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Abstract  

Background and purpose 

The 5-HT3 receptor is a prototypical member of the Cys-loop ligand-gated ion 

channel (LGIC) superfamily and an established therapeutic target. In addition to 

activation via the orthosteric site, receptor function can be modulated by allosteric 

ligands. We have investigated the pharmacological action of Cl-indole upon the 5-

HT3A receptor and identified that this positive allosteric modulator possesses a novel 

mechanism of action for LGICs.  

Experimental approach 

The impact of Cl-indole upon the 5-HT3 receptor was assessed using single cell 

electrophysiological recordings and [3H]granisetron binding with HEK293 cells stably 

expressing the 5-HT3 receptor.  

Key results 

Cl-indole failed to evoke 5-HT3A receptor mediated responses (up to 30 µM) or 

display affinity for the [3H]granisetron binding site. However, in the presence of Cl-

indole, termination of 5-HT application revealed tail currents mediated via the 5-HT3A 

receptor that were independent of the preceding 5-HT concentration but were 

antagonised by the 5-HT3 receptor antagonist, ondansetron. These tail currents were 

absent in the 5-HT3AB receptor. Furthermore, the presence of 5-HT revealed a 

concentration-dependent increase in the affinity of Cl-indole for the orthosteric 

binding site of the h5-HT3A receptor.  

Conclusions and implications 

Cl-indole acts as both an orthosteric agonist and an allosteric modulator but the 

presence of an orthosteric agonist (e.g. 5-HT) is a prerequisite to reveal both actions. 

Precedent for ago-allosteric action is available yet the essential additional presence 

of an orthosteric agonist is now reported for the first time. This widening of the 

pharmacological mechanisms to modulate LGICs may offer further therapeutic 

opportunities.  



Tables of Links 

Targets 

5-HT3 Receptorsa 

5-HT3A 

5-HT3AB 

 

Ligands 

[3H]-granisetron: IUPAC name 1-methyl-N-(9-methyl-9-azabicyclo[3.3.1]nonan-7-

yl)indazole-3-carboxamide 

5-hydroxytryptamine: IUPAC name 3-(2-Aminoethyl)-1H-indol-5-ol 

5-methylindole: IUPAC name 5-methyl-1H-indole. Not found in ligand database 

5-hydroxyindole: IUPAC name 1H-Indol-5-ol 

5-chloroindole: IUPAC name 5-chloro-1H-indole. Not found in ligand database 

Ondansetron: IUPAC name 9-methyl-3-[(2-methylimidazol-1-yl)methyl]-2,3-dihydro-

1H-carbazol-4-one 

Phenylbiguanide: IUPAC name 1-(diaminomethylidene)-2-phenylguanidine 

These Tables of Links list key protein targets and ligands in this article that are hyperlinked 

to corresponding entries in http://www.guidetopharmacology.org, the common portal for 

data from the IUPHAR/BPS Guide to Pharmacology (Southan et al., 2016), and are 

permanently archived in The Concise Guide to Pharmacology 2015/16 (aAlexander et al., 

2015) 
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http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=68
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=379
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=378
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2292
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2292
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2295
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2290
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2290
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2284
http://www.guidetopharmacology.org/


Introduction 

The 5-HT3 receptor is an excitatory ligand-gated ion channel (LGIC) of the Cys-loop 

family that includes the nicotinic acetylcholine receptors (nAChR), glycine and 

GABAA receptors, and Zn2+-activated receptors (Barnes et al., 2009; daCosta et al., 

2013). Members of this LGIC family share a common pentameric structure, an 

observation recently confirmed by the publication of the X-ray structure of the mouse 

5-HT3A receptor (Hassaine et al., 2014). Each subunit of the 5-HT3 receptor is 

composed of an extracellular N-terminal domain, four transmembrane domains and 

a short extracellular C-terminal domain. The orthosteric binding site is located at the 

interface between two adjacent N-terminal domains (daCosta et al., 2013). 

