A New Wave: A Dynamic Approach to Genetic
Programming

David Medernach
BDS Group
CSIS Department
University of Limerick

david.medernach@ul.ie

Jeannie Fitzgerald
BDS Group
CSIS Department
University of Limerick

jeannie.fitzgerald@ul.ie

R. Muhammad Atif Azad
BDS Group
CSIS Department
University of Limerick

atif.azad@ul.ie

Conor Ryan
BDS Group
CSIS Department
University of Limerick

conor.ryan@ul.ie

ABSTRACT

Wave is a novel form of semantic genetic programming which
operates by optimising the residual errors of a succession of
short genetic programming runs, and then producing a cu-
mulative solution. These short genetic programming runs
are called periods, and they have heterogeneous parame-
ters. In this paper we leverage the potential of Wave’s het-
erogeneity to simulate a dynamic evolutionary environment
by incorporating self adaptive parameters together with an
innovative approach to population renewal. We conduct an
empirical study comparing this new approach with multiple
linear regression (MLR) as well as several evolutionary com-
putation (EC) methods including the well known geometric
semantic genetic programming (GSGP) together with sev-
eral other optimised Wave techniques. The results of our
investigation show that the dynamic Wave algorithm deliv-
ers consistently equal or better performance than Standard
GP (both with or without linear scaling), achieves testing
fitness equal or better than multiple linear regression, and
performs significantly better than GSGP on five of the six
problems studied.

CCS Concepts

eComputing methodologies — Genetic programming;
Genetic algorithms;

Keywords

Natural Selection, Semantic GP, Genetic Programming, Sym-
bolic Regression, Self-adaptation, ensembles, residuals

1. INTRODUCTION

A significant proportion of recent research on genetic pro-
gramming (GP) [11] has focused on designing genetic op-
erators that are aware of the semantics of the evolving in-
dividuals. Wave [13] is a form of GP which shares some
similarities with semantic GP methods such as Sequential
Symbolic Regression (SSR) [19]. As with SSR, rather than
using a single run, Wave employs a succession of runs that
produce a cumulative solution by training on the residual
errors of previous runs. In Wave [14], these runs are called
periods. The final output of Wave then is a joint solution
which is an algebraic sum of the best evolved solutions from
different periods. This idea of restarting runs in the form
of a period to optimise the residual is necessitated by the
empirical observation that the rate of fitness gain in GP,
typically, is at its highest during the early generations and
levels off towards the end of a run; moreover, as the fit-
ness gains recede, bloat co-occurs: bloat is an increase in the
average size of the population without a significant fitness
gain. In contrast, Wave starts another period when it de-
tects that the rate of improvement has slowed down. Since
we optimise the residuals in each successive period, the pre-
viously discovered semantics of the developing joint-solution
guide further evolution. Therefore, Wave, like SSR, belongs
to the class of semantics-guided GP or simply semantic GP.

Wave also employs heterogeneous configurations across its
periods, for example, different periods may span a different
number of generations depending upon how well a period
has been progressing, and may or may not choose to use lin-
ear scaling [10] to optimise the slope and the intercept of the
evolving functions. Medernach et al. [13] have shown that
Wave is an effective method for solving regression problems
and experimented with various Wave setups that used differ-
ent population sizes. They reported that the most successful
configuration used a population of 500 individuals and alter-
nated between periods with and without linear scaling, with
linear scaling activated at the first period.

While empirical results necessitate the Wave approach, its
design is strongly rooted in lessons from biological evolution.
One such idea is the punctuated equilibrium [7] which ob-
serves that evolution in the living world is not linear, rather
it alternates between a succession of periods of stasis and

rapid change. Wave seeks to emulate this dynamic evolu-
tionary environment by simulating periods of rapid change
using mechanisms inspired by evolutionary biology. These
mechanisms are saltationism [3] where a saltation is defined
as non gradual modifications of the genotype — macromu-
tations, and ecological change [15]; both saltationism and
ecological change may promote rapid speciation. Wave de-
picts saltationism in an EC context by starting each new
period with a new population and by modifying the objec-
tive function at the beginning of each Wave period to model
an environmental change event. The reintialisation of pop-
ulation and a changing objective function across periods in
Wave also reconcile with an idea developed by McClintock
[12] which suggests that environmentally induced stressful
conditions may trigger an adaptive response, leading to mas-
sive genetic variations in the genomes of plants. In [9], the
authors suggest that these variations will be triggered by epi-
genetic mechanisms responsive to the stress, and that this
trigger response mechanism may be fairly common in bio-
logical evolution.

