in physical complexity that is exhibited by different patterns of growth. 

The organic pattern of Tajrish was found to have considerably higher fractal dimensions 

than the planned pattern ofVelenjak. This supports the assumption that time plays an 

important role in increasing complexity (see the conclusion of Chapter Four). In other 

words, the older urban areas that gradually evolved are expected to be more complex than 

the areas that rapidly developed. In the next chapter, the result of the case study 

examination will be analysed in further detail. 
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CHAPTER SEVEN 



Introduction: 

Fractal dimension assessment of the urban environment provides a mathematical method 

for spatial quantitative analysis. The fractal maps created in the previous chapter facilitate 

spatial analysis and suggest a new approach to urban pattern recognition in terms of 

fractal identification and classification. Fractal maps also provide the basis for more 

precise measurement of the degree of change that an urban pattern experiences over time. 

In Chapter Seven, the result of the case study examination will be analysed and the 

complexity of the urban patterns will be fractally interpreted. Figure 7.l illustrates the 

structure of the issues that will be discussed in this chapter. 

I The Result of Fractal Examination of the Case Study I 
1 

Fractal Identification 
Fractal Fin&erprlnt 

FNlD 

~ 1 .~ 
~ IF actal Classificati~n I "-

Analyzing 'he change Anaiy;;ing tIre change 
/" O,'ef time o"a lime ............ 

~.-' (pas"o Present) (Present) (Future) . '-...... 

I Comparison 1 I Prediction l 
Analyze tbe cbange in Pattern Static aoal~'sls I Analyze tbe dlange stated l 

by comparing the fractal of current In master plan 
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J 
r Rp ult Interpretatio I 

Figure 7.1: the diagram shows the structure of Chapter Seven and hlghltght 
the main subjects. 



7.1 Part One: Fractal identification of urban patterns 

7.1.1 Fractal map as an urban fingerprint 

Urban morphologists study 'the physical (or built) fabric of urban form, and the people 

and processes shaping it' (Larkham, 1991, p.SS; see also Larkham, 2004b). The concept 

of urban fingerprints is based on the idea that correlation between urban form and people 

(socio-spatial processes) will result in a unique form for each part of a city. From a 

morphological point of view, although the nature of this correlation varies from case to 

case, the behaviour of agents of urban change determines how an organizational 

relationship is constructed between each basic urban unit and its neighbourhoods at local 

levels and with other parts of a city at macro levels. Such processes are unpredictable (as 

discussed in Chapter Three), and differ from case to case, which consequently results in 

'a unique form' for each part of a city. 

The uniqueness of each urban form can be identified by measuring the level of 

complexity that it exhibits. Aerial photos used as a means of remote sensing data for 

textural urban analysis can provide a vast amount of information about underlying 

morphological complexity including building density, street frequency, street size, 

characteristic building materials, density, type, clustering of vegetation, etc, which can be 

analysed together or separately at any required city scale. Fractal dimension analysis of 

an urban pattern has the potential to identify mathematically the level of complexity 

underlying its structure. Fractal maps demonstrate visually such complexity, and 

therefore, can be considered as a kind of urban morphological fingerprint. 
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During the last two decades, a number of attempts have been made to identify a kind of 

fingerprint or textural signature for city patterns similar to DNA in biology. Some of 

these approaches have focused on coding the elements that constitute socio-economic 

patterns (e.g. Dodge and Kitchin, 2005) and some have emphasized physical features of 

urban patterns (e.g. Webster, 1995; Steadman, 2008). It can be argued that the latter 

approach might better represent city identity. For example, urban morphological 

categories will be defined by housing density better than population density. The reason 

should be obvious, as population density could vary between neighbourhoods of the same 

housing density. Webster (1995, p.295) writes: 

'The urban feature defined by its physical elements, might better represent 
city identity than the one defined by its underlying social elements' 
(Webster, 1995, p.295). 

The approaches to morphological pattern identification also fall into two groups: 

structural and statistical. The structural methods are based on the idea that urban patterns 

comprise some simple shapes. The composition or reoccurrence of these primitive shapes 

can produce different pattern types (see Lynch, 1981; Marshall, 2005). While planned or 

semi-planned patterns can be identified by structural methods, they cannot easily 

distinguish differences between various patterns that can be classified under the tenn 

organic. However, statistical methods seem to have fewer restrictions as they are mainly 

based on mathematical interpretation of urban forms and patterns. Marshall (2005) 

provides examples of both methods with an emphasis on the first group. 

In this sense, the fractal assessment technique developed in this research to produce 

fractal maps can be categorised as a statistical method. Moreover, it is close to the 

technique employed by Webster (1995) who also used aerial photos for textural 
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quantitative analysis. The fractal maps of the case study of Shemiran and sample case of 

Tajrish and Velenjak (see figures 6.10 and 6.11 in Chapter Six) have been produced 

based on the unique structural properties of their neighbourhood units; therefore, like 

other textural analysis methods, they can be thought of as a kind of morphological 

fingerprint. However, the advantage of the fractal fingerprints suggested in this research 

over other approaches (including the one suggested by Webster, 1995) is that the other 

statistical approaches are usually limited to one particular morphological property and 

restricted to only one specified urban scale, while the fractal approach is more general. 

7.1.2 Fractal Neighbourhood Identification code (FNID) 

The method developed to produce the fractal map (see Chapter Six, section 6.3.3) can be 

shortened and amended in order to create a unique Fractal Neighbourhood Identification 

code (FNID) for each neighbourhood. Having assessed the fractal dimensions of the 

neighbourhoods in Tajrish, there is no need to convert them to pictorial data. Instead, 

fractal dimensions at local, district, and city scales are to be examined and added to the 

fractal dimension of each neighbourhood (figure 7.2). The fluctuation of fractal 

dimensions in table 7.1 indicates that the urban patterns at different scales of the city are 

not self-similar; in other words, the patterns demonstrate different degrees of physical 

complexity at different scales of the city hierarchical structure (compare with figure 3.25, 

in Chapter Three). 

Box lze 1 5 10 20 35 50 75 100 
Scale of I pixel = I pixel = I pixel - I pixel - I pixel I pixel I plel I pi c\ -

te t 100xl00 500x500 10OOx l000 2000x2000 3500x3500 5000:<5000 7500x7500 10000 10000 
metr~ metres metres metres metres metres Metres metre~ 

F(b) 1.6527 1.6934 1.8125 1.7910 1.7690 1.7015 1.5923 1.6810 
., Table 7.1: EstImatmg the fractal dllTIenSlOn of Tehran by fiXlllg the mput Image IZC \-at) mg 

the scale of the city. 
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Figure 7.2: The number of occupied built-up units 
(defined by occupied pixels) in Tehran's aerial 
photo (2002) at different scales (defmed by box 
size) calculated by Benoit Software 1.3 (box 
counting method). 

Figure 7.2 plots the number of occupied pixels, as representative of built up areas, on a 

graph of which different city scale levels (the horizontal axis) is illustrated. The slope of 

the resulting line of the graph is the average fractal dimension assessed for the city 

hierarchical structure at its different scale levels. As shown in table 7.1, the F(b) is 

changed when the measurement is carried out at different scales. 
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Figure 7.3: The hierarchical logic behind FNIDs and the number of 
participating at each level of calculation. 



The complexity of a single neighbourhood varies if that neighbourhood is observed at 

different scale levels of the city hierarchical structure. For instance, the complexity of 

neighbourhood T-N11 (figures 7.3 and 7.4, D) in Tajrish is l.7106 (Fb) if measured at a 

local level where there are only 24 other neighbourhoods participating in calculations 

and Fb is l.7562 if measured at district level (Shemiran, figure 7.4, B) where so many 

other neighbourhoods are added. In the same way, the scale ranges for varying fractal 

dimensions over the city must take many local areas per district, and many 

neighbourhoods per district, and so on (figures 7.3 and 7.4, A). 
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A) Fb = 1.6918 B) Fb = 1.7562 

D) Fb = 1.7106 

Figure 7.4: Fb measured for Tehran at different scales; A) The city ~cale B) The di trict 
scale, C) the local scale, and D) the Neighbourhood Scale. (Hagham, 2004, p.7) 

Table 7.2 contains the fractal dimensions assessed for different cale Ie I , re ulting 

from each calculation using the Box Counting method. The Benoit oftwar pr nt the 

average dimension as its main output, which in this ca e of the Tehran cit al , \\' ul 



be 1.6918. F(b) can be measured for district, local and neighbourhood scales (shown in 

Figure 7.4 and table 7.2) if their respective images is used as input data. 

Scale Level of Calculation Fb Scale Level of Calculation Fb 

Whole Tehran l.6918 Shemiran, the north of Tehran 1.7562 
Tajrish 1.8047 Neighbourhood no.ll in Tajrish 1.7106 

Table 7.2: The assessed fractal dImensIOns for the dIfferent scale levels of the city of Tehran. 

The sequence of assessed fractal dimensions from the neighbourhood to the city scales 

can creates a unique FNID for Tajrish-Nll. In the case of2D image analysis, the fractal 

dimensions are always more than 1.0000 and less than 1.9999, therefore FNID can be 

created with the decimal numbers as shown below: 

&-OO-@ @ 

A FNID contains 16 digits in four sequential sections, A-B-C-D, where each part 

demonstrates the city ID, the district ID, the local ID, and the neighbourhood ID 

respectively. In the same way, FNIDs of other neighbourhoods can be calculated. Table 

7.3 and 7.4 show the results for 8 sample neighbourhoods, 4 in Tajrish and 4 in Velenjak. 

Selected 
Neighbourhoods T-Nt T-NIO T-Nll T-NI5 

in Tajrish 

FNID 6918-7562-8047-8502 6918-7562-8047-5366 6918-7562-8047-7106 6918-7562-8047-7882 

.. 
Table 7.3: FNIDs of the neighbourhoods T-Nl , T-NI0, T-Nl1 , and T-NI5 In TaJn h. 

Selected 
Neighbourhoods V-Nt V-NI2 V-NI9 V-N23 

in Velenjak 

FNID 6918-7562-4659-2166 6918-7562-4659-4512 6918-7562-4659-4277 6918-7562-4659-3065 

Table 7.4 . FNIDs of the neIghbourhoods V Nl , - V-NI 2 V-N 19, and V-N23 in Vclcnjak.. 

A shown in the table, the selected neighbourhoods in Tajri h ha e 1 ~ digit in c mm n 

relating to A-B-C while only the last 4 digits relating to their neighbourh d 10 ar 



different. In the same way, the FNIDs of the neighbourhoods in Velenjak have similar 12 

digits and only their last 4 digits are unique (table 7.4). This indicates the uniqueness of each 

FNID, and also the degree of homo geneityl heterogeneity of the patterns at different scale 

levels. For instance, the last four digits of the neighbourhoods T-Nl, T-Nl1, and T-NI5 are 

similar, and therefore, homogeneous. The last 8 digits of FNIDs relating to local and 

neighbourhood levels of Tajrish and Velenjak (compare table 7.3 with 7.4) are notably 

different, indicating that the patterns of these two areas are heterogeneous. 

In short, three main advantages can be outlined for FNID. Firstly, FNID suggests that the 

degree of homogeneity and heterogeneity of urban patterns can be measured mathematically. 

It can be used as a controlling tool to direct urban new developments and interventions to be 

built within certain ranges of fractal dimensions. This could provide an effective way to 

conserve urban qualities by a more accurate and at the same time more flexible method than 

the current type of tight restriction. 

Secondly, FNID suggests an accurate method for patterns recognition. The method proposed 

here assists transfer of the geometric shapes to the numerical codes extracted from the 

existing urban patterns. Therefore, FNID can be defined as a mathematical signature that 

recognises more accurately the differences in physical complexity of different 

neighbourhoods. Thirdly, it can be suggested that FNID is a more abstract, but accurate, way 

to identify urban patterns, as compared to fractal maps, because it provides an exclusive 

pattern identification code for every neighbourhood of the city - it is also arguably unique 

worldwide. Finally, the similarity and dissimilarity between each section of 4-space FI\IDs 

are an indication of homogeneity and heterogeneity of the patterns at different city scaks. 

While such similarities can be used to group similar patterns under one category or cLiss, a 
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fractal map is an easier tool - as compared to an FNID - to seek groupings of similar 

patterns or pattern classification, which is the subject of the next section. 

7.2 Part Two: Fractal classification of urban patterns 

7.2.1 Advantages of fractal classification 

From a simple description of planned/unplanned patterns (e.g. as given by Kostof, 1991) 

to more detailed descriptions (e.g. as given by Lynch, 1981), some urban morphologists 

have sought to suggest different ways of classifying urban forms and patterns. However, 

even the detailed classifications have sometimes been associated with ambiguity when 

interpreting and categorising some patterns. Marshall (2005) noticed this problem and 

stated that, in some cases, the same form could be described by different labels. 

Conversely, a particular label may have different structural connotations, and therefore, it 

might be used to describe quite different patterns in different contexts. Marshall (2005, 

p.75) concludes that recognition and representation of urban patterns are perhaps 'in the 

eye of the beholder'. 

While each method of pattern classification might have its own advantages, one of the 

advantages of the fractal classification of urban patterns is that it can provide a 

mathematical gauge for classifying urban patterns based on the degree of complexity that 

their shapes demonstrate. In this sense, urban patterns can be classified independently of 

the eye of the examiner by assessing their fractal dimension and illustrating their 

complexity in terms of fractal maps. The other advantage of fractal classification is that it 

could assist urban planners and particularly urban conservationists in identifying more 

accurately the boundaries where planning restrictions might be applied to maintain the 

urban physical characteristics of the designated areas. 
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The complexity of urban form is always a matter of degree. The fractal map produced in 

the previous chapter (figure 6.11) suggests a classification method by dividing the range of 

assessed fractal dimensions (1.1000 to 1.8999) into eight classes, indicating the degree of 

morphological complexity that each part poses. The number of classes can be adjusted 

according to the purpose of examination by changing the number breakpoints while 

dividing the range of fractal dimensions. Eight classes introduced in Chapter Six was an 

introductory example - maximising the number of classes by decreasing the range of 

fractal dimensions in each class. However, in this chapter, the assessed fractal dimensions 

are divided into three ranges - a) lower than 1.4000, b) between 1.4000 and 1.6999, and c) 

above 1.6999 - to facilitate pattern recognition. In this way, the urban patterns can be 

classified as low, medium, and high complexity respectively. The pictorial version of these 

ranges has been illustrated in figures 7.5, 7.6, and 7.7. 

The initial comment on these figures is that the classified patterns cannot be separated with 

precise linear boundaries. Since each class has some overlaps with the others, they can 

only be separated by fuzzy boundaries. These figures also show clearly the dispersion of 

each class. For instance, figure 7.5 illustrates how the patterns with high degree of 

complexity distributed over the district of Shemiran (e.g. the urban patterns around AI, and 

A10, Tajrish, Darakeh, the two old centres in Shemiran). 

More importantly, the overlaps between two classes indicate the area that an urban pattern 

begins distortion. Figure 7.8 highlights the areas that the patterns with high and medium 

degree of complexity begin to distort (highlighted with yellow colour). The overlaps 

between the first and the third class indicate the critical areas (highlighted with red colour). 

Further comments are elaborated for each class separately in the following section~. 
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Figure 7.8: The areas which their patterns begin to be distorted are highlighted in yellow, and 
the areas with highly critical status are marked in red. 

7.2.1.1 Urban patterns with high complexity: 

Figure 7.5 exemplifies the areas of the case study in which the urban patterns have a high 

degree of physical complexity. The shapes of the patterns in these areas (labelled from 

A 1 to All) are mostly curvilinear, resulting from gradual organic development of their 

neighbourhoods. Some contain radial branching shapes with one or two urban local 

centres such as A9, AI0 (figure 7.9, below), and A5,; some have linear tree-like shape 

such as A3, A4, A6, A7, and All, with no specific centre (figure ?7.10), and some are 

composed ofa mixture such as AI, A2 (Figure 7.9, above) and A8. 

The examples given in figure 7.9 had all been small villages - like Tajrish - that e 01 ed 

gradually over a long period before being engulfed in the metropolitan spread of Tehran. 

It seems that their physical complexity has persisted up to the pre ent except for tho 

parts which have recently experienced rapid changes (the analy i of uch chang will 

be di cussed later in this chapter). This also suggest that the ar a around the c ntr r 
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old neighbourhoods have generally high fractal dimensions In othe d h Id . . r wor s, teo er 1 

more complex. 

At A2 

A9 AIO 

Figure 7.9: Some examples of the old and organically grown 
urban patterns with high physical complexity. Tajrish Bazaar 
(AI), Darband (A2), Chizar (A9), and Darakeh (AlO). 

