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Abstract—Multistage filter design is a complex multidimensional 

optimisation problem. The formulae for optimal design generally 

yield non-integer real numbers for the sample-rate-changing 

factors of multiple stages. Approaches yielding useful integer 

results have high computational cost and do not consider 

important multistage filter design properties. We have developed 

a simplified algorithm for directly searching the optimal integer 

results. Considering the most useful practical design parameters, 

optimal results can be approximated with a limited number of 

sets for any designs satisfying certain constraints, with negligible 

costs. This vastly simplifies the complexity of the problem. 
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I.  INTRODUCTION 

Oversampling and sigma-delta based converters have 
become popular in digital audio applications due to their high 
resolution and low hardware cost [1] [2] [3]. Most modern 
digital audio systems include some sample rate conversion 
processes in either software format or integrated circuits. The 
key components of sampling rate alteration are the decimation 
or interpolation filters, which alter the sampling rate and 
suppress unwanted digital aliasing and imaging, respectively.  

The multistage filter structure can be up to 10 times more 
efficient than a single stage structure. Reference [4] [5] 
presented the theory and quantification of cost optimisation of 
multistage structures. Reference [6] [7] found that optimal 
solutions can be derived analytically by taking the partial 
differential equation (PDE) of the cost function, hence reducing 
it to a one dimensional problem without needing complex 
numerical search algorithms. However optimal solutions are 
often groups of non-integer real numbers that cannot be 
implemented in practical systems. Manual adjustment of results 
is needed, one still needs to retreat to numerical methods to 
solve the equations, and for each design, the roots of the 
equation must be put back into a cost function to find the 
optimal solution set. Alternatively, one can yield the integer 
solution directly. Reference [8] represents this problem in the 
integer domain using set theory, and then performs integer 
factorization. Reference [9] showed that the problem can be 
solved using exhaustive search or a genetic algorithm.  

We show that properties of solutions allow simplification of 
the search algorithm (Section II). Based on distribution of the 
solution sets, we propose a new search algorithm and use it to 
generate optimal solution lookup tables for practical designs 

(Section III). A balanced trade-off strategy is developed to find 
a best solution set for both computational and memory area 
cost (Section IV). Conclusions are given in the last section. 

II. DESCRIPTION OF THE BACKGROUND THEORY 

The digital FIR filter design with very narrow transition 
band, high attenuation stopband and flat passband results in 
large order filters. The digital anti-aliasing and anti-image 
filters used in oversampling based high resolution ADC/DAC 
belong to this category [10] [11]. The classical approach is to 
use multistage design so that the design specification of each 
individual filter (stage) can be relaxed. Given the overall 
sampling rate changing factor 𝐷, each stage in a K stage filter 

alters the sampling rate by 𝐷𝑖  where 𝐷 = ∏ 𝐷𝑖
𝐾
𝑖=1 . For a K 

stage filter and given design specifications, the problem is to 
find the set {𝐷𝑖} such that D is optimal in terms of computation 
or memory area cost. 

Let 𝛿𝑝  and 𝛿𝑠  represent the tolerance in the magnitude 

response in the passband and stopband respectively. ∆𝑓 =

 
𝑓𝑠−𝑓𝑝

𝑓𝑠
, where 𝑓𝑠  is the stopband edge and 𝑓𝑝  is the passband 

edge, and 𝑓𝑟0  is the input signal’s sampling frequency. The 
computational cost 𝑅𝑇  is the total number of multiplies and 
adds per second(𝑀𝐴𝐷𝑆/𝑠), and given by (1) [4] [5].  

