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ABSTRACT 

This paper reports on a practical process that 

evaluates retrofit technology for zero carbon 

performance where calibration outcome is used to 

quantify uncertainty in building performance 

prediction before and after retrofit. 

This process is performed in two phases. The first 

phase is to develop and calibrate the model before 

retrofitting. This model is used to design the 

parameters for retrofit. Moreover, it identifies the 

most sensitive parameters, and whether or not they 

are physically observable. In the second phase, we 

update the model to include all retrofit improvements 

done to the property and perform further calibration 

since the model can incorporate further uncertainties 

caused by retrofit improvements. This allows us to 

understand if the calibrated model generated before 

retrofit still applies after retrofit. This paper seeks to 

discuss the development of the first phase of the 

process. The buildings under analysis are semi-

detached houses belonging to Birmingham City 

Council in the UK. 

Detailed monitored data, such as internal and 

external air temperature, solar radiation, gas and 

electricity consumption are used to calibrate the 

model before and after the retrofit. For calibration, 

we use K Nearest Neighbour (KNN) to conduct 

parameter sensitivity analysis with the aim to fine 

tune the model and establish one-to-ne relationship 

between the simulated and actual building 

performance. 

A case  study is  presented  where  the  annual  

electricity and gas consumption   predicted   by   

jEPlus+EA (uses EnergyPlus as core engine) was 

within 1% of the actual energy consumption of the 

buildings. This was achieved after three iterations 

over the base case model. 

INTRODUCTION 

In this study, Retrofit improvements are carried out 

by installing a TCosy envelope developed by our 

industrial partner in the retrofit project Beattie 

Passive, including windows and doors, integrated 

mechanical ventilation and heat recovery system, all 

to Passivhaus standard. TCosy provides deep retrofit 

frame solution creating a void from foundations to 

roof; encapsulating the existing roof and external 

brickwork (Beattie Passive, 2016). The void is 

subsequently injected with insulation to give a highly 

efficient building envelope with no thermal bridges, 

and it greatly enhances the U-value of the walls and 

roof. 

Until now, TCosy system developed by Beattie 

Passive has been based on an on-site ‘stick 

construction’ delivered over a period of 8+ weeks. 

The aim of this study is to facilitate transformation of 

the retrofit method from the on-site to off-site 

manufacturing. The off-site manufacturing will 

involve the manufacture and assembly of the panels, 

integrated MVHR system within the panels including 

couplings and dampeners. Passivhaus certified 

windows would also be fitted as integral part of the 

envelope. To design the retrofit using TCosy system, 

various parameter values need to be identified to 

allow the highest possible performance in terms of 

energy consumption and thermal comfort. These 

parameters include envelope depth and insulation 

type. Hence, dynamic simulation model is developed, 

using the drawings and specifications obtained from 

a detailed house survey, to be subsequently used for 

design of the retrofit. 

Whole building energy simulation tools are 

becoming an integral part of design and optimisation 

of buildings. Building simulation can compare 

various energy conservation measures, in the form of 

theoretical extensions or refinements to the input 

model, to reduce the consumption of energy in a 

building, as well as assessing various performance 

optimisation measures during operational stage.  

However, actual building performance varies from 

predicted building performance calculated via 

building simulation model. Disagreement between 

simulated and monitored energy consumption is a 

common issue in building simulation, and is known 

as a performance gap. Hence, model calibration is 

needed to close the gap between the model and actual 

building performance. 

Related work 

Despite the wide use of calibration, no universal and 

consensus calibration guidelines exist yet. According 

to (Monetti et al., 2015) Mean Bias Error (MBE) and 

the Coefficient of Variation of the Root Mean Square 

Error (Cv(RMSE)) are used for validating a 



calibrated model by measuring the goodness-of-fit of 

the building energy model (ASHRAE, 2002). The 

authors of (Fabrizio et al., 2015) have reviewed a 

wide range of calibration methods, the study 

concluded that most applications still use trial-error 

approaches. Even though new applications of 

calibration are being performed, trial-error methods 

remain the most frequently employed. These are 

semi-manual approaches to model calibration, and 

they generally rely on manual pragmatic user 

intervention to ‘fine-tune’ individual parameters to 

achieve a calibrated solution. In order to improve the 

reproducibility, all previous calibrated models are 

stored in version control repository as supporting  

evidence to understand the assumptions made. 

