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ABSTRACT 

In this paper, a model-assisted calibration is proposed 

in order to reduce performance gap of simulation 

models, being the estimated differences between the 

predicted performance of the simulation model and 

the actual performance of the building.  We use the 

nearly unbiased 𝑘 Nearest Neighbour (KNN) 

algorithm to classify the solution that exhibits the 

minimum performance gap based on a set of 

reference points. Density avoidance algorithm is used 

to further refine the solutions by finding regions in 

the space of input factors for which the model output 

is either maximum or minimum to meet optimum 

criterion, hence fine tuning the model to establish 

one-to-one relationship between the simulated and 

actual performance.   

INTRODUCTION 

Model calibration is an important process to ensure 

that the building thermal performance is represented 

accurately, in relation to the architecture, mechanical 

systems, internal gains, and the building fabric. 

During the calibration the input values of parameters 

are varied and tested until the difference between the 

real performance of the building and the model 

performance are minimised, reducing the 

performance gap.  

Even for an experienced modeller, the calibration 

process could be labour intensive and time 

consuming. The aim of this paper is to examine the 

use of KNN to calibrate the model. The Birmingham 

Zero Carbon House is used as experimental evidence 

base for this investigation. It is a retrofitted Victorian 

house that has achieved a carbon negative 

performance, and it has been under detailed 

instrumental monitoring over the past four years. The 

data collected from the monitoring are utilised in the 

calibration process. 

Energy retrofit of existing buildings helps to increase 

the building energy efficiency through a mix of 

design solutions with a reasonable cost and payback 

time frame. Building simulation tools have been used 

to explore possible alternatives to achieve better 

energy performance with a shorter payback period.  

Allocation of risks requires uncertainty quantification 

of projected cost effectiveness of design options for a 

given retrofit project. Hence, reducing the 

performance gap between the actual building and the 

model encourages building owners to invest in 

retrofit with confidence, and facilitates realistic 

ambitions towards energy saving and payback. This 

is vital for retrofit schemes such as recently 

discontinued Green Deal (Energy Saving Trust, 

2014) that involved retrofits of existing buildings 

through performance based contract.  

Using building simulation is somewhat easier for 

new built projects, were building properties and 

parameters are given using the engineering design 

specification. However, designing a model to 

represent an actual building is not trivial. It is 

difficult know how the building’s internal/external 

components perform, and whether or not the building 

materials and technology used have the same 

theoretical properties after the building is built.  

Hence, simulation models of existing buildings need 

some form of verification or calibration to minimise 

their performance gap, which will help to build 

knowledge base for new designs. 

The paper will demonstrate that calibration via KNN 

and density avoidance algorithm is achievable, and 

that it can be implemented on existing data generated 

from standard simulation tools such as DesignBuilder 

and IES. This process ensures that all options are 

considered and tested, which leads to better and more 

accurate models, whilst also reducing the time and 

effort required to calibrate a model. 

Related work 

Calibration is used to identify the cause of poor 

model performance in comparison with actual data 

obtained from building surveys, expert knowledge, 

industry standards, sensor information etc. Real 

information can be used to explore possible solutions 

via refinement or ‘justified’ tweaking of the model 

input. However, this can be complicated due to the 

issues identified by Clarke (1993); 1- the model 

range is constrained due to the lack of experimental 

evidence; 2- hidden assumptions performed by 

various software implementations; 3- energy models 

can be complex with many interactions; 4- 

uncertainties with basic properties of existing 

building. These issues have been dealt with in 

various ways, for example using manual evidence 

based calibration (Raftery, 2011). That research 



describes a systematic evidence-based methodology 

for the calibration of building simulation models. It 

aims to improve the accuracy of the final model by 

allowing only verifiable information about the model 

to be used. In addition, to improving the 

reproducibility, all previous calibrated modes are 

stored in version control repository as supporting 

evidence to understand the assumptions made and 

minimise tuning input parameters. However, this 

evidence based process can be lengthy, and requires 

detailed information about the existing building 

which may not be available for old and historical 

buildings. Furthermore, entire calibration process 

should be preferably automated to ensure efficiency 

and consistency (Tahmasebi, 2012).  