Figure 7.10 shows some of the patterns with high physical complexity which have linear 

tree-like branching shapes. For the cases of A3, A6 and All (figure 7.5, and figure 7.10) 

the reason for having high complexity can be interpreted as their gradual development 

along a natural geographical element (the seasonal canal) over centurie (e.g. A6) . In th 

case of A4, the complex urban patterns developed along an old route (Nia aran tr t) 

connecting Tajrish to the Niavaran Palace (figure 7.10). The only planned f ad in thi -

area which demonstrates high spatial complexity on both ide i Val i-A f tre t (figUfl? 
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7.10, A7). The street was ordered by Reza Shah (the first king of the Pahlavi period) to 

connect the south of Tehran to the north (Tajrish) in 1928 (Sotoudeh, 1995). 

A4 

Figure 7.10: Some linear examples of areas with high physical 
complexity (Fb> 1.6999). The gradually evolved pattern alongside the 
natural seasonal canal (A6) and the fractal patterns along historical routes 
(A 7, Vali-e Asr Street, and A4, Niavaran Street). 

An important common characteristic of A4 and A 7 is that they have both been 

substantially regenerated during the last two decades and new building with ery di er e 

developments and building types replaced the old ones. It seems that the main r a on that 

the high physical complexity has been maintained along the e route i th impact r the 

old tall trees planted on both sides of the streets ( ee al 0 figure 7 . ~5 and pp ndi D). 

Thi clearly indicates the role of trees in maintaining phy ical comple it of the area .. 
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7.2.1.2 Urban patterns with medium complexity: 

As explained in Chapter Five, the original urban patterns in Shemiran followed a 

traditional Iranian garden layout with comparatively large plot sizes. The new modem 

type gradually replaced the traditional types (see figures 5.13 and 5.14) with rather 

smaller plot sizes when the city of Tehran expanded towards its suburban villages . The 

reason for this is obviously related to the significant increase in the land price, which 

encouraged urban developers to divide them into smaller plots with new boundaries to 

build up more dense and modem residential neighbourhoods (Sotoudeh, 1995). The result 

of such a transformation is the emergence of a typology consisting of modern buildings in 

pure rectangular plots surrounded by an organic street layout. 
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Figure 7.11: Some examples of urban patterns with medium comple ity (1.4000>Fb> \.6999) . 
. .. . b . hb h d typolog that on 1 , t ' r the ThiS class IS mamly observed III an ur an nelg our 00 

rectangular plot patterns embodied in their organic tre t pattern . 

_ 4 



The majority of the neighbourhood patterns marked in figure 7.6 as medium complexity 

consists of such a typology. They have inherited their main structure and their street 

patterns (figure 7.11, bottom) from the past with seemingly irregular shapes reSUlting 

from their organic and gradual evolution. However, apart from the street patterns, their 

neighbourhoods' plot layouts have been mainly regenerated at architectural scales and 

each of the large plot sizes divided to form smaller plots with pure \rectangular shapes 

(figure 7.11, middle). The fractal dimensions of these neighbourhoods are mainly 

between 1.4000 and 1.6999 and, therefore, they can be classified as patterns with medium 

physical complexity (figure 7.11 , above). 

Larkham (1996b) explains the logic behind the emergence of such a typology through 

Conzen's (1962) concept of Longevity. According to this concept, change tends to occur 

faster on smaller scales. He explains that as properties are bought and sold through the 

years, buildings decay and change more rapidly than plots, and plot size and pattern may 

change much more rapidly than the street pattern. Therefore, in terms of longevity, 'there 

is a hierarchy of streets, plots, and buildings in that order' (Larkham, 1996b, p.32). He 

also argues that even in a modem urban landscape, where change on large scales occurs 

quickly, Conzen's concept is still applicable. 

7.2.1.3 Urban patterns with low complexity: 

The areas with low physical complexity are highlighted in figure 7.7 (CI, C2.,., C12). 

These areas have generally been developed within the last four decades (after the first 

master plan of Tehran in 1968) and they have mostly planned urban layouts where 

regular Euclidian geometry dominates. The majority are the residential areas. which have 



been developed during the fast expansion of Tehran towards its suburbs and are less than 

40 years old. Their streets have gridiron patterns with a defmed hierarchy connecting 

them to the main structure of the city. 

The residential neighbourhoods of Shemiran with low complexity are either totally 

designed including the blocks, plots and their constituent buildings (e.g. C 1, C3, C9) or 

partly designed - excluding their buildings (e.g. C4, C6, C8, and CI2). Although the 

latter group have slightly higher fractal dimensions, all can be classified fractally in the 

category of low complexity (figure 7.12). 

C2 C9 Cl2 C3 

Figure 7.12: Some examples of urban patterns with low complexity (Fb<1.4000) and the 
rectangular plot patterns embodied in their planned street patterns. 

In addition to the new residential developments, the areas marked C I-a, C I-b, and \-c 

(figure 7.13) are relatively large plots where the site layout and building w r d igned 

in pure Euclidian shapes for particular events or purpo e (uni er ity campu ,m tmg 



hall, exhibition). The fractal dimensions assessed for these parts are 1.1812, 1.0731 and 

1.1240 respectively, which reveals that they also have very low pbysical complexity. 

Figure 7.13: Examples of designed areas with low 
physical complexity, the University of "Shahid 
Beheshti" eCl-a), "Ejlas-e Saran" Meeting Hall eCl-b), 
and the site of International Exhibition of Tehran eel-c). 

7.2.2 Discussions of Fractal classification of urban patterns: 

It can be noted that in some cases where street patterns are geometrically regular 

(Euclidian), their fractal assessments might indicate a medium complexity, while a low 

complexity could be expected (e.g. B2). This might result from the degree of complexity 

demonstrated by other constituent parts of those areas rather than the structure of their 

streets. As the research uses aerial photos as its prime data source, the composition of all 

urban elements constituting an urban pattern (plots, buildings, trees, etc) is taken into 

account. However, it is possible to test the complexity of each urban element (block 

pattern, plot pattern, building pattern, etc) individually. For this an element type houJd 

be selected (e.g. streets) and other urban elements removed from tbe aerial photo 

fractal examination. Alternatively, other sources of data can be u ed - a input data - in 

which an urban element is solely represented (e.g. a street map in th ora mg 

treet pa ttem). 



In the examples given in figure 7.11, similar street patterns demonstrated similar degrees 

of physical complexity. However, there are also areas with similar street patterns whose 

fractal patterns express different degrees of complexity (e.g. A5, B 19, C2), or areas with 

similar complexity might have different street patterns (e.g. B2, B 16). This indicates that 

classification of the street patterns does not necessarily conform to the fractal 

classification of urban patterns. For instance, the street patterns of areas C2 and A5 can 

both be classified as curvilinear (see Marshall, 2005), while they are fractally classified 

under different categories. From a morphological point of view, the main difference 

between C2 and A5 is that the first has been created by design while the second one is the 

outcome of a gradual (organic) growth. In other words, fractal classification might better 

address the nature of urban growth, change and pattern evolution than other classification 

methods. This issue will be elaborated in the next part of this chapter. 

7.3 Part Three: Measuring the change in urban patterns 

7.3.1 Change analysis of the urban patterns of Tajrish from 1956 to 2002 

At the case study examination stage (Chapter Six), fractal dimensions of 24 

neighbourhoods in Tajrish were assessed for the year 2002. The same method was 

employed to measure fractal dimensions of these neighbourhoods in the past by using 

aerial photos of Tajrish for the years 1956, 1969, and 1979. The result of the fractal 

assessment for these years can then be compared with a more recent time (in the year 

2002) to measure accurately the degree of change occurring at the local scale (Table 7.)) 

and at the neighbourhood scale (Table 7 .6). 



The Assessment years 1956 1969 1979 2002 

Fractal dimension 1. 7583 1.8631 1.8570 1.8047 
Table 7.5. The fractal dImensIOns of the urban patterns at local scale of Tajrish for 
the years 1956, 1969, 1979, and 2002 (the area size of 1200metrex800metre 

squares). 
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Figure 7.l4: the chart shows the change 
in physical complexity of Tajrish at local 
scale from 1956 to 2002. 

According to figure 7.l4, and table 7.5, fractal dimension assessment can explain the 

degree of changes occurring in the physical complexity of the urban pattern of Tajrish 

from 1956 to 2002. The aerial photos show that some of the large plots and vacant sites 

were built upon between 1956 and 1969 and the amount of green space also increased 

(figure 7.15, for a larger version of the aerial photos see appendix E). These two reasons 

are enough to increase the complexity of urban patterns in Tajrish in 1969. The line of the 

fractal dimension change (figure 7.14) also indicates the degree of physical complexity 

was sustained between 1969 and 1979, while some large-scale urban interventions and 

the newly imposed modernist pattern can account for the decreasing complexity in 2002. 

Table 7.5 is based on the fractal assessment of the area size of 1200x800 square meters. 

However, if that area is split into sub-areas of 200x200 square meters, the change can be 

assessed for each individual neighbourhood (table 7.6). 



Neighbourhoods' Fb-1956 Fb-1969 Fb-1979 Fb-2002 
ID 
Tajriah-Nl 1.5702 1.7781 1.7570 1.8502 
Tajriah-N2 1.4326 1.7394 1.6998 1.7239 
Tajriah-N3 1.6520 1.7760 1.7714 1.7458 
Tajriah-N4 1.7732 1.8779 1.7128 1.7898 
Tajriah-N5 1.7452 1.8254 1.6391 1.7329 
Tajriah-N6 1.4342 1.4354 1.6182 1. 7016 
Tajriah-N7 1.5780 1.7362 1.6939 1.7460 
Tajriah-N8 1.6125 1.7073 1.7197 1.7554 
Tajriah-N9 1.7901 1.7949 1.6743 1.7758 
Tajriah-NI0 1.6321 1.6967 1.6892 1.5366 
Tajriah-Nll 1.8079 1.7984 1.8161 1.7106 
Tajriah-N12 1.5956 1.7672 1.6656 1.6346 
Tajriah-N13 1.7317 1.7536 1.6982 1.7593 
Tajriah-N14 1.6625 1.8005 1.7713 1.7808 
Tajriah-N15 1.7432 1.8168 1.8084 1.7882 
Tajriah-N16 1.6640 1.7585 1.7785 1.7846 
Tajriah-N17 1.7249 1.7685 1.6764 1.7500 
Tajriah-N18 1.7621 1.8547 1.7955 1.7849 
Tajriah-N19 1. 7513 1.8418 1.7669 1.7567 
Tajriah-N20 1.7659 1.8428 1. 7981 1.7751 
Tajriah-N21 1.7156 1.7599 1.8536 1.7768 
Tajriah-N22 1.7756 1.8381 1. 7510 1.7141 
Tajriah-N23 1.7926 1.8256 1.7259 1.7388 

Tajriah-N24 1.8120 1.8334 1.7393 1.6996 
.. 

Table 7.6: The fractal dimensions of 24 neighbourhoods in TaJnsh for the years 1956, 
1969, 1979, and 2002. 

The procedure explained in the previous chapter can be carried out to convert the 

numerical data of table 7.6 to pictorial data of figure 7.15. The fractal palettes illustrated 

in figure 7.15 have been compared to measure the changes occurring in each of the 

neighbourhood units in Tajrish from 1956 to 2002. While the numerical data provide an 

accurate mathematical comparison, the pictorial data provide a visual comparison 

capturing the decrease or increase in physical complexity of each neighbourhood. 
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Figure 7.l5: Fractal Dimensions of 24 neighbourhood unit ofTajri h for the ar 
1956, 1969, 1979, and 2002 (each unit i equal to 200m tre 200metrc quare ). 
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Figure 7.16: the fluctuation of fractal dimensions for individual 
neighbourhoods of Tajrish between 1956 and 2002. 

The result of the test reveals that the fractal dimension method as a spatial as e ment 

tool is very sensitive to urban morphological change. The column chart in Figure 7.16 

illustrate the fluctuation of fractal dimension for each neighbourhood from 1956 to _002 . 

The rise and fall in fractal dimensions of the neighbourhood depend on th d gr of 

changes occurring in their constituent components. Some of the e change ha b en 



analysed in figures 7.17 and 7.18 and the fractal analysis charts of the other 

neighbourhoods have been added in appendix F. 

As expected, in the case of the neighbourhoods that have experienced significant physical 

transformations (e.g. Nl, N2, N3, NI0, NI2), their respective fractal dimensions have 

changed. For instance, a large area in neighbourhood NI0 was demolished in 1997 to 

become a bus terminal (marked in figure 7.17). The fractal analysis indicates that the 

spatial complexity ofNI0 fell significantly between the years 1979 and 2002. However, 

in the case ofNl, two major rises can be detected. The first is between 1956 and 1969 

when the majority of empty plots were developed and occupied with buildings, and the 

second is from 1979 to 2002 when the amount of vegetation increased (figure 7.17). 
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Figure 7.17: Two examples of the neighbourhoods in Tajrish that have been undergonc 
considerable changes in their patterns as reflected in their assessed fractal dimensions (the right
hand line charts). The large-scale change occurring in NlO has been marked with a red circlc. 

Conversely, in those areas whose morphological components have changed relati ely little, 

their respective fractal dimensions indicate less fluctuation over time. For in tance, th 1 \\ 

level of change to the constituent urban elements of neighbourhood N 15 ha led to it ' 

fractal dimension remaining more or less constant (figure 7.18). eighbourh d II . 

Nl3, N16, N22, and N24 are similar to N15 in this sen e. For in tance, in th f ·11. 



the physical complexity has been sustained for the years of 1956, 1969, and 1979. 

However, in that particular neighbourhood, the decrease between 1979 and 2002 can be 

interpreted as the result of the addition of the modern shopping mall - "Bazaar-che 

Ghaem" - alongside the linear traditional bazaar (marked with a red circle in figure 7 .18). 
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Figure 7.18: Two examples of the neighbourhoods in Tajrish that have undergone minimal 
change in their urban patterns as reflected in the fractal diagrams too. The only notable change 
has occurred in NIl (marked with a red circle) in 2002. 

7.3.2 Change analysis through the "add and remove" technique (A-R-Technique) 

The 'add and remove' is a simple technique for measuring the potential future changes 

caused by urban policies or design proposals . This technique assists decision maker in 

testing how their decisions will change urban spatial complexity, and to choose the urban 

scenario which may better adapt to an existing urban pattern. Two examples are given 

below in terms of "proposal testing" and "policy testing" to show how this technique can 

be applied. 

7.3 .2.1 Proposal testing: 

Both architectural projects and urban design intervention may maintain r hange th 

physical complexity of an existing urban context depending on wh ther th Ir pr ped 

fonn demonstrate the same degree of complexity a alread xi t . In ecti n 7.3. 1. it \\ a 



discussed how some urban projects changed dramatically the complexity of two 

neighbourhoods in Tajrish (the implementation of the bus terminal and the large shopping 

mall in NIO and NIl respectively, figures 7.17 and 7.18). This research suggests that the 

morphological impacts of new urban proposals should be tested in laboratory before they are 

implemented in reality. 

1\b=1.7567 ~1.5917 

Figure 7.19: fractal assessment of a hypothetical design proposal for N 19 in Tajrish. The 
fractal dimension of its neighbourhood pattern has been reassessed by replacing an 
existing urban form (left) with the proposed one (right). 

Assume that a developer suggests a high-rise building to be built as a replacement for the 

existing buildings in Tajrish-NI9. The A-R-Technique can be used for reassessment of 

fractal dimension by removing the existing buildings and adding the site plan of that 

hypothetical proj ect as shown in figure 7.19. In the case of that hypothetical proposal, the 

fractal dimension of the neighbourhood pattern in N19 decreases from 1.7567 to l.5917 (a 

16.5% complexity reduction at the neighbourhood scale). If the impact of such a propo al i 

examined at a local scale (table 7.7), the change will be only 1.5% - dropping from l. 047 

to 1.7903. In the first instance, this small change has little impact at the di trict and cit 

cales - FNID ofN19 is changed from 7567-8047-7562-6918 to 5917-7903-7561-691
1

. 

However, according to the butterfly effect (discussed in Chapt r Thr en thi 1.5
0

0 

change at the local scale may turn into big change at the city cale taking int 

number of incremental changes and their con equence when th a umulat 



years time. Therefore, this 1.5% change at local scale (or 16.5% change at the 

neighbourhood scale) must be treated with extreme caution. 

The Scale of Neighbourhood scale Local Scale 
Assessment (Ta.irish-N19) (Ta.irish) 

Fb F'b Fb F'b 
Fractal Dimensions 1.7567 1.5917 1.8047 1.7903 

Table 7.7: The degree of changes In physIcal complexIty of Tajrish-N19 
imposed by a hypothetical proposal at neighbourhood and local urban scales. 