However, trial-error methods can be time consuming, 

and require  detailed information about the existing 

building , which may not be available. Furthermore, 

entire calibration process  should be automated to 

ensure efficiency and consistency (Tahmasebi, 2012). 

However, automated approaches employ analytical 

tools or techniques to assist in the calibration process, 

while employing mathematical and statistical 

techniques to reach their goal. For example,  Monetti 

et al, (2015), performed calibration using EnergyPlus 

and GenOpt optimisation function to optimise 

influencing parameters and improve the 

correspondence to the measured values. The 

optimisation process terminated when a model with 

minimum performance gap was found.  All solutions 

resulted from the calibration process were post 

processed for evaluating the model accuracy, where 

the MBE and the Cv(RMSE) are used for this 

purpose. Further optimisation runs were performed 

while varying the model parameters at each run to 

find better results. However, Monetti et al (2015) do 

not fully explain the mechanism for varying the 

parameter values during calibration. 

Another calibration approach is based on the NSGA-

II algorithm Basurra et al. (2015)  and Jankovic and 

Basurra (2016). In a typical optimisation analysis, the 

usual aim is to search for the optimum performance 

points. However, when using NSGA-II for 

calibration, the aim is to locate the performance 

points of the simulation model that are the closest to 

the actual performance. These performance points are 

then used to find out the corresponding model 

parameters that result in the smallest performance 

gap. NSGA-II has a built in crowding distance 

function to estimate density of dominant solutions 

around the optimal solutions.  

Calibrating a model can be a complex task as the user 

has to decide which of the inputs must be changed in 

order to reduce the gap between measurements and 

predictions. According to Clarke (1993), three 

aspects have been identified to this issue. First, the 

input parameters that may be in error must be 

selected, or a deficiency in the simulation model 

should be removed.  Secondly, the process for 

adjusting the model parameters to minimise the 

performance gap should be automated. Finally, the 

expertise of the user is a significant factor in both 

cases. 

This issue has been addressed in this paper by using 

iterative and automatic calculation of parameter 

inputs for fine-tuning between predicted and actual 

building performance. We use KNN algorithm and 

density avoidance technique to determine appropriate 

values for the parameter set in order to minimise 

residuals. Parameter tuning is performed using 

sensitivity analysis for the following advantages 

described by Pannell (1997); 1- increase 

understanding of the relationship between input and 

output variables; 2-  model simplification – by fixing 

the inputs that have no effect on the output; 3- 

finding regions in the space of input factors for which 

the model output is either maximum or minimum or 

meets some optimum criterion. Another important 

objective of this paper is to present a simplified 

methodology to be used by professionals as well as 

by researchers, for the calibration of dynamic 

building energy models. 

METHODOLOGY 

𝑘-nearest neighbours’ algorithm (KNN) have been 

used in a wide range of research areas such as 

Computer vision, Data mining and Pattern 

recognition. KNN is a simple approach to find the 

most 𝑘  of the nearest neighbours of some instance in 

a dataset.   

KNN is non-parametric. This means that KNN works 

without presumption of the primary data distribution. 

Thus, the simulation requires no post-training on the 

dataset. This is useful for calibration in building 

simulation as it is widely accepted that predicted 

energy consumption differ from metered energy 

consumption. There are various reasons for this 

deviation in performance, for example, the effect of 

thermal bridging, degradation of building materials, 

airtightness and occupancy behaviour.  In this study, 

we use the method proposed by Basurra et al. (2015), 

which uses KNN with density avoidance method for 

model calibration. However, we perform sensitivity 

analysis with multiple iterations of calibration for 

model simplification, and to achieve minimal 

performance gap.    

KNN is used for classification by locating the nearest 

neighbour in instance space and labelling the 

unknown instance with the same class label as that of 

the located known neighbour. A popular approach for 

classification process in KNN is to use nearest 

neighbours by calculating inverse distance and 

majority voting. This allows neighbours at K > 1 to 

decide the class labelling. One way to implement this 

is to use the Euclidean function, which calculates the 

distance between two points in the solution space. 