Zoning strategy is another example of model 

calibration that has been used in studies such as by 

Yiqun et al, (2007). This is carried out by combining 

thermal zones in the building, using up to five zones 

per occupied floor. According to (Raftery, 2011) 

zoning technique can be appropriate for complex 

floor plans, but it reduces the model accuracy by 

simplifying the model. For example, the model 

cannot accurately represent situations where 

opposing cooling and heating loads in one floor, and 

it does not allow accurate representation of different 

occupancy profiles and internal loads. The research 

(Heo, 2012) presented a probabilistic methodology 

based on Baysian calibration of normative energy 

models to quantify uncertainties in the model that are 

translated to quantify risks associated with 

underperformance of retrofit designs. However, the 

method depends heavily on experts judgment in the 

choice of calibration parameters and their 

distribution. Moreover, the current method is based 

on the complicated statistical formulation of 

Kennedy and O'Hagan's framework, which can cause 

computation burdens for large-scale analysis, hence, 

this method is limited to the cases in which the 

source of measured data is at one building level. The 

use of optimisation–aided model calibration to select 

best results in relation to cost/fitness function is 

described in (Taheri et al, 2013). Calibration was 

used to minimise the error rate between the measured 

air temperature and simulated temperature. The main 

issue in that work is that parameters and their range 

values were selected in advance based on the basis of 

author’s experience, which may lead to inconsistent 

results. 

METHODOLOGY 

The 𝑘-nearest neighbours’ algorithm (KNN) (Alt, 

2001) is a widely used technique for clustering and 

classification of data in data mining, and pattern 

recognition. It is a basic approach to find the most 

similar 𝑘 number of points as nearest neighbour to a 

given reference point on a solution space. In this 

study, we suggest KNN methods as an alternative to 

solve the problem of simulation model calibration in 

order to improve the correspondence between actual 

and monitored values towards a one-to-one line with 

an intercept of zero in the ideal case. In spite of their 

simplicity, KNN methods are among the best 

performers in a large number of classification 

problems. This is because KNN is non-parametric 

which means the algorithm works without 

presumption of the primary data distribution. Thus, 

the algorithm requires no training phase before being 

used on a solution space. This is useful for 

calibration of simulation models since the real 

monitored data do not usually obey the typical 

theoretical assumptions made in the simulation 

model. Moreover, the algorithm is fast to perform, 

despite the fact that KNN bases its decision after 

calculating the entire solution space.   

KNN is used for classification and regression.  

Classification is performed using the instance-based 

classifier by locating the nearest neighbour in the 

instance space and labelling the unknown instance 

with the same class label as that of the located 

classified (known) neighbour. One of the 

classification rule for KNN is to find the nearest 

neighbour using distance and majority voting which 

is calculated as a weighted KNN where each point 

has a weight that is typically calculated using the 

inverse distance and majority voting, which allows 

those neighbours where 𝑘 > 1 to decide the outcome 

of the class labelling.  

KNN assumes that the data points are in a metric 

space, hence the data can be multidimensional 

vectors. Each of the training data consists of a sect of 

vectors and class label associated with each vector.  

Positive (+) or Negative (–) are the easiest form of 

classes, however, KNN can effectively work well 

with various numbers of classes.  

The process starts by measuring distances between 

the query points to the rest of the solution points. One 

of the most popular choices to measure the distances 

is to use the Euclidean function. Given 𝑥 =
(𝑥1 , … , 𝑥𝑛 )  and  𝑦 = (𝑦1 , … , 𝑦𝑛 ), the distance is 

calculated as 

𝑑𝐸(𝑥, 𝑦) = √∑ (𝑥𝑛 − 𝑦𝑛)2𝑁
𝑛=1 . (1) 

 

KNN regression is related to predict the outcome of a 

dependent variable given a set of independent 

variables. This is useful since it enables the 

prediction of the regions in which future candidate 

solutions will be populated. 