It would be possible for urban specialists or conservationists to use the existing FNIDs as 

benchmarks and to define an acceptable range of fractal dimensions for each part of the 

city at different scales (e.g. between the minimum and maximum of their FNIDs) in order 

to control the degree of urban morphological changes caused by urban interventions and to 

conserve neighbourhoods' identity in terms of its physical complexity. Accordingly, 

architectural or urban design proposals that are not within this range can be rejected. 

Nevertheless, in some cases, a kind of modern urban structure, or an avant-garde building, 

might be proposed to be built in an old urban fabric as an urban surprise (e.g. a landmark); 

this can be passed to urban specialists in a higher level of planning authority to allow such 

degree of change for that particular context or not. 

As the focus of the research is examining the change in complexity of urban patterns, the 

fractal analysis has been limited to the analysis of the patterns through aerial photos. 

However, for a comprehensive change analysis, other urban morphological features should 

also be taken into account, such as change in street elevations, street vistas, urban skylincs, 

network pattern, landmark distribution, etc. For instance, the A-R-Technique can be 

employed to measure the change in urban skylines of T -N 19, by redrawing the skylincs 

based on the elevation of the proposed design and then reassessing its fractal dimension 

using the "ruler method" (explained in Chapter Three, section 3.3.5.2). 
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7.3.2.2 Policy Testing: 

Some urban policies might have direct or indirect impacts on urban forms and patterns. 

The degree of changes that these policies may impose on urban morphological features _ 

particularly on the complexity of neighbourhood patterns - can be measured. As an 

example, one of the important and influential road regenerating policies of Tehran's 

master plan is the 'Tarh-e Taariz' (the street widening policy). 

Street widening has a long history both in Iran and worldwide (e.g. Haussmannised Paris 

and Reza Pahlavi's ideas for Tehran; see Chapter Five, section 5.1.1.3). The concept was 

also used in wide variety of "technocentric plans" proposed for British towns and cities 

during and immediately after the Second World War (Diefendorf, 1989; Larkham, 1997). 

However, the complex process of preparing, approving and implementing a street 

widening plan introduced conflict, confusion and delay in some cases even when a high

profile expert was commissioned to produce it (see Larkham, 2009). Particularly, in the 

context of old British cities and towns, the street widening policy was eventually 

discarded in the favour of a new culture of conservation by the 1960s. In the case of 

Tehran, however, this policy is still in practice. 

According to the recent master plan of Tajrish, many existing streets should be widened 

and straightened. Its goal was to facilitate traffic movement and to improve accessibility 

in the case of emergencies (with the minimum width allowance of six metres). This plan 

was initially prepared in 1992, and revised once in 2002 (see ACAUP, 2002: 

Municipality of Tehran, 2003). Planners identified many narrow alleys, cul-de-sacs, and 

old streets to be widened between 1 to 20 metres over a period of 25 years. The future 
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physical consequences of such a policy at the neighbourhood level of the research ca e 

study can be analysed by the A-R-Technique and fractal analysis method as explained 

below. 

Figure 7.20 illustrates the oldest part of Tajrish that streets have to be widened, extended 

or straightened according to the new street layout. As the map shows, the new layout cut 

through some blocks trimming many building edges, which will considerably change the 

urban pattern of Tajrish in future. If the Municipality of Tehran can afford the cost, the 

marked areas will be gradually regenerated according to this layout. Otherwise, each 

building edge has to step back its owner applies for planning permission to whenever 

rebuild or renovate his property. 
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Figure 7.20: The street widening plan around Tajrish Square. The map in the background i 
the existing situation (year 2002) and the map on the top left shows the new treet la out. 
(Municipality of Tehran, 2003, unpaginated) 

The aim of the master plan of Tajrish is that the street widening plan will be graduall 

implemented and completed by the year 2017. The 2002 aerial photo of Tajri h an be 

. . h . d d' en ion (I ngth and width). amended by adJustmg the streets to show t elr propo e 1m 



and then the method explained earlier can be used to measure the change in the fractal 

dimension of its new status (table 7.8 and figure 7.21). In this test, changes that may 

occur in other urban elements have been ignored in order to discover the degree of 

physical change caused by this one policy alone. 

Neighbourhood ID T-Nl T-N2 T-N3 T-N4 T-N5 T-N6 T-N7 T-N8 
Fb for the year 2002 1.8502 1.7239 1.7458 1.7898 1.7329 1.7016 1.7460 1.7554 

Fb for the year 2017 1.6630 1.5732 1.5530 1.6287 1.5943 1.6430 1.5228 1.6059 

Neighbourhood ID T-N9 T-NI0 T-Nll T-NI2 T-N13 T-NI4 T-N15 T-N16 

Fb for the year 2002 1.7758 1.5366 1.7106 1.6346 1.7593 1.7808 1.7882 1.7846 

Fb for the year 2017 1.6437 1.5034 1.5905 1.555 8 1.6 101 1.6097 \.5911 1.5443 

Neighbourhood ID T-NI7 T-NI8 T-N19 T-N20 T-N21 T-N22 T-N23 T-N24 
Fb for the year 2002 1.7500 1.7849 1.7567 1.7751 1.7768 1.7141 1.7388 1.6996 

Fb for the year 2017 1.6074 1.6134 1.5702 1.5791 1.5808 1.5617 1.6035 1.5749 
. . 

Table 7.8 : The degree of change in fractal dimensions of the neIghbourhoods In TaJnsh If the 
street widening policy is implemented and completed (e.g. by 2017). 
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Figure 7.21 : The degree of change in phy ical compl ity of the ncighb urh ds In T j ri.-h i f 

the street widening policy is completed (e.g. by 2017). 



The test reveals the impact of the street widening policy over 25 years. It indicates that 

the degree of physical complexity will change considerably, if this single plan is 

completely implemented. Both Table 7.8 and figure 7.21 clearly show a decrease in 

fractal dimensions of all neighbourhoods - particularly the oldest ones (e.g. NIl and 

N16). The result of fractal assessment also conforms to the statement, given by 

Alexander (2002b), that the application of linear geometry to an old context changes 

radically its physical characteristics and associates inevitably with thousands of 

mistakes (see Chapter Two, section 2.2.2). 

7.3.3 Vegetation, physical complexity and environmental sustain ability 

While some architects and urban designers might have considered trees as minor 

elements in their designs or have left them to the interest of landscapers, recent 

developments in urban studies consider vegetation or green space at a local level as an 

important environmental criterion in terms of sustainable development, urban quality, 

and the quality of life (see Williams, Burton and Jenks, 2000; Brandon and Lombardi, 

2005). Fractal dimension assessment could explain this and mathematically 

demonstrate the role of vegetation in maintaining physical complexity and 

environmental sustainability. 

The examination of different samples in the case study of Shemiran in generaL and the 

neighbourhoods in Tajrish and Velenjak in particular, revealed that fractal dimen~ions 

in the areas that contain significant vegetation are higher than those that do not. For 

instance, the neighbourhoods V-NI and V-N19 in \'elenjak ha\c \cry similar urban 
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patterns and building types, while the fractal dimension V -N 19 is higher due to the 

amount of vegetation (figure 7.22). 

Fb=1.2166 Fb=1.4277 

Figure 7.22: Aerial photos of V-Nl and V-N19 in Velenjak (2002) with similar plot layout 
and building type but different fractal dimensions. 

The other way to examine the impact of vegetation on physical complexity is to compare 

the assessed fractal dimensions of a single neighbourhood at different periods. As seen 

earlier in the case of Tajrish-N 1 (figure 7.17), the built components in this neighbourhood 

were unchanged between 1969 and 2002, while the decrease in the amount of vegetation 

caused a significant rise in fractal dimension. The impact of vegetation on spatial 

complexity can be observed more clearly if the same area is examined with and without 

trees. As the types of the trees in Tajrish are mainly deciduous , the best way for uch a 

test is to compare the aerial photos in two different seasons. Figure 7.23 illu trate the 

aerial photos of Tajrish for winter 1965 and summer 1969 and their r pecti e a d 

fractal dimensions. There is little change in built environment and the tr will n t haH; 

grown significantly in this period. 
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Aerial Photos 
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Figure 7.23: The aerial photos of Tajrish in winter 1965 and summer 1969. The fractal 
dimensions of many assessed neighbourhoods decreased in the winter. 

As there is only a three and a half year difference between these two photos, the urban 

built form did not have noticeable changes. However, the test clearly indicates that the 

degree of physical complexity of many examined neighbourhoods increased during the 

summer. Only the complexity of the neighbourhoods which did not have trees (e. g. N 10, 

N 15), remained constant in different seasons. As figure 7.23 illustrates, some of the 

neighbourhoods such as N5 N9 N17 N19 and N24 demonstrate similar comple ity in , , , , 

the summer, but their fractal dimensions vary in the winter. Therefore another pint an 

be concluded from the above test: trees can contribute to a balanced patial compie. it in 

the areas composed of diverse built components. 



Figure 7.24: A view of Vali-e Asr Street. (the 
photo taken by the author, March 2008) 

The role of trees in maintaining the balance of urban spatial complexity can also be 

observed in the case ofVali-e Asr Street. The land use map (figure 7.25 , left) indicates 

the existence of varied building types and street patterns on both sides ofVali-e Asr 

Street, while the mature trees (figure 7.24; Appendix D, figure DA) provide a balanced 

physical complexity along the street (figure 25, middle) . Accordingly, a hypothesis could 

be developed claiming that natural elements such as trees would sustain the level of urban 

physical complexity in the areas where built elements might change frequently. The 

fractal assessment method can also give extra weight to the statement, written in Tehran ' 

comprehensive plans, that the remaining gardens and mature trees in the case study of 

Shemiran are to be conserved as part of the natural heritage of the city (ACAUP 2002). 

Figure 7.25: The land-use map of Vali-e Asr Street (left), it fractal map (middle), it al:n J photo 
(right) . (Left, Municipality of Tehran, 2003, unpaginated) 



7.4 Chapter Summary 

The results of the fractal measurements have been analysed quantitatively and 

illustratively in this chapter. The capabilities and advantages of the fractal analysis of 

urban patterns were discussed in terms of fractal identification, classification, and more 

importantly the examination of change over both place and time. Fractal maps were used 

as the basis for comparing, analysing, and interpreting urban patterns at different scale 

levels of the case study (with the emphasis on the neighbourhood scale). 

In the first part of this chapter, the potential of the fractal approach in identifying urban 

patterns was discussed in terms of urban fingerprints and FNIDs. Fractal maps 

demonstrate the complexity of urban patterns while FNIDs mathematically identify such 

complexity. An FNID can be obtained by assessing fractal dimensions an urban element 

at different levels in the city hierarchical structure from neighbourhood to city scales. 

FNIDs can be used as a benchmark by which any changes to urban patterns in the future 

can be measured. For instance, urban conservationists who are keen to preserve urban 

characteristics can use FNIDs to suggest a range of acceptable changes in fractal 

dimensions for each designated areas. It is a more flexible appraisal method, sustaining 

morphological characteristics while allowing innovation and redevelopment in a historic 

urban context. 

Another application of the proposed analysis method is the fractal classification of urban 

patterns. Having added the assessed fractal dimensions of different patterns to the 

database of ArcMap 9.2, the software could easily locate areas with a particular degree of 



complexity. Fractal classification is a quantitative method and, therefore, the number of 

classes could be easily increased or decreased according to the required precision of the 

research. In the second part of this chapter, the patterns were classified within three 

categories of low, medium, and high complexity and the characteristics of their respecti ve 

neighbourhoods were explained. Fractal classification can assist planners to gain further 

insights into the complexity of urban forms in terms of pattern recognition. 

The third part of the chapter focused on assessing and analysing the change in the urban 

pattern of Tajrish (the main case study) both as occurring gradually over time, or has 

been caused by urban interventions. Aerial photos of Tajrish from 1956 to 2002 were 

analysed to examine the change experienced by each of its 24 neighbourhoods 

experienced during this period and the results were interpreted. The results showed that 

time, natural, and geographical features are the most important factors influencing urban 

spatial complexity. Furthermore, a simple technique was devised to measure possible 

changes in the future (e.g. caused by a design proposal, or even an urban policy that has 

morphological consequences). The chapter also suggested the A-R-Technique to assess 

and predict such changes before their actual implementation. Urban specialists can then 

refer to the FNID of each neighbourhood to assess quantitatively the degree of change in 

its pattern caused by that urban intervention. As each individual neighbourhood has its 

own unique characteristics, it would then be the responsibility of decision makers to 

evaluate, judge, reject, or approve these changes. 

In summary, the proposed fractal analysis method was found to be useful for pattern 

recognition in providing a better understanding of the nature of urban morphological 

evolution in the selected case studies. The same method can be applied to the entire 

.305 



metropolitan city of Tehran and more generally to any other city. Finally, it can be 

claimed that the fractal analysis of urban form is more precise and realistic than the 

conventional linear analysis based on Euclidean principles. Further outcomes and 

findings will be discussed in the following concluding chapter. 
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CHAPTER EIGHT 



Introduction 

The research achieved its main aims and objectives through three methodological stages 

of the research: literature review, case study examination, and analysis of results. The 

principles and applications of complexity theory and fractal geometry were compared to 

the linear principles of Euclidean geometry in order to examine the potentials and 

limitations of the conventional approach to urban forms, and to verify the advantages of 

the fractal approach in urban morphological studies (aim a and b). The research also 

developed a practical assessment technique to measure and map urban morphological 

complexities (aim c), exhibiting the homogeneity and heterogeneity of the patterns over 

time and place. The proposed fractal map provides a practical tool to identify, classify, 

and analyse emergent urban patterns (objective a), and to measure pattern changes over 

time (objective b). The fractal map and the fractal assessment method enable urban 

scholars and decision makers, as well as architects, urban planners and designers, to 

reflect better on their decisions and design proposals before their real implementation 

(objective c). 

This final chapter concludes with an overall research summary. To outline the main 

findings, the outcomes of the literature review and the case study examination are 

summarised and the linkages between the previous chapters are highlighted. Then the 

advantages and limitations of the proposed fractal assessment technique will be 

addressed, both to highlight its contribution to new knowledge, and to create a platfonn 

for other researchers who are interested in developing the suggested technique and 
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exploring the ideas in further detaiL To put the research conclusion into context the , 

chapter begins with the research findings in relation to two set of questions raised in 

Chapter One. 

8.1 The main findings from the research questions 

The main findings can be addressed directly by referring to two set of questions raised at 

the beginning of this thesis (see Chapter One, section 1.2.2). The first set of general 

questions inquired about the credibility of the conventional geometry of straight lines 

(Euclidian geometry) in urban morphological analysis, the applications of the new 

theories of complexity and fractals, the properties of city systems as complex systems, 

and the failures of the top-down linear approach to complex urban systems (Questions 1, 

2,3, and 4). They were designed according to the research aims and were explored 

mainly through the literature review. The second set of specific questions covered the 

applicability of these concepts to urban morphological analysis such as how the 

complexity of urban forms and patterns can be measured or mapped, and how their 

changes over time can be assessed (questions 5, 6, and 7). The latter set was formulated 

to target the research objectives through the case study examination and analysis. 

8.1.1 Euclidean geometry and morphological complexity 

The research sought to identify the achievements and failures of the conventional 

geometry of straight lines (Euclidean Geometry) in designing, analysing, and interpreting 

urban fonns (research aim a; see also question 1). In addressing this issue, the science of 

geometry in general, and the achievements of the conventional of geometry of Euclid in 
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particular, were reviewed through a historical context (Chapter Two). As discussed, while 

Euclidean geometry can describe some aspects of architectural and urban design products 

in a city, particularly the parts that are designed or planned, it fails to interpret the 

complexity of unplanned forms, which are known as organic. The research established 

some reasons why a realistic insight into urban forms and their evolution over time would 

be beyond the simplicity of Euc1idean geometry. They are summarised below: 

1- Euclidean view describes the seemingly irregular organic forms as amorphous or 

disordered, while they exhibit patterns that are comprised of elements with strong 

hierarchies (semi-lattice not tree-like) usually initiated with some simple rules that 

reveal their underlying order (see Chapter three, sections 3.2.2.11, 3.3.3.2, and 

3.3.4). 

2- In most cases, cities were only planned in two (horizontal) dimensions. The third 

dimension is usually formed from many individual decisions at much smaller scales 

(architecture or urban design level). Even where some restrictions are applied to an 

urban facade by planning policies, the buildings' height and their facades are 

usually the product of a negotiated ever-changing design between individual owners 

and the planning authority. Therefore, in any case, the extent to which the third 

dimension is ordered or planned is always a matter of degree, which makes a city 

even more complex that cannot be easily interpreted by Euclidean shapes (see 

Chapter Two, section 2.2.1). 

3- From architectural scales to city scales, the built environment is in a state of 

permanent morphological flux. Even the planned parts of a city are adapted to their 

context in ways that are more natural once the plan comes to be implemented; and 
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they evolve gradually according to the new needs and conditions. Therefore, all 

cities show some irregularity in most of their parts (see Chapter Two, section 2.2.1 ). 