That is given 𝑥 = (𝑥1 , … , 𝑥𝑛 )  and  𝑦 = (𝑦1 , … , 𝑦𝑛 ), 

the distance is calculated as 

𝑑𝐸(𝑥, 𝑦) = √∑ (𝑥𝑛 − 𝑦𝑛)2𝑁
𝑛=1 . (1) 

  



The algorithm function 

 𝑘 is the number of nearest neighbours in the solution 

space 𝑆: = (𝑝1 , . . . , 𝑝𝑛) where 𝑝𝑛 is the solution 

sample in the form 𝑝1 =  (𝑥𝑖 , 𝑐𝑖), where  𝑥𝑖 solution 

entry with all parameter values of the point 𝑝𝑖 . 𝑐𝑖 is 

the class that 𝑝𝑖  belongs to (see Figure 1). 
 Start: 

 For each   𝒑′ = (𝒙′ , 𝒄′ )  

 Calculate the distanced 

𝒅(𝒙′, 𝒙𝒊) between 𝒑′ and all 𝒑𝒊 belonging to 𝑺 

 Re-organise all 𝒑𝒊 in accordance to their 

distance  

 Select the first 𝒌 points from the sorted list, 

those are the 𝒌 closest training samples to 𝒑′ 

 Allocate a class to 𝒑′ based on majority 

vote: 𝒄′ = 𝒂𝒓𝒈𝒎𝒂𝒙𝒚∑(𝒙𝒊, 𝒄𝒊) belonging to 

𝑺,  𝑰(𝒚 = 𝒄𝒊). For  𝒑𝒊, where 𝒊 1,2, .. number 

of pints in 𝒄𝒊 

 End:  

 
Figure 1: KNN algorithm steps 

The selection of 𝑘 is critical. This is because a small 

value of 𝑘  means that the results will be increasingly 

influenced by noise. However, a large value of 𝑘 can 

make it computationally expensive, but also defeats 

the concept behind the KNN that solution ‘points’ 

that are near are likely to have similar 

densities/classes. One simple approach suggested by 

Richard et al. (2000) is to set 𝑘  as 𝑘 = √𝑛  where 𝑛 

is the total number of points in the solution space.  

For the purpose of calibration of building models, 

KNN is used to identify neighbour solutions scattered 

around a reference point, hence covering all regions 

in the solution space. This allows identifying all 

possible parameter values responsible for generating 

close by solutions to the reference point. However, if 

the reference point is located nearby a highly densely 

populated area of solutions, the KNN will blindly 

select all those solutions even if some/all contain the 

same parameter values, hence, density estimation 

techniques are used to overcome this challenge. For 

example, Parzen-window classification (Richard et 

al, 2000)  is a technique for nonparametric density 

estimation. It estimates a probability density function 

p(x) for a specific point p(x) from a sample p(xn) that 

doesn’t require any knowledge or assumption about 

the underlying distribution. To estimate density with 

Parzen-window at a point x, a circle is placed at the 

centre of x and keep increasing its size until 

𝑘  neighbours are captured. The density estimation 

uses the following formulae: 

𝑝(𝑥) =  
𝑘/𝑛

𝑎
 (2) 

In the formula above, n is the total  solutions, and a is 

the area of the circle. The numerator is constant and 

the density is influenced by its value. Unlike KNN 

which selects the k nearest neighbours and labelling 

them with the weighted majority of its neighbours’ 

votes, Parzen-window assign the solutions weight by 

means of the density function.  

We use similar technique to density estimation in 

KNN and Parzen-window, but instead of using 

density to classify neighbours, we use density 

calculation to select a fewer neighbours located in 

high-density areas in the solution space. Hence, using 

the KNN with the aid of density avoidance the 

algorithm will include other nearby solutions 

positioned in sparse areas, which may include 

different parameter values that could match closely 

with the actual building behaviour. 

Density avoidance for KNN 

In Basurra et al., (2015) we proposed a density 

avoidance algorithm, which has been tested in 

various scenarios for the purpose of model 

calibration. Our proposed density avoidance 

algorithm is briefly explained below.  

Starting from a close by solution from the reference 

point, each solution will form a circular region with a 

constant radius R to capture all surrounding nodes in 

the solution space. For example, let us consider a 

solution X of N solutions in a dataset. X will perform 

the density estimation and calculate the density using 

Equation (2). 

If density is above a threshold, the node closest to X 

(not the reference point), will be tagged as high-

density node (HD). The whole process repeats again, 

and X becomes the second closest node to the 

reference point. In subsequent iterations, HD nodes 

are not selected to perform the density calculation, 

and will not be considered in the density check if 

they fall within the range within a circle area of 

another valid low-density node. Following these 

rules, all nodes in the solution space will be tagged as 

either HD or none.  

