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Abstract—Energy consumption is one of the primary concerns
in a resource constrained Visual Sensor Network. The existing
Visual Sensor Network design solutions under particular resource
constrained scenarios are application specific; whereas the degree
of sensitivity of any of these resource constrains (e.g. energy
etc) varies from one application to another. This limits the
implementation of the existing energy efficient solutions within
a Visual Sensor Network node which may be considered to be
a part of a heterogeneous network. The heterogeneity of image
capture and processing within a Visual Sensor Network can be
adaptively reflected with a dynamic Field-of-View realisation.
This is expected to allow the implementation of a generalised
energy efficient solution to adapt with the heterogeneity of
the network. In this paper, an energy efficient Field-of-View
characterisation framework is proposed which can support a
diverse range of applications. The context of adaptivity in the
proposed Field-of-View characterisation framework is considered
to be: a) sensing range selection; b) maximising spatial coverage;
c) adaptive task classification and d) minimising the number
of required nodes. Soft decision criteria is exploited and it is
observed that for a given detection reliability, the proposed
framework provides energy efficient solutions which can be
implemented within heterogeneous networks. It is also found that
the proposed design solution for heterogeneous networks leads
to 49.8% energy savings compared to the trivial design solution.

Index Terms—Energy optimisation, field-of-view characteri-
sation, resource optimisation, sensing range estimation, task
classification, visual sensor networks.

I. INTRODUCTION

A Wireless Sensor Network (WSN) consists of a group of
sensor nodes with sensing, processing and communica-

tion capabilities. In traditional WSNs, sensors generally pro-
vide coverage in all directions to collect scalar measurements
as 1D data, for example: temperature, pressure, humidity etc
that limits their suitability to many applications [1]. In order to
enhance WSN’s suitability for a wider range of applications,
its traditional sensors are replaced by visual sensors resulting
in a network suitable for a new scope of applications known as
a Visual Sensor Network (VSN). In a VSN, each node captures
image data that can be processed locally to extract relevant
information (such as visual features) and it collaborates with
other nodes in the network [2]. VSNs are used in surveillance
[3, 4], environmental monitoring [5, 6], assisted living and
tele-healthcare [7, 8] applications. Visual sensors within a
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VSN employ directional sensing to provide pixel based mea-
surements as a 2D dataset and they require a large bandwidth
to transmit image data. The 3D viewing volume of a visual
sensor is known as its Field-of-View (FoV) [2]. During the
VSN design phase, some image processing algorithms require
precise knowledge of the FoV. The fundamental differences
between a traditional WSN and a VSN make the deployment
of the latter more challenging as compared to the former.
Furthermore, due to the directional sensing nature of visual
sensors, the existing WSN design solutions are not suitable
for VSNs.

In order to explore the challenges in more detail, consider
a VSN deployed at a remote location for a surveillance ap-
plication such as face detection, object detection and tracking
etc. Since a power source may be unavailable, all nodes are
assumed to be battery powered therefore the network lifetime
is limited. This imposes tight constraints on energy consump-
tion and data storage capacity within a VSN. Furthermore, the
aforementioned surveillance tasks vary in terms of complexity
and desired reliability. Therefore, the characterisation of FoV
and task classification to provide an energy efficient design
solution is an important and challenging problem in VSNs.

This paper is focused on the FoV characterisation and task
classification to obtain an optimised VSN configuration for
resource constrained scenarios. The configuration of a VSN
considered in this paper is given by: a) the sensing range of
the nodes and b) the allocation of sensing and processing tasks
to the nodes which are part of a heterogeneous network. The
contributions of this paper are summarised as follows:

1) A generalised FoV characterisation framework for ho-
mogeneous and heterogeneous VSNs is proposed as
a function of the required minimum object pixel oc-
cupancy, maximum allowable error tolerance and de-
sired image quality. The proposed FoV characterisation
framework provides the system design engineers with a
resource trade-off model while obtaining an optimised
sensing range of a visual sensor node for any given
application.

2) Considering the heterogeneity of the modern VSNs,
an adaptive task classification scheme is proposed for
the distribution of tasks between the nodes providing
a trade-off model for reliability and energy efficiency.
The proposed scheme provides solutions to the task
classification problem feasible for implementation in
resource constrained scenarios.

3) In the context of heterogeneous VSNs, a comparison of
hard decision and proposed soft decision based tech-
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niques is presented. The proposed framework, when
employed with the proposed task classification and soft
decision based sensing range selection schemes resulted
in an optimised VSN configuration by maximising the
spatial coverage, reducing the energy consumption and
increasing the network lifetime without compromising
on the desired reliability. Analysis of the energy effi-
ciency of the proposed framework validates its suitability
for a diverse range of applications

The rest of the paper is organised as follows; Section
II explores the existing solutions for VSN design and their
limitations, Section III presents the visual sensor 3D projection
model. Section IV introduces the proposed FoV characterisa-
tion framework. Section V describes the experimental setup
and presents the results. Section VI provides an analysis of the
proposed framework’s energy efficiency. Section VII presents
an analysis of system failure and finally, Section VIII provides
the concluding remarks.

II. RELATED WORK

In the last decade, researchers have been actively engaged
in VSN coverage, design and optimisation problems. In [9], an
unsupervised scheme is proposed to identify the overlapping
FoV for the estimation of network topology in large VSNs.
A mathematical model is proposed in [10] to solve VSN
coverage problem by deploying each node sequentially and
removing the overlapping nodes. Closed form solutions for
VSN coverage estimation problem are proposed in [11] and
[12] for homogeneous and heterogeneous VSNs respectively.
The latter approach also considers the visual occlusions and
boundary effect. A visual feature extractor, BRISKOLA (Bi-
nary Robust Invariant Scalable Keypoints Optimized for Low-
power ARM architectures), is proposed in [13] by optimising
BRISK [14] for ARM architectures. The proposed approach
can also be used in resource constrained VSNs. Ye et al.
[15] proposed an energy-aware packet interleaving scheme
for robust transmissions within VSNs to improve the end-
to-end image transmission quality and prolong the network
lifetime. In [16], Dai et al. proposed a routing algorithm
by integrating correlation-aware inter-node differential coding
and load balancing schemes. The proposed approach min-
imises the sensor network’s energy consumption under certain
constraints. Authors in [17] proposed camera scheduling and
energy allocation schemes to maximise a VSN’s lifetime. Kim
et al. [18] proposed an energy efficient scheme to maximise
the data quality and lifetime of solar-powered VSNs. A VSN
lifetime maximisation strategy is proposed in [19] that opti-
mises the source rates, encoding powers and routing schemes
to prolong the network’s lifetime. Authors in [20] proposed an
energy efficient relaying scheme for data packets transmission
within the VSN to increase its lifetime.

