
Effect of Unmodelled Actuator Dynamics on Feedback Linearised

Systems and a Two Stage Feedback Linearisation Method

Mohamed Kara Mohamed and Alexander Lanzon

Abstract— This paper is concerned with the control design
of nonlinear systems using feedback linearisation. The paper
highlights the destabilisation effect of unmodelled actuator
dynamics when applying feedback linearisation. To overcome
this difficulty, a two stage feedback linearisation technique
is proposed to compensate for actuator dynamics and subse-
quently linearise nonlinear systems. A case study of a tri-rotor
UAV is used to showcase the benefits of the proposed method
in comparison with classical feedback linearisation. The paper
is written from a UAV application’s point of view, however, the
proposed procedure is still valid for any input-affine invertible
nonlinear system.

I. INTRODUCTION

One of the common control design techniques for non-

linear systems is to linearise the system by cancelling the

nonlinearity and then a linear control method can be used

to synthesize a controller for the linearised model [5].

Cancelling the nonlinear term via feedback is known as feed-

back linearisation, and it can be either state-input feedback

linearisation or input-output feedback linearisation. In this

paper, we consider input-output feedback linearisation.

To simplify the implementation of feedback linearisation,

several assumptions relating to the model of the nonlinear

system and its operating point are considered. One of these

assumptions, which is widely accepted in literature, is to

neglect actuators dynamics. For instance, actuators dynamics

are commonly neglected in Unmanned Aerial Vehicle (UAV)

applications when synthesizing a controller (see for example

[3], [2], [6] and the references therein). In these references,

it is assumed that the actuators are fast and their dynamics

can be safely neglected. In this work, we show that this

assumption is not always valid and that when it comes to

feedback linearisation, unmodeled actuators dynamics can

have a vital destabilisation effect.

The effect of actuators dynamics on feedback linearisation

has been considered by several research works, see for

example [12], [1] and there references therein. However,

the focus in these references is on how to recover the

stability of the system when actuators dynamics are not

available. In this work, we assume that actuators dynamics

can be modelled and a two stage feedback linearisation

method is then developed to handle actuators dynamics and

linearise the nonlinear system. Although [4] tackles a similar

problem, the work there is restricted to compensation of
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actuators dynamics only for a specific SISO system. No such

restrictions are made here.

The rest of the paper is organized as follows. In Section II,

the input-output feedback linearisation technique is briefly

reviewed. The undesirable effect of unmodelled actuators

dynamics on input-output feedback linearisation is discussed

in Section III. In Section IV, a two stage input-output feed-

back linearisation algorithm is proposed for a fully modelled

system that includes actuators dynamics. A case study of a

tri-rotor UAV is investigated in Section V and the summary

of the paper is presented in Section VI.

II. INPUT OUTPUT FEEDBACK LINEARIZATION

This section reviews the concept of input-output feedback

linearisation [9] used to transform a nonlinear system into a

linear one for a subsequent linear control design.

Consider a class of continuous multi-input multi-output

(MIMO) fully actuated nonlinear systems of order n and size

m×m given by:

ẋ = f (x)+GGG(x)u (1)

y = h(x) (2)

Satisfying well known conditions, the nonlinear system (1)

- (2) can be transformed into a linearised system of global

normal form defined in a domain D⊂ R
n and given by:

ζ̇ = AAAcζ +BBBcϑ (3)

y =CCCcζ (4)

where Ac, Bc and Cc are block diagonal matrices of the

Brunovsky canonical form. ζ =
[

ζ1 ζ2 · · · ζm

]T
is de-

fined by a new transformation mapping ζ = T (x) such that

each element ζi is a vector of the output yi and its derivatives

up to y
(ri−1)
i where ri is the relative degree of the output yi.

The feedback linearisation law from system (1) - (2) to the

linearised system (3) - (4) is given by [9]:

u(x,ϑ) = α(x)+βββ (x)−1ϑ , (5)

The matrix βββ (x) is called the decoupling matrix and it is

assumed that this matrix is invertible in the domain D. The

new artificial input vector is defined as:

ϑ =
[

y
(r1)
1 y

(r2)
2 · · · y

(rm)
m

]T

.



III. UNMODELLED ACTUATORS DYNAMICS

When applying feedback linearisation, actuators dynamics

are usually neglected based on the assumption that actuators

are fast enough to apply the required controller action

without any considerable delay. In this section, we analyse

the effect of unmodeled actuators dynamics on input-output

feedback linearisation.