While Euclidean geometry can analyse somehow the relationship between the 

components of an individual design product, understanding of the organic 

evolution, as the integration of many small forms and their changes over time, 

cannot be simply analysed by Euclidean principles. 

4- From the design point of view, Euclidean geometry is only capable of creating 

linear relationships between the components of a design (an ornament, a building, a 

designed part of a city, etc), in which the resultant form cannot usually reach a high 

degree of complexity. Furthermore, while Euclidean geometry can impose order to 

an existing organic and complex urban context, simultaneously, it creates thousands 

of mistakes, as it reduces the complexity of the old context (see Chapter Two, 

section 2.2.2). 

5- Non-integer fractal dimensions, which are the key criteria in measuring the degree 

of physical complexity of both natural and artificial forms, are more accurate than 

integer dimensions perceivable by Euclidian geometry (see Chapter Three, section 

3.3.2). 

8.1.2 The relationships between chaos, fractals and complexity 

In Chapter Three, the research sought to find appropriate definitions for the terms 

complexity, chaos and fractals, and highlighted their main principles and properties as 

they appear in a complex system (research aim b; see also question 2). Chaos is the key 

tenn in understanding of complexity theory. Therefore, the research explored the concept 
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through the contemporary physics as related to chaotic dynamics. As discussed the , 

Newtonian dynamics only responds to the mechanical universe, while chaotic dynamics 

can describe well the organic universe. Time is irreversible in chaotic systems (the arrow 

of time) and their status in any instant is very sensitive to their initial conditions (the 

butterfly effect). A complex system incorporates a number of chaotic systems, and 

becomes more complex as the time passes. That is perhaps why a complex system is 

defined as a system of complex systems (Batty, 2008). In this sense, chaos can be 

considered as the subset of complexity (Ward, 2003). 

While there is not a generally accepted definition for the term complexity, this study 

identified twelve characteristics for a complex system by which the theory might be 

better understood. All of them can arguably also be observed in a city system (see 

Chapter Three, section 3.2.2). Therefore, cities are claimed to be complex systems. 

Fractals are considered as one of the properties of a chaotic complex system. In other 

words, the output image of the chaotic behaviours of the systems within a complex 

system is fractal. The notion of self-similarity and self-affinity were used to typify 

fractals. Linear and nonlinear fractals were introduced (see Chapter Three, section 3.3.3), 

It was argued that the patterns at small city scales are not exactly similar to the patterns at 

city large scales, and therefore, the urban patterns we observe in a city system are typified 

under nonlinear self-affine fractals. The key notion of non-integer fractal dimension was 

explained to reveal its potential to analyse organic forms. Chapter Three also identifi~d 

some of the most common methods of measuring fractal dimensions. 



Complexity theory and fractals have a wide applicability to many natural and artificial 

systems whose dynamics - the interactions of local agents - generate highly ordered 

global patterns. These theories explain the evolutionary dynamics of systems whose 

temporal and spatial "fingerprints" or "morphological signatures" are fractal. In short, it 

can be concluded that cities are good candidates for the application of complexity theory 

and fractal geometry as they exhibit the characteristics of complexity systems in an 

orgamc umverse. 

8.1.3 Fractal and non-fractal architecture 

Having explained the failures of Euclidean principles and the advantages of fractal 

geometry in interpreting both natural and artificial fonns, a basic but important question 

is whether fractal geometry is an essential substitute for Euclidean geometry as applied to 

architecture and urban design. This question was mainly explored in Chapter Four 

(section 4.1.3) under the notions of fractal and non-fractal architecture. Some designers 

and architects have applied the scaling rules of self-similarity to obtain a sort of design 

style - fractal style. However, in most cases, their design products have been 

misinterpreted as if they have fractal quality. 

In fact, Euclidean quality is the intrinsic property of any design output, at all scales of 

design activities from product design to architectural and urban design. It is not possible 

to ask designers to put aside Euclidean principles while they are designing. Whether they 

use ruler, pencil on a drawing board, or CAD (Computer Aided Design), the process of 

their design is rather short, and the result is fabricated not generated. Only buildings or 



urban spaces that are generated through the process of adaption and comprise elements 

that are added or removed according to their environmental conditions and new needs can 

achieve a sort of fractal quality similar to what we see in natural phenomena. In short, 

fractal quality is achievable only out of long-generated processes, not short design 

processes. 

Therefore, the immediate answer to the above question is 'no'. However, this research 

proposed some criteria by which a building or an urban space can be evaluated as fractal. 

it can be claimed that a piece of architecture or an urban space can be evaluated as fractal, 

if its fractal dimensions remain high at different scales of observation and the components 

of its hierarchical structure obtain more if not all these key features: integrity and 

multiplicity, self-similarity, hierarchies of connections, and change over time/space (see 

Chapter Four, section 4.1.3.2) 

8.1.4 The bottom up nature of urban morphological evolution 

Chapter Four also explored why the conventional top-down master planning and large

scale urban design proposals do not conform to the nature of urban morphological and 

functional evolution (aims a and b; see also question four). The same reasons established 

for the failure of Euclidian geometry can explain why urban interventions through large

scale urban design proposals and master plans should be avoided or done with extreme 

caution. It takes time for an individual designed building to adapt to its environmental 

conditions and to be configured according to the new needs once it has been 

implemented. Any element in an organic urban growth is the response to a need 
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according to the local conditions, limitations, and restrictions applied over a long period 

in the history of that place. As time passes, that place becomes more and more complex. 

Therefore, time is the architect. 

As discussed in the third part of Chapter Three, fractals are the outcomes of the 

interaction of a system with other systems within a complex environment. Such an 

interaction and its feedback loop require time. Computers may be able to run thousands 

of iterations to simulate a fractal shape similar to what we see in nature, but a real fractal 

shape cannot be created all at once. Therefore, the tenns "fractal architecture" and 

"fractal city" should be understood under an incremental evolutionary process, not a short 

design process usually occurs in architectural or urban design studios (see also Chapter 

Four, section 4.1.3.2). 

The degree of control over the scale of an urban intervention is also an essential criterion 

in the creation of complexity. It has been mentioned that the employment of Euclidean 

principles during the design process is inevitable, and therefore, the design products are 

virtually fabricated not generated irrespective of their scales. The larger the scale of an 

urban intervention, or the more control is imposed to an existing urban context, the less 

chance it has to respond to its local conditions, and the more it reduces the complexity of 

that place. 

In short, the degrees of control over space/time scales play the main role in the creation of 

complexity in a city. In other words, there is less chance for complexity to emerge where 



there is a maximum degree of control over a large city scale and every piece is 

determined by its architect, planner, or urban designer, and when the processes of design 

and construction are relatively short. Therefore, the following guidelines can be 

concluded in order to sustain or enhance urban physical complexities: 

1- Large-scale urban interventions should be avoided. The more we learn, perhaps 

the less we intervene. 

2- Large-scale master plans should be frequently updated and revised through a 

bottom up process of organizational hierarchies. 

3- An urban design proposal should be divided into the phases of smaller scale 

projects and be implemented one by one (not all at once) allowing revisions and 

refinements. Each phase is to be carried out only after the reflections from the 

local people are collected on the previous phases. 

4- Small-scale projects are to be carried out with an extreme caution, particularly 

in old urban contexts. 

5- The more the information gathered from the local conditions, and the more the 

means of public participation are provided in decision-makings, there is less 

possible that mistakes are made. 

Such a conclusion can also be made from the planning perspective. It was extensively 

discussed in chapters Four and Five that the conventional top down planning approaches 

that have been widely applied during the twentieth century failed in understanding the 

complex nature of city forms and functions, and therefore, the methods taken from sllch 
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views and implemented in practice failed to achieve their goals (see Chapter Four, section 

4.2.1.1, and 4.2.1.2). The evidence shows that there is a big gap between the ideals of the 

master plans and the realities on the ground - both in Western and Eastern metropolitan 

cities (see Chapter 5, sections 5.1.3, and 5.1.4). 

The failures of the master plans in metropolitan cities in general, and in the case study of 

Tehran in particular, conform to the outcome of the theoretical debate discussed in 

chapters One and Three, where the nature of cities is considered to be a problem in 

organised complexity (see also Chapter One, section 1.1.1). Twelve characteristics of 

complex systems and their analogical examples within urban systems establish reasons 

why a city should be viewed, studied, and treated as a self-organised complex system. A 

city system, as a complex system, is the concentrated action of millions of individuals 

and agencies that generate structures of complexity that are virtually impossible to 

predict, manage, control, or redesign effectively from the top down routine. 

Some complexity theorists suggest a radical shift from top-down and centralized 

structures of government and management to much more decentralized organizations. 

Others propose a moderate suggestion, stating that an active complex systems planning is 

somewhere between the bottom up and top down processes of decision-making (see 

Chapter Four, section 4.2.1.2). While this research is closer to the latter suggestion, it 

should be stated that complex systems models are very new planning models (see also 

section 4.2.1.2.2) which are by no means complete. Therefore, further research is 

required to promote the models to a more applicable level. 
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8.1.5 Complexity theory and fractals as applied to urban form and function 

One of the most basic and common questions about the complexity theory and fractal 

geometry is about their applicability to architecture, planning and urban deign, which is 

also a prerequisite for developing the fractal assessment tool at the research empirical 

stage (aim c, and objective a; see also question 5). Chapter Four addressed the new 

achievements in complexity theory in general, and in fractal geometry in particular, to 

explore this question. Increasing numbers of papers and projects suggest that the new 

theories of fractal architecture and fractal city can provide a firmer foundation for the 

critical ideas related to urban morphological and functional evolution. Table 4.1 in 

Chapter Four presented some of these applications. However, it was beyond the focus of 

this research to review them all; instead, Chapter Four provided some of the main 

examples under the three main themes of conceptualisation, simulation, and 

measurement. 

While the fractal perception has impacts on all aspect of our everyday environment (see 

Chapter Three, section 3.3.6), the concept seems to be more applicable at the city and 

regional scales rather than architectural scales where there is a maximum level of control 

and all dimensions are determined by an architect. Therefore, from the design point of 

view, a degree of complexity that a designed building has achieved is a matter of degree. 

The degree of physical complexity in a design can be measured based on its fractal 

dimension. The research introduced some common methods of fractal measurement (scc 

Chapter Three, section 3.3.5; and Appendix B). Chapter Four (sections 4.1.1.1 and 4.2.-') 



provided some examples about how fractal dimension can be used as a critical tool at 

architectural and urban design scales. 

At city and regional scales, the "fractal city" is also a new concept developed during the 

last 15 years. Developments in urban simulation techniques are at its core. Computer

based simulation modelling (e.g. DLA, CA, and CP models) is based on a precise 

recognition of the non-linear character of city systems (see Chapter Four, section 4.2.2). 

It provides a new systems-founded rationalism in planning as a process. Although many 

efforts have been made to identify how complex city systems behave from the bottom up 

in theory and lab-modelling, they have not yet completely been accepted in planning 

policy and practice. Thus the conventional top-down process of decision-making - the 

hallmark of two planning transitions in the 20th century - is still dominant (see also 

Chapter Four, sections 4.2.1.1.1 and 4.2.1.1.2). Therefore, this research calls for a third 

transition in planning and design, advocating the developments made in complex systems 

planning. 

8.1.6 Mapping and measuring complexity 

In the light of the second and the third methodological stages (see Chapter one, sections 

1.3.2.2 and 1.3.2.3), the research focused on the more specific questions related to the 

potentials of these concepts in analysing urban physical complexity (Chapter One, 

questions 5, 6, and 7). Thus the research, as its main target, developed a practical tool to 

measure, visualise, and map the complexity of urban patterns (aim c, and objective c). 

Two main steps of the case study selection and the assessment method preparation \\cre 

carried out to achieve this target. 
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In Chapter Five, sample cases with diverse urban patterns were selected within the case 

study, the city of Tehran, to be examined at the research empirical stage. The 

morphology, the historical review, and the initial fractal analysis of 22 urban districts of 

Tehran revealed that Shemiran (in the north of Tehran) could provide the appropriate 

cases for the examination. The organic pattern of Tajrish (Shemiran's centre) and the 

planned urban patterns ofVelenjak were selected for examination. 

Chapter Six introduced the employed fractal assessment method and developed a 

technique to visualise and map urban complexity by employing the fractal calculation 

software (Benoit 1.3) linked with the GIS software (ArcMap 9.2). Benoit 1.3 offers 

different methods to calculate fractal dimensions, and this research found the box

counting method to be appropriate in assessing the complexity of urban patterns. The 

assessed fractal dimensions as numerical data were then transferred to ArcMap 9.2 to be 

visualised. A pilot study tested the validity and sensitivity of the employed technique (see 

Chapter Six, sections 6.2.1 and 6.2.2). At the pilot stage, the fractal calculation software 

was calibrated and the urban images were adjusted and prepared for examination. The 

research succeeded in producing a fractal map for the first time. The fractal map is, in 

fact, the visualised version of the urban physical complexity. 

8.1.7 Fractal dimension as a mathematical criterion for urban pattern analysis 

The research also used the fractal assessment tool to identify, classify. and analyse 

emergent urban patterns originating from both organic and planned typ~s of grO\vth 

within the case study (objective a). In chapters Three and Four (see sections 3.3.2 and 

320 



4.1.3.2), it was explained that fractal dimension provides a legitimate and accurate 

criterion indicating mathematically the degree of physical complexity (fractality) of the 

forms and patterns within a complex system such as a city (e.g. a higher fractal dimension 

indicates a higher degree of complexity). The research identified, classified, and 

compared fractally different urban patterns within the case study of Shemiran, Tehran. 

The method also provided the means of measuring the change occurring over time in the 

complexity of emergent urban patterns at neighbourhood and local scales. 

There are quantitative and qualitative approaches to identification and classification of 

urban patterns. There are also different statistical and structural methods that can be 

categorised under each approach. In this research, the proposed fractal identification and 

classification methods can be addressed as a form of statistical quantitative approach to 

urban forms and patterns (see Chapter Seven, section 7.1.1 and 7.2.1). While each 

method might have its own advantages, they are usually limited to a particular 

morphological property and restricted to only one specified urban scale. However, the 

proposed fractal assessment method does not have such restrictions, and therefore can be 

applied to any morphological features or a combination of some urban elements at 

different scales in order to identify and classify mathematically the level of complexity 

underlying their structure. 

In terms of fractal identification, the research developed the idea of Fractal 

Neighbourhood Identification (FNID) by assigning four sequential fractal dimensional 

sets assessed for each neighbourhood at the different scales of the hierarchical structure to 



which it belongs. Each set identifies mathematically the degree of complexity the urban 

pattern under one level of the city hierarchical structure from local to city scales (see 

Chapter Seven, section 7.1.2). Therefore, FNID comprises four fractal dimensional codes 

which makes a unique ID for each neighbourhood. 

Fractal dimension can also be used as a sensitive criterion for classifying the urban 

patterns. This research suggested a classification method by dividing the range of 

assessed fractal dimensions into eight classes (from 1.1000 to 1.8999), indicating the 

degree of morphological complexity that each part poses (see figure 6.11 in Chapter Six). 

The number of classes can also be adjusted by changing the number breakpoints while 

dividing the range of fractal dimensions. For instance, in Chapter Seven, the assessed 

fractal dimensions were divided into three ranges, a) lower than 1.4000, b) between 

1.4000 and 1.6999, and d) above 1.6999, then the urban patterns were classified as low, 

medium, and high complexity respectively (see figures 7.5, 7.6, and 7.7 in Chapter 

Seven). 

The same method has been employed to assess the change that a single neighbourhood 

experienced over time (objective b). For this purpose, instead of comparing the aerial 

photos of different locations, the aerial photos of different periods related to one location 

were compared. The change in physical complexity of Tajrish (the main case study) and 

its 24 neighbourhoods were assessed for the periods between 1956 and ~002. 
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8.2 The original contribution to new knowledge and the significance 

of the proposed method 

8.2.1 Fractal maps 

'We have all read stories about maps that revealed the locations of some 
hidden treasure ... .in this case [fractals], a map [itself] is the treasure.' 
(Clarke, 2004, unpaginated) 

Fractal maps provided the main contribution to new knowledge. It was shown that the fractal 

dimension analysis of urban patterns has the potential to identify and classify 

mathematically the level of complexity underlying the city structure. A fractal map 

recognises visually such a complexity, and therefore, it can be considered as a kind of urban 

morphological fingerprint. Fractal maps are associated with fractal dimensions, which are 

different from a neighbourhood, a district, or a city to another. Therefore, they are unique for 

each part of a city, and can be considered as a new way of pattern identification. 

