
JS-XTRACT: A REALTIME AUDIO FEATURE EXTRACTION LIBRARY
FOR THE WEB

Nicholas Jillings
Digital Media Technology Lab
Birmingham City University

Birmingham, UK
nicholas.jillings@mail.bcu.ac.uk

Jamie Bullock
Integra Lab

Birmingham City University
Birmingham, UK

jamie.bullock@bcu.ac.uk

Ryan Stables
Digital Media Technology Lab
Birmingham City University

Birmingham, UK
ryan.stables@bcu.ac.uk

ABSTRACT

JS-Xtract is an efficient modular JavaScript library for au-
dio feature extraction, capable of operating on arbitrary
time-series data, or being bound to Web Audio objects.
The library implements an extensive range of vector and
scalar feature extractors, and allows both procedural and
object-oriented function calls. We show it performs well
across a range of desktop and mobile browsers, and is ca-
pable of extracting audio features in realtime.

1. INTRODUCTION

With the introduction of the Web Audio API [1], high reso-
lution audio can now be handled natively in the web browser.
This allows for the development of tools such as listen-
ing test platforms [5] and online audio processing environ-
ments [13], which are developed natively using JavaScript
and HTML 5. These tools often require audio feature ex-
traction to perform analysis on time-series data, however
libraries that are developed for compiled languages such as
LibXtract [2] for C, YAAFE [7] for Python or jAudio [8]
for Java can be difficult to deploy due security limitations
imposed by the browser. As an alternative, libraries such
as Meyda [12] allow for inline Javascript implementation,
with a limited feature set, bound to Web Audio API ob-
jects. This limits the extent to which non-realtime analysis
can be implemented.

Typically these libraries utilise a subset of features de-
scribed by the CUIDADO [14] and MPEG 7 [6] feature
sets, where extensive groups of descriptors are presented.
These have been used as a benchmark for inclusion in re-
view papers [9] incorporating temporal, spectrotemporal
and abstracted feature representations. Here, we present
JS-Xtract, 1 a light-weight JavaScript library for feature
extraction, which is agnostic of the data’s type or origin.

1 Library available at http://www.semanticaudio.co.uk/
projects/js-xtract/

c© Nicholas Jillings, Jamie Bullock, Ryan Stables. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Nicholas Jillings, Jamie Bullock, Ryan Sta-
bles. “JS-Xtract: A Realtime Audio Feature Extraction Library for the
Web”, Extended abstracts for the Late-Breaking Demo Session of the
17th International Society for Music Information Retrieval Conference,
2016.

2. LIBRARY DESIGN

We follow the design philosophy of LibXtract [2] by defin-
ing low-level, modular function calls which can be com-
bined to create complex feature extraction graphs. The li-
brary is written in JavaScript following the ECMAScript 5
standard for maximum support and functionality. 2 Func-
tions can be passed an arbitrary datasource, providing it
meets the dimensionality criteria, and can be bound to Web
Audio objects for real-time processing. The library sup-
ports both procedural and object-oriented function calls.
2.1 Feature Set

We extend the LibXtract feature set, which includes sta-
tistical moments and shape descriptors such as centroid,
spread and roll-off, each of which can be extracted from a
range of input representations such as a magnitude spec-
trum, peak- and harmonic-peak spectrum (HPS), MFCCs
and Bark coefficients. Input representations can be cate-
gorised as temporal, spectrotemporal, and abstracted, where
abstracted representations typically model an external sys-
tem (including MFCCs, Bark or Chroma). Two additional
input representations are included, namely chroma features
(included in the Chroma Toolbox [3]) which characterise
spectral energy distributed across pitch classes, and Equiv-
alent Rectangular Bandwidth (ERB) filters (included in the
Timbre Toolbox [11]), which represent auditory filters pro-
posed by Moore and Glasberg [10]. In addition, we in-
corporate temporal envelope, spectral flux and filter-bank
deltas, which were omitted from LibXtract due to the lack
of frame-based decomposition. From this, we can extract
a range of features from the amplitude envelope, such as
Log-attack time and temporal centroid. The library primar-
ily follows the structure in Figure 1, in which most scalar
features can be extracted for an arbitrary input representa-
tion, including the original time-series frame of audio, with
the exception of f0, loudness, HPS and noisiness, which
rely on specific input representations.