Consider a nonlinear system represented by (1) - (2) with

actuators dynamics of order na represented by:

ẋa = AAAaxa +BBBaua (6)

ya =CCCaxa (7)

We assume that the actuators system is asymptotically stable

for all values xa(t) ∈ D. To impose actuators dynamics on

the linearised system, we assume that the mapping ζ = T (x)
is invertible. Rearranging the artificial control input ϑ to be

in terms of the physical input u, the linearised system can

be rewritten in terms of the physical input as:

ζ̇ = AAAcζ +BBBcβββ (T−1(ζ ))(u−α(T−1(ζ ))) (8)

y =CCCcζ (9)

The physical input to the system is now the output of

the actuators u = ya = CCCaxa and the feedback linearisation

law is feeding to the actuators system ua = α(T−1(ζ )) +
βββ−1(T−1(ζ ))ϑ and therefore the system from ϑ to y per-

turbed by actuators dynamics can be represented by:

ζ̇ = AAAcζ +BBBcβββ (T−1(ζ ))CCCaxa −BBBcβββ (T−1(ζ ))α(T−1(ζ )) (10)

ẋa = AAAaxa +BBBaα(T−1(ζ ))+BBBaβββ−1(T−1(ζ ))ϑ (11)

y =CCCcζ (12)

The perturbed system in (10) - (12) is nonlinear and different

from the linearised system (1) - (2). The order of this

system from ϑ to y is n+na. There is no guarantee that the

synthesized controller for the linearised system in (3) - (4)

will be able to stabilize the nonlinear system of higher order

in (10) - (11). Moreover, if the controller manages to stabi-

lize the nonlinear system, the performance will deteriorate.

Therefore, actuators dynamics cannot be always neglected

safely when using feedback linearisation as there is risk of

instability.

IV. TWO STAGE FEEDBACK LINEARISATION

In this section, a two stage feedback linearisation tech-

nique is proposed to compensate for actuators dynamics and

retain the validity of feedback linearisation of the nonlinear

system. In this two stage method, the first stage handles actu-

ators dynamics using inner loop linearisation/compensation

and the second stage designs the outer loop by linearising

the main nonlinear system. Figure 1 represents a block

diagram of the proposed two stage feedback linearisation for

nonlinear systems with actuators dynamics.

Consider a fully actuated nonlinear MIMO system given

by (1) - (2) with actuators dynamics given by a nonlinear

MIMO model of similar structure. The complete nonlinear
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Fig. 1. Block diagram of the proposed two stage feedback linearisation.

system including actuators dynamics from ua to y can be

represented by:

ẋ = f (x)+GGG(x)ha(xa) (13)

ẋa = fa(xa)+GGGa(xa)ua (14)

y = h(x). (15)

With the assumption that the actuators model satisfies the

feedback linearisation conditions, the nonlinear actuators

system can be linearised using input-output feedback lin-

earisation to get:

ζ̇a = AAAaζa +BBBaϑa (16)

ya =CCCaζa, (17)

where AAAa, BBBa, CCCa and ϑa are defined with respect to

the actuators system. ζa =
[

ζa1
ζa2

· · · ζam

]

is a new

actuators state vector defined by the mapping ζa = Ta(xa)
such that each element ζai

is a vector of the output yai
and its

derivatives up to y
(rai

−1)

i where rai
is the relative degree of the

output yai
. System (16) - (17) is a MIMO decoupled system

in which each channel can be handled individually. For the

i-th SISO channel of the linearised actuators system, let

ξi = ζai
with ξi =

[

ξi1 ξi2 · · · ξirai

]T

, then the dynamics

of the i-th linearised channel can be written as:

ξ̇i1 = ξi2 (18)

ξ̇i2 = ξi3 (19)

... (20)

ξ̇irai
= ϑai

(21)

yai
= ξi1 . (22)

The desire is to make the linearised actuators system follow a

trajectory of reference signal input given by u. This reference

input represents the feedback linearisation control law of

the outer loop that will be discussed later. In this paper,

backstepping control technique is used to achieve the input

tracking and build the inner loop control law. Define the error

system for the i-th actuators channel using the strict feedback



structure as following:

ei1 = ξi1 −ui (23)

ei2 = ξi2 − zi1 − u̇i (24)

... (25)

eirai
= ξirai

− zi(rai
−1)

−u
(rai

−1)

i , (26)

where zik , 1 ≤ k ≤ rai
is a backstepping control law that is

used to achieve stability and convergence of the overall error

system [10]. Using Lyapunov functions, zik can be designed

as [10]:

zik =−eik−1
− cik eik + żik−1

(27)

The final control law for the i-th channel can be represented

as:

ϑai
= zirai

+u
(rai

)

i , (28)

The resulting error system from (23) - (26) is given as:










ėi1

ėi2
...