The main advantage of fractal maps is their use in classifying urban patterns. For this 

purpose, the research converted the fractal attribute (the assed fractal dimension) of each 

neighbourhood to a fractal shape by the GIS data processor, ArcMap 9.2 (see Chapter Six, 

section 6.3.3). ArcMap 9.2 facilitates a process of making an update or a change to input 

data. As explained earlier, it also provides tools to adjust the numbers of the classes required 

by the user. Moreover, Fractal maps provide further information about the homogeneity and 

heterogeneity of urban patterns. For instance, figure 6.8 showed clearly the dispersion of the 

neighbourhoods with low and high physical complexity, or figure 7.8 marked the areas that 

the urban pattern began distorting (see chapters Six and Seven respectiYely). Furthennore. 

Fractal maps could illustrate the fuzzy boundaries between the different urban patterns and 

the way each class distributed within the case study. The urban pattern analysis by using 



fractal-mapping method has also some common advantages with the FNID method that are 

discussed in the following section. 

8.2.2 FNIDs 

FNIDs demonstrate mathematically the differences between urban patterns based on their 

assessed fractal dimension, and therefore, they can be considered as a kind of fractal 

signatures of urban patterns. FNIDs can also be used for fractal identification. However, it 

can be claimed that they are more accurate than the fingerprint version of fractal maps. The 

FNID method provides a unique ID for every neighbourhood (based on a unique set of 

fractal dimensions), by which all patterns can be differentiated. However, the fractal-

mapping method emphasis on the similarities between the complexity of neighbourhood 

patterns (based on a range of fractal dimensions), by which they might be categorised under 

the same class. Nevertheless, both methods have some common advantages over other 

statistical quantitative methods. These can be are outlined as: 

1- Accuracy: Both fractal map and FNID are based on measuring fractal non-integer 

dimensions which are more accurate than the structural and statistical methods using , 

Euclidean integer dimensions. As discussed in Chapter Seven (section 7.1. I), the 

conventional statistical methods are only capable of analysing simple shapes in 

planned or semi-planned patterns. Their restrictions to integer dimensions (0, I, 2, and 

3) prevent them to measure and analyse the complexity of urban forms in detail. 

Therefore, Non-integer dimensions suggested in terms ofFNID are more accurate 

means of measurement both for planned and organic patterns. 

2- Wide applicability: the other statistical methods are usually applied to one particular 

morphological property (e.g. to identify or classify street patterns). However. while the 



proposed fractal identification methods can be applied to any single urban element 

(see Table 6.1, in Chapter Six) or a combination of some elements. For instance, the 

proposed method in this research examined the aerial photos of the case study, which 

contain a mixture of urban elements. 

3- Scale coverage: the other statistical approaches are usually restricted to only one 

specified urban scale, while the proposed fractal approach provides a realistic view to 

urban patterns by examining their complexity at different city scales. An FNID, in 

particular, suggests a set of fractal dimensions for a single neighbourhood assessed at 

four levels of a city (neighbourhood, local, district, and city levels). 

4- Clarity: Some identification and classification methods may create ambiguity. For 

instance, one single pattern may be classified under different titles by different 

observers. However, the fractal ill provides a clear and common sense result 

independent of the eye of its observer. 

5- Data availability and accessibility: one of the advantages of the proposed method is 

that it uses remote sensing photos of the city taken from aircraft or satellites as the 

main source of data. They are available for all cities around the World. Updated 

satellite photos are accessible via the internet and a copy of the aerial photo of a city or 

part of a city can usually be obtained from its local or nearest GIS centre. 

8.2.3 The change analysis of urban patterns 

The change analysis of urban morphological complexity over time is one of the areas in 

which little research has been attempted, and therefore it is the most important contribution 

of this research to new knowledge. The research devised a method to measure and 

visualise the physical complexity of the existing urban patterns within the case study (the 



present status). The same method was applied to the past and the future status of the 

studied patterns. For this purpose, the fractal dimensions of 24 neighbourhoods in Tajrish 

(the research main case study) were assessed from year 1956 to 2002. The analysis 

revealed that: 

a) The changes imposed by the new shopping mall added to the old market 

(bazaar), and the urban interventions close to Tajrish Square (the bus 

terminal and the public car parking) are the main factors causing the fall 

in the degree of physical complexity of the studied neighbourhoods. 

b) Urban vegetation (gardens, green yards, parks, etc) has had a positive 

role in sustaining urban physical complexity (see Chapter Seven, section 

7.3.1). 

Both architectural projects and urban design interventions may maintain or change the 

physical complexity of an existing urban context depending on whether their forms 

demonstrate the same degree of complexity as existing one or not. Therefore, the research 

suggested a simple technique (A-R-Technique) by which the future changes caused by 

design proposals can be assessed in the lab before their actual implementation (see 

Chapter Seven, section 7.3.2). FNIDs can be used as a controlling base point to direct 

urban new developments and interventions to be built within certain range of fractal 

dimensions. This will arguably provide an effective way to conserve urban qualities by a 

more accurate and at the same time more flexible method than the current tight , , 

restriction applied to the new developments within old urban contexts. 

The fractal assessment and A-R-Technique also equips decision makers to test th~ urban 

policies, which might have direct or indirect morphological impacts. The proposed 



method assists them to reflect better on their decisions, and to choose an urban scenario 

which may better adapt to the spatial complexity of an exiting urban pattern. In short, it 

can be claimed that the research could also contributed to new knowledge in tenns of 

promoting the fractal assessment tool to a more practical level. 

8.3 The research limitations 

Through careful analysis and reflection of the research, three main areas have been 

identified as having a number of limitations. They are a) the nature of the research area 

and the methodology, b) aspects of case study examination, and c) the limitations of the 

proposed method. At points in the thesis, the limitations of individual methods and 

approaches related to these issues have been discussed. The purpose of this section is to 

summarise them and include other limitations that have been recognised. 

8.3.1 The limitations of the research scope and the methodology 

, 

On reflection, the concept of urban complexity can be considered too broad. A city 

comprises diverse but interlinked complex systems, a variety of complex socio-economic 

forces, and different overlapped geo-morphological layers, which make the city even 

more complex and the concept of urban complexity more difficult to grasp. The research 

focused on the morphological aspects of complexity, and among various morphological 

features, it is limited to the analysis of complex urban patterns at the neighbourhood le\el 

of the case study. 

Another limitation has been imposed by the research methodology. The research 

followed a quantitative approach, which is based on concrete objective surveys and 



quantitative data analysis of the case study. The nature of type of the methodology is that, 

it lacks subjectivity and qualitative judgment. Therefore, the evaluative questions about 

different urban pattern types, the quality of architectural or urban design products, and the 

response of the users of an urban space with high or low physical complexity are beyond 

the scope of this research. Even the fractal analysis method developed in this research 

should be considered as an assessment tool, not an evaluative one. This method will assist 

urban specialists to assess urban intervention proposals or even the urban policies, which 

has morphological impacts. Since each individual case has its own unique properties and 

characteristics, it would be then the role of decision makers to judge, evaluate, and 

approve any changes that would be caused by the proposals. 

8.3.2 The limitations of the proposed method 

The research succeeded in developing a practical fractal assessment tool for measuring 

the change in urban patterns and mapping morphological complexity. Both advantages 

and limitations of the employed method were discussed in Chapter Six (sections 6.1.4.1 

and 6.1.4.2). The main aspects of the examination process and method, which limits the 

research results are summarised below: 

1. The limits imposed by the fractal analysis software, Benoit 1.3: firstly, 

none of the available software programs can measure fractal dimensions of 

3D urban spatial patterns; therefore, the research limits to 2D examination 

and analysis of the case studies. Secondly, the employed software only 

perfonns a binary - black and white - image analysis. Therefore, some of 

the gray scale data may be missed during examination. Thirdly, Benoit 1.3 

accepts only bitmap image fonnat as its input, therefore the program 



cannot distinguish the difference between layers of information in an 

image. Therefore, the unnecessary data was removed manually from an 

image before examination, and manual data removal might associate with 

mistakes. 

2. The data source: The higher resolution the aerial photos have, the more 

accurate result will be achieved. In the case of this research, some of the 

earlier aerial photos of Tajrish were of poor in quality. Therefore, the 

research was limited only to those with acceptable quality (years 1956, 

1969, 1979, 2002). 

3. The limits imposed by the GIS software, ArcMap 9.2: The process of 

importing data from Benoit software, adding attribute data, creating new 

shape-files, and projecting fractal maps by ArcMap 9.2 require a number 

of sequential steps to be undertaken (see figure 6.12 in Chapter Six). This 

is a difficult, lengthy process even for an expert operator. In this research, 

the process of producing a fractal map is applied to the selected cases in 

the north of Tehran. To produce a fractal map for the whole city, an 

intermediate software program is required that can be programmed in 

order to process the data automatically, or a team of operators are to be 

arranged that the task can be divided between them. 

8.3.3 The limitations of the case study selection and examination 

It is worth emphasizing that one of the main aims of this research \\'as to compare the 

gradual change in "urban morphological pattern" with the rapid change caused by a new 

urban development or a kind of urban intervention. For this aim, only a limited number of 



neighbourhoods were examined within the case study district of Shemiran. This can be 

considered as one of the research limitations. If more sample cases could have been 

examined, a stronger conclusion would have been possible to be made about Tehran's 

patterns of growth and its evolution over time. As explained in the previous section, this 

would require a team of surveyors and operators, which was not available for this 

research. 

The change in morphological complexity, which an architectural or urban design 

proposal imposed to an existing urban fabric, can be viewed and measured from different 

perspectives. The main perspectives are those at the street level of the case study 

including street elevations, street vistas, skylines, etc. This reveals another limitation of 

this research, since it examined the sample cases only from an aerial view by aerial 

photos. A comprehensive analysis of the change at local and neighbourhood scales calls 

for a detailed examination of the urban elements from different street views. 

8.4 Recommendations for future research 

8.4.1 Opportunities for further research based on the research literature review 

A study is rarely considered an isolated piece of intellectual activity separated from other 

similar investigations (Oliver, 2004). It adds to previous studies and usually 

acknowledges that other research required. During the last three decades, several 

researchers have explored the different aspects of city complexity. This research 

attempted to take an incremental step forward and add to the previous research by 

redefining the key terms in complexity theory such as chaos, fractal architecture, urban 

complexity, complex systems planning, and design. 



However, none of these aspects is yet sufficiently explored. Our knowledge about the 

nature of urban evolution and complexity is by no means complete. Moreover, there are 

still gaps between these new concepts and their applications to urban form and function. 

Further research is required, enabling us to conceptualise, model, simulate, and measure 

better the city complexity. The more we explore, the more we understand how a city 

system behaves, and the better we are prepared to plan, design, and form our 

environment. 

Several research ideas can be addressed directly from the outcomes of the literature 

review. Here are some examples: 

• The long-established linear principles of Euclidean geometry still dominate the 

daily fabrication processes of society by architects and urban experts. More 

research is required to shift the traditional view to what is more real, to which can 

be termed fractal view. 

• The twelve properties of a complex urban system - identified in Chapter Three 

(section 3.2.2) - require further research. The relationship between each property 

and its morphological analogy suggests an interesting research topic. A number of 

issues that discussed in Chapter Four (section 4.1.2.2) are also to be explored in 

more detail. 

• A list of five criteria is proposed to define the term fractal architecture. As 

discussed in Chapter Four (4.1.3.2), this list is not complete. Further research i~ 



• 

required to evaluate whether a piece of architecture or an urban design product 

have fractal quality similar to what is seen in nature. 

The second part of Chapter Four called for a third transition in planning theory 

based on the principles of complex systems theory. There are still many gaps at 

conceptual and practical levels. There are only limited numbers of complex 

system planning models proposed so far, and they are still at their preliminary 

research stages. Further research is required to complete these models and to 

promote them to practical planning level. 

• The current simulation and fractal measurement methods are not yet embedded in 

bottom up planning procedure. More research is required to fill the gap between 

the theories and the practice. 

The fractal assessment technique developed during the course of this research can be 

considered as one of the tools required during bottom up planning procedures. It can be 

employed to measure the change in physical complexity imposed by individual design 

proposals, small or large urban interventions, and even the urban design policies, which 

have direct or indirect morphological impacts on urban patterns. These also have impacts 

on other urban aspects such as socio-economic patterns, which are also important. Thus, 

further interdisciplinary research is required to cover these issues and examine urban 

complexity from diverse perspectives. 

8.4.2 Opportunities for further research based on the advantages and limitations 

of the proposed fractal assessment method 

Both limitations and advantages of the proposed fractal assessment method provide 

opportunities for further research. They can be addressed under the following two 



questions: 'how can a fractal map be created more accurately?" and 'what are the other 

applications of the proposed method?' The first question calls for the aspects of the 

proposed method, which are required developments in order to create high quality fractal 

maps and to assess more accurately urban complexity. The second question addresses the 

potentials of this method to assess the other elements and features of urban morphology _ 

other than those described in this research. 

In section 8.3.2, the limitations of the employed method were outlined. More research is 

required to develop a kind of software program for 3D fractal analysis of urban forms. 

Arial and satellite photos contain very useful information about urban complexity, the 

current binary image analysis misses a range of the gray scale data. More developed 

software is required enabling us to process different data layers of complexity exhibited 

by gray scale and ideally colour scale images. The accuracy of the produced fractal maps 

in particular, and fractal analysis in general, also depend on the quality of the urban 

photos. The new development in digital and panoramic photography suggests a promising 

future. 

The proposed method is semi computerised and parts of data processing had to be carried 

out manually (see figures 6.6 and 6.7 respectively) and transferring fractal data to 

ArcMap 9.2 required considerable amount of time. An intermediate software program can 

be developed and programmed in order to process the data automatically. Nevertheless. 

adding fractal data (fractal attribute) to the GIS database suggests new and unique 

opportunities for further morphological research on the case study, which have been 



previously impossible. Fractal attribute can be compared with any other available urban 

GIS attributes to find out where two different attributes are coexisted. This can be 

performed by filtering capabilities of ArcMap 9.2. 

For filtering, only one urban element, or urban feature is selected and its respective 

attribute table is turned on, the others are turned off. For instance, the layers of natural 

urban forms (e.g. parks and gardens) can be filtered in order to analyse the fractal 

property of the built urban forms. Reversely, only natural features can be turned on to 

examine whether these area are generally exhibits high degree of complexity (fractality). 

In addition, the plots' and blocks, attributes such as size, density, and land use can be 

compared with their respective fractal attributes. For instance, the location of the plots 

with the area sizes lower than 300 square metres can be easily identified and be examined 

whether these plots exhibit generally low or high degree of physical complexity. 

A number of topics and hypothesises are also developed during the course of this 

research that required further case study examination. For example, urban vegetation and 

trees in particular were found to play an important role in maintaining the physical 

sustainability of the examined areas. Further research is required in order to generalise 

this finding and to examine the implication of finding that tree planting will increase the 

fractal complexity of an urban space. Another recommended hypothesis that can be 

examined is that: 

I) In the part of the case study where its neighbourhoods display more 

h f h I d ses sl·zes and the 'I"l' morphological order based on t e range 0 t e an -u" , ::-



of their buildings, the fractal dimensions of its hierarchical structure 

(FNIDs) are expected to be similar. 

The hypothesis can also be reversed as follows: 

2) The part of the case study, where the fractal dimensions of their 

hierarchical structures (FNIDs) are similar, it is expected that its 

components display morphological order and homogeneity based on the 

range of land-uses, sizes, and age of its buildings. 

Finally, this research claims that the proposed method is universal and can be applied to 

any other cities. Further research is required to validate scientifically this claim. FNIDs 

can be assigned and fractal maps can be produced for all cities. Two different cities can 

be compared according to their respective fractal IDs. Moreover, a city or a part of it, 

where its historical records are available, can be analysed with this method to examine 

whether it succeeded to maintain its structural complexity over time or not. 
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APPENDIX A 



Adaptation 

'In the theory of Darwinian Evolution, adaptation is the ongoing process by which an 

organism becomes "fit" to a changing environment. ... A fundamental characteristic of 

complex, adaptive systems is their capacity to adapt by changing the rules of interaction 

among their component agents. In that way, adaptation consists of "learning" new rules 

through accumulating new experiences' (Goldstein, 2001, unpaginated). 

Adaptive Redevelopment 

'A redevelopment a plot, a series of plots, within the existing street system without the 

introduction of new streets' (Conzen, 1960, pp.69, 95,123; quoted in Larkham and Jones, 

1991, p. 13). 

Agents of Change 

'Agent; Agent of change; Amenity group; Applicant; Builder; Consultant; Depositor; 

Developer; Developer agent; Estate agent; Initiator; Institution; Original rural landholder: 

Owner; Planner/planning officer; Speculator/speculative developer; Subdivider' 

(Larkham and Jones, 1991, p.1 0). 

Agent-Based Models 

'Systems composed of individuals who act purposely in making locational/spatial 

decisions' (Batty, 2008, p.2). 