We hypothesise that modifying Wave further such that
to bring it closer to the themes which inspired it and are
successful in biological evolution may allow us to simulate
a dynamic evolutionary environment which may yield im-
proved performance.

In the punctuated equilibrium model of evolutionary biol-
ogy, stasis is defined as a period of little or no evolutionary
change in a species. Effective detection of stasis is critical
in Wave so as to conserve the computational effort by stop-
ping a period. Once a period stops, the best individual from
that period may be incorporated into the joint solution if it
improves the joint solution in some fashion. However, if a
period stops too early, selection may not have sufficient time
to effectively optimise, whereas if the period stops too late, it
only wastes computation cycles while the population bloats
and potentially over-fits the training data. Thus, in this pa-
per, we explore a smart, adaptive stopping criteria for the
Wave periods using a validation set.

In fact, we take a number of self-adaptive measures in
this paper to extend Wave; for this we propose that Wave
automatically selects the number of periods for each run,
the duration of each period and whether or not to use linear
scaling in a given period.

Furthermore, because each period starts with a fresh pop-
ulation (like a new run), the previously evolved genetic ma-
terial gets inaccessible; we hypothesise that it may, there-
fore, inhibit the establishment of mechanisms analogous to
exaptation [8]: exaptation occurs when features that now
enhance fitness were not originally built by natural selec-
tion for their current role. Exaptation eases the evolution
of complexity in the living organisms. To facilitate exapta-
tion, in this paper, we propose to only partially renew the
population at the beginning of each period, thus retaining
some of the evolved genetic material.

2. BACKGROUND

In this section, after briefly describing the original Wave
implementation, we provide an outline of some of the most
important and recent work on the relevant topics, that is,
population renewal strategies and the use of a validation
dataset,.

2.1 Original Wave

Any period, optimizing over a current target set t of size
N, is considered to be successful if the best trained individ-
ual resulting from the period generates a function f with a
RMSE at least better than a neutral individual represented
by 0, as below.

N N

D (fi—t)2 < | D> (t:i—0)2 (1)

i=1 =1

When a successful period terminates, the new target data-set
t’ for the next period is defined such that t' = t— f. However,
if the period is not successful, the new period starts with
an unchanged target t" = t. Therefore, fioint = >0, (f;)
where fjoint is the joint solution of a Wave run, n is the
number of successful periods and f; is the function produced
by the jth successful period.

2.2 Population Renewal

Regular generation of completely new individuals is a tech-
nique used by some evolutionary algorithms to avoid pre-
mature convergence of the population to a local optimum
in the fitness landscape. In [21], for example, individuals
created at different generations coexist. The selection then
compares only individuals of similar age; this prevents the
older individuals, who have had more generations to evolve,
from dominating the younger individuals. In Wave, the en-
tire population is replaced at the beginning of every new
successful period. Thus, the question of the disadvantage
of certain individuals does not arise across successful pe-
riod. However, we believe that in Wave a new period can
utilise some of the individuals from the previous period with-
out having to worry about the older individuals dominating
the fresh population: this is because the objective function
changes across successful periods and thus the older individ-
uals will also have to adapt according to the new data just
like the new individuals. Thus, unlike in [21], Wave does not
require special mechanisms to protect the freshly generated
individuals from the fitness advantage that the older indi-
viduals from the previous period might have enjoyed if the
objective function had not changed. Instead, the research
question is whether the older individuals can still be useful
in accelerating evolution alongside a fresh population, and
thus exhibit exaptation.

2.3 Validation Sets and Smart Stopping

A common application of a validation dataset in machine
learning involves using as a control system a subset of the
data which is not used to train the model. The performance
of a learning system on this validation dataset may provide
a useful estimate of the likely performance on out of sample
data, that is, how well the learnt model may generalise be-
yond the training data [20]. The use of validation sets can
reduce over-fitting [2], detect stasis, that is, a lack of im-
provement on the validation set, and can also double up as
an early stopping mechanism [5][18] in order to start a new
period. Here, we propose to use a validation set to decide
when to terminate the current period and also as to whether
we must integrate the best individual of the current period
into the joint solution.