The algorithm function 

 𝑘 is the number of nearest neighbours in the solution 

space 𝑆: = (𝑝1 , . . . , 𝑝𝑛) where 𝑝𝑛 is the solution 

sample in the form 𝑝1 =  (𝑥𝑖 , 𝑐𝑖), where  𝑥𝑖 solution 

entry with all parameter values of the point 𝑝𝑖 . 𝑐𝑖 is 

the class that 𝑝𝑖  belongs to (see Figure 1). 

 



 
Figure 1: KNN algorithm steps 

 

The selection of 𝑘 is critical. This is because a small 

value of 𝑘  means that the results will be increasingly 

influenced by noise. However, a large value of 𝑘 can 

make it computationally expensive, but also defeats 

the concept behind the KNN that solution ‘points’ 

that are near are likely to have similar density factor. 

One simple approach suggested by Richard et al. 

(2000) is to set 𝑘  as 𝑘 = √𝑛  where 𝑛 is the total 

number of points in the solution space.  

Calibration assistant  

KNN works well when the solution points are 

scattered around the reference point while covering 

all regions in the graph. Each neighbour encapsulates 

all values for the parameters used during the 

simulation. The algorithm then calculates the 

maximum and minimum values for each parameter 

from all discovered neighbour solutions. Using the 

minimum and maximum values, we can break the 

range further into smaller steps to be used again as 

inputs variables for the model parameters in the 

simulation. This iterative process helps to bring the 

simulation solutions closer or even intercept with the 

reference point retrieved from the monitored data. 

This will also help identify the least sensitive data, 

with the same maximum and minimum values.  

Density estimation for KNN 

As discussed above, KNN ideally identify neighbour 

solutions scattered evenly in the solution space while 

covering various regions on the graph. However, if 

the reference point is adjacent to highly densely 

populated area of solutions, the algorithm only 

selects the solutions from the dense area, especially if 

the number of nodes located in that area exceeds the 

calculated 𝑘 neighbours. This will worsen if all 

detected nearest neighbours hold the same solution 

values, which exist on the same location in the graph. 

Various extensions have been performed to the KNN 

algorithm to consider density. Although classification 

is the primary application of KNN, density 

estimation can also be used in KNN. Density 

estimation is a non-parametric method for 

constructing a density estimate of results. This is very 

similar to Parzen-window which  is essentially a 

data-interpolation technique (Richard et al, 2000). 

For example, to estimate density at a point x, by 

placing a circle centered at x and keep increasing its 

size until k neighbours are captured, the density 

estimation uses the following formula:  

𝑝(𝑥) =  
𝑘/𝑛

𝑎
    (2) 

 

In the formula above, n is the total number of 

solutions, and a is the area of the circle. The 

numerator is constant and the density is influenced 

by its value. For example, if density at a point x is 

high, KNN finds the 𝑘  points near x, and these 

points turn to be close to x. This shows that the area 

of the circle is small, and the resultant density is quite 

high. However, if the density around the point x is 

low, the area of the hypercube that is needed to 

encompass 𝑘 nearest neighbours will become large, 

since the density ratio is low.  

We use similar technique to KNN, but differ in the 

sense that instead of using density to classify 

neighbours, we use density calculation to select a 

fewer neighbours located in high dense areas, hence, 

the algorithm looks for other solutions that cover all 

areas as long as they are within reasonable distance 

from the reference point. 

Let us consider the simplified example in Figure 2a. 

Given the total number of solutions in the solution 

space is 9, 𝑘  becomes 3 according to the selection 

rule of 𝑘  explained above. When KNN is 

implemented, based on the weighted distance only, 

the solutions B, C and D are selected as the best 

neighbours to the reference point shown as a cross in 

the graph. Although these solutions are close in terms 

of distance, they all exist in one region covering a 

smaller range of parameters. Hence, the maximum 

and minimum ranges will be small when trying to 

fine-tune the model to the reference point. However, 

when KNN is implemented with density avoidance 

enabled, A, E and C solutions are selected instead 

since they are positioned at a sensible distance to the 

reference point. B and D will be ignored, as C will 

provide the range that covers the highly dense area 

formed by the solutions B, C and D (see Figure 2b). 