Although the existing work in literature addresses several
key issues relating to VSNs such as FoV identification, cov-
erage estimation, feature extraction, camera scheduling and
transmission; it is found that the existing solutions are appli-
cation specific under particular resource constrained scenarios.
Furthermore, many existing solutions have limited application

capabilities as they assume a homogeneous network during the
design phase. In this paper, an energy efficient FoV character-
isation framework is proposed that exploits the heterogeneity
of the network to obtain a design solution suitable for a diverse
range of applications.

III. VISUAL SENSOR 3D PROJECTION MODEL

The 3D projection model of a visual sensor VS within a
spherical sector is shown in Fig. 1. VS employs directional
sensing and transforms a projection of the 3D scene from R3 to
a 2D image plane in R2. In this model, the projection of the 3D
scene points onto a physical 2D image plane is characterised
by the pinhole camera model. In reality, the physical image
plane lies inside the visual sensor behind its centre. The light
rays hit the image plane through a pinhole and create an upside
down image of the scene within the FoV. In order to simplify
the mathematical model, it is assumed that the physical image
plane lies infront of the sensor’s centre and provides the same
image with respect to the scene within the FoV. The visual
sensor covers a certain part of the spherical area of interest.
The region within the sensor’s 3D FoV is described by the
horizontal FoV (θh) and the vertical FoV (θv) of the sensor;
where θh and θv are the angular extents of the scene measured
horizontally and vertically by the sensor respectively.

In Fig. 1, sensor VS is located at the origin of the cartesian
coordinate system i.e. (0, 0, 0) and the sensor’s optical axis
overlaps onto the y-axis with X = 0 and Z = 0. Within
the context of a homogeneous VSN, where N sensor nodes
are present, each sensor node VSu (u = {1, 2, 3, . . . , N}) is
identified by its location which is described by the cartesian
coordinates (Xu, Yu, Zu), azimuth angle φa and elevation
angle θe. These parameters define sensor distribution within
the network and are tuned to fit the respective areas of interest
within each sensor’s FoV. The origin O2 of the ABCD-plane
intersects the y-axis at (0, R, 0); where R is the distance
between the visual sensor and the ABCD-plane and is known
as the sensing range, w2 is the width of the ABCD-plane
and h2 is its height. For a target object, the sensing range
spans from Rmin to Rmax for a certain acceptable level
of sharpness. Varying R affects the sensor’s coverage area
due to the change in ABCD-plane dimensions. Therefore, R
is a key parameter for FoV characterisation. The width and
height of the physical image plane are represented by w1

and h1 respectively. The physical distance f ∈ R+ between
the sensor’s optical centre and the image plane is known as
the focal length. Each sensor maps P × Q pixels onto the
image plane, where P × Q is known as the resolution of
the sensor. High resolution sensors are capable of observing
a large area within their FoVs and result in reduction of
the number of sensors required for full coverage. However,
such sensors may increase the overall network design cost.
Therefore, the selection of sensors for VSN design requires
careful consideration of all the aforementioned parameters.

IV. PROPOSED FOV CHARACTERISATION FRAMEWORK

The proposed FoV characterisation framework to design
and calibrate energy efficient VSNs is presented in Fig. 2.
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Fig. 1: Visual sensor’s 3D projection model.

Based on the type of VSN, there are two approaches for its
design and calibration: (i) Approach I for homogeneous sensor
networks shown in Fig. 2a (ii) Approach II for heterogeneous
sensor networks shown in Fig. 2b. The proposed framework
consists of image capture, projection modelling, ABCD-plane
modelling, adaptive task classification (for heterogeneous net-
works), feature detection, extraction and FoV characterisation
which are described in the following sections.

A. Image Capture

Each sensor VSu captures an image Iu of dimension P ×Q
which is a function of the following parameters: the range R,
the horizontal FoV θh and the vertical FoV θv .

Iu = F (R, θh, θv) (1)

B. Projection Modelling

As mentioned earlier, a visual sensor projects 3D scene
points onto its image plane. Volume V of the scene within
the sensor’s FoV projected onto its image plane is given by,

V =
4R3 sin θh sin θv

3(1 + cos θh)(1 + cos θv)
(2)

In order to characterise sensor’s coverage, FoV (θh, θv)
is required to be known. The projection modelling approach
is different for homogeneous and heterogeneous networks, as
discussed in the following sections.

(i) Homogeneous Networks (Approach I): A homogeneous
sensor network has identical nodes in terms of their sensing
parameters and hardware capabilities. Using the following
equations [21], FoV (θh, θv) is calculated with prior knowl-
edge of the sensor specifications.

θh = 2arctan

(
w1

2f

)
(3)

θv = 2arctan

(
h1
2f

)
(4)

(ii) Heterogeneous Networks (Approach II): A heteroge-
neous network has two or more types of nodes in terms of
their sensing parameters and hardware capabilities. The nodes
with lower specifications are less costly and consume less
energy. On the other hand, the nodes with higher specifications
can perform tasks with higher reliability but consume more
energy and cost more. Keeping a certain reliability level in a
heterogeneous network, few higher specification nodes can be
used in each cluster along with the lower specification nodes
to reduce the overall network cost.

In the case of using a variety of sensing nodes within
the network, any of the following sensor specifications: (w1,
h1) and (f ) may be unknown and FoV (θh, θv) cannot be
calculated through Approach I. For such case, an alternative
approach is presented for calculating the FoV of each type of
sensor node using the following equations,

θh = 2arctan
(w2

2R

)
(5)

θv = 2arctan

(
h2
2R

)
(6)

This method requires an experimental setup (described later
in Section V) which utilises a known reference distance R =
Rref for FoV calculation.