3. PROPOSED METHOD

Figure 1 depicts the logic of both the original and en-
hanced versions of the Wave system. In this section, we de-
scribe various components of the enhanced paradigm. Some
of these techniques such as smart stopping of periods apply
to all Wave configurations, whereas others are used only in
specific setups. Table 2 outlines these details.

3.1 Partial Population Renewal

Previously, the entire population was renewed at the be-
ginning of a new period. In this study we only renew 80%
of the original population!; the 20% of individuals that are
not replaced are randomly selected. As discussed earlier, the
fresh individuals at the start of a new period do not neces-
sarily suffer a disadvantage when pitted against the evolved
peers from the previous period: this is because the objective
function has changed?. Unless there is a strong correlation
between the new and old objective functions, the old indi-
viduals do not carry an advantage®. Therefore, unlike the
approach taken in [21], we do not require specialised mecha-
nisms such as age of the genotype to preserve the disadvan-
taged individuals. Of course, pre-existing individuals who
may have had good fitness in the previous period, may ini-
tially be unable to solve the redrafted problem. However, we
believe that maintaining this genetic material into the gene
pool offers the possibility of the emergence of phenomena
such as exaptation or reuse of existing modules, while at the
same time allowing the new genetic material to flourish.

3.2 Smart Stopping of Wave Periods

Previously, in [13], a period was terminated when the
Wave system determined that the period was not signifi-
cantly improving the fitness any longer. — if the improve-
ment, in terms of the best training fitness, over the two most
recent generations was less than 0.5% of the improvement
over the three generations previous to the two most recent
generations.

In this work we investigate a new strategy whereby, in
every generation, we also compute the fitness of the best
trained individual on a validation set. Suppose O(f,d) rep-
resents the objective fitness (or fitness value) of an indi-
vidual function f on a dataset d, then O(fp(g),vp) is the
objective fitness of the individual f,(g) evaluated over the
validation dataset vp; note fp(g) is the best trained indi-
vidual at generation g of the period p. Considering we
are minimizing the fitness, we then terminate a period if
O(fp(9),vp) > O(fp(g — 1),vp). In other words, we stop a
period whenever the validation fitness degrades. Granted,
that the validation fitness may oscillate in future, if the pe-
riod is allowed to progress; however, our preliminary inves-
tigations revealed that waiting for that to happen did not
improve scores on the unseen test data sets.

Often, in our experience, especially when linear scaling
is enabled, the validation fitness does not change over many
generations, that is, O(fp(g),vp) = O(fp(g — 1), vp); this rep-

IFirst, we explored replacing only 50% of the population;
however, the population converged very quickly without im-
proving the results.

2Renewing the target set as t' =t — f akins here a stressful
ecological change.

3A possible extension of this work is to measure this cor-
relation and adjust the relative proportion of new and old
population members accordingly.

Starting next
period

Initialize new
population
Reach last
period ?
Update dataset
targets

Process new
generation

Best
individual
improve best
previously reach
Reach Extend period ?

minimum

number of
generations

?

(a) Original Wave

Activate period Update dataset
specific settings targets

Initialize new
population

best
individual improve
best previously
reached validation
fitness ?

Process new
generation

Update period’s
best individual

Al
allowed
computational
ressources are
used ?

(b) Enhanced Wave

Figure 1: Flow of Wave algorithm.

resents stasis. We decide to halt the current period if stasis
continues for more than 5 consecutive generations; however,
if at any time, an individual that is eligible to be a part of
the joint solution is produced, we allow the current period
to have another 25 generations® of stasis®. The eligible in-
dividual is the one that produces the best validation fitness
thus far, across all the periods. Formally,

Ofy(g)svp) < _min_ O(fi,v3) (2)

The same criteria is reapplied, as below, at the end of
the period to check whether this period has produced any
solution that is eligible to be a part of the joint solution:

O(.fpvvp) < lzgnlg_lo(f’uvl) (3)

where f, is the best trained individual at any generation
during the current period p that also has the best validation
fitness. Due to the stopping conditions described above, this
individual is always present in the penultimate generation of
the period. Note, the eligibility criteria to get into the joint
solution described here is different from that in the previous
implementation of Wave described in section 2.1.