 

Five human 5-HT3 receptor subunits have been identified (5-HT3A to 5-HT3E) 

(Karnovsky et al., 2003; Niesler et al., 2003). The native receptor can exist as a 

simple homopentamer of 5-HT3A subunits or heteropentamers containing the 5-

HT3A subunit and at least one other of the 5-HT3B to E subunits (Niesler, 2011). 

The pentameric structure gives rise to a potential for five ligand binding sites but 

recent evidence suggests that just two or three sites are occupied for maximal 

activation of the channel (Corradi et al., 2009). Studies using heteromeric 5-HT3AB 

receptors suggest that orthosteric binding sites are only formed between adjacent 5-

HT3A subunits (Lochner et al., 2010; Thompson et al., 2011). 

 

As well as orthosteric agonism, allosteric modulation of the 5-HT3 receptor has been 

reported by compounds as diverse as alcohols (Bentley et al., 1998; Downie et al., 

1995; Stevens et al., 2005), cannabinoids (Barann et al., 2002), indole derivatives 

(Newman et al., 2013; Parker et al., 1996; Van Hooft et al., 1997), terpenes (Lansdell 

et al., 2015; Ziemba et al., 2015), benzamides (Jørgensen et al., 2011) and the class 

of novel negative allosteric modulators typified by PU02 (Trattnig et al., 2012). A 

number of these modulators appear to have their effect via a site (or sites) in the 

transmembrane domain (e.g. for the indole derivatives (Hu et al., 2008)). Allosteric 

agonism by phenolic monoterpenes has also been reported recently again via an 

allosteric transmembrane site (Lansdell et al., 2015). An additional potential level of 



allosteric modulation has been demonstrated since mutation of the intracellular portal 

region of the receptor affected gating and co-operativity (e.g. (Kozuska et al., 2014)). 

This raises the possibility of receptor interactions with intracellular proteins leading to 

allosteric modulation of receptor function. 

 

Whilst the majority of these allosteric effects are mediated by discrete, non-

orthosteric sites, it is becoming apparent that some indole derivatives have a more 

intriguing and mixed mode of action. In particular, they may have mixed effects 

depending on their concentration and structure. For instance, the non-selective 

positive allosteric modulator, 5-hydroxy-indole (5OHI) displays positive allosteric 

modulation via a transmembrane domain of mouse 5-HT3A receptors (Hu et al., 

2008), and can also display orthosteric agonism and allosteric inverse agonism at a 

spontaneously active mutated mouse 5-HT3A receptor. These differing actions were 

dependent only on concentration. The closely related molecule, 5-methoxy-indole 

(5MeI) displayed both allosteric agonism and orthosteric inverse agonism at the 

same receptor, again dependent on concentration (Hu, 2015).  Importantly the 

presence of the orthosteric ligand was not required for these actions. 

 

We have recently described a selective allosteric modulator of the 5-HT3 receptor, 5-

chloro-indole (Cl-indole; (Newman et al., 2013). Our study suggested that Cl-indole 

slows the decay of 5-HT3A receptor currents and that it can reactivate desensitised 

5-HT3A receptors in the continued presence of 5-HT (Newman et al., 2013). In the 

light of the mixed modes of action described for indole derivatives, we undertook a 

study to further explore the mode of action of Cl-indole on the modulation of the 5-

HT3 receptor. We identified for the first time within the LGIC superfamily, an ago-

allosteric modulation in which both agonism and allosteric modulation require the 

presence of the orthosteric ligand. 

 

 

  



 

Materials and Methods 

Nomenclature 

The molecular target nomenclature conforms to the British Journal of 

Pharmacology’s Concise Guide to Pharmacology (Alexander et al., 2015). 

 

Cell Culture 

HEK293 cells stably expressing the human 5-HT3A subunit (HEK293-5-HT3A cells 

(Brady et al., 2001)) or the heteromeric 5-HT3A/5-HT3B receptor (HEK293-5-

HT3A/3B cells) (Dubin et al., 1999) were grown in Dulbecco’s Modified Eagle’s 

Medium, supplemented with 10% (v/v) foetal bovine serum, 1% (v/v) 

penicillin/streptomycin (10,000 U ml-1 penicillin and 10 mg ml-1 streptomycin) and 

G418 (250 μg ml-1)  or G418 plus zeocin (250 g ml-1 each, HEK293-5-HT3A/3B 

cells) and maintained at 37°C, 5% CO2, 95% air at 95% relative humidity.  