C. ABCD-plane Modelling

Once θh and θv are known, the dimension of the ABCD-
plane is calculated for a range of values of R i.e. Rmin to
Rmax using the following equations,

w2 = 2R tan

(
θh
2

)
(7)

h2 = 2R tan

(
θv
2

)
(8)

D. Adaptive Task Classification

Heterogeneous networks comprise of sensor nodes with dif-
ferent capabilities and their performance is better as compared
to their homogeneous counterparts due to the classification of



4 IEEE SENSORS JOURNAL, VOL. XX, NO. X, JANUARY 2016

Visual Sensor
Node 1

Visual Sensor
Node 2

Visual Sensor
Node N

Image Capture

Image Capture

Image Capture

Feature
Detection and

Extraction

Feature
Detection and

Extraction

Feature
Detection and

Extraction

RcFeedback

A
B

C
D

-p
la

ne
 M

od
el

lin
g

Fo
V

 C
ha

ra
ct

er
is

at
io

n

Pr
oj

ec
tio

n 
M

od
el

lin
g

(a) FoV Characterisation (Approach I) for homogeneous VSNs

Image Capture
Feature

Detection and
Extraction

Rc , rFeedback

       Node 1
       Node 2

       Node n1V
is

ua
l S

en
so

r 
C

la
ss

 1

       Node 1
       Node 2

       Node n2V
is

ua
l S

en
so

r 
C

la
ss

 2

Image Capture
Feature

Detection and
Extraction

       Node 1
       Node 2

       Node nkV
is

ua
l S

en
so

r 
C

la
ss

 k

Image Capture
Feature

Detection and
Extraction

Pr
oj

ec
tio

n 
M

od
el

lin
g

A
B

C
D

-p
la

ne
 M

od
el

lin
g

A
da

pt
iv

e 
T

as
k 

C
la

ss
ifi

ca
tio

n

Fo
V

 C
ha

ra
ct

er
is

at
io

n
(b) FoV Characterisation (Approach II) for heterogeneous VSNs

Fig. 2: Proposed FoV Characterisation Framework for Energy Efficient VSNs.

sensing and processing tasks assigned to each visual sensor
class based on its sensing capabilities. Adaptive task classifi-
cation is employed by the FoV characterisation framework to
enhance the intelligence of heterogeneous networks. Consider
a heterogeneous sensor network with k sensor classes; each
sensor is denoted by VSl,j such that l = {1, 2, 3, . . . , k}
represents the sensor class and j = {1, 2, 3, . . . , n} represents
nl sensors belonging to a sensing class l. Let n denotes the
maximum number of sensors belonging to a particular sensing
class given by n = max {nl | l = 1, 2, 3, . . . , k}. The sensors
within the VSN can be represented by,

VS =


VS1,1 VS1,2 . . . VS1,n

VS2,1 VS2,2 . . . VS2,n

...
...

. . .
...

VSk,1 VSk,2 . . . VSk,n


Assume the sensor network is divided into clusters and each

cluster head receives control signals from the cluster nodes to

determine whether they are active or inactive. VSl,j is assigned
a value based on the following condition,

VSl,j =


−1, if j > nl

1, if the sensor is active
0, if the sensor is inactive

(9)

Suppose t represents the total sensing and processing tasks
within the VSN. Let an i-dimensional task classification matrix
T such that i = {1, 2, 3, . . . , t} is given by,

T =


T1,1 T1,2 . . . T1,n
T2,1 T2,2 . . . T2,n

...
...

. . .
...

Tk,1 Tk,2 . . . Tk,n


where each Tl,j is given by,

Tl,j =

{
1, if ith task is assigned to sensor VSl,j
0, otherwise

(10)
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In the proposed approach, upto d
√
ke sensor classes are

assigned an ith task; where (d e) refers to the ceiling function.
Let T′i denotes the adaptive ith task classification matrix
which optimises Ti for active sensing nodes within the VSN
and is given by,

T′i =

⌊
1

2

[
Ti ·VS+ J

]⌋
(11)

where J is a k × n all-ones matrix and (b c) refers to the
floor function.

Feedback Rc and r are substituted in (2) to calculate the
required 3D scene coverage Vc of k sensor classes to perform
t tasks and the chosen 3D scene coverage v of k sensor classes
respectively. Algorithm 1 presents the proposed adaptive task
classification scheme that calculates T and then T′ in an
optimised way.

E. Feature Detection and Extraction

Global colour histogram is used for object detection and
feature extraction. It represents the distribution of colours
within each captured image Ii of size P × Q and is given
by [22],

hc(b) =

P∑
x=1

Q∑
z=1

{
1, if Ii(x, z) is in bin b
0, otherwise

(12)

where a colour bin defines a region of particular colour.
In this framework, histogram-based features have been

extracted in YCbCr colour space as it distinguishes the lu-
minance and chrominance. The extracted features have been
analysed and a range of values of Cb and Cr has been
defined to detect a particular object of interest through image
segmentation.

The probability P (E) of a pixel at location (x, z) belonging
to an object of interest is given by,

P (E) =

{
1, if γlCb ≤ Cb ≤ γuCb ∩ γlCr ≤ Cr ≤ γuCr
0, otherwise

(13)
The pixels probabilities are indexed at their respective

locations in the object segmentation matrix Sm. The object
of interest is extracted from Ii by image segmentation using
the following equation [23],

Sg = Ii.Sm (14)

where Sg is the segmented image and (.) refers to the dot
product.

F. FoV Characterisation

The relationship between sensor’s resolution and ABCD-
plane dimensions for a distance R is given by,

dh =
P

w2
; dv =

Q

h2
(15)

where dh is the horizontal and dv is the vertical density
measured in pixels/mm.

As P and Q are constant, it is found that dh ∝ 1/w2

and dv ∝ 1/h2. Increasing the distance R increases w2 and

Algorithm 1 Adaptive task classification scheme for hetero-
geneous networks

Require:
The number of: sensor classes k, sensors of each type nl,
tasks t required to be performed by the VSN; the required
3D scene coverage Vc of k sensor classes to perform t
tasks and the chosen 3D scene coverage v of k sensor
classes.