3.3 Adaptive Linear Scaling

Previously, the most effective Wave configuration involved
alternating between periods with and without linear scaling.
However, our exploratory runs indicate that the success rate
of periods with and without linear scaling is not uniform.
We also noticed that the success rate of linear scaling is pro-
portionally much higher in the first period than in the last
period. Moreover, all this is highly dependent on the prob-
lem under consideration. So, in this work, we have chosen
not to alternate between periods with and without linear
scaling. Instead, at the beginning of each period, the sys-
tem chooses randomly between these two modes based on
their success rate in preceding periods. To achieve this the
probability of activating linear scaling for a given period is
P = m;_fifﬂds where rs = % is the approximate
success rate of periods using linear scaling; LS.+ is the to-
tal number of periods that used linear scaling thus far and
LSsuc is the number of successful periods that used linear
scaling; r—rs is the approximate success rate of period not
using linear scaling computed the same way. It is important
to note that these counts of various kinds of periods stabilise
as the number of periods grow thus giving a more reliable
measure of the probability of activating linear scaling.

4. EXPERIMENTS

4.1 Benchmarks

We compare Wave with both EC based and non-EC based
machine learning methods. We will use standard GP, both
with and without linear scaling to benchmark both the com-
putational cost of evolution and accuracy of the resulting
models. While we use GSGP [16] and Multiple Linear Re-
gression (MLR) solely to benchmark the accuracy of the
achieved results. This is because GSGP caches evaluations

4These choices appear adhoc but they are based on some
empirical success; however, they are not necessarily optimal.
5Note, we still stop the period at any time the validation
fitness degrades.

from the first generation and does not evaluate new mate-
rial afresh; instead, this work does not cache evaluations yet
and therefore can not compare with GSGP. Also, MLR is
well known to be far cheaper than GP yet has recently been
proposed as a tough benchmark for GP to beat [1].

4.2 Problem Suite

For this study we have used three multi-dimensional datasets
from the UCI Machine learning repository [2] together with
two mathematical functions. The following datasets from
the UCI repository are used:

e Concrete Strength where the objective is to pre-
dict the compressive strength of concrete and data-set
includes 1030 instances each having 8 inputs.

e Yacht where the objective is to predict the hydrody-
namic performances of a yacht, and data-set includes
308 instances each with 7 inputs.

e Powerplant where the task is to predict the net hourly
electrical energy output of a power plant and data-set
includes 9568 instances and 4 inputs.

The two mathematical functions chosen are:

e Poly-10 [22] y = 1 % 22 + 23 % 24 + x5 x 26 + x1
27 * 29+ 23 * 6 * 10 and

For each of the two mathematical functions, 500 data points
in the range [0;1] are randomly generated. For each run
we randomly split the given data-set into three subsets of
equal size for training, validation and testing purposes, that
iS, Ntra,ining = Nyalidation = Ntesting- For the benchmark
algorithms, because they do not use periods and therefore
can not use a validation set the way we do here®, the in-
stances in the validation set are added to the training set,
the numbers of testing instances remains of course the same
between the benchmarks and Wave.

Previously, in [14] the Wave system did worse than stan-
dard GP on the Yacht problem. As Wave had done bet-
ter on all of the other datasets we are interested in under-
standing the cause of the difference in performance. We sus-
pect that the relatively small size of the Yacht dataset (308
data points) may have contributed to higher over-fitting.
In order to examine this hypotheis we select the Concrete
Strength dataset on which Wave performed well and cre-
ate a smaller version of this dataset to use as a surrogate.
Thus, we conduct separate runs on smaller training sets from
the Concrete Strength problem where the Niraining =
Nyatidation = 103 = 308/3. The remaining points make the
test set such that Niesting = 824 ~ 1030 — 206. We will re-
fer to this particular configuration as the Small Concrete
configuration from now on.

4.3 Common Parameters

The parameters described in Table 1 have been chosen to
be the same as in [14] and are consistently applied across all
Wave and other GP benchmark experiments. We process 45
runs for each EC configuration for each dataset. Because of

SExploratory experiments also indicated that standard GP
does not benefit from a validation dataset using one third of
the total available datas on the datasets used in this paper.

its low computational cost we performed 100 MLR runs on
each dataset.