Attractors 

(1) 'The idea of attractor deals with "phase/state/condition space". In the development 

of a dynamical system over time we have attractors if the systems' trajt:ctory does 

not move through all the possible parts of an n+ 1 (the + 1 representing time) state 

space, but instead occupies a restricted part of it' (Byrne, 1998, p.168). 



(2) 'The evolution of a nonlinear, dynamical, complex system can be marked by a series 

of phases, each of which constrains the behaviour of the system to be in consonance 

with a reigning attractor( s) .... The dynamics of the system as well as current 

conditions determine the system's attractors. When attractors change, the behaviour 

in the system changes because it is operating under a different set of governing 

principles. The change of attractors is called bifurcation, and is brought about from 

far-from-equilibrium conditions which can be considered as a change in parameter 

values toward a critical threshold' (Goldstein, 2001, unpaginated). 

Bifurcation 

(1) 'A process whereby divergent paths are generated in a trajectory of change in an 

urban system' (Batty, 2008, p.2). 

(2) 'The emergence of a new attractor(s) in a dynamical, complex system that occurs 

when some parameter reaches a critical level (a far-from-equilibrium condition). For 

example in the logistic equation or map system, bifurcation and the emergence of ne\\ 

attractors take place when the parameter representing birth/death rates in a population 

reaches a critical value. More generally, a bifurcation is when a system shows an 

abrupt change in typical behaviour or functioning that lasts over time' (Goldstein, 

2001, unpaginated; see also Chapter Three, figures 3.6, 3.7, and 3.8). 

Building Adaptation 

'This is a particularly wide-ranging category, much subdivided, covering all changl?s 

to the building fabric rather than new building/major rebuilding; redevelopment" 

(Larkham and Jones, 1991, p.23). 
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Building Pattern 

'In town-plan analysis, "this is the arrangement of existing buildings, i.e. their block

plans in a built-up area viewed as a separate element complex of the town plan' 

(Conzen, 1969, p.l23; quoted inLarkham and Jones, 1991, p.24). 

Butterfly Effect 

'A popular image portraying the property of sensitive dependence on initial 

conditions in chaotic systems, i.e., a small change having a huge impact like a 

butterfly flapping its wings in South America eventually leading to a thunderstonn in 

North America .... The Butterfly Effect introduces a great amount of unpredictability 

into a system since one can never have perfect accuracy in detennining those present 

conditions which may be amplified and lead to a drastically different outcome than 

expected. However, since chaotic attractors are not random but operate within a 

circumscribed region of phase or state space, there still exists a certain amount of 

predictability associated with chaotic systems. Thus, a particular state of the weather 

may be unpredictable more than a few days in advance; nevertheless, climate and 

season reduce the range of possible states of the weather, thereby, adding some 

degree of predictability even into chaotic systems' (Goldstein, 2001, unpaginated: see 

Chapter Three, sections 3.l.l.3 and 3.2.2.5). 

Chaos 

'A type of system behaviour appearing random-like, yet is actually detenninistic and is 

constituted by a "hidden" order or pattern. Chaos can be found in certain nonlinear 

dynamical systems when control parameters surpass certain critical le\els. The emergence 

of chaos suggests that simple rules can lead to complex results. Such systems are 



constituted by nonlinear, interactive, feedback types of relationships among the variables, 

components, or processes in the system' (Goldstein, 2001, unpaginated; see Chapter Three. 

section 3.1). 

City Size Distribution 

'A set of cities by size, usually population, often in rank order' (Batty, 2008, p.2). 

Deterministic system 

'A dynamic is determinist if knowledge of it and of the initial state ofa system is all we 

need to know to predict the future of the system. Note that this is a matter in principle. In 

chaotic determinism we cannot know the initial state of the system with sufficient precision 

to predict its future trajectory' (Byrne, 1998, p.171). 

Element Complex/Form Complex 

'The totality of plan elements of one particular kind in a town plan viewed separately from 

others. There are three element complexes, i.e. the street system, the plot pattern and the 

building pattern' (Conzen, 1969, p.125; quoted in Larkham and Jones, 1991, p.37). 

Emergent Patterns/ Emergent Properties 

'The arising of new, unexpected structures, patterns, processes, [or properties] in a 

self-organizing system' (Goldstein, 2001, unpaginated). For instance, in the case of a 

city system, 'land uses or economic activities which follow some spatial order' 

(Batty, 2008, p.2). 

Entropy 

'The concept of Entropy refers to the tendency of things to move toward greater 

disorder, or disorganization rather than maintaining order. It refers to the importance 

. ~ . d t' I vhich can be of having an open system to import energy, 1ll10rmatlOn an rna ena s. \ 



used to offset the tendency toward disorganization. The second law of 

thennodynamics describes the Entropy. The law states that heat dissipates from a 

central source and the energy becomes degraded, although total energy remains 

constant' (Flood, 1993, p.12). 

Entropy Maximizing 

'The process of generating a spatial model by maximizing a measure of system 

complexity subject to constraints' (Batty, 2008, p.2). 

Equilibrium 

'A state of the urban system which is balanced and unchanging' (Batty, 2008, p.2). 

Exponential Growth 

'The process whereby an activity changes through positive feedback on itself (Batty, 

2008, p.2). 

Far-from-equilibrium 

'The term used by the Prigogine School for those conditions leading to self

organization and the emergence of dissipative structures. Far-from-equilibrium 

conditions move the system away from its equilibrium state, activating the 

nonlinearity inherent in the system. Far-from-equilibrium conditions are another way 

of talking about the changes in the values of parameters leading-up to a bifurcation 

and the emergence of new attractor(s) in a dynamical system. Furthermore, to some 

extent, far-from-equilibrium conditions are similar to "edge of chaos" in cellular 

automata' (Prigogine and Stengers, 1984; quoted in Goldstein, 2001, unpaginated). 

Fast Dynamics 

'A process of frequent movement between locations. often daily' (Batty. 200X, p.2). 



Feedback 

(1) 'The process whereby a system variable influences another variable, either positively 

or negatively' (Batty, 2008, p.2). 

(2) 'The mutually reciprocal effect of one system or subsystem on another. Negative 

feedback is when two subsystems act to dampen the output of the other. ... Positive 

feedback means that two subsystems are amplifying each other's outputs' (Goldstein, 

2001; see Chapter Three, section 3.2.2.4). 

Fractal Structure 

'A pattern or arrangement of system elements that are self-similar at different spatial 

scales' (Batty, 2008, p.2; see Chapter Three, section 3.3). 

Fractal Dimension 

'A non-integer measure of the irregularity or complexity of a system. Knowing the 

fractal dimension helps to determine the degree of complexity and pinpoint the 

number of variables that are key to determining the dynamics of the system' 

(Goldstein, 2001, unpaginated; see Chapter Three, section 3.3.2). 

Geometrical Analysis 

'Analysis of plots, particularly medieval burgages, with especial reference to relati ve 

proportions of width and length' (Slater, 1990a, pp.74-77; quoted in Larkham and Jones, 

1991, p.43). 

Grid Plan/Gridiron Layout 

'A rectilinear layout of streets and street blocks. It has been the mark of the founded town 

since ancient times, producing an efficient circulation system, and distribution of equal 

rectangular plots' (Larkham and Jones, 1991, p.44). 



Initial Conditions 

'The state of a system at the beginning of a period of observing or measuring it' 

(Goldstein, 2001, unpaginated). 

Initiator 

(1) 'This is a popular term used to describe the person or organization upon whose behalf a 

fabric change is initiated' Larkham and Jones, 1991, p.46). 

(2) The initial step/level from which a fractal shape is constructed (Peitgen et ai, 2004, p.89; 

see also Chapter Three, section 3.3.2). 

Interaction 

(1) 'The mutual effect of components or subsystems or systems on each other. This 

interaction can be thought of as feedback between the components as there is a reciprocal 

influence' (Kauffman, 1993; quoted in Goldstein, 2001, unpaginated). 

(2) In a complex system, ' ... the effect of two or more variable causes acting together is not 

simply the some of their effects taken separately. Instead, we find that there are complex 

emergent properties' (Byrne, 1998, p.173). 

Land Use Transport Model 

'A model linking urban activities to transport interactions' (Batty, 2008, p.2). 

Life Cycle Effects 

'Changes in spatial location which are motivated by aging of urban activities and 

populations' (Batty, 2008, p.2). 

Linear System 

'A linear system is one in which small changes result in small effects, and large changes 

in large effects. In a linear system, the components are isolated and non-interacti\'t~. Real 
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linear systems are rare in nature since living organisms and their components are not 

isolated and do interact' (Goldstein, 2001, unpaginated). 

Local Neighbourhood 

'The space immediately around a zone or cell' (Batty, 2008, p.2). 

Logistic Equation 

'An equation that has been applied to various natural systems such as the changes in a 

system's population over time which show a convergence to some fixed value or values 

over time' (Goldstein, 2001; see also Chapter Three, equation 3.2). 

Logistic Growth 

'Exponential growth capacitated so that some density limit is not exceeded' (Batty, 2008, 

p.2). 

Lognormal Distribution 

'A distribution which has fat and long tails which is normal when examined on a 

logarithmic scale' (Batty, 2008, p.2). 

Micro simulation 

'The process of generating synthetic populations from data which is collated from 

several sources' (Batty, 2008, p.2). 

Model Validation 

'The process of calibrating and testing a model against data so that its goodness of fit 

is optimized' (Batty, 2008, p.2). 

Morphological Processes 

'The set of process shaping urban form. These include adaptive, additi\l~, repletive 

and transformative processes' (Larkham and Jones, 1991, p.55). 



Multipliers 

'Relationships which embody n'th order effects of one variable on another' (Batty, 2008, 

p.2). 

Network Scaling 

'The in-degrees and out-degrees of a graph whose nodal link volumes follow a power 

law' (Batty, 2008, p.2). 

Nonlinear System 

'A system in which small changes can result in large effects, and large changes in small 

effects. Thus, sensitive dependence on initial conditions in chaotic systems illustrates the 

extreme nonlinearity of these systems' (Goldstein, 2001, unpaginated). 

Phase Space/State Space/Condition Space 

(1) 'An abstract mathematical space which is used to display time series data of the 

measurements ofa system' (Goldstein, 2001, unpaginated). 

(2) 'If there are n variables, there will be n dimensions. The state space of the system at any 

instant can be describe by its co-ordinates in this n dimensional space with the measured 

value for each variable aspect being the co-ordinate for that dimension' (Byrne, 1998, 

p.173). 

Plot Pattern 

'The arrangement of plots - considered separately from the other plan elements - up 

to the level of street blocks' (Larkham and Jones, 1991, p.65). 

Population Density Profile 

'A distribution of populations which typically follows an exponential profile when 

arrayed against distance from some nodal point' (Batty, 2008. p.2). 
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Power Laws 

(1) 'Scaling laws that order a set of objects according to their size raised to some power' 

(Batty, 2008, p.2). 

(2) 'A type of mathematical pattern in which the frequency of an occurrence of a given 

size is inversely proportionate to some power (or exponent) of its size' (Bak, 1996; 

quoted in Goldstein, 2001, unpaginated; see also Yanguang and Yixing, 2004). 

Rank Size Rule 

'A power law that rank orders a set of objects' (Batty, 2008, p.2). 

Reaction-Diffusion 

'The process of generating changes as a consequence of a reaction to an existing state 

and interactions between states' (Batty, 2008, p.2). 

Residential DensitylHousing Density 

'The number of houses per unit of land including the plots and all streets providing 

direct access to them. The term applied to an individual plot as well as to a plan unit. 

In the latter case, it is an average value' (Conzen, 1969, pp.129-130; quoted in 

Larkham and Jones, 1991, p.70). 

Scale/Scaling Law 

'The level at which a system is observed. For example, one can observe the coast of 

England from a satellite or from a jet liner or from a low flying plane, or from walking 

along the coast, or from peering down into the sand and rock of a cove beach you are 

standing on. Each of these perspectives is of a different scale of the actual coast of 

England. Fractals are geometric patterns that are self-similar on different scales' (Kaye, 

1989; quoted in Goldstein, 2001, unpaginated). 
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Scale-free Networks 

'Networks whose nodal volumes follow a power law' (Batty, 2008, p.3). 

Segregation Model 

'A model which generates extreme global segregation from weak assumptions about local 

segregation' (Batty, 2008, p.3). 

Self-organisation 

'A process in a complex system whereby new emergent structures, patterns, and properties 

arise without being externally imposed on the system. Not controlled by a centralized, 

hierarchical "command and control" centre, self-organization is usually distributed 

throughout a system' (Goldstein, 2001, unpaginated). 

Self-organized Criticality (SOC) 

' ... a phenomena of sudden change in physical systems in which they evolve naturally to a 

critical state at which abrupt changes can occur. That is, when these systems are not in a 

critical state, i.e., they are characterized by instability, output follows from input in a linear 

fashion, but when in the critical state, systems characterized by self-organized criticality act 

like nonlinear amplifiers, similar to but not as extreme as the exponential increase in chaos 

due to sensitive dependence on initial conditions' (Bak, 1996; Waldrop, 1992; quoted in 

Goldstein, 2001, unpaginated). 

Simulation 

'The process of generating locational distributions according to a series of sub-model 

equations or rules' (Batty, 2008, p.3). 

Slow Dynamics 

'Changes in the urban system that take place over years or decades' (Batty, 2008. p.3!. 
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Social Physics 

'The application of classical physical principles involving distance, force and mass to 

social situations, particularly to cities and their transport' (Batty, 2008, p.3). 

Spatial Interaction 

'The movement of activities between different locations ranging from traffic distributions 

to migration patterns' (Batty, 2008, p.3). 

Strange Attractor 

'An attractor of a chaotic system which is bound within a circumscribed region of phase 

space yet is aperiodic, meaning the exact behaviour in the system never repeats. The 

structure of a strange attractor is fractaL ... A strange attractor portrays the characteristic of 

sensitive dependence on initial conditions (the Butterfly Effect) found in chaos' (Goldstein, 

2001, unpaginated). 

Trip Distribution 

'The pattern of movement relating to trips made by the population, usually from home to 

work but also to other activities such as shopping' (Batty, 2008, p.3). 

Urban Hierarchy 

'A set of entities physically or spatially scaled in terms of their size and areal extent' 

(Batty, 2008, p.3). 

Urban Morphogenesis 

'The creation of physical forms viewed as a developmental or evolutionary proc~ss' 

(Whitehand, 1981, pp.1-24; quoted in Larkham and Jones, 1991, p.54). 

375 



Urban Morphology 

(1) 'Patterns of urban structure based on the way activities are ordered with respect to their 

locations' (Batty, 2008, p.3). 

(2) 'The study of the physical (or built) fabric of urban fonn, and the people and processes 

shaping it' (Larkham and Jones, 1991, p.55). 

Urban System 

'A city represented as a set if interacting subsystems or their elements' (Batty, 2008, p.3). 
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TruSoft-~temational (2004), the company produced Benoit 1.3, provided the following 
expl~natIOn for all five measurement .metho.ds ~cluding those discussed in Chapter Three 
(sectIOn 3.3.5) to show the mathematIcal pnnclple behind the software: 

B.l Box Dimension Estimation Method interface 

The box dimension is defined as the exponent Db in the relationship: 

1 
N(d)~-

d Db 
(equation 1) 

N(d) is the number of boxes of linear size d necessary to cover a data set of points 
distributed in a two-dimensional plane. The basis of this method is that, for objects that 
are Euclidean, equation (1) defines their dimension. One needs a number of boxes 
proportional to lid to cover a set of points lying on a smooth line, proportional to l/dA 2 
to cover a set of points evenly distributed on a plane, and so on. 

This dimension is sometime called grid dimension because for mathematical convenience 
the boxes are usually part of a grid. One could defme a box dimension where boxes are 
placed at any position and orientation, to minimize the number of boxes needed to cover 
the set. It is obviously a very difficult computational problem to find among all the 
possible ways to cover the set with boxes of size d the configuration that minimizes N (d). 
Also, if the overestimation ofN( d) in a grid dimension is not a function of scale (i.e., we 
overestimate N(d) by, say, 5% at all box sizes d), which is a plausible conjecture if the set 
is self-similar, then using boxes in a grid or minimizing N(d) by letting the boxes take 
any position is bound to give the same result. This is because a power law such as (1) is 
such that the exponent does not vary if we multiply N(d) or d by any constant. 

In practice, to measure Db one counts the number of boxes of linear size d necessary to 
cover the set for a range of values of d; and plot the logarithm ofN(d) on the vertical axis 
versus the logarithm of d on the horizontal axis. If the set is indeed fractal, this plot will 
follow a straight line with a negative slope that equals -Db. To obtain points that are 
evenly spaced in log-log space, it is best to choose box sizes d that follow a geometric 
progression (e.g. d = 1, 2, 4, 8, ... ), rather than use an arithmetic progression (e.g. d = 1, 2, 
3,4, ... ). 