Ensure:
For ∀ j ∈ {1, 2, 3, . . . , n} and ∀ i ∈ {1, 2, 3, . . . , t}

0 <

k∑
l=1

T ′(l, j, i) ≤ d
√
ke

1: n← max {n1, n2, n3, . . . , nk}
2: VS← ∅
3: s← [−1 1 0 0 0]
4: for l← 1 to k do
5: for j ← 1 to n do
6: if j > nl then
7: VS(l, j)← s1
8: else if sensor is active then
9: VS(l, j)← s2

10: else if sensor is inactive then
11: VS(l, j)← s3
12: end if
13: end for
14: end for
15: T← ∅
16: T′ ← ∅
17: for i← 1 to t do
18: for l← 1 to k do
19: s5 ← k − l + 1
20: if Vc(s5, i) ≥ v(s5) & s4 < d

√
ke then

21: T (s5, 1:n, i)← s2
22: s4 ← s4 + 1
23: else
24: T (s5, 1:n, i)← s3
25: end if
26: end for

27: T′i =

⌊
1

2

[
Ti ·VS+ J

]⌋
28: s4 ← 0
29: end for
30: return T′

h2 which results in the reduction of horizontal and vertical
density. If R goes outside a certain range, the captured image
may not provide sufficient feature descriptors. Hence, the need
arises to propose a criteria for optimised range defined as
the Field-of-View Characterisation Criteria (FoVCC). FoVCC
must ensure the presence of sufficient feature descriptors
within the captured image as well as guarantee optimised
utilisation of resources while maintaining a certain quality.

The proposed FoV characterisation method utilises either
one or a combination of the following parameters: Object Pixel
Occupancy (Opo), Estimation Error (|εd|) and Peak Signal-to-
Noise Ratio (PSNRdB) as discussed in the following sections.
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(i) Object Pixel Occupancy: The number of pixels (Opo)
an object of interest occupies in the image captured from a
particular distance R is derived as,

Opo = A× P

2R tan
(
θh
2

) × Q

2R tan
(
θv
2

) (16)

where A is the area of the object in mm2. Let ξo defines
the required minimum pixel occupancy for a particular applica-
tion, the chosen range R1 of a visual sensor must guarantee the
criteria Opo ≥ ξo and it can be calculated using the following
equation,

R1 =

√
P ×Q×A

4×Opo × tan
(
θh
2

)
× tan

(
θv
2

) (17)

Table I provides the minimum object pixel occupancy
required for various detection algorithms. ξo for face detection
depends on the image size used to train the classifiers. The
detection accuracy calculated on PETS 2005 data set in [24]
with ξo = 25 for LOTS, SGM and MSM is 91.2%, 86.8% and
85.0% respectively.

TABLE I: Required minimum object pixel occupancy for
various detection algorithms

Detection Method ξo

Viola-Jones face detector [25] 315
Lehigh Omnidirectional Tracking System (LOTS) [26] 25

Single Gaussian Model (SGM) [27] 25
Multiple Gaussian Model (MGM) [28] 25

(ii) Estimation Error: Increasing range R1 reduces the
object pixel occupancy Opo which may lead to detec-
tion/estimation error. Hence, the need arises to provide a
method for the estimation of maximum sensing range based on
a certain acceptable error tolerance level. In order to propose
such method, an application that estimates the detected object’s
diameter from the acquired visual data is considered.

After feature detection, if Opo denotes the number of pixels
representing the detected object; the framework estimates
pixels representing the diameter pd by,

pd = 2

√
Opo
π

(18)

The diameter de of the object is estimated by,

de =
4R tan

(
θh
2

)
P

√
Opo
π

(metres) (19)

If da is the actual measured diameter of the object of
interest, the absolute percentage estimation error |εd| is given
by,

|εd| =
|da − de|

da
× 100 (%) (20)

It is expected that as the range increases, the estimation
error will increase. Let ξd defines the maximum acceptable
estimation error in percentage for a particular application, the
chosen range R2 of a visual sensor must guarantee the criteria
|εd| ≤ ξd.

Substituting (19) in (20), the range R2 can be calculated
using the following equation,

R2 =

[√
π

Opo

][
Pda

4 tan
(
θh
2

)][1− |εd|
100

]
(21)

The above equation is valid for |εd| 6= 100%.
(iii) PSNR: Suppose image I1 of dimension P × Q is

captured at a distance Rp which contains a particular object
of interest. The aforementioned histogram-based feature ex-
traction scheme is employed to extract the region of interest
containing only the object under consideration in the form of
image I′1 of dimension P ′ × Q′. As I′1 contains the object
captured at distance Rp, the dimension Ps × Qs of image
Is containing the extracted object at distance Rs (such that
Rs > Rp) is estimated by,

Ps = P ′
(
w
Rp

2

wRs
2

)
; Qs = Q′

(
h
Rp

2

hRs
2

)
(22)

where w
Rp

2 , wRs
2 , hRp

2 and hRs
2 are calculated using (7)

and (8). As Ps < P ′ and Qs < Q′, the object captured and
extracted at distance Rs appears smaller in size. In order to
measure the quality, I′1 and Is are compared to find the Peak
Signal-to-Noise Ratio (PSNR) value. As PSNR requires both
images to have the same size, Is is resized to P ′ ×Q′. First,
Mean Squared Error (MSE) is calculated and then the PSNR.

MSE =
1

3P ′Q′

P ′∑
x=1

Q′∑
y=1

[
I ′1(x, y)− Is(x, y)

]2
(23)

PSNRdB = 10× log10

(
MAX2

I′1

MSE

)
(24)

where MAX2
I′1

is the maximum possible pixel value in I′1.
Let ξp defines the required minimum PSNRdB for a par-

ticular application, the chosen range R3 of a visual sensor
must guarantee the criteria PSNRdB ≥ ξp. As this method is
based on image quality assessment, an experiment needs to be
conducted to find the range R3 from graph analysis which is
discussed later in Section V.

Apart from PSNRdB, there are many other image quality
assessment methods such as [29, 30] that can be used with
the proposed FoV characterisation framework based on their
respective confidence bounds for sensing range estimation.

The selection of one or more characterisation methods
depends on the application and the design criteria. The applica-
tion where design considers the detection method’s minimum
pixel requirement, object pixel occupancy based method is
used. If the design criteria depends on a particular tolerance
level, then estimation error based method is used. The design
considering image quality utilises the PSNR based method.

Let Rc defines the chosen value of sensor’s range, the FoV
Characterisation Criteria (FoVCC) is proposed as,

Rc =


R1 if Opo ≥ ξo
R2 if |εd| ≤ ξd
R3 if PSNRdB ≥ ξp

(25)
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The sensing range for applications where the design engi-
neer utilises more than one characterisation method is selected
by Rc = min{R1, R2, R3}. The designed VSN’s FoV is said
to be optimised based on the following criteria,{

Rc = R1 ∪Rc = R2 ∪Rc = R3 Optimised
Rc 6= R1 ∩Rc 6= R2 ∩Rc 6= R3 Unoptimised

(26)

G. Adaptive Range Selection

(i) Hard decision based sensing range selection: In homo-
geneous network design that considers t tasks to be performed
within the VSN, sensing range {Rc(i) | i = 1, 2, 3, . . . , t} is
required to be calculated for each task. The sensing range Rc
can be obtained by hard decision as shown below,

Rc = min {Rc(1), Rc(2), Rc(3), . . . , Rc(t)} (27)

The chosen sensing range Rc is the feedback to projection
modelling.