Density avoidance for KNN 

As mentioned above, KNN density estimation is used 

for regression and classification; however, we use 

density detection concept to avoid the high-density 

regions dilemma. We are proposing a density 

avoidance algorithm which has been tested against 

various cases for this purpose. Our proposed density 

avoidance algorithm is explained below.  

Starting from a solution close by from the reference 

point, each solution will form a circular region with a 

constant radius R to capture all surrounding nodes in 

the solution space. For example, let us consider a 

solution X of N solutions in the graph. X will perform 

the density estimation and calculate the density using 

Equation (2). Also see Figure 3 for Pseudocode 

describing the steps of the density avoidance 

algorithm. 



If density is above a threshold, the node closest to X 

(not the reference point), will be tagged as idle. The 

whole process repeats again, and X becomes the 

second closest node to the reference point. In 

subsequent iterations, idle nodes are not selected to 

perform the density calculation, and will not be 

considered in the density check if they fall within the 

range within a circle area of another valid ‘non idle’ 

node. Following these rules, all nodes in the solution 

space will be tagged as either idle or valid.  

Then we implement the KNN algorithm that selects 

the closest 𝑘  neighbours, but also selects only those 

valid solutions. This was successfully implemented, 

and is shown in Figure 9. 

 

 
Figure 2:KNN in operation without (a) / with (b) 

density avoidance technique 

 
 PROGRAM DensityExclusionAlgorithm: 

 Using KNN, CALCULATE distances to all 𝑁solutions from Reference 

Point. 

 Store the 𝑵 neighbours with their distances in a list 𝑳 

 Sort list 𝑳 in a ascendant order putting least distant solutions at the top of 

𝑳. 

 LOOP through 𝑳 starting from the top, and select 𝑿 solution 

 𝑿 Identify nearby none-idle neighbours using a predefined radius 𝑹, 

and store them in a new list 𝑳2. 

 𝑿 calculates density 𝑳2 

 If (𝐷𝑒𝑛𝑠𝑖𝑡𝑦 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

 THEN from 𝑳2, set “IDLE” to Neighbour closest to X 

 ELSE DO NOTHING; 

 ENDLOOP 

 CALCULATE neighbours of Reference Point with K number of neigh-

bours (See Figure 2). 

 End  
 

Figure 3: Pseudocode describing the steps of the 

density avoidance algorithm. 

Zero Carbon House model 

For the purpose of this research, we have selected the 

Birmingham Zero Carbon house (Christophers, 

2014), which was originally built in 1840, and has 

been retrofitted recently to achieve zero carbon 

performance. It has been selected based on 

availability of information for the energy model, 

good quality observations and easy access to the site 

for operational adjustments. There have been various 

studies that have conducted on the house, which 

focus on its performance and occupants’ thermal 

comfort (Jankovic and Huws, 2012; Huws and 

Jankovic, 2014). The house has been 

comprehensively simulated in parallel with detailed 

instrumental monitoring, which is another reason for 

choosing it for this research.  

Various models have been constructed to simulate 

the Zero Carbon House using tools such as IES-VE 

and DesignBuilder (DesignBuilder, 2015), the latter 

being preferred for the optimisation technique it 

provides. Optimisation refers to the selection process 

that looks for the best solution in relation to certain 

criteria from a solution space that contains a set of 

available alternatives (George, 2014). Performing 

multi-objective optimisation minimises the number 

of candidate solutions, while searching for the range 

of possible solutions and trade-offs that fulfil 

environmental, social and economic criteria for zero 

carbon design. Geometry of the DesignBuilder model 

is shown in Figure 4. 

 

 
Figure 4: Birmingham Zero Carbon House model 

geometry - front and rear view 

 

A comprehensive data monitoring system was 

installed in the house, which consists of internal 

temperatures, relative humidity, and energy flow 

sensors, as well as external air temperature sensor 

and solar radiation instrument. Hence, accurate 

monitored data were collected and used for the 

calibration purpose discussed in this paper.  