Then we implement the KNN algorithm that selects 

the closest 𝑘  neighbours, but also selects only those 

that are not HD solutions. This was successfully 

implemented, and algorithm pseudocode describing 

the steps is shown in Figure 2. 

 
Figure 2: Pseudocode describing the steps of the density 

avoidance algorithm. 

 PROGRAM DensityExclusionAlgorithm: 

 Using KNN, CALCULATE distances to all 𝑁 solutions from 

Reference Point. 

 Store the 𝑵 neighbours with their distances in a list 𝑳 

 Sort list 𝑳 in a ascendant order putting least distant solutions at 

the top of 𝑳. 

 LOOP through 𝑳 starting from the top, and select 𝑿 solution 

 𝑿 Identify nearby neighbours from  𝑁   using a predefined radius 

𝑹, and store them in a new list 𝑳2. 

 𝑿 calculates density 𝑳2 

 If (𝐷𝑒𝑛𝑠𝑖𝑡𝑦 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 && 𝑁 ≠ 𝐻𝐷) 

 THEN from 𝑳2, set “HD” to Neighbour closest to X 

 ELSE DO NOTHING; 

 ENDLOOP 

 CALCULATE neighbours of Reference Point with K number of 

neighbours. 

 End  



pre-calibration procedureTo test this new approach, 

Birmingham City Council provided two semi-

detached properties for the field trials, and these two 

properties will be referred as A and B. Detailed 

survey of the properties was carried out to establish 

construction types and dimensions, and to create 

CAD drawings. 3D laser scanning was carried out on 

the external surface of the properties to facilitate off-

site measurements and identify any obstacles that 

might affect retrofit such as drainpipes, security 

lights etc. (See Figure 3). 

Dynamic simulation model was developed, using the 

drawings and specifications obtained from the 

survey, to be subsequently used for design of the 

retrofit (See Figure 4). Hence, calibration is essential 

at this stage to ensure that building thermal 

performance is represented accurately. During the 

calibration process, the input values of the model 

parameters are varied and tested, with the aim to 

fine-tune the model performance, until the simulated 

model matches the performance of the actual 

building.  

Table 1 below shows the parameters used to calibrate 

the model. Variations of significant design 

parameters were identified during the detailed survey 

to represent uncertainties in the model, but also as 

critical inputs that exert significant influence on the 

model’s output. Through the iterative calibration 

stages, design parameters were repeatedly adjusted to 

determine optimum configuration, tuning the model 

to run with a realistic range of operating conditions. 

These input variables shown in Table 1 identified 

3840 solution combinations. 

 
Figure 3: Point cloud of the filed trial properties A and B. 

From the survey conducted on the properties A and 

B, however, to simplify the calibration process, we 

used house A model for simulation while treating 

house B as adjacent building (See Figure 4). Energy 

bills show that house A annual consumption was 

9108000 kJ of electricity and 43842600 kJ of gas 

over 2015-2016. We used these results to form a 

reference point in the solution space.  

 
Figure 4: Model was constructed in IES (IES, 2016) and 

was later exported in .idf format to run on JEPlus-EA 

The calibration process for this case study was 

performed in three iterative refinement stages. The 

aim of each stage was to calibrate the model further 

in order to establish a nearly one-to-one relationship 

between the simulated and actual data.  

RESULTS 

1st stage of calibration  

For optimisation during 1st stage of calibration, KNN 

with density avoidance algorithm was implemented 

on the optimisation output of this stage as shown in 

Figure 5 and its zoomed-in version Figure 6. Table 2 

shows the calibrated design variables. Each row 

representing a combination of parameter values was 

identified by KNN as  neighbouring solutions shown 

as red dots in Figures 5 and 6. The solution rows in 

Table 2 are organised by distance from the reference 

point shown as a blue diagonal  cross  in  the  

solution  space. Hence, the first row consists of the 

design variables of the best calibrated model that was 

identified during the 1st stages of calibration. 

After performing sensitivity analysis, it is apparent 

that the parameter Air Changes Per Hour has the 

same value 3.0 (ac/h) in all design solutions, hence it 

was flagged as the least sensitive parameter of this 

calibration stage. To simplify the model, this 

parameter was fixed at 3.0 (ac/h) as it has no effect 

on the outputs. This not only helped in fine-tuning 

the model, but it also minimised the number of jobs 

required to complete the simulation and optimisation 

in the 2nd  calibration stage. This is because KNN 

eliminated all values (1.0, 3.0, 5.0, 7.0, 9.0) used for 

the 1st collaboration stage, which existed in solutions 

positioned far away from the reference point, shown 

as grey dots in Figure 5 and 6. 