A choice to be made in this procedure is the range of values of d. Trivial results are 
expected for very small and very large values of d. A conservative choice may be to use 
as the smallest d ten times the smallest distance between points in the set, and as the 
largest d the maximum distance between points in the set divided by ten. Alternatively, 
one may exceed these limits and discard the extremes of the log-log plot where the slope 

tends to zero. 

In theory, for each box size, the grid should be overlaid in such a way .that the ~inimum 
number of boxes is occupied. This is accomplished in Benoit by rotatmg the gnd for 
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each box size through 90 degrees and plotting the minimum value ofN(d). Benoit 
pennits the user to select the angular increments of rotation. 

B.2 Perimeter-Area Dimension Estimation method interface 

Consider an obj.ec! that i~ a close~ loop in the two-dimensional plane, e.g., an island. 
Suppose that this Island IS a EuclIdean object, i.e., a circle. Then the area A and the 
perimeter P of such an island are related as follows: 

p == 2m == r.J nA ~ -JA 
2 

A == m 2 == L ~ p2 
4n 

(equation 2) 

"r" is the radius of the circle; note that the proportionality between A and P does not 
depend on r. If the island had a fractal perimeter, then the relationships (2) become 

p ~ (vIa)Dp == A Dp/2 

A ~p2/Dp (equation 3) 

Dp is the perimeter-area dimension. Indeed, ifDp = 1, one obtains the Euclidean case, as 
in (2); ifDp = 2, then the figure is space-filling because P A. IfDp is between 1 and 2, 
equation (3) shows that the perimeter of the fractal figure is longer than the perimeter of a 
Euclidean figure with the same area, as expected. 

In practice, to estimate Dp one measures perimeter P and area A with boxes of different 
side length d, and plots the logarithm of A on the vertical axis versus the logarithm of P 
on the horizontal axis. If the relationship is indeed fractal, this plot will follow a straight 
line with a positive slope that equals 21Dp. Note that the estimation of perimeters and 
areas has to be done over a range of d. 

B.3 Information Dimension Estimation Method 

This fractal dimension is often encountered in the physics literature, and is generally 
different from the box dimension. In the defmition of box dimension, a box is counted as 
occupied and enters the calculation ofN(d) regardless of whether it contains one point or 
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a relatively large number of points. The information dimension effectively assign weights 
to the boxes in such a way that boxes containing a greater number of points count more 
than boxes with less number of points. 
The information entropy I(d) for a set ofN(d) boxes of linear size d is defmed as 

N(d) 

led) == - L:mj log(mJ 
j=l 

(equation 4) 

where mi is: 

M. 
m. 

I 

I 

M 
( equationS) 

Mi is the number of points in the i-th box and M is the total number of points in the set. 

Consider a set of points evenly distributed on the two-dimensional plane. In this case, we 
will have: 

so that (4) can be written as: 

~d2 m. 
I 

(equation 6) 

1 
led) ~ -N(d)[d2 1og(d2

)] ~ -2[2d2 1og(d)] = -21og(d) 
d 

For a set of points composing a smooth line, we would find: I( d):::::-log(d) 

Therefore, we can defme the information dimension Di as in: 

I( d) == -D
j 
loge d) (equation 8) 

(equation 7) 

In practice, to measure Di one covers the set with boxes of linear size d keeping track ?f 
the mass mi in each box and calculates the information entropy I( d) from the summatIOn 
in (4). If the set is fractaL a plot ofl(d) versus the logarithm of d will follow a straight 

line with a negative slope equal to -Di. 
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At the beginning of this section, we noted that the information dimension differs from the 
box dimension in that it weighs more heavily boxes containing more points. To see this, 
let us write the number of occupied boxes N( d) and the information entropy I( d), in 
terms of the masses mi contained in each box: 

N(d) == Lm? 
. 1 
1 

led) == -L:m.log(m.) 
. 1 1 

(equation 9) 
1 

The first expression in (9) is a somewhat elaborate way to write N( d), but it shows that 
each box counts for one, if mi > O. The second expression is taken directly from the 
defmition of the information entropy (4). The number of occupied boxes, N(d), and the 
information entropy I( d) enter on different ways into the calculation of the respective 
dimensions, it is clear from (9) that: 

Db<Di (equation 10) 

The condition of equality between the dimensions (10) is realized only if the data set is 
uniformly distributed on a plane. 

B.4 Mass Dimension Estimation Method 

Draw a circle of radius r on a data set of points distributed in a two-dimensional plane, 
and count the number of points in the set that are inside the circle as M(r). If there are M 
points in the whole set, one can define the "mass" m(r) in the circle of radius r as: 

m(r) = M(r) 
M 

(equation 11) 

Consider a set of points lying on a smooth line, or uniformly distributed on a plane. In 
these two cases, the mass within the circle of radius r will be proportional to r and ~2 
respectively. One can then define the mass dimension Om as the exponent in the 
following relationship: 

(equation 12) 

In practice, one can measure the mass m(r) in circles of increasing radius starting from. 
the centre of the set and plot the logarithm of m(r) versus the logarithm of r. If the set 1.S 

fractal, the plot will follow a straight line with a positive slope equal to Om. As the radIUS 
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increases beyond the point in the set farthest from the centre of the circle, mer) will 
remain constant and the dimension will trivially be zero. This approach is best suited to 
objects that follow some radial symmetry, such as diffusion-limited aggregates. In the 
case of points in the plane, it may be best to calculate mer) as the average mass in a 
number of circles of radius r. 

It can be shown that the mass dimension of a set equals the box dimension. This is true 
globally, i.e., for the whole set; locally, i.e., in portions of the set, the two dimensions 
may differ. Let us cover the set with N(d) boxes of size d, and let us defme the mass, or 
probability, in the i-th box mi as: 

M. 
m. 

1 

1 

M 
(equation 13) 

Mi is the number of points in the i-th box and M is the total number of points in the set. 
We can now write the average mass, or probability, in boxes of size d as m( d), the 
average mi in the N(d) boxes: 

1 N(d) 

m(d)- ~m 
N(d) t: i 

1 

N(d) 
(equation 14) 

(the sum of all the masses mi is obviously one). As the operation of calculating the mass 
contained in a box of size d is the same as calculating the mass in a circle of radius r, we 
can write our defmition of mass dimension (12) in terms of d rather than r: 

(equation 15) 

By using (4) and re-arranging terms, we obtain: 

(equation 16) 

This is the defmition of the box dimension; thus, the mass dimension equals the box 
dimension. 

D.5 Ruler Dimension 

Consider the problem of estimating the fractal dimension of a jagged, self-similar line, 
the typical example being a coastline. Defme N(d) as the number of steps taken by 
walking a divider (ruler) of length d on the line, the ruler dimension Dr IS defined as: 
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(equation I 7) 

The basis of this method is as follows: if the line is Euclidean, Dr = I, then the length of 
the line will be a constant independent of d. Note that this is bound to be true for values 
of d sufficiently small. For example, the perimeter of a circle measured by a ruler of 
length d will be constant when d is much less than the radius of the circle. At the other 
extreme, if the line completely fills space, Dr = 2, i.e., the length of the line is linearly 
related to the length of the ruler. This can be shown to be true by equating the measured 
length of the line N(d) with the number of boxes needed to cover the line N(d) times d: 
When Dr = 2, the number of filled boxes is proportional to l/dl\2, and the line fills the 
two-dimensional space. One can show the formal equivalence of the ruler and box 
dimension. 

In practice, to obtain Dr one counts the number of steps N (d) taken by walking a divider 
(ruler) of length d on the line, and plot the logarithm ofN(d) versus the logarithm of d. If 
the line is indeed fractal, this plot will follow a straight line with a negative slope that 
equals -Dr. It should be noted that in general, a ruler of length d will not cover exactly the 
line, but we will be left with a remainder. Benoit keeps this remainder and therefore has 
non-integer values ofN(d). 
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The Logarithmic Graphs of the 22 Districts of Tehran 
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Figure C.l : The logarithmic graph of district no. I (Shemiran). 
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Figure C.2: The logarithmic graph of district no.2 . 
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Figure C.3: The logarithmic graph of district no.3 . 
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Figure C.4: The logarithmic graph of district no.4. 
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Figure C.5: The logarithmic graph of district no.5. 
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Figure C.6: The logarithmic graph of district no.6. 
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Figure C.7: The logarithmic graph of district no.7. 
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Figure C.8: The logarithmic graph of district no.8. 
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Figure C.9: The logarithmic graph of district no.9. 
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Figure C.I 0: The logarithmic graph of district no. 1 O. 
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Figure C.II: The logarithmic graph of district no 11 . 
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Figure C.13: The logarithmic graph of district no. 13. 
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Figure C.l4: The logarithmic graph of district nol4. 
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Figure C.l5: The logarithmic graph of district no.15. 
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Figure C.16: The logarithmic graph of district no.1 6. 
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Figure C.l7: The logarithmic graph of district no.17. 
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Figure C.12: The logarithmic graph of district no.18. 
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Figure C.19: The logarithmic graph of district no.19. 
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Figure C.20: The logarithmic graph of district no.20. 
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Figure C.2I: The logarithmic graph of district no.21. 
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Figure C.22: The logarithmic graph of district no.22. 
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High-rise buildings in Shemiran 

(a) 

(d) 

Figure D.l: Emergent high-rise buildings in northern Tehran (Shemiran . a) A vie\\ 
from Bazarche Ghaem, Tajrish Square, to west Shemiran. b and c i w from 
Niavaran Street to west Shemiran. d) A view from Sasan Boule ard to VelenJak. e 
residential complex in Velenjak. (photos taken by the author, July 200 ) 



Images of Tajrish 

(a) 

(c) 

Figure D.2: Views of Tajrish. a) A panorama of southern Tajrish square including th 
car park, bus terminal and the Shrine of Imamzadeh Saleh . b) A view from Bazarcheh 
Ghaem to neighbourhood T-N15 . c) A view from Tekieh Bala to western Shemiran. 
d) A view of neighbourhood T-N14. e) A view of neighbourhood I-Nl. fand g Iw 
old alleys with contemporary houses in Tajrish. (photo taken by the author, luI ' 

2008, April 2009) 

7 



Images of Velenj ak 

(e) 

Figure D.3 : a) A panorama of typical houses in eastern Velenjak. b and c) View from 
east to west Velenjak demonstrating a transition from two-storie bou e to higb-ri c 
apartments creating a contradictory composition. Views from south to north d and n rth 
to south (e), the main street in Velenjak. (Photos taken by the author, July 2 , pril 

2009) 



Images of Vali-e Asr Street 

.. 

Figure D.4: Diverse building types and styles behind the old trees of Vali-e A r Street. 
(Photos taken by the author, July 2008, April 2009) 



Images of Niavaran Street 

(b) 

Figure D.5: Niavaran Street. a) East to west view. b and c) views of Niavaran 
Square. d and e) Views from the street side to remaining gardens in Niavaran. g) 
West to east view. (photos taken by the author, July 2008, April 2009) 
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1956 

• 

'. 

Figure E.1: The aerial photo of Tajrish ill 1956 (TGIC Library, Tehran Geographic 
Infonnation Centre). 
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Figure E.2 : The aerial 
Infonnation Centre). 

1965 

1965 (TGIC Library, Tehran Geographi 
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1969 

Figure E.3: The aerial photo of Tajrish ill 1969 (TGIC Library Tehran Geographic 

Infonnation Centre). 
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1979 

Figure E.4: The aerial photo of Tajrish m 1979 (TGIC Library, Tehran Geographic 

Infonnation Centre). 
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2002 

Figure E.5: The aerial photo of Tajrish ill 2002 (TGIC Library, Tehran GeographIc 

Information Centre). 
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The Fractal Analysis Charts of 24 neighbourhoods in Tajrish 
from 1956 to 2002 
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Abstract. Chaos and fractal theory allow the conceptualization. evaluation and simulation of complex. irregular. live 

systems such as cities. This paper intends to highlight some current researches. which examined fractal applicatiom and 

their links with urban design and analysis. It proposes a new method for physical suneys of the building forms and the 
street patterns in the north of Tehran, Iran, based on fractal Geometry. It employs a fractal calculator (Fractal software) 

to facilitate the fractal dimension measurements of Tehran urban environment in order to identify a specific fradal 

fingerprint, in terms of 'Fractal Neighborhood Identification code' (FNID) at the street level. Then it applies thc 

method to selected streets within the case study for measuring the degree of homogeneity or heterogeneity that they 

display according to their range of building types. Finally it constructs a platform base for examining more accuratcl) 

urban forms, and evaluating quantitatively urban change and development. 

I. Introduction 

Towns and cities are complex systems. They are the product of different factors such as politics. economics. 

technology, fashion, culture, climate, etc. However, until relatively recently they have not generally been treated a~ 
complex systems. The planners, designers and builders of settlements treated them as simple predictable systems to be 

ordered and reduced to its components to facilitate modeling and manipulation. 

Batty ( 1994) wrote 'For generations, architects and planners have attempted to impose a simple. smooth. visual ordcr on 

cities in the belief that such order counters the disorder and dysfunction which cities reveal when they dc\elop 

'naturally'. Klinger and Salingaros (1999) wrote the greatest creation of humanity -their buildings. eitic~. artworb, or 

artifacts- are neither simple nor random, but have a high degree of organized complexity. Chaos and fraClalthcl'l! help 

us to conceptualize, evaluate and simulate complex, irregular systems like those exist within cities. 

The main proposition of this paper is that cities' gro\\1h implies a systematic order at each level of their hierarchy. In 

th .. . d h' h d t . h the organi/lltion of the..,t: haslc umb o er words, contamed wlthm the growth process are co es, w IC e ermlOe 0\\ . 

f· b . . ". ,I ·her" subsequenth rc ... ult a unique 
o ur an development mIght repeat thetr form and functIOn 10 many sea es '" '" -' . 

. . t t . luate quantitatively Cll\ pattern, 
geometnc pattern for each part of a city. The method proposes here. IS an attemp 0 e\ a '. 

b 
. . h' ,t .. f rrns to the numerical c,ldes 

y measunng mathematically their fractal dimensions and by transfemng t elr geomc TIC 0 . . 

extracted from existing fractal pattern of them. The term 'FNID', Fractal Neighborhood /delll/ficalion code. \\ III he 

d . b h' h th' aticall'-' one could measure thl' 
cfined in this paper, as a kind of fingerprint for each part of CIty, y w IC rna cm J . ., ... 

d . . . rhood I . I fT hran's ... treet ... In "n:t1on 2.1 and -,-
egree ot compleXIty that each part demonstrates at local nelghbo c\ e 0 e .. 

. . " . ' I' h th new theories ha' ,hlftcJ "ur 
a bnef defimtlon for fractal geometry and chaotic systems WIll exp am 0\\ esc 

conventional views towards more realistic understanding of city form and function. 
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Furthennore it explains the ability of this method to explore other city's physical features h I I . 
, " , , suc as p ans. e evaltom, 

skY,lmes ... and th~ pos~lble Imk between thel~ visual appearan~e and their fractal dimension by which it might be 
typified. Fractal dImension assessments of enV1fonment, also assIsts urban designers to test the' d' rod 

, . , , If eSlgn p UCb and 
evaluatmg the level ofhannony achieved by a set ofbuJldmg combination of different type within an urban realm. 

2. Theoretical Background: 

A number of authors such as Lynch (1961, 1981), Alexander (1987, 2000) have attempted to recognize the real world 
complexity of the cities. Lynch (1961) investigated the psychological complexity of the city in terms of how people 

navigate their way around a place, Alexander (1987) sought to discover. through the development of a "pattern 

language" combining urban elements, the quality without a name that makes a place special. Bovill (1996) haH~ 
developed a design method that attempts to deal with the complexity of a place in terms of its function. appearance and 

structure, Each of these approaches has the common characteristics of trying to deal \\ ith urban places as combination 
of elements e.g. buildings, spaces, natural features, meaning and symbols, 

More recently Authors Batty (1991, 1994, 1996, 1999), Bovill (1996), Jencks (1997) and Salingaros ( 1999. 2003) and 
Cooper (2000, 2003) recognizing the complex nature of the city. have suggested the emerging new sciences of Chao~ 

and Fractals, as means of dealing with complexity in planning and design, Many of these attempts are now 
concentrating on city simulations (e.g. recent work in UeL, London) and developing Cellular Automata tools: It is 

based on the concept that, city evolution at large scale is traceable by following the sequence of changes occur in small 
scale units (cells) within it (Batty & Xie, 1994). Therefore since the last two decades. there have been a number of 

attempts, connecting micro scales to the macros, however. some followed by the notion of finding a kind of n\.;A 

signature for cities (Webster, 1995). These together with Cooper's work on fractal analysis of Oxford streets directed 

my research towards exploring fractal dimensions within the urban realm. and specifYing a kind of fingerprint for each 
urban apace in tenns of 'FNID'. It provides an appropriate tool for controlling the large scale changes in urban growth 

by controlling the changes occur in small scale units at local neighborhood level. 