In the case of heterogeneous network design, Rc of di-
mension k × t is the feedback to projection modelling which
provides the estimated sensing range of k sensor classes for t
tasks.

Rc =


Rc(1,1) Rc(1,2) . . . Rc(1,t)
Rc(2,1) Rc(2,2) . . . Rc(2,t)

...
...

. . .
...

Rc(k,1) Rc(k,2) . . . Rc(k,t)


Sensing range r(l) can be calculated for each sensor class

by hard decision as shown below,

r(l) = min {Rc(l,1), Rc(l,2), Rc(l,3), . . . , Rc(l,t)} (28)

The individual sensing range values for different sensor
classes obtained through hard decision can be represented
collectively by r as,

r = [r(1), r(2), . . . , r(k)]
T (29)

where [·]T refers to transpose. The proposed hard decision
based scheme is suitable for homogeneous networks as they
have identical sensor nodes and hard decisions need to be
made for sensing range selection. However, the hard deci-
sion based scheme for heterogeneous networks does not take
advantage of the multiple sensor classes present within the
network. The approach provides the minimum range for each
sensor class and does not prolong the network lifetime by
maximising the sensing range. To maximise the sensing range
and prolong the lifetime of heterogeneous networks, a soft
decision based scheme for sensing range selection is proposed
in the following section.

(ii) Soft decision based sensing range selection: A soft
decision based sensing range selection scheme is proposed
in Algorithm 2 which calculates a suitable range r(·) for
each sensor class based on the estimated Rc. The algorithm
provides range r for k sensor classes by maximising it for
(k − d

√
ke) sensor classes.

Algorithm 2 Proposed soft decision based sensing range
selection scheme for heterogeneous network design

Require:
The number of: sensor classes k, sensors of each type
nl, tasks t required to be performed by the VSN; Rc

providing the estimated sensing range of k sensor classes
for t tasks.

Ensure:
For d

√
ke values of l ∈ {1, 2, 3, . . . , k} and ∀ i ∈

{1, 2, 3, . . . , t}
r(l) ≤ Rc(l,i)

1: s1 = ∅
2: for l← 1 to k do

3: s1 ←
t∑
i=1

Rc(l,i)

4: end for
5: s2 ← Sort s1 in ascending order
6: s3 ← First d

√
ke values’ indices from s2

7: for l← 1 to k do
8: if l ∈ s3 then
9: r(l)← min {Rc(l,1), Rc(l,2), Rc(l,3), . . . , Rc(l,t)}

10: else if l /∈ s3 then

11: r(l)←
(
1

t

)
×

t∑
i=1

Rc(l,i)

12: end if
13: end for
14: return r

V. EXPERIMENTAL SETUP AND RESULTS

A. Image Capture

Specification of the visual sensor used for experiments is
presented in Table II.

TABLE II: Visual sensor specification

Parameter Specification

Imaging device 3.6mm (1/5 type) CMOS sensor
Focal length 3.2mm
Resolution 2304×1728 pixels
Pixel size 1.25µm×1.25µm

Sensor dimensions 2.88mm×2.16mm

B. Projection Modelling utilising Approach I

Using Projection Modelling Approach I for homogeneous
VSNs, after substituting focal length (f) and sensor dimen-
sions (w1 × h1) in (3) and (4), the calculated values of
horizontal and vertical FoVs are: θh = 48.39◦, θv = 37.25◦

respectively.

C. Projection Modelling utilising Approach II

As mentioned in Section IV, in the case of a heterogeneous
network with some unknown sensor specifications, (3) and (4)
cannot be used. Therefore, an experiment has been conducted
utilising Projection Modelling Approach II outlined in the
proposed estimation framework to calculate θh and θv . In order
to measure the accuracy of the calculated FoV values from
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Projection Modelling Approach II, they will be compared with
those calculated from Projection Modelling Approach I. The
experimental procedure is described in Table III.

TABLE III: Experiment 1 procedure

Procedure: Experiment 1

1: The visual sensor is placed near a wall at a certain height ht
and a known reference distance Rref without any tilt or pan.

2: A certain portion of the wall is captured within the sensor’s
FoV.

3: The width w2 and height h2 of the wall’s portion within the
FoV are measured for Rref.

4: Using (5) and (6), θh and θv are calculated.
5: Steps 1 to 4 are repeated for a set of values of Rref to

guarantee the accuracy of the calculated θh and θv values.

The experimental results for six cases have been sum-
marised in Table IV; where each case is distinguished by its
reference distance Rref.

TABLE IV: FoV calculation utilising Projection Modelling
Approach II

Parameter Case Case Case Case Case Case Average
1 2 3 4 5 6

Rref 0.27m 0.30m 0.45m 0.68m 0.92m 1.91m -

w2 0.24m 0.27m 0.40m 0.61m 0.82m 1.72m -

h2 0.18m 0.20m 0.30m 0.46m 0.62m 1.29m -

ht 1.04m 1.04m 1.04m 1.04m 1.04m 1.04m -

θh 48.37◦ 48.38◦ 48.43◦ 48.41◦ 48.29◦ 48.48◦ 48.39◦

θv 37.11◦ 37.23◦ 37.29◦ 37.30◦ 37.16◦ 37.40◦ 37.25◦

φa 41.54◦ 41.54◦ 41.54◦ 41.54◦ 41.54◦ 41.54◦ -

θe 52.75◦ 52.75◦ 52.75◦ 52.75◦ 52.75◦ 52.75◦ -

Based on the experimental results it is found that the error
for each case is negligible and by averaging the estimated
values, the projection modelling approach II leads to accurate
FoV measurements.

D. ABCD-plane Modelling
ABCD-plane modelling plays a vital role for FoV char-

acterisation. As θh and θv have been calculated, extensive
numerical simulations have been performed for ABCD-plane
modelling utilising (7) and (8) for a range of values of R. The
simulation results are presented in Fig. 3. From the results,
it is found that increasing the sensing range increases the
ABCD-plane’s width (w2) and height (h2) as well. In this case,
w2 > h2 for any value of R due to the fact that θh > θv .