Table 1: GP Parameters.

Parameter Value

Population 500 individuals

Replacement Strat- Generational

egy

Operator Probabili- Xover: 0.9; Point mutation: 0.1
ties

Tournament Size 10*

Max. depth 17

Max. size 100

Functions set +,—,%X,+(Protected division)
Terminal set Inputs and constants -1.0, -0.5, 0.0, 0.5 & 1.0
Fitness RMSE

Initialisation Ramped half & half

Max. initial depth 8

Mutation Step 0.1°

(GSGP Only)

? A relatively high tournament size but recently successfully used in [6]
and [17]; we kept the default tournament size of 3 on GSGP.

P This is the default mutation step in the implementation proposed
in [4].

4.4 Experimental Configurations

In this paper we study two Wave configurations using both
adaptive linear scaling and smart stopping: the first config-
uration does not use any optional settings; the second one
uses partial population renewal. All of these configurations
and benchmarks are described in Table 2.

Table 2: Different Wave and benchmarks configurations.

Name Wave Renew LS

GP with linear scaling:

GP:LS Off NA On

Standard GP:

GP Off NA Off

Multiple linear regression:

MLR NA NA NA

Geometric Semantic GP as per [4]:

GSGP NA NA NA

‘Wave:

Wave On 100 AltP
Wave with partial population renewal:

Wave:PPR On 80 Alt"

2 Proportion of population renewed at the beginning of each period.
b Alternation between LS and non-LS periods, based on LS and
non LS success rate.

4.5 Performance Metrics

It is not relevant to compare the Wave approach with con-
ventional GP simply by measuring the performance of each
on the same number of generations. This is because the
population is regularly renewed in Wave so that individu-
als do not have the same opportunity to bloat as they do
in conventional GP. Consequently, each generation is gen-
erally less computationally expensive to process with Wave.
Therefore, we believe that it would not be equitable to take
an approach of terminating runs after the same number of
generations for each method, nor to compare statistics mea-
sured every generation.

We choose to use the total cost C' of computed nodes as
a measure of computational cost of a run. Typically, the
computational cost of a Wave run will be:

gtot POP

¢= Z(Z Nt’”ai"i"g X ngi) + Nvalz‘dation X SBIg (4)

g=1 i=1

where pop (population size) is 500 individuals, Sr,, is the
size of the ith individual I,; of the generation g and Spi,,
is the size of the best individual at generation g instead, for
classic GP:

gtot POp

C=> > NxS&, (5)

g=1i=1

where N is the size of the full data set. To ensure equity of
resources allocated to different systems, we stop a run when
its computational cost reaches a maximum value Chpq,. We
chose” :

Cmaz =k x (Nvalidation + Ntraining) (6)

where k is a factor chosen so that a run of classic GP with
a population of 500 individuals without linear scaling con-
tinues for approximately 100 generations. Here we used
k = 4000000 for Concrete and Small Concrete and k =
2000000 for Yacht, powerplant, Div-5 and Poly-10. Those
values have been chosen to roughly bring standard GP close
to 100 generations, except on Powerplant where we choose
a smaller value to cater for its high computational cost due
to the size of the dataset (9568 instances). On all datasets
and with all parameters we report median testing fitness on
a 95% confidence interval in Figure 2.

We observe the statistics at intervals of Ciae/100 and
we call these intevals steps from now on. Nevertheless we
only report a single testing value at every step for MLR
and GSGP. Of course MLR is not an EC method, there-
fore it was not possible to report gradual progress. Also,
because, as stated in [4], GSGP cached node evaluations,
we could not come up with an identical budget for GSGP.
However, so as not to put it to a disadvantage, we choose
a tougher benchmark from GSGP: we benchmark the Wave
results against the best test fitness ever achieved by GSGP
during 2000 generations. Notice, this guards against any
over-fitting that GSGP might have experienced and there-
fore, avoids the pitfall of choosing an inopportune time to
report the testing fitness. In fact, as the results show, GSGP
mostly achieved its best test fitness well before reaching the
end of run; while there is no guarantee that testing fitness
can not improve again, conventional wisdom suggests that
overfitting is likelier if we extend the GSGP runs any further.