2.2 Web Audio API Integration

The Web Audio API [1] provides audio processing func-
tionality for every major mobile and desktop browser. 3

2 Current ECMAScript 5 support can be found at http://kangax.
github.io/compat-table/es5/

3 At time of publication, only Opera Mini is not supported http:
//caniuse.com/#feat=audio-api



Input

Audio

Frame

Output

Feature

Vector

Input

Representation
Feature

Extractor

Figure 1: The JS-Xtract feature extraction topology

The API defines several nodes to enable processing and
is configured using client-side JavaScript. JS-Xtract uses
an Analyser node to extract the current time and frequency
domain blocks for analysis, then adds a prototype function
to set up an accurate interval callback using a ScriptPro-
cessorNode to call a user-supplied function on each frame.
This causes multiple function calls to occur inside the main
JavaScript thread. Using the Web Audio API’s AudioWorker
node would be preferable for this task since it would be
possible to run extraction functions in a separate JavaScript
thread, however at the time of publication there are no
browsers that implement this node, since the underlying
WebWorker standard is incomplete [4]. To ensure sepa-
rability, the current version of JS-Xtract includes the Web
Audio API specific functions in a separate file (jsXtract-
wa.js), allowing sites or projects not using the Web Audio
API to still use the library.

2.3 Additional Functionality

Frames: The library implements frame-based decomposi-
tion with variable frame and hop sizes for customisable
overlap. This converts a vector representing a stream of
audio into sub-regions. The decomposed array is iterable
and JS-Xtract supplies a prototype to simplify processing.
Each frame is iterated over by calling the user supplied
function with the current frame, previous frame and the
previous computed value. This allows for the extraction
of deltas and delta-deltas without recomputing features.
Typed arrays: For most analysis blocks, the source data
is read into a JavaScript Typed Array. These allow mul-
tiple ‘views’ on the memory, allowing for shallow copies.
Therefore data is stored efficiently as the same memory
space is referred to twice, rather than copied, saving sys-
tem memory. JavaScript performs all floating point calcu-
lations in double precision, therefore the only cost to using
double is the increased memory footprint and conversion
between single and double.
Output: The library supports simple derivation of mul-
tiple output formats. In JS-Xtract, data is returned as a
JavaScript Object which can be converted to a JSON string
or other data store such as XML for transmission.

2.4 Implementation

When using the JSXtract object, multiple instances of
items such as the DCT, MFCC and Wavelets can be man-
aged by the class. Calling new jsXtract(); will build
an object containing the initialisers and references to the
function calls. Features can then be extracted using
obj.features.xtract [Feature Name]. The
Float32Array and Float64Array objects have the following

Feature FF C S E
Tonality 0.791 0.712 0.411 0.277
SSD 1.022 1.094 0.415 0.334
SD 0.819 0.627 0.377 0.248
ASDF 2,095 4,280 5,453 28,185
AMDF 2,319 4,252 2,476 3,102
DCT 56,395 184,412 50,618 142,830

Table 1: Feature performance in ns on up-to-date (July-
2016) desktop browsers, where FF: Firefox, C: Chrome,
S: Safari, E: Edge

Feature iPhone iPad Nexus Linx
Tonality 0.621 1.287 1.324 1.046
SSD 1.108 1.429 1.741 1.048
SD 0.517 1.263 1.192 0.959
ASDF 7,246 18,779 9,096 45,319
AMDF 4,491 9,971 8,824 8,305
DCT 64,297 169,967 315,077 347,625

Table 2: Feature performance in ns on mobile browsers

two prototype functions applied:
xtract get data frames and
xtract process frame data to enable the frame de-
composition and frame iteration on any floating point ar-
ray data type, such as those returned for the Web Audio
API buffer. Alternatively, for C-like procedural function
calls, xtract [Feature Name] can be used, which is
aligned with LibXtract syntax.