ėirai











=











−ci1 1 0 · · · 0

−1 −ci2 1 · · · 0

0 −1
. . .

. . .
...

0 0 · · · −1 −cirai





















ei1

ėi2
...

eirai











(29)

Using Lyapunov theory, it can be easily proved that the above

system in (29) is globally uniformly asymptotically stable at

the origin, which means that the global asymptotic tracking

is achieved. The transient performance of the error system

can be controlled by the design parameters cik . In general,

increasing cik will improve the transient performance of the

error system [10]. This backstepping control design needs to

be repeated for all actuators channels.

Upon completing the control design of the inner loop,

one can put now ya ≈ u assuming a high value of cik to

achieve high bandwidth. Thereafter, the second stage can be

implemented, which is input-output feedback linearisation of

the main nonlinear system only bypassing the inner loop.

One point that might arise here is why the two stage

feedback linearisation is needed given that the actuators

dynamics are available and the whole system including actua-

tors can be linearised in one step using the standard feedback

linearisation procedure? The proposed two stage algorithm

simplifies the implementation of feedback linearisation and

is less conservative for the feedback linearisation law. For

instance, consider a full nonlinear system including actuators

dynamics as represented by (13) - (15). This system can

be linearised as one system using standard feedback lin-

earisation. However, this requires differentiation along both

vector states xa and x, which means that the vector functions

f (·), fa(·) and the column functions of G(·) and Ga(·) need

to be smooth and differentiable up to the n + na degree.

This condition is more conservative and is not required

in the two stage feedback linearisation as the actuators

system and the plant are handled separately. A comparison

study between the proposed two stage feedback linearisation

and the standard linearisation on the whole system will be

conducted when considering the example of the tri-rotor

UAV in next section.

Fig. 2. The tri-rotor UAV system.

V. CASE STUDY: DESIGN AND CONTROL OF A

TRI-ROTOR UAV

This section is dedicated to the control design of a tri-

rotor UAV as a case study of using the proposed two stage

feedback linearisation to linearise a nonlinear system. The

vehicle under consideration was proposed originally in [8]

and is shown in Figure 2. The vehicle’s dynamics expressed

in the body coordinate system can be described by [8]:

υ̇ = gHg −SSS(ω)υ +
k f

Mtot

HHH f ρ (30)

ω̇ =−(III)−1SSS(ω)IIIω +(III)−1(k f HHHt − ktHHH f )ρ (31)

η̇ = ΨΨΨω (32)

λ̇ = RRRe
bυ (33)

Full definition of the notation and derivation of the model

can be accessed in [7]. The output of the system is defined

as the position and attitude of the vehicle, i.e., y =
[

η λ
]T

.

In [8], an H∞ controller was designed to stabilise the

vehicle where input-output feedback linearisation is used to

linearised the system. Actuators dynamics were neglected

with the assumption that actuators are fast enough to apply

the control action without any considerable delay. In this

paper, this assumption is analysed and challenged, and then

feedback linearisation for the full model that includes actu-

ators dynamics is implemented. For convenience and com-

parative purposes, the controller designed in [8] is presented

here again.

The case study includes 4 scenarios depending on the

level of the UAV model and the implemented feedback

linearisation as following:

Case 1: The system model does not include actuators dy-

namics, which is a replica of the case considered originally

in [8].

Case 2: Actuators dynamics are included in the system model

but not accounted for by the controller.

Case 3: The proposed two stage feedback linearisation is

invoked to linearise the full system, i.e., including actuators

dynamics.

Case 4: Classical feedback linearisation technique is used to

linearise the full system.



Cases 1 and 2 aim to demonstrate the undesirable effect

of unmodelled actuators dynamics on feedback linearisation,

while Cases 3 and 4 present a comparative study between the

proposed two stage feedback linearisation and the classical

feedback linearisation on the whole system. The performance

of the controller in all cases is simulated using Matlab

Simulink software. All simulations are considered for a

scenario of horizontal hovering at height of 5 m, i.e., the

reference input is (0,0,0) deg for the attitude and (0,0,5)
m for the position in the earth frame, and the vehicle was at

a non-zero initial position and attitude.