S. RESULTS AND DISCUSSION

5.1 Population Renewal

To study the effects of our partial population renewal set-
ting, Wave:PPR, we report the earliest period at which the
ancestors of the last eligible individual were created. As
shown in Table 3, a majority of the last eligible individuals
added as part of the joint solution have an ancestor created
in the first period. Considering the number of periods re-
ported in Table 4 and that we renew 80% of the individuals
each period, this result was not obvious. We suspect that
this is possibly partly due the relatively large tournaments
used, but it also indicates that the genetic material of indi-
viduals evolved to address the first objective function still
plays a role later on when the objective function has been

" Noyatidation + Niraining is constant on the same dataset for
all possible configurations since the benchmarks that do not
use validation dataset, append instances of the validation
dataset to the training dataset.

modified. This may indicates successful events of exapta-
tion.

Table 3: Proportion of last eligible individuals included in
the joint solution who have an ancestor that was created in
the first period.

Concrete Small Yacht Powerplant Div-5 poly-10
Strengh Concrete
73% 76% 62% 73% 7% 58%

5.2 Self-adaptation

Looking at Table 4, we see that the number of periods
executed and the proportion of them which use linear scaling
varies greatly depending on the problem. The use of smart
stopping of periods and adaptive linear scaling allows Wave
to automatically configure itself depending on the problem.

Table 4: Average number and success rate of periods calcu-
lated with and without LS for Wave:PPR.

Problem Total Periods * with LS * w/o LS ?
Concrete Strength 52 (57%) 24 (55%) 29 (59%)
Small Concrete 62 (35%) 29 (33%) 33 (36%)
Powerplant 12 (80%) 06 (75%) 06 (91%)
Yacht 40 (39%) 22 (39%) 18 (38%)
Div-5 26 (45%) 22 (56%) 04 (00%)
Poly-10 74 (25%) 49 (29%) 25 (14%)

Number of periods followed by their success rate in brackets.

5.3 Overfitting

As it can be seen by comparing Figures 2a and 2b, the size
of the training dataset influences over-fitting. This assump-
tion is reinforced by the absence of over-fitting in Figure 2e
where the size of the dataset used is relatively large at 9568
data-points. However, Figures 2c and 2d show that factors
other than just the data sizes also affect overfitting; these
figures correspond to two datasets, Div-5 and Poly-10, that
are identical in size and result from sampling mathematical
functions without adding noise and only one them, Poly-10,
generate over-fitting,.

5.4 Computational Cost

Wave:PPR is the only method tested whose performance
either exceeds or equals that of classic GP methods across
all datasets at every step. Therefore, Wave:PPR outper-
forms standard GP both with and without linear scaling.
Wave:PPR also produces the smallest joint solutions among
Wave settings as depicted in Figure 3.

5.5 Performances

Because of the nature of GSGP and MLR it was not pos-
sible to do a step by step comparison with Wave. From
step 40 onwards Wave:PPR performs as well as MLR on the
Powerplant problem and outperforms MLR on all the other
datasets except Small Concrete. The best median testing
fitness of best individuals is reached by GSGP well before
the latest generation on 4 out of 6 datasets (Yacht: gen 1;
Small Concrete: gen 1112; Div-5: gen 600; Poly-10: gen
472), so it is very unlikely that GSGP could improve its
result with more computational resources (higher number
of generations) on those datasets. From step 10 onwards
Wave:PPR performs as well as or better than GSGP on those
four problems. It is hard to conclude on the two remaining

problems because both Wave:PPR and GSGP reached their
lowest median testing fitness at the end of the simulation
which means both of them could probably improve their re-
sults with more computational resources. But we note that
Wave:PPR outperforms GSGP from step 10 onwards while
on powerplant the final Wave:PPR testing fitness is statisti-
cally equivalent to GSGP reported results. It is also worth
noting, that the final testing fitness with Wave:PPR is bet-
ter than or equal to the best results available (the lowest
point of the fitness curve - therefore non-potentially dam-
aged by over-fitting) in a previous investigation by Meder-
nach et al. [14]; although, the previous study has some ex-
perimental differences in terms of computational cost with
the work reported here.