E. Feature Detection and Extraction
Using the global colour histogram, the probability P (E) of

a pixel at location (x, y) belonging to the object of interest is
found to be,

P (E) =

{
1, if 43 ≤ Cb ≤ 90 ∩ 138 ≤ Cr ≤ 159

0, otherwise
(30)

After dataset creation (discussed in the following section)
probability P (E) can be used for feature detection and ex-
traction.
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Fig. 3: ABCD-plane modelling.

F. FoV Characterisation

Although the FoV characterisation depends on several fac-
tors, sensing range (R) is the key parameter for the characteri-
sation process. The sensing range estimation and optimisation
requires practical measurements and simulations. The experi-
mental procedure for these calculations is described in Table
V.

TABLE V: Experiment 2 procedure

Procedure: Experiment 2

1: A particular type of feature needs to be considered based on
the desired application. In this experiment, colour features are
considered.

2: Images of objects under consideration are captured for a range
of values of R.

3: The captured images are processed to classify those contain-
ing sufficient colour feature descriptors.

4: A particular value of Rc is chosen for VSN design based on
the FoVCC.

In order to estimate the sensing range for optimised FoV
characterisation, a dataset is created by capturing objects for
a range of values of R i.e. 0.25m to 9.55m. Sensing range
can be estimated for optimised FoV characterisation using
one or a combination of the following parameters: object
pixel occupancy, estimation error, PSNR. The experimental
and simulation results for FoV characterisation are presented
and analysed in the following sections.

(i) Object Pixel Occupancy: Fig. 4 shows a comparison of
the theoretical and experimental object pixel occupancy for a
range of values of R with A = 34cm2 for a homogeneous test
object. The theoretical results are obtained from (16) whereas,
the experimental results are achieved by extracting the object
of interest from the captured images (using P (E) for feature
detection and extraction) and counting the pixels it occupies.

It has been noticed that increasing the sensing range de-
creases the object pixel occupancy. It is evident from the graph
that the object pixel occupancy estimated by the proposed
method matches with the experimental results. The proposed
object pixel occupancy based characterisation method provides
FoV based mapping between the sensing range and the object
pixel occupancy and it can be used to estimate an optimised
sensing range based on the application’s object pixel occu-
pancy requirement.
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As an example, a face detection application [25] requires
object pixel occupancy to be atleast 315 pixels i.e. Opo ≥ 315,
the acceptable sensing range in that case will be R1 ≤ 4.05m.

(ii) Estimation Error: Using (19), Fig. 5 presents a compar-
ison of actual and estimated diameter for images captured for a
range of values of R. The absolute percentage estimation error
|εd| is shown in Fig. 6. It has been noticed from Fig. 6 that as
the range increases, the estimation error increases. This is due
to the fact that the object of interest appears too small beyond
a certain range which leads to inaccurate feature detection
and extraction results. As an example, suppose a particular
application can tolerate maximum 6% error i.e. |εd| ≤ 6%,
the acceptable sensing range will be R2 ≤ 6.76m.

(iii) PSNR: This method utilises an image quality assess-
ment technique for FoV characterisation. Fig. 7 shows the
estimated PSNRdB for a range of values of R and it has been
noticed that as the range increases, the PSNRdB decreases.
As PSNRdB is an index for image quality assessment, this
method can assist the design engineer to tune the network for
a suitable image quality. As an example, an image transmission
application [31] requires PSNRdB to be atleast 30dB i.e.
PSNRdB ≥ 30dB, the acceptable sensing range in that case
will be R3 ≤ 9.55m.

G. Adaptive Range Selection
(i) Homogeneous Networks: Consider a homogeneous net-

work design for a surveillance application that requires t = 2
tasks to be performed within the VSN i.e. face detection
[25] (Task I) and occluded target surveillance and tracking
[26] (Task II). Suppose a medium resolution sensor with the
following parameters: P × Q = 640 × 480, θh = 48.39◦

and θv = 37.25◦ is selected for the VSN design. Let the
object pixel occupancy based characterisation method is used
with required minimum Opo = 315 and Opo = 25 for Task
I and Task II respectively. The area (A) to be considered for
detection is found to be 406cm2 for Task I and 3922.6cm2 for
Task II. By substituting these parameters in (17), the sensing
range estimated for Task I is Rc1 = 8.09m and for Task II is
Rc2 = 89.21m. According to the hard decision based sensing
range selection method for homogeneous networks, the chosen
sensing range Rc is min {Rc1, Rc2} i.e. Rc = 8.09m. The
chosen range Rc is a feedback to projection modelling and it
is also used to find the number of active sensor nodes (Na)
required within the VSN to perform the desired tasks.

(ii) Heterogeneous Networks: Now consider a heteroge-
neous network that has to perform the same t = 2 tasks de-
scribed earlier for homogeneous network. Suppose the network
consists of the following k = 3 sensor classes: a low resolution
sensor with P ×Q = 320× 240, a medium resolution sensor
with P × Q = 640 × 480 and a high resolution sensor with
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TABLE VI: A comparison of task classification using four different cases for a network consisting of k = 3 sensor classes
performing t = 2 tasks

Sensor Sensor HD (Type 1) HD (Type 2) SD (Type 1) SD (Type 2)
class type Case 1 Case 2 Case 3 Case 4

Task I Task II Task I Task II Task I Task II Task I Task II

1 low 1 1 0 0 1 1 1 0
resolution

2 medium 1 1 1 1 1 1 1 1resolution

3 high 1 1 1 1 0 1 0 1resolution

P×Q = 2304×1728. The horizontal FoV (θh) and the vertical
FoV (θv) are assumed to be same for k = 3 sensor classes
and are given by θh = 48.39◦ and θv = 37.25◦. Again, object
pixel occupancy based characterisation method is considered
with the same Opo and A values described earlier for the
homogeneous network scenario.

In this case, the matrix Rc which is the feedback to
projection modelling is found to be,

Rc =

 Rc11 Rc12
Rc21 Rc22
Rc31 Rc32

 =

 4.05 44.60
8.09 89.21
29.12 321.16


In this design solution, Rc is calculated in metres.