1) Case 1: Control Synthesis without Actuators Dynam-

ics: As mentioned earlier, this case represents the controller

synthesised in [8] where no actuators dynamics are consid-

ered. In this case, the vector ρ in (30) is considered as the the

input vector of the system, i.e., u = ρ . The linearised plant

is a double integrator representing single degree of freedom

for translational and rotational motion and the feedback

linearisation law is derived as:

u = βββ−1

(

ϑ −

[(

Ψ̇ΨΨ−ΨΨΨIII−1SSS(ω)III
)

ω
gRRRe

bHg

])

. (34)

where ϑ by y(2) = ϑ and the matrix βββ is defined as:

βββ =

[

ΨΨΨIII−1
(

k f Ht − ktHHH f

)

k f

Mtot
RRRe

bHHH f

]

. (35)

It has been shown that det[βββ (.)] �= 0 and the inverse βββ (.)−1

always exists for all states values of the system. Using the

synthesised H∞ LSDP controller in [8], the vehicle’s position

(xv,yv,zv) and attitude (pitch φv, roll θv , yaw ψv) related to

the earth coordinate system and the control efforts in terms

of the BLDC motors speeds ωmi
and the tilting angles of

the servo motors αsi
are shown in Figures 3(a) and 3(b)

respectively.

2) Case 2: Analysis of The Effect of Unmodeled Actuators

Dynamics: In the previous case, actuators dynamics were

neglected assuming that actuators are fast and their dynamics

can be neglected. In this case, we challenge this assumption

by investigating the effects of unmodeled actuators dynamics

on the stability of the system.

The tri-rotor UAV has two types of actuators, BLDC

motors and digital Servos. Neglecting the inductance effect,

the dynamic model of the BLDC motors can be represented

by a first order system [11]. Similarly, the servos combined

with their drive circuits can be represented by first order

systems using the supplied specifications of the servos step

responses. Assuming identical BLDC motors and identical

servo motors, and in state space form, the dynamics of the

six actuators (three BLDC motors and three servo motors)

can be written as:

ẋa = AAAaxa +BBBaua (36)

ya = xa (37)

where AAAa and BBBa are diagonal matrices with suitable dimen-

sion. ya is a vector of the rotational speeds of the BLDC
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Fig. 3. Case1: Control design for system without actuators dynamics [8].

motors and angles of the servo motors. ua is the driving

voltages of the BDLC motors and the servo motors.

We now include the actuators dynamics in the simulation

using the same controller considered in Case 1 to test the

stability of the system. The effect of the unmodelled actuators

dynamics on the performance of the UAV is reflected in

Figure 4(a) with actuators effort shown in Figure 4(b). These

figures clearly show that unmodelled actuators dynamics

destabilize the UAV system. This observation is consistent

with the result derived before in Section III.

3) Case 3: Two Stage Feedback Linearisation Technique:

In this case, we invoke the two stage feedback linearisation

technique developed in Section IV to linearise the system and

then design an H∞ controller. As the actuators system is a

linear decoupled system, there is no need for a linearisation

or decoupling process and the backstepping technique can

be applied directly. The error system is defined as:

e = ya − yd , (38)

where yd = u and u is the feedback linearisation law of the

outer loop (to be designed later). This means:

ė = ẏa − ẏd (39)

= AAAaxa +BBBaua − ẏd (40)

We nominate the Lyapunov function V = 1
2
e2, whose deriva-

tive is V̇ = e(AAAaxa+BBBaua− ẏd). To achieve global asymptotic
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Fig. 4. Case2: The undesirable destabilizing effect of unmodelled actuators
dynamics.

stability at the origin, we design the control law, following

Eq. (28), as:

ua = BBB−1
a [ẏd −AAAaxa − ccce] (41)

= BBB−1
a [u̇−AAAaxa − ccc(xa −u)] (42)

where ccc is a diagonal design matrix. To ensure high band-

width and quick convergence of ya to yd , we choose ccc with

large elements. Typically, cii > 100, i = 1,2 · · · ,6, where cii

are the diagonal elements of the matrix ccc, are sufficient.

We now move to the second stage where we linearise

the UAV system without the inner loop. This stage includes

the linearisation of the UAV system as described in (30) -

(33). The feedback linearisation law is given in (34) and the

resulting linearised system is a double integrator.

To demonstrate the system performance when using the

two stage feedback linearisation, we implement the same

controllers designed before in Case 1. In Figures 5(a) and

5(b) respectively, the system performance and the actuators

efforts are depicted. It can be noted that Figure 5 is very

similar to Figure 3 where actuators dynamics were not

included. This is due to the inner stage of compensating and

controlling actuators dynamics.

4) Case 4: Complete Model Classical Feedback Lineari-

sation: For comparative study, classical feedback linearisa-

tion of the full system including actuators dynamics is im-

plemented in this case. The study aims to clarify the benefits
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Fig. 5. Case3: Control design for the full system using the two stage
feedback linearisation associated with H∞ LSDP.

of the proposed two stage feedback linearisation technique.