𝑅𝑇 =  𝐷∞ (
𝛿𝑝

𝐾
, 𝛿𝑠) 𝑓𝑟0𝑆 (1) 

Where 

𝐷∞(𝛿𝑝, 𝛿𝑠) =  [5.309 × 10−3(𝑙𝑜𝑔10 𝛿𝑝)
2

+ 7.114

× 10−2(𝑙𝑜𝑔10 𝛿𝑝) − 0.4761] 𝑙𝑜𝑔10 𝛿𝑠

− [2.66 × 10−3(𝑙𝑜𝑔10 𝛿𝑝)
2

+ 0.5941(𝑙𝑜𝑔10 𝛿𝑝) + 0.4278] 

 

(2) 

𝑆 =
2

Δ𝑓

1

∏ 𝐷𝑗
𝐾−1
𝑗 = 1

+ ∑
𝐷𝑖

(∏ 𝐷𝑗
𝑖
𝑗=1 )(1 − (

2 − ∆𝑓
2𝐷

) ∏ 𝐷𝑗
𝑖
𝑗=1 )

𝐾−1

𝑖=1

 (3) 

The total memory storage cost of such a filter is given by 

𝑁𝑇 =  𝐷∞ (
𝛿𝑝

𝐾
, 𝛿𝑠) 𝐺𝑇 (4) 



Where 𝐺  is a proportionality constant that relates to the 
implementation of filter coefficients and 𝑇 is given by 

𝑇 =  
2

∆𝑓
 

𝐷

∏ 𝐷𝑗
𝐾−1
𝑗=1

+  ∑
𝐷𝑖

1 − 𝛼 ∏ 𝐷𝑗
𝑖
𝑗=1

𝐾−1

𝑖=1

 (5) 

where α =  
2−∆𝑓

2𝐷
.   

To minimise 𝑅𝑇 is to minimise 𝑆 in (3) and to minimise 𝑁𝑇 
is to minimise 𝑇 in (5). 𝑆 and 𝑇 are only dependent on the 𝐷𝑖  
and ∆𝑓. 

 Reference [6] and [7] took a PDE approach to cost 
functions (3) and (5), treating 𝐷𝑖  as continues real value. For 
example, finding  𝐷1 in a 3-stage design can be formulated as a 
roots finding problem: 

𝜕𝑇

𝜕𝐷1

=  −
2𝐷

∆𝑓𝐷1
2𝐷2

+ 
1

(1 − 𝛼𝐷1)2
+  𝛼√

2𝐷

∆𝑓

1

𝐷1

𝐷2 = 0 (6) 

Often solving (6) requires numeric methods and results in 
complex and irrational roots.  

Reference [8] and [9] directly search integer sets of {𝐷𝑖} 
that are factors of 𝐷 , using exhaustive search or a genetic 
algorithm to produce integer valued optimal results, but did not 
taking the properties of the real valued solution into account. 

In this work, we observe the distributions of both real 
valued and integer valued optimal solution sets. We find both 
of these follow certain regular patterns. This enables us to 
vastly simplify the optimisation problem and the size of the 
problem. The findings are discussed in the following section.  

III. KNOWLEDGE-BASED SEARCH AND LOOKUP TABLES 

Observing from the experiments’ results of both real-valued 
and integer valued optimal solutions, there are three important 
properties of the distributions of optimal solutions for both 
optimal computational cost and memory storage cost: 

a) {𝐷𝑖}  is always in descending order for multistage 

decimation and in ascending order for multistage 

interpolation.  

The larger value of 𝐷𝑖  means the larger decimation or 
interpolation factors stage 𝑖. In order to minimise the narrow 
transition band effects on high sampling frequency 
(oversampled), it is understandable to have larger 𝐷𝑖  close to 
the higher sampling frequency end.  

The experiments show that the average real valued solution 
of smallest value of 𝐷𝑖  for 3-stage design is around 2.65 (𝐷3) 
and for 4-stage design is around 1.52 ( 𝐷4)  for decimation 
process. These number is close to integer number 2 that is the 
minimum sampling rate changing factor, and is close to the 
lowest sampling frequency stage.  

b) 𝛥𝑓  is related to the width of transition band. The 

variation of 𝛥𝑓  changes the order of the filter but not the 

sampling rate changing factor of each stage. 