6. CONCLUSIONS

In this paper, we present several improvements to the pre-
viously proposed Wave GP method. Based on the results
obtained, the proposed changes make Wave more efficient
on the given problems and allow it to adapt to their char-
acteristics. In particular, Wave successfully demonstrates
exaptation by utilising the older individuals evolved during
the previous periods to train against a new objective func-
tion; this approach, that we termed as Wave:PPR, seems
robust as only multiple linear regression (MLR) performs
better than Wave:PPR and that too on one of the problems
only. Notice, MLR has been flagged as a tough benchmark
for standard GP in recent literature. Additionally, the use of
a validation set has improved Wave of ability detect periods
of stasis.

7. REFERENCES

[1] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May
O’Reilly. Multiple regression genetic programming. In
Proceedings of the 2014 conference on Genetic and
evolutionary computation, pages 879-886. ACM, 2014.

[2] Kevin Bache and Moshe Lichman. Uci machine
learning repository, 2013.

[3] Daniel G Blackburn. Saltationist and punctuated
equilibrium models for the evolution of viviparity and
placentation. Journal of Theoretical Biology,
174(2):199-216, 1995.

[4] Mauro Castelli, Sara Silva, and Leonardo Vanneschi.
A c++ framework for geometric semantic genetic
programming. Genetic Programming and FEvolvable
Machines, 16(1):73-81, 2014.

[5] Jeannie Fitzgerald and Conor Ryan. Validation sets
for evolutionary curtailment with improved
generalisation. In Convergence and Hybrid Information
Technology, pages 282—289. Springer, 2011.

[6] Ivo Goncalves and Sara Silva. Balancing learning and
overfitting in genetic programming with interleaved
sampling of training data. In Krzysztof Krawiec,
Alberto Moraglio, Ting Hu, A. Sima Uyar, and Bin
Hu, editors, Proceedings of the 16th European
Conference on Genetic Programming, EuroGP 20183,
volume 7831 of LNCS, pages 73-84, Vienna, Austria,
3-5 April 2013. Springer Verlag.

[7] Niles Eldredge-Stephen Jay Gould. Punctuated
equilibria: an alternative to phyletic gradualism. 1972.

Median Fitness

Median Fitness

Median Fitness

Testing Fitness — Concrete

Testing Fitness - Small Concrete

35 T T T T T T 35 T T T T T
GP:LS — GP:LS
GP GP
Wave —— Wave
Wave:PPR ——— Wave:PPR
30 | GSGP B —— GSGP
MLR 30 MLR R
25 - 1 s
0
g 25 | B
5
-
20 | 4 =
o
B
o 20 [i
9]
=
JEgiEaRasesats
5 | | | | | | | | | | | |
0 10 20 30 40 50 60 70 80 920 100 70 80 920 100
Steps Processed Steps Processed
(a) Concrete Strength (b) Small Concrete
Testing Fitness - Div-5 Testing Fitness Poly-10
0,8 0,8
o7l] 07} .
0,6 m
0,6 [4
12
05 1 @
GP:LS g 0,5 | i
GP hd ’
L Wave 4 =
0.4 Wave:PPR - am
GSGP L4 A
MLR -5 7TTTTTTTTT 77[\771 N
03 | 18 N
02 F | 117)
ITITTITL
01 F e R T
GP:LS Wave GSGP
0 e e o N A e e el e A e e s 0,1 d L Wave:PPR MLR L L L L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Steps Processed Steps Processed
(c¢) Div-5 (d) Poly-10
Testing Fitness - Powerplant Testing Fitness - Yacht
20 T T T T T 16 T T T T T T T T T
T T T
14+ E
120 GP:LS Wave GSGP b
m GP Wave:PPR MLR
o
= i
it}
-
[
o
@ i
-
el
9]
=
17T
GP:LS Wave GSGP Bt A A o o
R paverteR R ‘ ‘ ‘ . ‘ ‘ ‘ ‘ ‘ ‘ ‘ L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Steps Processed Steps Processed
(e) Powerplant (f) Yacht

Figure 2: Median Testing Fitness of joint solution / best individual - 95% confidence interval.