2.1. CHAOS THEORY 

Both chaos and fractals describe complex systems, chaos describing the processes of changes affecting a system while 

fractals illustrating the resultant patterns. Chaos might be defined as the unpredictable behavior of nonlincar, compIc.\ 

and dynamical systems, Grace (1991) wrote "chaos" is about the study of nonlinear dynamic systems and deab with 

irregular and unpredictable behavior rather than trying to reduce complex systems to linear cause and elkct 
relationships. In addition to "Unpredictability", Glick (1987) listed "Emergence". "Self organization" .. Adaptability' 

and "Irreducibility", as some of other characteristics of nonlinear chaotic systems, All these can arguably be obsen t:d 10 

the city. In another words, urban systems manifest the characteristics of nonlinear chaotic systems. they arc argued {t
l 

have a self organizing nature; they can emerge, organize and evolve, \\ ithout a preconceived master plan. yd acros~ 
both time and space, 

One the main characteristic of such a system is irreducibility, A non-linear system can not be reduced to Its component 
parts; in this sense the whole is more than the sum of its part. Jan Walleczek (2000) argued the (onct:pt that the 

" . I' . 1-' I 'ntluence and influenced bv the dynamical mteractlOns between dependence elements at a loca mIcroscopIC C\e I . . 
. " .' t rplay bet\\een mlCw Jnd 

emergent global structurc at the macroscopic level. Through the contmumg mteracttons 10 e " . . 
, , . b'l' ddt' '1· 'taincd In a \.:It\ It meam thai II I' macro proct!sses the emergent; self-organtzmg structure IS sta I Ize an ac IVI: ) maIO . -. . ' , 

, , . . th ' I' f th ·t· The posilton 01 thai hou'l tmposslble to take the plans of a smgle house and from them deduce e tota Ity 0 e CI ). . . .. . 
, . k' deCISIons about the h;allon. 

and Its subsequent neighbors will be subject to a range of many agents In rna 109 '. ..•. 
. I I . hbo hood \e\el IS an etlectl\ C \\ a .. to 

However. the way we controls the changes occur in small scale untts at oca nelg r '. . 
4 bel ' 'f s' general C\ 01\ 109 and changtng 

control the large scale urban changes, As Batty and Longley (199) leve CI Ie, In . . 
. . . . I bid ' many scaks and ttnll." accordmg to their local rules and conditions whIch mantlest more goa or er across . 

2.2. FRACTAL GEOMETRY 
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A mathematician, Benoit Mandelbrot, first suggested the term "fractal" in 1977, he mentioned that 'a fra tal i a shape 
made of parts similar to the whole in some way' (Feder, 1988 p 11). In another words the e ' If ' 'I ' 

• ' 1" I e - Iml ant) 0\ er 
deferent scales of a fractal o~Ject. Mandelbrot (1982) argued that many of irregular and fragmented pattern around 0'. 

in the nature could be descnbed by fractal geometry. It helps us to study those fonn that Euclid leave aside as being 
formless or morphologically amorphous. 

According to Barnsley (1993) classical geometry (Euclidian geometry) provides a first approximation to the trucrure of 
physical objects; this is the language :-e use to communicate the designs of technological product and, \eT) 
approximately, the forms of natural creations. Fractal geometry is an extension of classical geometT)', It can be used to 
make precise models of physical structures from ferns to galaxies. Fractal geometry is a new language. Once ou can 
speak it, you can describe the shape of a natural phenomenon. -

In the field of urban planning and design, the discovery of fractal geometry also engendered a shift berncen the old 
view - that sees cities as simple, ordered structured, expressible by smooth lines and shapes, which describe their overall 
morphology and the disposition of their elements - toward a view that cities are complex organisms, e olvmg and 
changing according to local rules and conditions, which manifest more global order across many scale and time , Batt} 
and Longley (1994) believe not only naturally growing cities but changes in fonns and functions of planned citie mer 
time, are in a way that make them both ideal candidates for application of fractal geometry, 

3. Fractal analysis of urban morpbology 

In city ecosystems, the pattern of pedestrian and traffic movement, neighborhood decline, renewal, con olidation and 
transition will be constrained or influenced by morphological elements. Edges, boundarie , regions. eoarsenc . , 
fragmentation, homogeneity or heterogeneity of neighborhood patterns are the most important feature in both 
Landscape and urban ecology. According to the recent research, the urban feature defined by its phy ieal element .... 
better represent city identity than the one defined by its underlying social elements, For example Web ter (1995) argued 
urban environmental categories will be defined by housing density better than population density, The rca on should be 

obvious; population density will vary to some degree between neighborhoods of the same housing density. 

Fractal analysis of urban morphological elements offers a base to classifY facial pattern recognition the arne ort f 
digital technology fingerprint. It provides urban analyst a way in order to uniquely identify a particular code for an 
urban fonn or pattern. It is similar to DNA code or a fingerprint for a forensic scientist who wants to identify it o\\ner. 
In the case of city, the configuration of shapes and structures will produce that morphological fingerprint. 

3.1. THE METHODOLOGY 

As illustrated in diagrams 1 and 2, the suggested method will substantially be able to approach the obJectl\e addre sed 
in this paper. 

ProPUtit>5 of &anal & rhaos OrOI'l' idrntifiration 

MOlFholo:;ral t'rmt'nu st'lruion 

Diagram J: Theoretical stage and case sllIdy preparation 

th 'bl Itnli. \\ Ith urban m rph )10 \ 
At the theoretical stage the properties of fractal and chaos theory and elr po I uremcnt nd c\ lu 111\ n h~ 
been reviewed. It identifies those elements of the city that lend them ehe. t th me 
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employing fractal analysis software. From the information collected from this part, three different buildtn et" re 
selected to be tested empirically at stage 11. ~ 

f r3rraJ dimension ml'asUff'nlent 

Spatial quantitatR'e anall'ru 

formula~ FNID as an wban s~afun> 

Spf'rif"in~ a uniquf' FNID for f'afh nei;hhourhood 

Diagram 2: Empirical stage and data analysis 

At empirical stage the quantitative data collected by calculating the fractal dimension of urban form mainl based on 
available air maps and street panoramic photos. Several streets ofTajrish, a district in the north of Tehran, \\-ere selected 
where the contradiction between traditional organic change and fast urban developments provide an appropriate ca e 
for comparison and further analysis. A morphological urban pattern surveyed, assessing fractal dimen ion r diOerenl 
urban spaces at local street level in order to specify a unique fractal signature (FNID) for each neighborhood unit. 
The image based morphological analysis offers a language for articulating above idea. a range of preci e mea urements 
was undertaken to record distinctive forms in order to parameterize those measures. lmage texture measure will pre ent 
fine discriminations of city features that are defined in terms of built or natural environmental elemenls. 

3.2. TEHRAN AS A CASE STUDY: 

The morphology of Tehran, the capital of Iran, is the product two different pattern of growth, on one hand a fa t and 
huge expansion of the former city towards its suburbs and on the other hand a gradual organic growth of the illage 
which were around the city in the past but they are now inside the city (Figure I). 

Figure i: the sketch shows Tehran expansion in 20
th 

century. 
A) City boundary in 1890 B) City boundary in 1940 

C) City boundary in 2002 

. . . I d and harm ny by nc\\ and m xkm 
The City of Tehran has experienced the destructIOn of Its past ISua or er . ~~, It'm ( I th 

.' I h . modem IdentIty Thc mvul:m pa l: 
developments during the last century that caused this CIty to ose t elr pr - . T . ' h 1 . tc;U 10 

new constructions is diametrically opposed to old patterns evol ed during gradual organtc pr e s. 31
n 

th d·, be both patterns f grO\\ th o e north of Tehran is a good case manifested the contra Icllon tween . 
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As illustrated in figure 2 and 3, a similar pattern originated from previous organic growth ob iously e ' ists in the urban 
fabric in Tajrish repeated at different scale and size. This similar unit could be considered as a cell generator, realm!.! 

the site morphological pattern. As shown in figure 3, this proportional structured pattern was constructed b . a el~ 
similar semi-square shape, repeated at different scale and size in this area. Figure 4 abstractly highlights the existen e of 
the underlying geometrical order within neighborhood units, demonstrating fractal characteristics of urban tructure In 

Tajrish. This preliminary evidence reveals the potentiality of chaos theory and fractal geometry application in urban 
spatial analysis. 

. ~ --,. ~ ... ' : ---.. I __ 
~ 

- " 

" --.. 
~ ';" 0-

~ 

~:.::~~ . 
0.( , 

.. ,...,."'-~ 

«;.~ -~ u_ 
~gure2 : Map of~ locate d in the north ofT ehran 

Figure 3: Similar pattern originated from organic urban growth exist 
at different scale and size of Tajrish urban structure. 

, . , , . 
• 1· ; 

,.~ --'----
. 'b . preliminary e\ Iden e Figure 4: Fractal pattern dlstn utlOn a a .' 

of Fractal characteristics of urban structure In Tajn h. 

4 U 
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3.3. FRACTAL CALCULATION 

There are several calculation methods for measuring the fractal dimension of the environment; all of them often foil \\ 
a simple logarithmic equation based on a power law relationship between the numbers of elements exi t in dI fferent 
scale of an object. 

( 1 )-1 D = log N X log S-
D: Fractal Dimension, N : Number of elements countable at specific scale, S: Respective Scale of an object 

A Fractal software employed here facilitates the calculation. The data presented in this paper i mainly ba ed on the 00\ 
counting method and Richardson walk method. These two Methods among other ways of fractal calculation ha\ e been 
fully explained by Mandelbrot (1982), Bovill (1996), Kaye (1889), Cooper (2000) ... 

Batty and Longley (1994) applied fractal analysis for measuring the level of complexity exist in the boundary f 
Cardiff and compare it with some other cities around the world. Table I contains some their result . 

Table I: Fractal dimension of some cities' boundary 

City Nalllc Y car hacwl DllIlCIlSioll 

Tokyo 1960 1.312 
New York 1960 1.710 

Paris 1981 1.66 

Cardiff 1981 1.586 

London 1962 1.774 

It was examined for the case of Tehran and the result has been summarized in Table 2. 

Table 2: Fractal dimension of Tehran boundary from 1820 to 1992 

Tehran 1820 1.322 

Tehran 1860 1.435 

Tehran 1900 1.495 

Tehran 1914 1.553 

Tehran 1939 1.412 

Tehran 1962 1.575 

Tehran 1970 1.625 

Tehran 1992 1.762 

. ks kyline den ity of built up area, the 
This method could be applied for other urban features such as, CIty networ , ' .. h h h ' II 

bits in combmatlOn \\ It I e ot ,rs \\ I 
degree of open space, Landmark distribution, etc. Anyone of these ur an e em en 

assist us to develop the fmgerprint idea. 

3.4. FRACTAL NEIGHBORHOOD IDENTIFICATION CODE (FNID) 
b . t' 1 have made an ancmpt to idl.'fltit) 

Since the new view observed cities as a live organism, some of recent ur an sClcn I Th > ugge · ~ method \(l 

a kind of DNA or textural signatures for urban neighborhoods (Web ler, 1 ?~)~ I. P::;glcaIIY t)plfil:d. OOt: 01 

develop the fingerprint idea in term of FNID by which every neighborh~ mIg d
l 

morpr budd,"o fragmentation t'l' 
be ddr ssed here t the egree 0 e the important morphological features that have en a e 

comparing built up areas to open space within urban structures. 

.' h to facilitate th fractal me 'Ufl:m nt 01 u 
Benoit software, a fractal calculator, was employed 10 thIS re eare d d· tTer nl all: and the It \\ 

. . fi t f the maps of the case ttl 10 I l: 
envIronments. The inputs are the BMP Image orma 0 f' I ' thmlc akulation \\ ill dl: '" I 

th · Then a sequence 0 ogan counts the number pixels or the elements out at Image. 

n 

4 1 
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fractal dimensions at different scale. Figure 5, is a plot the number of occupied pI'xel , " ,a repre entatl\ r built 
area and table 3 contams F(b), Fractal dImenSIOn by box counting method resulted from h ' I up , , eac time a ulall n. 

number of occupied box es 

100000 

1 10 ~oo 
(p:lxe 1 a) 

Figure 5: Number of occupied built up area in Tehran map 
calculated in box counting method 

Table3: Estimating the fractal dimension of Tehran by fixing the scale and varying the iz 
Box size 100 75 50 35 20 10 5 I 

(pixels) 

F(b) 1.484 1.592 1.701 1.769 1.791 1.8 12 1.693 1.652 

As shown in above table the F(b) is changed when the measurement employs smaller box un it (varying the iLe). The 

software calculates the average of these as the outcome which in this case would be 1.691 for whole Tehran. In the 
same way we are be able to measure FCb) for each district of Tehran at different scale. Figure 7 demonstrate the result 

when the scale is changed the scale). 

(A) 

(c) 
Figure 7: F(b) measured for Tehran at dlnercnt calc. _ , 

A) Whole Tehran = 1.691 B) hemiran. the north of Tehran = 1.~6-

4 .. 
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C) Tajrish = 1.630 D) one of neighborhoods in Tajrish == I 806 
The following code created by the sequence of fractal measurement might be 'd ed' . 

'ghbo h d ID ' consl er as a umqul.: mathl.!malil:al 
nel r 00 . 

A == 1.691 B = 1.562 C = 1.630 D = 1.806 
As the fractal dimensions at different scales vary between 1.00 and 2.00 therefore th d . I be -, e eClma num rs are defined a, 
FNID. 

The results for 12 neighborhoods within the case study are summarized in table 4. 

Table 4: FNID measured for 12 neighborhoods in Tajrish 
Nei hborhoods N 1 N2 N3 

FNID 691-562-630- 691-562-630- 691-562-630-
806 791 720 

Nei hborhoods N7 N8 N9 

FNID 691-562-643- 691-562-643- 691-562-630-
672 741 639 

N4 

691-562-630-
601 

NIO 

691-562-630-
803 

N5 N6 

691-562-630- 691-562-630-
582 757 

NIl N12 

691-562-630- 691-502-750-
598 760 

As it is obvious in table 4, FNID is contained 12 numbers in 4 sections, A-B-C-D. Respectively each part demonslrall.:~. 
City ID (A), District ID (B), Local ID (C) and Neighborhood ID (0). As shown in the tablc in most cases in TaJrish area 
9 numbers out of 12 are stable. FNID for N7, N8 and N9 show the change In their local 10, in another words thi, 
implies these urban units are not belongs to the same local area as the others. The similarities and the diflerenccs in 
FNID assist us to classify the neighborhoods in a city and draw a new district plan based on morphological urban 

patterns. 

The table also shows Neighborhood ID (D section), changes within a range of 582 to 806, this can be used a, a 
controlling tool, to constrain urban new developments within certain range of fractal dimensions. This will arguabl) 

provides an effective way to conserve urban qualities by more accurate method. 

4. Conclusion 

There is a growing number of evidence to support the application of these theories, However. the evidence. cxi,h It 1\ 

based on either large city wide scale, such as work by M. Batty and P. Longely or very detailed Ie\ I.! I ot mdl'ldual 
building design, such as work by Jencks and C. Bovill. The method suggested here, intends to fill the gap hy exanllnmg 

the application of the theories at local level of the city (neighborhood scale). 

Some outcomes of this method would be: . "ha 
I d .. , b fI rms and spaces in the light III I: os 
. The paper suggests a more appropriate method to analyze an cntlClze ur an 0 

theory and fractal geometry. " 
d 'f' b understandmg the pnxes' ,It 

~. The process of urban change at macro scale can be more relevant an sensl 1\ e ) " 

change occurs at micro scale (local level) ofa city. h "I 

3 I · h' b t fractal dimension and c ardct("fl\IIC' p 
. Fractal analysis of urban environment indicates a strong re atlOns Ip e ween 

urban pattern by which different urban areas can be distinguished and typified. I 
. . ' f th . h' hical structure, thl.: same; mtln: \ ISWl 

4. In some parts of the city, where the fractahty (fractal dImenSIOn) 0 elf lerarc " 

order and hannonic urban space would be expected. 

. . . ' "th'" unl 'rception of urban fom1' and their 
More research IS required to explore the poSSIble relatIOnshIp bet\\een e' IS pc. d" h" " .... r· luld ~ 

. f rb n patterns mtroduce m t ), pat~ II 

fmctal dimensions. Howevcr, the samc process of metal assessment 0 u a 
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applied for measuring other urban features such as, skylines, street vistas, street elevations. street edges, etc where a 
combination of all will introduce the FNID idea as a more effective urban spatial analysis tool. 
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