This is because for same overall value D, the distribution 

of 𝐷𝑖  still follows the trend of property a) regardless of filter 

order. According to [6] [7], ∆𝑓 has only a small effect on the 

results. Also because the results are not integer, rounding is 

needed and often, the difference due to using different ∆𝑓 is 

smaller than the difference caused by the rounding process. 

c) Because of a), we need to test the optimal set by cost 

functions only for highly composite number (non-prime) D 

that can be factorised more than number of stages K. 

Thus, search for integer valued solutions can be informed 
by a), and because of b) and c), the problem size is 
considerably small than it appeared to be. 

Fig.1 shows 3D plots of the 3 stage real-valued optimal 
solution distribution for optimising 𝑅𝑇  (Fig.1.a) and 𝑁𝑇  (Fig. 
1.b). The real valued optimal result sets {𝐷1, 𝐷2, 𝐷3}   are 
formed from three independent disjoint surfaces with different 
𝐷<5000 and 0<Δ𝑓<0.5. The values of lowest surface is close to 
the minimum value of interpolation and decimation factor 2.  
The optimal integer valued solutions follow a similar trend. Fig 
2 demonstrates this for 𝐷 = 2𝑛. 

  
(a) (b) 

Figure 1 Real-valued solution sets distribution 

  
(a) (b) 

Figure 2 Integer solution sets distribution for 𝐷 =  2𝑛 

The simplified search algorithm is described in Table I: 

TABLE I PSEUDOCODE OF OPTIMAL INTEGER VALUED SOLUTION 

SEARCH ALGORITHM 

For 𝐷 ∈  ℕ1  and represented as a prime factorization: 

𝐷 =  𝑝1
𝑑1 ∗ 𝑝2

𝑑2 ∗ 𝑝3
𝑑3 … ∗ 𝑝𝑟

𝑑𝑟 

where 𝑝𝑖  is a prime number and 𝑑𝑖  the corresponding 
exponent, 

1) Check whether 𝐷 can be factorized into 𝑀 unique sets 
of 𝑘 (stage) factors 

𝑀 =  {

{𝐷1.1, 𝐷2.1, … 𝐷𝑘.1}

{𝐷1.2, 𝐷2.2, … 𝐷𝑘.2}
⋮

{𝐷1.𝑚, 𝐷2.𝑚, … 𝐷𝑘.𝑚}

} 

2) Sort 𝑀 so that {𝐷𝑖.1  >  𝐷𝑖.2  > ⋯  > 𝐷𝑖.𝑘} 
3) Substitute sets into (3) or (5) and find the set with the 

minimum solution. 

The algorithm simplifies the search since we only care 
about unique sets (e.g., {8, 4, 2} is equivalent to {4, 8, 2}), and 



we sort candidate sets as descending ordered sequences. Only 
when the number of D’s factors is larger than the required 
number of stages, the step 2) sorting required. For example, for 
𝐷<5000, 3 stage decomposition, only 1692 (33.8%) numbers 
can be factorised in different unique sets of 3 factors that need 
to be put back into the cost function. For typical design value 
∆𝑓 = 0.18 and D<5000 and 2, 3, 4 stage design, our method 
provides 85.4% average reduction when compared with 
exhaustive search in terms of the number of cost function tests, 
and 65% computing time reduction. Computing time was 
averaged over 100 iterations using a standard Intel Core i7 
based PC. 

In addition, the variation of ∆𝑓 does not cause much change 
in the optimal integer values. For the same example of 𝐷<5000 
and 3 stage case, within the 1692 cases that have possible 
multiple solutions, in 994 (59%) cases for computational cost 
optimisation and 1167 (69%) cases for memory cost 
optimisation, the optimal solution sets change only once or 
twice over the (0 to 0.5) ∆𝑓 region.  

Table II summarises 15 popular ADC/DAC chipsets used in 
audio devices from on-board sound cards to professional 
mixers. The supported sampling frequencies 𝐹𝑠 range from 44.1 
kHz, 48 kHz, 96 kHz with different supported filter type 
configurations such as low latency, sharp or slow roll off, etc. 
Δ𝑓  is within 0.08-0.44 with most common designs between 
0.15 and 0.4. 