The complete model of the tri-rotor UAV including actuators

dynamics is:

υ̇ = gHg −SSS(ω)υ +
k f

Mtot

HHH f ρ (43)

ω̇ =−III−1SSS(ω)IIIω + III−1(k f HHHt − ktHHH f )ρ (44)

η̇ = ΨΨΨω (45)

λ̇ = RRRe
bυ (46)

ẋa = AAAaxa +BBBaua (47)

ya = xa. (48)

The input to the system is ua and implementing input-

output feedback linearisation gives the following feedback

linearisation law:

ua = βββ−1
f

(

ϑ f −CCC111ρ −C2

)

, (49)

where

CCC111 =

[

(

2Ψ̇ΨΨIII−1 −ΨΨΨIII−1SSS(ω)+ΨΨΨIII−1SSS(IIIω)III−1
)(

k f HHHt − ktHHH f

)

k f

Mtot
RRRe

bSSS(ω)HHH f

]

,

(50)

C2 =

[
(

Ψ̈ΨΨ−2Ψ̇ΨΨIII−1SSS(ω)III −ΨΨΨIII−1SSS(IIIω)III−1SSS(ω)III
)

ω
gRRRe

bSSS(ω)Hg

]

+

[
(

ΨΨΨIII−1SSS(ω)SSS(ω)III
)

ω
gRRRe

bHHHdgΨΨΨω

]

+

[

ΨΨΨIII−1
(

k f HHHt − ktHHH f

)

k f

Mtot
RRRe

bHHH f

]

NNNAAAaxa,

(51)



and

NNN =

[

diag(2ωmi
sinαsi

) diag(ω2
mi

cosαsi
)

diag(2ωmi
cosαsi

) diag(−ω2
mi

sinαsi
)

]

6×6

, i = 1,2,3

(52)

HHHdg =





cos(θv) 0 0
sin(θv)sin(θv) −cos(φv)cos(θv) 0
cos(θv)sin(θv) sin(φv)cos(θv) 0



 . (53)

The decoupling matrix is defined as:

βββ f =

[

ΨΨΨIII−1
(

k f HHHt − ktHHH f

)

k f

Mtot
RRRe

bHHH f

]

NNNBBBa. (54)

and its determinant is det[βββ f (.)] =−kdω3
m1

ω3
m2

ω3
m3
/cos(θv)

where kd is a positive constant related to the specifications

of the vehicle. This means that βββ f (.) is invertible and the

feedback linearisation law exists as long as the BLDC motors

are operating and the cos(θv) �= 0 . Therefore, the motors

should be switched on and operate at low speeds before the

controller takes an action to avoid any mathematical error

during the initial start of the vehicle. The new control input

ϑ f is defined as ϑ f = y(3) and the linearised system is a

chain of triple integrators with no internal dynamics. The

H∞ LSDP is now invoked to synthesize a controller for

the full linearised system using the standard weight design

specification of high gain at low frequency and low gain at

high frequency in addition to reasonable bandwidth.

Performance of the UAV system and the actuators efforts

of this case are shown in Figures 6(a) and 6(b) respectively.

Comparing the decoupling matrices and the feedback

linearisation law in both cases, Case 3 (as in (34)) and

Case 4 (as in (49)), highlights the strengths of the proposed

two stage feedback linearisation technique. The feedback

linearisation law resulting from the proposed method is

exists for all values of the system states due to the fact

that the decoupling matrix βββ in (35) is always nonsingular.

In contrary, the decoupling matrix βββ f in (54) is singular

when any of BLDC motor has zero speed or when the

roll angle θv of the vehicle is close to π/2. This means

that the controller of the two stage feedback linearisation

can work for all positions and attitudes of the vehicle and

all speeds and angles of the actuators while the feedback

linearisation law in Case 4 does not exist for all state values,

i.e. when the BLDC motors are not operating singularity

exist, and the controller cannot start from static. In terms of

performance and actuators efforts, the reader can notice also

that the system reaches the steady state value faster when

using the two stage feedback linearisation, and this is due to

the compensation and control of actuators dynamics in the

inner loop.

VI. SUMMARY

This paper shows the vital importance of actuators dy-

namics for the control design of nonlinear systems when

using dynamic inversion. To implement input-output feed-

back linearisation while considering actuators dynamics, a

two stage feedback linearisation method is developed. The

proposed method simplifies the implementation of feedback

linearisation when actuators dynamics are considered.
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(a) The UAV position and attitude.
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(b) The actuators performance.

Fig. 6. Case4: Control design for the full system using classical feedback
linearisation associated with H∞ LSDP.
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