Adaptive Compressive Sensing for Target Tracking within Wireless Visual Sensor Networks-based Surveillance applications
Fayed, Salema and Youssef, Sherin and El-Helw, Amr and Patwary, Mohammad and Moniri, Mansour (2015) Adaptive Compressive Sensing for Target Tracking within Wireless Visual Sensor Networks-based Surveillance applications. Multimedia Tools and Applications, 75 (11). pp. 6347-6371. ISSN 1380-7501
Preview |
Text
OA Adaptive compressive.pdf - Accepted Version Download (1MB) |
Abstract
Wireless Visual Sensor Networks (WVSNs) have gained significant importance in the last few years and have emerged in several distinctive applications. The main aim is to design low power WVSN surveillance application using adaptive Compressive Sensing (CS) which is expected to overcome the WVSN resource constraints such as memory limitation, communication bandwidth and battery constraints. In this paper, an adaptive block CS technique is proposed and implemented to represent the high volume captured images in a way for energy-efficient wireless transmission and minimum storage. Furthermore, to achieve energy-efficient target detection and tracking with high detection reliability and robust tracking, to maximize the lifetime of sensor nodes as they can be left for months without any human interactions. Adaptive CS is expected to dynamically achieve higher compression rates depending on the sparsity nature of different datasets, while only compressing relative blocks in the image that contain the target to be tracked instead of compressing the whole image. Hence, saving power and increasing compression rates. Least mean square adaptive filter is used to predicts target's next location to investigate the effect of CS on the tracking performance. The tracking is achieved in both indoor and outdoor environments for single/multi targets.
Results have shown that with adaptive block CS up to 31% measurements of data are required to be transmitted while preserving the required performance for target detection and tracking.
Item Type: | Article |
---|---|
Additional Information: | The final publication is available at Springer via https://doi.org/10.1007/s11042-015-2575-8 |
Identification Number: | 10.1007/s11042-015-2575-8 |
Dates: | Date Event 7 May 2015 Published Online 19 March 2015 Accepted |
Uncontrolled Keywords: | Adaptive Compressive Sensing , Compressive sensing, LMS Surveillance applications, Target tracking, WVSN |
Subjects: | CAH11 - computing > CAH11-01 - computing > CAH11-01-01 - computer science |
Divisions: | Faculty of Computing, Engineering and the Built Environment Faculty of Computing, Engineering and the Built Environment > College of Computing |
Depositing User: | Ian Mcdonald |
Date Deposited: | 07 Mar 2017 11:25 |
Last Modified: | 22 Mar 2023 12:01 |
URI: | https://www.open-access.bcu.ac.uk/id/eprint/3989 |
Actions (login required)
![]() |
View Item |