3. PERFORMANCE

To demonstrate the performance of the library, feature ex-
traction was performed on a sine wave polluted with Gaus-
sian white noise, which was 1024 samples long. Each fea-
ture was iterated 3,000 times on 41 computer - browser
pairs. The fastest and slowest 3 features per call are pre-
sented in Table 1 for each of the major desktop browsers,
and in Table 2 for mobile platforms.

Millisecond accurate timestamps are obtained through
the W3C High Resolution Time Level 2, 4 where most ma-
jor desktop and mobile browsers, support the use of the
API natively. 5 A timestamp is taken before and after the
iterations, giving the total time to execute the functions.

Firefox showed the best overall performance, although
the slowest for the scalar features. Chrome and Edge both
showed unstable performance for the DCT calculations whilst
Firefox and Safari proved consistent results for the vector
features (slowest three). The results show the library out-
performs other JavaScript feature extraction libraries for
real-time performance, and exhibits relative consistency
across platforms when using scalar features. Given the ef-
ficiency, the library has the capacity to support real-time
audio applications on both desktop and mobile interfaces.

4 At time of publication, latest draft 25th February 2016
5 See http://caniuse.com/#feat=

high-resolution-time



4. REFERENCES

[1] Paul Adenot, Chris Wilson, and Chris Rogers. Web Au-
dio API. W3C, October, 10, 2013.

[2] Jamie Bullock. Libxtract: A lightweight library for au-
dio feature extraction. In Proceedings of the Interna-
tional Computer Music Conference, volume 43, 2007.

[3] Sebastian Ewert. Chroma toolbox: Matlab implemen-
tations for extracting variants of chroma-based audio
features. In Proc. ISMIR, 2011.

[4] Ian Hickson. Web workers, 2015. Available at http:
//www.w3.org/TR/workers/.

[5] Nicholas Jillings, David Moffat, Brecht De Man,
Joshua D Reiss, and Ryan Stables. Web audio evalu-
ation tool: A framework for subjective assessment of
audio. In The 2nd Web Audio Conference (WAC). Geor-
gia, US, 2016.

[6] Bangalore S Manjunath, Philippe Salembier, and
Thomas Sikora. Introduction to MPEG-7: multimedia
content description interface, volume 1. John Wiley &
Sons, 2002.

[7] Benoit Mathieu, Slim Essid, Thomas Fillon, Jacques
Prado, and Gaël Richard. Yaafe, an easy to use and
efficient audio feature extraction software. In ISMIR,
pages 441–446, 2010.

[8] Cory McKay, Ichiro Fujinaga, and Philippe Depalle.
jaudio: A feature extraction library. In Proceedings of
the International Conference on Music Information Re-
trieval, pages 600–3, 2005.

[9] David Moffat, David Ronan, and Joshua D Reiss.
An evaluation of audio feature extraction toolboxes.
In International Conference on Digital Audio Effects
(DAFx), 2016.

[10] Brian CJ Moore and Brian R Glasberg. Suggested for-
mulae for calculating auditory-filter bandwidths and
excitation patterns. The Journal of the Acoustical So-
ciety of America, 74(3):750–753, 1983.

[11] Geoffroy Peeters, Bruno L Giordano, Patrick Susini,
Nicolas Misdariis, and Stephen McAdams. The tim-
bre toolbox: Extracting audio descriptors from musical
signals. The Journal of the Acoustical Society of Amer-
ica, 130(5):2902–2916, 2011.

[12] Hugh Rawlinson, Nevo Segal, and Jakub Fiala. Meyda:
an audio feature extraction library for the web audio
api. In The 1st Web Audio Conference (WAC). Paris,
Fr, 2015.

[13] Ryan Stables, Sean Enderby, Brecht De Man, György
Fazekas, and Joshua Reiss. Safe: A system for the ex-
traction and retrieval of semantic audio descriptors. In
15th International Society for Music Information Re-
trieval Conference (ISMIR 2014), 2014.

[14] Hugues Vinet, Perfecto Herrera, and François Pachet.
The cuidado project. In International Conference on
Music Information Retrieval, pages 197–203, 2002.