 
Table 1: Optimisation / parametric analysis settings used for the building model during 1st stage of calibration 

 

Parameter Value for each step  Parameter Value for each step 

Lighting density (W/m2) 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 Set Temperature Other Areas (°C) 15, 16, 17, 18 

Misc. Electrical Heat Gains 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 

9.0, 10. 

Air Changes Per Hour 1.0, 3.0, 5.0, 7.0, 9.0 

Set Temperature Lounge °C 16, 17, 18, 19 Total number of Jobs 3840 

A 

 
B 

A 

 

B 



 

 
 

 
Table 2: Detailed parametric settings of the K neighbour solutions, displayed in Red in Figures 5 and 6, which were 

generated from the 1st stage of calibration process. Table rows are sorted in ascending order by the distance from the 

reference point. 

 

Lighting 

Power 

Density 

 

Misc. 

Electrical 

Heat 

Gains 

Set 

Temperature 

Lounge (°C) 

Set 

Temperature 

Other Areas 

(°C) 

Air 

Changes 

Per Hour 

Electricity 

consumption 

Gas 

consumption 

6 7 17 18 3 -2.137868711 1.089426651 

3 9 19 18 3 2.794348539 -2.940217932 

4 9 17 18 3 -4.442053223 1.679406742 

5 7 18 18 3 5.098533052 -1.459878745 

3 10 19 18 3 -5.59414548 -1.816311971 

5 7 19 17 3 5.098533052 5.301777868 

6 7 18 17 3 -2.137868711 8.207465069 

 

2nd stage of calibration 

In the second stage of calibration we re-run the same 

model with JEPlus+EA, while fixing the insensitive 

parameter Air Changes Per Hour at 3.0 ac/h. In 

Table 2, it is clear that the outcome design value 

range for Lighting Density, Electrical Heat Gains, 

Set Temperature Lounge and Set Temperature Other 

Areas are considerably smaller than the original set 

of values used in the 1st  stage of calibration. These 

parameters vary in their sensitivities as they consist 

of an average of four distinct values as shown in 

Table 2, but clearly the second worst parameter in 

terms of sensitivity is the parameter Set Temperature 

Other Areas. As it consists of only two values, 17 

and 18, these were fixed in the 3rd stage of 

calibration. In the previous study Basurra et al. 

(2015), we used the maximum and minimum output 

value for each sensitive parameter to break the range 

further into smaller steps to be used as inputs for 

subsequent simulations. This is to bring the 

simulation model closer to the reference point. 

This approach is not ideal in this case study as the 

difference between the minimum and maximum 

values was considerable for some parameters. To 

resolve this issue, we had to deal with each output 

value separately. For example, if the range is (𝑥0, 𝑥1,
𝑥2, … 𝑥n), for 𝑥n two new input values  ′𝑥1 and ″𝑥1 

were generated to surround 𝑥1 in the new input 

range. Hence the new input range to be used for the 

subsequent calibration was (𝑥0, ′𝑥1,  𝑥1, ″𝑥1, 𝑥2, … ). 

The following two equations were used to calculate 

′𝑥1 and ″𝑥1; 

 

′𝑥1 =
𝑥n − 𝑥n−1

2
… , 𝑥n−1 < ′𝑥n < 𝑥n             (2) 

″𝑥1 =
𝑥n+1 − 𝑥n

2
… , 𝑥n < ″𝑥n < 𝑥n+1            (3) 

let us consider the value of 4 in the parameter range 

of Lighting Power Density in Table 2. Since the 

difference between 4 and the next and previous 

values  in the range equals to 1, using the equations 

above, the new input values to be used for fine tuning 

in 2nd  stage of calibration were 3.5, 4, 4.5. These are 

shown in Table 3. Note, the total number of 

simulation jobs required for 2nd stage of calibration is 

672, which is considerably smaller than 3840 jobs 

executed during the 1st stage of calibration.