Another challenge to perform calibration of a real 

building is to obtain real weather data relevant to the 

building location. Actual weather data was collected 

from The Centre for Environmental Data Archival 

(CEDA) (ceda.ac.uk, 2015), which represent the 

closest viable data to zero carbon house site. This 

weather data file was subsequently modified, to 

include site-specific measurements obtained from the 

instrumentation system in the Zero Carbon House. 

This weather data was converted into '.epw' format 

used by EnergyPlus (Crawley, 2001) since 

DesignBuilder uses EnergyPlus as core engine to 

perform simulation. We have run the optimisation 

with two objectives: discomfort hours and carbon 

emissions produced by the building.  

We calculated the first objective by generating 

temperature distribution scatter graphs showing the 

relative humidity and operative temperature intervals 

during the occupied period. As Zero Carbon House is 

heavily insulated, air temperature and internal surface 

temperatures are quite similar, and therefore air 

temperature was considered to be a reasonable 

approximation of the operative temperature. 

Subsequently, we used ANSI/ASHRAE Standard 55-



2004, illustrated in Figure 5, for thermal 

environmental conditions for human occupancy in 

order to calculate the total discomfort hours for one 

year as explained below. 

 
Figure: 5 Acceptable range of operative temperature 

and humidity for spaces that meet the criteria 

specified in ASHRAE 55-2004. 

 

We have developed a simple programming script in 

Java that determines whether a point or a set of 

points are inside the comfort polygon or not.  Using 

this script, we were able to calculate the number of 

comfort hours that fall within or intersect with the 

boundary of comfort hours. The boundaries of the 

polygon are defined by the upper and lower 

recommended humidity ratio and operative 

temperature as shown in Figure 5. Figure 6 shows the 

results of mapping of monitored values to ASHRAE-

55 diagram expressed as Relative 

Humidity/Operative temperature relationship. 

 

 
Figure 6: Comfort hours (in blue) and discomfort 

hours (in red) derived using ASHRAE 55-2004. 

RESULTS 

Using the thermal comfort algorithm, we realised that 

the total number of comfort hours is 2128 in year 

2012. From related studies (Jankovic, 2012)  we 

obtained CO2 emissions produced by the building 

during the same year, showing carbon negative 

performance of -661.60 kgCO2 in the same year.  

We used these results to form a reference point in the 

solution space, and use the KNN and the proposed 

density avoidance algorithm to find the closest 

neighbours to the reference point, hence finding the 

closest solutions between the measured and 

simulated results. With this knowledge we were able 

to explore possible solutions - in the form of 

theoretical extensions or refinements to the input 

values of the model parameters.    

Table 1 below shows the parameters used to calibrate 

the model such as heating set point temperature, 

natural ventliation, infiltration and all heat gains 

representing the lumped gains into the space from 

people, equipment, lights etc. These most significant 

parameters were identified in earlier studies 

(Jankovic and Huws, 2012; Huws and Jankovic, 

2014). 

Table 1: 

Optimisation / parametric analysis settings used for 

the building model 

N
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M
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M
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u
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S
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Heating set 

point 

temperature 

(°C) 

15 20.00 0.10 

Natural 

ventilation 

rate (ac/h) 

0.00 12.00 2.00 

Nat vent set-

point temp 

(°C) 

21.00 30.00 5.00 

Infiltration 

(ac/h) 

0.40 4.00 0.20 

All heat gains 

(W/m2) 

0.00 80.00 20.00 

External 

window 

operation 

schedule 

- - 3 Options of 

window 

operations 

External wall 

construction 

- - 3 Options of wall 

constructions 

 

Optimisation was performed remotely using the 

ENSIMS X3200 Simulation Server located at the 

University. This allowed quick simulation and 

optimisation, minimising the number of results in the 

solution space while finding a trade-off between the 

input design parameters according discomfort hours 

and CO2 emissions. When optimisation was 

completed, the results were exported as '.csv' files, 

and the reference point was subsequently embedded 

in the results, making the file ready to be processed 

by the KNN with the density avoidance algorithm.  