TABLE II SUMMARY OF 𝛥𝑓 VALUES OF COMMON OVERSAMPLING 
BASED AUDIO ADC/DAC DESIGN SPECIFICATIONS 

Type Max 𝒇𝒑 Min 𝒇𝒔 Min ∆𝒇 

AD1871 0.45 𝐹𝑠 0.55 𝐹𝑠 0.17 

AD7768 0.43 𝐹𝑠 0.50 𝐹𝑠 0.14 

AD1974 0.44 𝐹𝑠 0.56 𝐹𝑠 0.21 

ADAU1966A 0.36-0.45 𝐹𝑠 0.55-0.64 𝐹𝑠 0.18-0.44 

PCM1807 0.45 𝐹𝑠 0.58 𝐹𝑠 0.22 

PCM4220 0.42-0.45 𝐹𝑠 0.55-0.58 𝐹𝑠 0.18-0.28 

PCM1794A 0.46-0.49 𝐹𝑠 0.55-0.73 𝐹𝑠 0.11-0.37 

PCM5242 0.40-0.47 𝐹𝑠 0.55 𝐹𝑠 0.15-0.18 

CS5364/66/68 0.45-0.47 𝐹𝑠 0.58-0.68 𝐹𝑠 0.19-0.34 

CS5381 0.45-0.47 𝐹𝑠 0.58-0.68 𝐹𝑠 0.19-0.34 

CS4398 0.499 𝐹𝑠 0.55-0.58 𝐹𝑠 0.09-0.14 

WM8740 0.27-0.45 𝐹𝑠 0.46-0.49 𝐹𝑠 0.08-0.41 

WM8741 0.4 𝐹𝑠 0.5 𝐹𝑠 0.2 

ALC885 0.45 𝐹𝑠 0.60 𝐹𝑠 0.25 

CS4207 0.45-0.499 𝐹𝑠 0.55-0.60 𝐹𝑠 0.09-0.25 

We use a bisection method to find the ∆𝑓  points where 
optimal solutions change.  For common 2, 3, 4 stage filter 
design, two groups of lookup tables for computational and area 
costs can be generated from the algorithm. They are small since 
optimal solutions are smooth over useable design specification 
ranges.  

Fig. 3 shows changing of optimal solution sets {𝐷𝑖} against 

D and f. The Z axis value is calculated from (7), where ω is a 
weighting factor, and σ(𝐷𝑖 , 𝐾)  is the standard deviation of 
optimal set {Di}. It provides information regarding both ∏ 𝐷𝑖  
and the distribution value of 𝐷𝑖  within a solution set. Since the 
elements of set {𝐷𝑖}  are descending or ascending, 

σ(𝐷𝑖 , 𝐾) indicates the slope of the value changing across stages. 
The same value of Z indicates same set of {𝐷𝑖} being chosen.   

𝑍 =  ω 𝐷 + σ(𝐷𝑖 , 𝐾) (7) 

 
Figure 3 Changing of optimal value against ∆𝑓 for some highly composite 

number 𝐷 

Fig. 3 shows that optimal integer solution sets can be the 

same values for a large range of design specification f. 
Similar figures can be produced for both optimal area cost and 
computational cost sets. Thus, we can create lookup tables to 

store these optimal solutions with the critical values of f that 
cause changes in optimal solution sets. The structure of a 
database of such tables is depicted in Fig. 4. Using our 
algorithm to generate K= 2, 3, 4 stage design tables for both 
memory and computational cost, with 1<D<5000 and 
0<∆𝑓<0.5, there are 15,783 total optimal computational cost 
sets and 17,622 total optimal memory usage sets in the three 
tables. 