 

Radioligand binding 

Radioligand binding assays were performed similar to our previous studies (e.g. 

(Monk et al., 2004)). Briefly, cells were homogenised (Polytron) and resuspended in 

Tris buffer (in mM; Tris 25, pH 7.4 adjusted with NaOH). Radioligand binding assays 

were performed in triplicate; binding tubes contained 500 µl of competing drug(s) or 

vehicle (Tris buffer), and 100 µl of [3H]-granisetron (1 nM); 3 TBqmmol-1; Perkin-

Elmer). An aliquot (100 µl) of the cell homogenate was added to initiate binding, 

which was allowed to proceed at room temperature for 60 min before termination by 

rapid filtration and washing with Tris buffer under vacuum through Whatman GF/B 

filters, followed by assay of the radioactivity remaining on the filters.  

5HT-Binding Protein 



The A1B2D1W 5HT-binding protein was produced and binding experiments with the 

protein were performed exactly as described by (Kesters et al., 2013). Radioactivity 

was determined using a Top Count Scintillation and Luminescence reader (Packard). 

Single cell electrophysiology 

Approximately 18h prior to electrophysiology assays, cells were seeded directly onto 

13 mm diameter glass coverslips coated with poly-L-lysine and fibronectin, at a 

density of 2 x 104 cells per coverslip. Macroscopic currents were recorded in the 

whole-cell recording mode of the patch-clamp technique from HEK293-5-HT3A cells 

or HEK293-5-HT3A/3B cells cultured on coverslips using an inverted microscope. 

Cells were superfused at ~4 ml min-1 with an extracellular solution (in mM; NaCl 140, 

KCl 2.8, CaCl2 1.0, glucose 10, HEPES 10, pH 7.4 adjusted with NaOH). Patch 

electrodes were pulled from borosilicate glass (O.D. 1.2 mm, I.D. 0.69 mm; Harvard 

Apparatus, Edenbridge, UK) using a P-97 puller (Sutter, Novato, CA) and filled with 

intracellular solution consisting of (in mM) 135 CsCl, 2 MgCl2, 10 HEPES, 1 EGTA, 2 

Mg-ATP and 0.3 Na-GTP; pH adjusted to 7.3 with KOH (osmolarity ~285 mOsm). 

Patch electrodes typically had open tip resistances of 4-7 MΩ. Membrane currents 

were recorded using an Axopatch 200B amplifier (Molecular Devices, Wokingham, 

UK), low-pass Bessel filtered at 1 kHz (NL-125, Digitimer Ltd, Welwyn Garden City, 

UK) and digitized at 10 kHz by a digidata 1302 (Molecular Devices). Experiments 

were performed at room temperature with the cells voltage-clamped at -60 mV.  

 

Agonist-evoked currents were elicited by pressure ejection (20-kPa; Picospritzer II; 

General Valve, Fairfield, NJ) of agonist (5-HT 1.0-10 µM) from modified patch 

pipettes placed ~30 µm from the recorded cell. 

 

Data and Statistical Analysis 

Values are expressed as mean±SEM. Curve fitting and data analysis were 

performed in Origin 8 (Silverdale Scientific, Stoke Mandeville, UK). Experimenters 

were not blinded to the experimental conditions.  Experiments were randomised 

where appropriate (eg for the paired pulse experiments, interpulse interval was 



randomised using a latin square design). ANOVA with subsequent unpaired t-tests 

(with Bonferonni correction for multiple comparisons) were used to evaluate 

differences; a Shapiro-Wilk tested normality. Post-hoc tests were only conducted if F 

was <0.05; the variance of the data was homogenous.  Significance criterion was 

p<0.05. 

Data and statistical analysis complied with the recommendations on experimental 

design and analysis in pharmacology (Curtis et al., 2015). 