Figure 7 shows the initial results from the 

optimisation process using DesignBuilder. This 

Figure also shows the reference point as a blue 

diagonal cross in the solution space. The dark grey 

solutions represents the Pareto fronts from re-



optimising the building model with various sets of 

parameter ranges.  

Figure 8 shows a zoomed in view towards the 

reference point. It shows the neighbour solutions 

being identified by the KNN without using the 

density avoidance algorithm. Given the total number 

of points in the solution space demonstrated in Figure 

7 that is equal to 2189 solutions, using the square 

root, the number of the 𝑘 neighbours appears to be 

equal to 46 solutions in Figure 8. 

KNN automatically identified the closest solutions to 

the reference point, and reduced the results to 46, 

hence minimising the time needed to calibrate the 

results further towards the reference point. However, 

those neighbours do not cover other reasonably close 

candidates located in different regions of the solution 

space. 

 
Figure 7: Optimisation results and the imbedded 

reference point as a blue diagonal cross in the 

solution space   

 

In contrast, Figure 9 shows the results of 

implementing KNN with density avoidance 

algorithm. This Figure shows clearly that our 

approach manages to select neighbours located in 

reasonable distance from the reference point, but also 

covers all solutions in all four regions around that 

reference point. In fact, the density avoidance 

algorithm manages to produce this solution with one 

third of number of 𝑘 neighbours, namely 12 

neighbours, as shown in Figure 9. More details are 

shown in Table 2, where the solution entries are 

organised by distances from the reference point. The 

maximum and minimum of each output is 

subsequently calculated to find the values within 

which the reference point resides.  

DISCUSSION 

The followings are some of the benefits of the use of 

KNN with density avoidance algorithm as a 

calibration method of building simulation: 

 
Figure 8: Results of KNN without the use of density 

avoidance algorithm 

 

 
Figure 9: KNN in operation while using the density 

avoidance algorithm 

 

1- This is standalone application that is easy to use 

on any existing results generated from various 

building optimisation/simulation tools such as 

DesignBuilder, IES, JEPlus+EA, EnergyPlus; 2- it is 

quick to execute and can deal with multiple number 

of reference points in a large solution spaces. For 

each reference point the algorithm performance is 

equivalent to 𝑂(𝑁) as it will grow linearly in direct 

proportion to the size of the solution space; 3- the 

tool identifies the parameters and the value range led 

to the solutions range. The building model can be 

fine-tuned further by breaking the solution range into 

smaller values to be used as input for further 

simulations/optimisation while aiming for one-to-one 

relationship between the monitored and simulated 

data; 4- it reasonably avoids the dilemma of dense 

areas in the solution space; 5- more importantly, 

while density detection effectively selects the closest 

solutions around the reference point, it also 

minimises the number of 𝑘  neighbours that typically 

resulted from using KNN without the density 

avoidance algorithm.  

This further reduces the time and computation cost 

required to reach the one-to-one calibration. 

Moreover, it minimises the range of solutions if 

recursive simulation is required for fine-tuned 

calibration. 



 

Table 2: Detailed parametric settings of the K neighbour solutions (displayed in Red in Figure 9) 
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93 23 17.0 9.0 22.3 3.2 64.9 1 3 -663 2128 

754 10 16.8 11.1 23.6 1.1 11.3 1 3 -654 2125 

159 41 16.8 7.5 22.4 3.3 64.5 1 3 -653 2127 

754 10 16.8 11.1 23.6 1.1 11.3 1 3 -654 2122 

50 12 17.3 8.4 22.4 3.3 64.5 1 3 -663 2144 

21 5 17.1 8.3 22.4 3.4 41.1 1 3 -663 2149 

138 37 16.6 10.4 21.0 2.1 36.2 1 2 -632 2124 

61 15 18.7 6.6 22.3 2.0 46.0 1 3 -670 2158 

62 15 17.3 6.6 22.1 3.2 65.5 1 3 -653 2158 

722 2 16.8 11.1 24.6 1.1 11.3 1 3 -630 2140 

41 10 15.9 10.4 23.0 2.2 37.5 1 2 -632 2145 

59 15 17.3 6.6 23.0 3.2 64.5 1 3 -653 2165 

11 2 20.0 9.6 23.2 1.9 34.0 1 3 -670 2088 

516 143 19.7 11.9 23.2 2.7 28.3 1 1 -627 2103 

578 162 19.7 11.8 21.1 2.9 20.5 1 2 -632 2097 

524 146 19.7 11.9 21.1 2.7 28.2 1 3 -622 2112 

 

However, there are some challenges, which appeared 

when implementing the KNN with density avoidance 

technique. For example, for the density avoidance to 

work well, the user needs to identify the best value 

for the radius R, density and the 𝑘 neighbours. 