 

Figure 4 depiction of optimal solution sets lookup tables of computational cost 
or memory storage cost 

IV. TRADEOFF  STRATEGY FOR MINIMISATION OF BOTH 

AREA AND COMPUTATIONAL COST 

In practise, only one solution can be used in a system. A 
trade-off strategy based on error effects was developed to find a 
best solution set for both computational and memory area cost 
within the lookup tables.  

when {𝐷𝑖}𝑚 ≠ {𝐷𝑖}𝑐 

if  
𝐶𝑚−𝐶𝑐

𝐶𝑐
 >  

𝑀𝑐−𝑀𝑚

𝑀𝑚
 choose  {𝐷𝑖}𝑐 

else choose {𝐷𝑖}𝑚 



Where: 

{𝐷𝑖}𝑐 is the integer valued solution set for optimal 
computational cost. 

{𝐷𝑖}𝑚is the integer valued solution set for optimal memory 
usage cost. 

𝐶𝑐 is computational cost with optimal computational cost 
set. 

𝐶𝑚 is computational cost with optimal memory usage set. 

𝑀𝑐 is memory usage with optimal computational cost set. 

𝑀𝑚 is memory usage with optimal memory usage set. 

To evaluate the error effects of this trade-off strategy, we 
evaluated the average error of computational cost: 𝑆𝑑𝑖𝑓𝑓 =

(∑
𝐶𝑖−𝐶𝑐𝑖

𝐶𝑐𝑖

𝑁
𝑖=1 )/𝑁 , and the average error of memory cost: 

𝑇𝑑𝑖𝑓𝑓 = (∑
𝑀𝑖−𝑀𝑚𝑖

𝑀𝑚𝑖

𝑁
𝑖=1 )/𝑁, where 𝑁 is total number of design 

cases tested;  𝐶𝑖 and 𝑀𝑖 are the actual computational cost and 
memory usage when the trade-off sets being used; 𝐶𝑐𝑖 and 𝑀𝑚𝑖 
are the computational cost and memory usage when the 
corresponding optimal sets being used. 

For 3 stage design with 0<∆𝑓 <0.5 and 0<D<5000, the 
average error is 0.26% for  𝑆𝑑𝑖𝑓𝑓  and 8.88% for 𝑇𝑑𝑖𝑓𝑓 .  

 

Figure 5 Follow chart of overall database query algorithm 

Fig. 5 shows the flowchart for finding semi-optimal 
solutions for both constraints. It is worth mentioning that this 
method can be altered with extra weighting factor to consider 
actual implementation effects. The design parameter Δ𝑓, 𝐷 and 
different platform realisation techniques might have influence 
of actual selection decisions. Further work needs to be done to 
decide the form of weighting factor. 

CONCLUSION 

We provided new experimental results and analysis 
concerning optimal multistage multirate FIR filter design. The 
results show that the optimal solution set possesses important 
properties that allow for knowledge-based search, and that the 

number of optimal solution sets are limited since they do not 
change the set values over a large range of design 
specifications. This motivates the design of multiple lookup 
tables of solution sets.  A trade-off strategy is employed to 
produce semi-optimal solution sets that reduce computational 
and memory usage costs.  

Our approach was derived based on classical individual 
optimal FIR filter design [12] in terms of theoretical number of 
multiplies and adds needed, and the memory storage for storing 
signal samples and filter coefficients. There are a set of 
different filter computation reduction methods based on 
creating one-stage two-filters system where one filter B(z) 
shapes the passband and another filter A(z) shapes the stopband. 
The passband filter B(z) works at lower sampling rate of 
multirate system . It will be interesting to investigate how their 
work performs at very high sampling rate alteration D in 
comparison with this work [13] [14] [15]. Other research has 
looked into further bit-level optimisation of filter coefficients in 
a multistage architecture [16] [17], and specific application 
cases [18] [19]. It would be interesting to see how the optimal 
filter can be applied to those cases. The number of stages and 
their rate changing factors also affect filter latency [20], and 
computational cost, memory usage and their realisation 
methods affect the energy consumption. An interesting 
research direction would be to look into a model that considers 
these additional aspects of optimal multistage design. 
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