  



Results 

Cl-Indole modulates 5-HT-induced responses but is not an agonist 

A brief application of Cl-indole (30 M, 100 ms) did not evoke a current in HEK293 

cells expressing the human 5-HT3A receptor (Figure 1) whereas bath application of 

5-HT (10 M) produced a large inward current. As the 5-HT-induced current began 

to decay, a second brief application of Cl-indole (30 M, 100 ms) reactivated the 

current (Figure 1). These data demonstrate the Cl-indole is not an agonist in its own 

right, but in the presence of 5-HT, it is capable of modulation of the 5-HT3A receptor. 

The reactivation of the current suggested that Cl-indole might act via an effect on 

either desensitisation or resensitisation of the receptor. 

 

Cl-Indole does not modulate 5-HT3A receptor desensitisation 

In order to establish if Cl-indole modulates receptor desensitisation, we tested the 

effect of Cl-indole on the rate of receptor desensitisation evoked by prolonged 

receptor activation. Twenty second applications of 5-HT (10 μM) produced large 

currents (1.53±0.25 nA, n=11) that displayed profound desensitisation (12.4±3.23% 

of peak; Figure 2Ai).  The current decay was best fit with a double exponential 

function, with time constants of 1.02±0.09 s and 9.79±1.09 s (Figure 2Bi & Bii). 

Superfusion of Cl-indole (10 μM) did not alter the amplitude of 5-HT induced currents 

(1.37±0.27 nA, n=11, p=0.54); nor did it alter the degree (13.9±3.9 % of peak, 

p=0.79) or rate (1 1.22±0.20 s, p=0.31; 2 7.78±0.41 s, p=0.21) of receptor 

desensitisation (Figure 2Biii). These data demonstrate that Cl-indole does not 

modulate 5-HT3A receptor desensitisation. 

 

Cl-indole does not modulate 5-HT3A receptor resensitisation 

We previously demonstrated that when 5-HT3A receptors were completely 

desensitised by prolonged application of 5-HT, subsequent application of Cl-indole 

generated an inward current indicative of Cl-indole being able to reactivate 

desensitised receptors (Newman et al., 2013) (see also Figure 1).  We therefore 



tested whether Cl-indole could modulate receptor resensitisation using a dual pulse 

protocol; a single prolonged application of 5-HT (10 μM, 20 s) induced receptor 

desensitisation (Figure 3A). After removal of the 5-HT, a second test pulse of 5-HT 

(10 μM, 1 s) was applied with a delay between 5 s and 2 minutes. Recovery from 

desensitisation was estimated by the fractional recovery of the current elicited by the 

second 5-HT pulse and was plotted against the inter-pulse interval.  Cl-indole did not 

modulate the rate of receptor resensitisation (control r=18.4±2.0 s; Cl-indole r 

17.7±3.1 s; n=5, p=0.8; Figure 3B). 

 

Cl-indole induces tail currents 

In the absence of Cl-indole, removal of 5-HT resulted in the evoked currents 

decaying back to the resting holding current level (see Figure 3A and 4A, black 

traces). In contrast, removal of 5-HT in the continued presence of Cl-indole resulted 

in a relatively large, slowly developing inward tail current which peaked at 

158.3±30.1 pA (13.3±1.8%) of the 5-HT-induced current amplitude (Figure 4A, red 

trace; n=13; see also Figure 3A, red trace).  The rise time of the tail current was best 

fit by a single time constant ( 2.77±0.35 s) and the tail current decayed slowly back 

to baseline (time to reach 50% level 11.06±1.7 s).  The effect of Cl-indole on the 

presence of a tail current was completely reversed upon wash (Figure 4A, grey 

trace). As the tail current arose immediately after the removal of the 5-HT, we 

examined if the tail current amplitude was correlated with the current remaining at 

the end of the agonist application; we also used lower concentrations of 5-HT (1 - 3 

µM and 1 µM) as these lower 5-HT concentrations evoked currents with reduced 

desensitisation (Figure 4B). The tail current amplitude did not correlate with the 

amount of current remaining (Figure 4Bi, n=27, ANOVA p=0.32).  In contrast, the 

amplitude of the tail current correlated positively with the 5-HT3A receptor current 

density (Figure 4Bii, n=13, ANOVA p<0.001). 