3000

2500 [

2000

1000 [

500

1800

1600 |-

1400 |

1200 |

600

400

200

8]

[9]

[10]

[11]

[12]

[13]

[14]

Global Solution Size Global Solution Siz

3000

Global Solution Size

¢ 1500 |

2500
2000 -

4 9 1500 [

Nodes

1000 [

500 [

900

Nodes

0 10 20 30 40 50 60 70 80 %

100 0 10 20 30
Steps Processed

(a) Concrete Strength

Global

40

Steps Proc

(b) Small Concrete

Solution Size Global

50 60
essed

Solution Size

100 0 10 20 30 40 50 60 70 80 %
Steps Processed

(c¢) Div-5

Global Solution Size

70 80 %0 100

1000 |-

1400

1200 [

1000 [

0 10 20 30 40 50 60 70 80 %

100
Steps Processed

(d) Poly-10

(e) Powerplant

1 0 2 30) 50 60 7 80 %0
Steps Processed

(f) Yacht

100

Figure 3: Median Size of Overall solution - 95% confidence interval.

Stephen Jay Gould and Elisabeth S Vrba.
Exaptation-a missing term in the science of form.
Paleobiology, pages 4-15, 1982.

Eva Jablonka, Marion J Lamb, and Anna Zeligowski.
FEvolution in Four Dimensions, revised edition.:
Genetic, Epigenetic, Behavioral, and Symbolic
Variation in the History of Life. MIT press, 2014.
Maarten Keijzer. Improving symbolic regression with
interval arithmetic and linear scaling. In Genetic
programming, pages 70-82. Springer, 2003.

John R Koza. Genetic programming: on the
programming of computers by means of natural
selection, volume 1. MIT press, 1992.

Barbara McClintock. The significance of responses of
the genome to challenge. Singapore: World Scientific
Pub. Co, 1993.

David Medernach, Jeannie Fitzgerald, R. Muhammad
Atif Azad, and Conor Ryan. Wave: A genetic
programming approach to divide and conquer. In
Proceedings of the Companion Publication of the 2015
Annual Conference on Genetic and Evolutionary
Computation, GECCO Companion ’15, pages
1435-1436, New York, NY, USA, 2015. ACM.

David Medernach, Jeannie Fitzgerald, R. Muhammad
Atif Azad, and Conor Ryan. Wave: Incremental
erosion of residual error. In Proceedings of the
Companion Publication of the 2015 on Genetic and
Evolutionary Computation Conference, pages
1285-1292. ACM, 2015.

Brook G Milligan. Punctuated evolution induced by
ecological change. American Naturalist, pages
522-532, 1986.

(16]

(17]

(18]

(19]

20]

21]

22]

23]

Alberto Moraglio, Krzysztof Krawiec, and Colin G
Johnson. Geometric semantic genetic programming. In
Parallel Problem Solving from Nature-PPSN XII,
pages 21-31. Springer, 2012.

R. Muhammad Atif Azad, David Medernach, and
Conor Ryan. Efficient approaches to interleaved
sampling of training data for symbolic regression. In
Nature and Biologically Inspired Computing (NaBIC),
2014 Sizth World Congress on, pages 176-183. IEEE,
2014.

Thi Hien Nguyen, Xuan Hoai Nguyen, Bob McKay,
and Quang Uy Nguyen. Where should we stop? an
investigation on early stopping for gp learning. In
Simulated Evolution and Learning, pages 391-399.
Springer, 2012.

Luiz OVB Oliveira, Fernando EB Otero, Gisele L
Pappa, and Julio Albinati. Sequential symbolic
regression with genetic programming. 2014.

Nir Oren. Improving the effectiveness of information
retrieval with genetic programming. PhD thesis, 2002.
Ludo Pagie and Paulien Hogeweg. Evolutionary
consequences of coevolving targets. Evolutionary
computation, 5(4):401-418, 1997.

Riccardo Poli. A simple but theoretically-motivated
method to control bloat in genetic programming. In
Genetic programming, pages 204—217. Springer, 2003.
Ekaterina J Vladislavleva, Guido F Smits, and Dick
Den Hertog. Order of nonlinearity as a complexity
measure for models generated by symbolic regression
via pareto genetic programming. Evolutionary
Computation, IEEE Transactions on, 13(2):333-349,
2009.

http://www.tcpdf.org