Despite this, it is important to mention that the 

density avoidance work best with lower number of 

𝑘 recommended for KNN. This means the outcome 

will be fewer results to deal with but only those 

which are the best in the solution space.  Therefore, it 

is a good idea to start with 𝑘 = √𝑛 and minimise it 

appropriately. We used 
1

3
𝑘 in the study discussed in 

this paper. For radius R and density threshold, we 

calculated the average of both from the solution 

space as a starting point, and then minimised their 

values further if necessary.  

FUTURE WORK 

The optimisation method used in DesignBuilder uses 

the Non-dominated Sorting Genetic Algorithm II 

(NSGA II) (Deb, 2002). NSGA II  searches through 

the solution space to find a set of optimal trade-offs, 

while treating all objectives as being equally 

important (i.e. non-dominated solutions) and the 

output set contains the optimal solutions. For 

example, finding the design that cost the least but 

also produces the least carbon dioxide to the 

environment. These solutions are called Pareto 

fronts. We attempted to adjust the optimisation 

function in DesignBuilder to find optimal solutions 

that are the closest to the reference point instead of 

the default optimisation objectives. Due to software 

limitations, it was not possible to adjust the objective 

functions in DesignBuilder in this way in order to 

suit the calibration requirements. For future work, we 

are planning to export the IDF file from 

DesignBuilder and perform optimisation using 

RetrofitPlus web Application (Basurra, 2014) that 

uses JEPlus +EA as core engine. The optimisation 

through NSGA II will search the solution space to 

find a set of optimal trade-offs while targeting to the 

reference point. Unlike KNN which required density 

avoidance mechanism to find the results around the 

reference point, NSGA II has a built in density 

function to estimate density of dominant solutions 

around the optimal solutions. This is performed by 

calculating the average distance to other points on 

either side of the solution. This density value is the 

so-called crowding distance, and is used to prioritise 

non-dominant solutions when they have similar 

ranks. In this case, NSGA-II chooses the solution that 

exists in the less dense area in the graph (Deb, 2002).  

Our aim will be to compare KNN with density 

avoidance and  optimisation through NSGA-II for 

calibration of building simulation, and evaluate both 

approaches. 

CONCLUSION 

A study of  calibration method for a thermal 

performance model of a building was  presented.  

The starting point was the creation of the base model. 

Data from architectural drawings and site 

measurements were used to build the exact geometry 

of the house, and all building systems, fabric, lighting 

and equipment are specified to closely correspond to 

the actual. Occupancy and usage of the house were 

based on observations, questionnaires and data from 

the monitoring. In a typical simulation/optimisation 

analysis, the usual aim is to search for the optimum 

performance points. In this analysis, the aim was to 

locate the performance points of the simulation 

model that are the closest to the actual performance, 

and these optimum performance points were then 



used to find out the corresponding model parameters 

that resulted in the smallest performance gap.  

A 𝑘 Nearest Neighbour (KNN) algorithm was used to 

identify the solutions with the lowest performance 

gap based on a set of reference points that 

represented the actual performance of the real 

building. Density avoidance algorithm was used to 

further refine the solutions by finding regions in the 

space of input factors for which the model output is 

either maximum or minimum to meet optimum 

criterion of one-to-one relationship between the 

simulated and actual data.   

The results suggest that the predictive performance of 

simulation models can be calibrated quickly and 

accurately using the monitored performance data of 

the real building. Automating such process increases 

its efficiency while reducing the time and effort 

required for calibration. 
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