  

Figure 6: Zoomed-in version of Figure 5. KNN in 

operation while using the density avoidance algorithm 

on the output of the 1st stage calibration  

 

Figure 5: KNN in operation while using the density 

avoidance algorithm on the output of the 1st stage 

calibration  



Table 3: Optimisation / parametric analysis settings used for the building model during 2nd stage of calibration 

Parameter Value for each step  Parameter Value for each step 

Lighting 

density(W/m2) 

3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 Set Temperature Other Areas (°C) 17, 18 

Misc. Electrical Heat 

Gains 

6.5, 7.0, 7.5, 8.5, 9.0, 9.5 Air Changes Per Hour 3.0 

Set Temperature 

Lounge (°C) 

15.5, 16, 16.5, 17, 17.5, 19, 19.5 Total number of Jobs 672 

 

 
 

 

 

Table 4: Detailed parametric settings of the K neighbour solutions, displayed in Red in Figures 7 and 8, which were 

generated from the 2nd stage of calibration process. Table rows are sorted in ascending order by the distance from the 

reference point. 

 

Lighting 

density 

 

Misc. 

Electrical 

Heat 

Gains 

Set 

Temperature 

Lounge (°C) 

Set 

Temperature 

Other Areas 

(°C) 

Air 

Changes 

Per Hour 

Electricity 

consumption 

Gas 

consumption 

4 8.5 17.5 18 3 -0.247806214 0.297004736 

5 7.5 17.5 18 3 0.904286042 -0.00108236 

5 7.5 17 18 3 0.904286042 0.839523666 

5.5 7 17.5 18 3 1.48033217 -0.151131264 

5.5 7 17 18 3 1.48033217 0.690602897 

6.5 6.5 17 18 3 -1.561822583 0.940296697 

5 7.5 16.5 18 3 0.904286042 1.618843338 

3rd  stage calibration 

From the output of the 2nd stage of calibration, it is 

clear that the solutions shown in the Figure 7 and 8 

are closer to the reference point than the design 

solutions resulted from the 1st stage of calibration. 

Also, the value range for each parameter is smaller. 

Note that the parameter Set Temperature Other Areas 

shown in Table 4 has now one value fixed value of 

18. By fixing Set Temperature Other Areas and Air 

Changes Per Hour at the values 3 and 18 

respectively, and by breaking the values of the 

remaining parameters into smaller steps as performed 

in the 2nd stage of calibration using Equations 2 and 

3, we can perform the 3rd stage of calibration using 

only 360 simulation jobs. All parameter input values 

are included in the Table 5. 

After applying KNN and density avoidance 

algorithm to the output shown in Figures 9 and 10, it 

is apparent that all neighbour solutions are much 

closer than before in comparison to pervious stages 

of calibration. Now, all neighbouring solutions 

shown in Table 6 have the uncertainty rate of less 

than 1%  and the best solution so far is 0.12 % for 

electricity consumption and 0.1% for gas 

consumption. Hence, the single-row table below is 

the best model to represent the actual building 

behaviour consists of the corresponding parameter 

values. Further calibrations can be performed to 

achieve even closer results if desirable. 

 

 
 

 

Lighting 

density 

 

Misc. 

Electrical 

Heat 

Gains 

Set 

Temperature 

Lounge (°C) 

Set 

Temperature 

Other Areas 

(°C) 

Air 

Changes 

Per 

Hour 

6.3 6.5 17.5 18 3 

Figure 7: KNN in operation while using the density 

avoidance algorithm on the output of the 2nd stage 

calibration  

Figure 8: Zoomed-in version of Figure 7. KNN in 

operation while using the density avoidance algorithm 

on the output of the 2nd stage calibration  



Table 5: Optimisation / parametric analysis settings used for the building model during 3rd stage of calibration 

 

Parameter Value for each step  Parameter Value for each 

step 
Lighting density(W/m2) 3.8,4.0,4.5,5.0, 5.3, 5.8, 6.0, 6.3 Set Temperature Other Areas 

(°C) 

18 

Misc. Electrical Heat 

Gains 

6.25, 6.5, 6.8, 7.25, 7.5, 7.8, 8.25 

8.5, 8.8 

Air Changes Per Hour 3 

Set Temperature 

Lounge (°C) 

16.8, 17, 17.25, 17.5, 17.8 Total number of Jobs 360 

 

 
 
 

 

 

Table 6: Detailed parametric settings of the K neighbour solutions, displayed in Red in Figures 9 and 10, which were 

generated from the 3rd stage of calibration process. Table rows are sorted in ascending order by the distance from the 

reference point. 

 

lighting 

density 

 

Misc. 