Using the hard decision based sensing range selection
scheme, the chosen range is calculated (in metres) to be
r = [r(1), r(2), r(3)]

T
= [4.05, 8.09, 29.12]

T. The range
computed using the soft decision based scheme is r =
[4.05, 8.09, 175.14]

T.
This vector r is also a feedback to projection modelling.

It can be observed from the comparison of r computed using
the hard and soft decision based approaches that the latter
maximises the sensing range for (k − d

√
ke)
∣∣
k=3

sensor
classes. The hard decision based approach computed r(3) to
be 29.12m whereas, the soft decision based scheme calculated
r(3) to be 175.14m. This shows that the soft decision based
scheme maximised the range approximately 6 times compared
to the hard decision based approach.

H. Sensor’s 3D Coverage Estimation

The sensor’s 3D coverage volume can be calculated from
(2) by substituting θh and θv for a suitable sensing range R.

In the case of homogeneous sensor networks, feedback Rc
is utilised for projection modelling. Considering the homo-
geneous network design solution presented in the previous
section and using (2), the chosen sensing range Rc = 8.09m
leads to 3D coverage volume 106.90m3.

On the other hand, heterogeneous networks require feedback
Rc and r for projection modelling. Considering the hetero-
geneous network design solution presented earlier and using
(2), feedback Rc leads to the following required 3D scene
coverage Vc (in m3) of k = 3 sensor classes to perform t = 2
tasks.

Vc =

 13.41 1.79× 104

106.90 1.43× 105

4.99× 103 6.69× 106



After calculating r using the hard decision based scheme,
the chosen 3D scene coverage v (in m3) of k = 3 sensor
classes is found to be v =

[
13.41, 106.90, 4.99× 103

]T
. Sim-

ilarly, after calculating r using the soft decision based scheme,
the chosen 3D scene coverage v (in m3) of k = 3 sensor
classes is found to be v =

[
13.41, 106.90, 1.08× 106

]T
.

I. Adaptive Task Classification

In the proposed adaptive task classification scheme for het-
erogeneous networks, upto d

√
ke sensor classes are assigned

a certain task. Considering the heterogeneous design solution
presented earlier, d

√
ke
∣∣
k=3

evaluates to the allocation of 2
sensor classes for each task. The proposed scheme utilises Vc

and v (calculated from the soft decision based sensing range
selection scheme) for task classification.

In order to analyse the proposed task classification scheme,
four different cases are compared. These are being hard
decision based approach without d

√
ke upperbound (case 1),

hard decision based approach with d
√
ke upperbound (case 2),

soft decision based approach without d
√
ke upperbound (case

3) and soft decision based approach with d
√
ke upperbound

(case 4).
Table VI summarises the task classification results for these

cases where ‘Task I’ refers to face detection, ‘Task II’ refers
to occluded targets surveillance and tracking, ‘1’ refers to an
allocated task and ‘0’ refers to an unallocated task.

Case 1 for task classification leads to a trivial solution
where each sensor class has to perform every single desired
task. Clearly, this is not a desired solution for VSN design.
Although, case 2 provides a better solution as compared to
case 1, it totally neglects the sensor class 1 by not allocating
even a single task. It can be noticed that the task classification
solution from case 2 will always neglect (k − d

√
ke) sensor

classes due to the hard decision. The solution obtained from
case 3 is somewhere between the solutions of case 1 and case
2. Utilising the proposed soft decision based approach with
d
√
ke upper bound suggested in the proposed framework for

task classification, case 4 leads to a promising solution. It is
clear from the allocation results that this case provides opti-
mised and the most suitable solution to the task classification
problem by utilising all the sensor classes intelligently. An
analysis of the energy efficiency of these cases is presented in
the following section which will further justify the superiority
of case 4 over its counterparts.
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VI. ENERGY EFFICIENCY OF THE PROPOSED FRAMEWORK

Consider a visual sensor network that requires Na active
nodes to cover an area of size 100× 100m2. The number of
nodes Na required to be active depends on: the chosen sensing
range Rc for homogeneous networks, or the chosen sensing
range r of k sensor classes for heterogeneous networks.

To validate the proposed framework which provides opti-
mised energy consumption within certain desired confidence
bounds, an energy-measurement testbed employed in [32] is
considered. Each visual node within the testbed consists of a
multimedia subsystem and a radio subsystem. The testbed’s
parameters are listed in Table VII.

TABLE VII: Energy-measurement testbed’s parameters

Parameter Value

Image acquisition cost 5.00 x 10−3 J
Initialising cost (JPEG) 1.40 x 10−2 J

Overall JPEG acquisition cost 1.90 x 10−2 J
Transmission cost 2.20 x 10−7 J/bit

Receiving cost 2.92 x 10−6 J/bit

Suppose EAcq , ETx and ERx denote the energy consump-
tion of a single visual node to acquire, transmit and receive
a single image frame respectively. Consider a scenario where
each node within the VSN acquires, transmits and receives one
image frame, the overall acquisition, transmission or receiving
cost is given by,

Ẽq = Na × Eq ; q ∈ {Acq, Tx,Rx} (31)

The total energy consumption within the VSN will be,

Ec = Na × (EAcq + ETx + ERx) (32)

The energy efficiency of the proposed framework for both
homogeneous and heterogeneous networks is discussed in the
following sections.

A. Homogeneous Networks

Consider a homogeneous network for a surveillance appli-
cation that utilises a sensor with the following parameters:
P × Q = 320 × 240, θh = 48.39◦ and θv = 37.25◦. A
comparison of image acquisition, transmission and receiving
costs for different sensing range values is shown in Fig. 8.
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Fig. 8: A comparison of JPEG image acquisition, transmission
and receiving cost for different sensing range values .

It is found from the results that increasing the sensing range
results in less number of required active nodes leading to
reduced energy consumption. However, if the sensing range
goes beyond a certain threshold, the sensor may not provide
accurate feature descriptors and may lead to miss detections. In
that case, the proposed framework can be used for application-
aware sensing range estimation during the VSN design and
calibration process. It maximises the spatial coverage leading
to the reduced energy consumption configuration without
compromising on the desired accuracy. Moreover, reducing
the energy consumption will prolong the network’s lifetime.