Electrical 

Heat 

Gains 

Set 

Temperature 

Lounge (°C) 

Set 

Temperature 

Other Areas 

(°C) 

Air 

Changes 

Per Hour 

Electricity 

consumption 

Gas 

consumption 

6.3 6.5 17.5 18 3 -0.11454223 -0.060317236 

4 8.5 17.8 18 3 -0.247806214 -0.234343735 

6.3 6.5 17.25 18 3 -0.11454223 0.368165171 

4 8.5 17.5 18 3 -0.247806214 0.297004736 

6 6.8 17.5 18 3 -0.460169907 0.030155561 

6.3 6.5 17.8 18 3 -0.11454223 -0.592944361 

6 6.8 17.25 18 3 -0.460169907 0.458149188 

 

DISCUSSION 

We compared the use of KNN and sensitivity 

analysis approach with NSGA-II algorithm with the 

built in crowding distance function discussed above 

and presented in the study by Basurra et al. (2015)  

and Jankovic and Basurra (2016). It was concluded 

that NSGA-II is easier to use and require less time to 

generate the results. This is because KNN requires 

post processing, and if further calibration refinement 

is required, more optimisation iterations should be 

carried out. However, KNN with the density 

avoidance technique outperforms NSGA-II as it 

identifies neighbour solutions that are close to the 

reference point, as well as considering those 

solutions that scattered evenly in the solution space 

while covering different regions on the graph. 

Another advantage of using KNN when combined 

with sensitivity analysis is that it helps identifying 

most and least influential parameters. Hence, when 

the former are fixed and the latter are broken further 

into smaller steps to be used as input values for 

subsequent simulations, the solutions becomes 

considerably closer to the reference point.  

To prove our concept, we used NSGA-II to calibrate 

the same model and the same parameter range used at 

1st stage of calibration shown in Table 1 (Jankovic 

and Basurra, 2016). The best result generated from 

running optimisation was 0.17% of uncertainty for 

electricity consumption and 0.33% for gas 

consumption. That is slightly lower in accuracy than 

the best calibrated design solution obtained from this 

study. To lower the model uncertainty in NSGA-II, 

trial-error method should be performed, which 

hugely depends on user’s assumptions and 

Figure 9: KNN in operation while using the density 

avoidance algorithm on the output of the 3rd  stage 

calibration. 

Figure 10: Zoomed-in version of Figure 9. KNN in 

operation while using the density avoidance algorithm on 

the output of the 3rd stage  calibration. process 



experience. Even then, some design solutions are 

likely to be missed, as NSGA-II provides solutions 

that only exist in the positive quadrant of the solution 

space.  

CONCLUSIONS AND FUTURE WORK 

As simulation tools become more widely  used  as   

the  basis  of  future  design  tools  for new built and 

retrofit, the  need  for calibration methodologies will 

grow (Van  de  Perre  et  al  1991). Such 

methodologies ensure that, at least in a limited 

number of cases, there are acceptable candidates to 

provide reasonable prediction of energy performance 

of existing buildings. Various studies suggest that 

calibration is still largely performed on the bases of 

trial-error approaches, which depends on user’s 

assumptions and experience. Even for an experienced 

modeller, trial-error approaches could be labour 

intensive and time consuming. Hence, the use of 

automated methods allow experts and non experts to 

perform calibration effectively by preventing the 

manual tuning of each parameter, but also swiftly 

speeding the time required for calibration. 

A case  study  is  presented  in this paper where  the  

annual  electricity and gas  consumption   predicted   

by the use of KNN and sensitivity analysis, using 

JEPLus+EA, running EnergyPlus as its simulation 

engine,  was lower by less than 1% than the actual 

value. The calibration was obtained after three 

iterations over the base model.  The building  under  

the consideration  was a semi detached house 

belonging to Birmingham City Council. Using the 

identified calibrated design solutions with the least 

error ratio, we can predict with some certainty the 

optimal thickness of the retrofit envelope in terms of 

thermal comfort, energy consumption and retrofit 

cost. This has been studied in more depth by 

Jankovic and Basurra (2016). In the second phase, 

and when the actual retrofit is completed, we will 

update the calibrated model to include all retrofit 

improvements in the property and perform further 

calibration to incorporate further uncertainties caused 

by retrofit improvements. This will allow us to 

understand if the calibrated model generated before 

retrofit still applies after retrofit. 
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