Table VIII lists the estimated sensing range for various
applications based on certain criteria along with the number
of required active nodes Na and the total energy consumption
Ec within the VSN. The applications are listed in descending
order of their energy consumption. The results show that the
application-aware proposed FoV characterisation framework
estimates the sensing range based on the desired criteria
to maximise the spatial-coverage within the VSN and thus
optimises the energy consumption. Suppose the lifetime of a
VSN employing face detection algorithm is LT. It is evident
from the results that the proposed approach leads to 2.78 −
112.92 times increased VSN lifetime for other applications in
comparison with the first. The proposed framework has also
optimised the number of required active nodes Na leading
to reduced energy consumption configuration. The LOTS
method proposed in [26] for occluded targets surveillance
and tracking finds its applications in military where energy
efficiency is highly desirable. As shown in the results, utilising
the proposed approach with LOTS has resulted in optimised
energy consumption. Hence, the application-aware sensing
range estimation from the proposed approach makes it suitable
for a wide range of applications and it can be utilised to design
and calibrate an energy efficient VSN.

B. Heterogeneous Networks

Heterogeneous networks provide much more flexibility to
the design engineer compared to the homogeneous networks
due to the presence of different types of sensor nodes within
the network. The analysis of energy efficiency presented in the
previous section for homogeneous networks considered the de-
sign solution for four different applications. For heterogeneous
networks, suppose t̂ represents the number of tasks allocated to
a sensing class; the task classification solutions obtained from
four different cases given in Table VI are used to analyse the
energy efficiency of the proposed framework and the results
are presented in Table IX.

It is found from the results that the proposed soft decision
based sensing range selection scheme with d

√
ke upper bound

for task classification maximised the spatial coverage and
allocated tasks efficiently that lead to the minimum energy
consumption configuration. The proposed task classification
solution presented in case 4 minimises the energy consumption
to 8 kJ and doubles the network’s lifetime compared to case
1. The energy savings with the solution presented in case 4
compared to case 1, case 2 and case 3 are 49.8%, 25.0% and
24.8% respectively.
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TABLE VIII: Application-aware sensing range estimation and energy consumption

Application Characterisation Criteria Range and Gain Network
method energy lifetime

Face detection [25] object pixel occupancy
based Opo ≥ 315

R1 = 4.05m
− LTNa = 1355

Ec = 2.64 kJ

Feature extraction & size
estimation estimation error based |εd| ≤ 6%

R2 = 6.76m
64.06% LT × 2.78Na = 487

Ec = 948.78 J

Image transmission using
IEEE 802.15.4a [31] PSNR based PSNRdB ≥ 30dB

R3 = 9.55m
81.99% LT × 5.55Na = 244

Ec = 475.36 J

Occluded targets
surveillance & tracking
[26]

object pixel occupancy
based Opo ≥ 25

R1 = 44.60m
99.11% LT × 112.92Na = 12

Ec = 23.38 J

TABLE IX: Analysis of the energy efficiency of the proposed framework for heterogeneous network design

Sensor Sensor HD (Type 1) HD (Type 2) SD (Type 1) SD (Type 2)
class type Case 1 Case 2 Case 3 Case 4

1
r(1) = 4.05m r(1) = 4.05m r(1) = 4.05m r(1) = 4.05m

low t̂ = 2 t̂ = 0 t̂ = 2 t̂ = 1
resolution Na = 1355 Na = 0 Na = 1355 Na = 1355

Ec = 5.28 kJ Ec = 0 J Ec = 5.28 kJ Ec = 2.64 kJ

2

r(2) = 8.09m r(2) = 8.09m r(2) = 8.09m r(2) = 8.09m
medium t̂ = 2 t̂ = 2 t̂ = 2 t̂ = 2

resolution Na = 340 Na = 340 Na = 340 Na = 340
Ec = 5.26 kJ Ec = 5.26 kJ Ec = 5.26 kJ Ec = 5.26 kJ

3

r(3) = 29.12m r(3) = 29.12m r(3) = 175.14m r(3) = 175.14m
high t̂ = 2 t̂ = 2 t̂ = 1 t̂ = 1

resolution Na = 27 Na = 27 Na = 27 Na = 27
Ec = 5.40 kJ Ec = 5.40 kJ Ec = 100 J Ec = 100 J

Overall energy 15.94 kJ 10.66 kJ 10.64 kJ 8 kJconsumption

Network LT LT × 1.5 LT × 1.5 LT × 2lifetime

VII. ANALYSIS OF SYSTEM FAILURE

After the design process, the VSN is expected to perform
tasks within a certain confidence bound. Let ζl to ζu be
the dynamic PSNR range in dB for a particular application
and δ1 = antilog

(
− ζu

10

)
− antilog

(
− ζl

10

)
be the dynamic

difference. Suppose λt denotes the threshold for system quality
assessment representing the desired PSNR in dB. The proba-
bility that a system with quality β (representing the achieved
PSNR in dB) will fail to perform a certain task is derived as,

P (λt > β) =

0 if λt < β
δ2
δ1

if λt ≥ β
(33)

where δ2 = antilog
(
− λt

10

)
− antilog

(
− β

10

)
Fig. 9 shows an analysis of system failure for several values

of λt. It can be observed from the graph that the system failure
probability is maximum when λt and β are at the opposite ends
of the dynamic PSNR range. The system failure probability
reduces when λt and β lies between the dynamic range and
minimises to zero when λt < β.
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Fig. 9: Analysis of system failure.

VIII. CONCLUSION

In this paper, the issues of FoV characterisation and task
classification for VSNs are addressed. A novel framework for
the FoV characterisation of homogeneous and heterogeneous
networks is proposed. For a given reliability, the proposed
framework defines the criteria, referred to as the “Field-of-
View Characterisation Criteria”, which estimates the optimal
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sensing range of a visual sensor node. For any given applica-
tion, the proposed solution for FoV characterisation enhances
the spatial coverage, optimises the energy consumption and
increases the lifetime in homogeneous networks. This paper
also proposes adaptive task classification and soft decision
based sensing range selection schemes for heterogeneous net-
works. The configuration of heterogeneous network obtained
by utilising the proposed FoV characterisation framework with
the task classification and sensing range selection schemes for
a surveillance application resulted in 49.8% energy savings
compared to the trivial design solution. Based on the required
and achieved quality of the captured image by a visual sensor
node, an analysis of system failure is presented to predict and
minimise the network failure probability. The energy efficiency
of the proposed FoV characterisation framework demonstrates
that it can be utilised during the network design and calibration
phase to achieve an application-aware solution. Furthermore,
the proposed framework provides simplified direction to future
research within the context of homogeneous and heteroge-
neous VSN design. For the future extension of this work, the
authors intend to develop generalised adaptation models of
feature detection and extraction schemes for realisation with
the proposed framework.
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