In order to further explore the origin of the tail current, we examined the current-

voltage relationship of the tail current.  Similar to the IV curve for the 5-HT3A receptor 

current, the IV curve for the tail current reversed at approximately zero mV (Figure 

5).  These data suggest that the tail current arises from activation of 5-HT3A 



channels (see also figure 7), and that channel opens in a manner consistent with 

orthosteric receptor activation. 

The tail current recorded in the presence of Cl-indole was qualitatively similar to tail 

currents that arise following relief from open channel block (Rossokhin et al., 2014).  

Given that 5-HT is known to induce channel block at concentrations above 5 µM 

(Corradi et al., 2009), we explored further if Cl-indole could induce tail currents after 

application of lower concentrations of 5-HT.  Cl-indole did not potentiate 3 µM 5-HT-

induced currents (Control = 0.73±0.11 nA; Cl-indole = 0.68±0.17 nA; n=6, p=0.91), 

yet the presence of Cl-indole induced a tail current upon removal of the lower 

concentration of 5-HT (Figure 6).  Following removal of 5-HT at 3 µM, the tail current 

peaked at 135±29.8 pA (18.7±3.3 % of the agonist induced current; n=6, p=0.15), 

with a similar decay time (8.54±1.1 s; p=0.65).  The rise time in the tail current 

(5.42±0.78 s) following removal of 5-HT at 3 µM was significantly slower than for tail 

currents evoked following removal of 10 µM 5-HT (p=0.01, Figure 6). 

Cl-indole (10 µM) potentiated 1.0 µM 5-HT-induced currents (Control = 149.0±50.7 

pA; Cl-indole = 473.5±146.0 pA; n=9, p=0.03) but not currents arising from higher 

concentrations of 5-HT. In the presence of Cl-indole (10 µM), tail currents were also 

observed following removal of 5-HT at 1 µM; the peak amplitude of the tail current 

was 197.5±50.6 pA, the rise time was significantly slower (7.37±0.81 s; p<0.001) and 

the decay time was unaltered (13.73±1.0 s; n=9, p=0.26; Figure 6).  Although the 

peak amplitude of the tail current evoked by removal of 1 M 5-HT did not 

significantly differ from those evident following removal of higher 5-HT 

concentrations, the Cl-indole-induced tail currents evoked following removal of 1 µM 

5-HT were significantly larger relative to the 5-HT-induced peak current (108.2±37.3 

%; n=9, p=0.003). 

 

Does Cl-indole function as an ago-allosteric modulator?  

The homomeric 5-HT3A receptor has 5 potential orthosteric binding sites, but various 

studies have shown that even when fully activated only 3 molecules of 5-HT are 

bound per receptor leaving unbound orthosteric sites (Corradi et al., 2009; Mott et 

al., 2001; Solt et al., 2007). Given the structural similarity between Cl-indole and the 



natural ligand 5-HT, we hypothesised that Cl-indole may function as an ago-allosteric 

modulator, a mode of action which has previously been described in members of the 

GPCR superfamily (Schwartz et al., 2006).  We tested this in two ways: firstly, we 

examined if the competitive antagonist, ondansetron, which interacts with the 

orthosteric site, could block the Cl-indole-induced tail current.  Secondly, we 

examined if 5-HT could modulate the ability of Cl-indole to interact with the 

orthosteric site in radioligand binding studies. 

In the continual presence of Cl-indole, ondansetron (10 µM) was applied via a 

second picospritz pipette one second prior to the withdrawal of the 5-HT.  In the 

absence of ondansetron, tail current amplitude was 250±18 pA, whereas effectively 

no tail current was observed in the presence of ondansetron (11±3 pA; n= 5, 

p<0.001 Figure 7A).  In a parallel set of experiments, we tested the effect of 

ondansetron (10 µM) applied after development of the tail current. Ondansetron 

applied at the peak of the tail current immediately reduced the current back to 

baseline levels (Figure 7B, n=5). The duration of the tail current (in the order of 

seconds) would suggest that it is occurring without the presence of the orthosteric 

ligand (which would be washed away).  As ondansetron copmpetively binds at the 

orthosteric site (Duffy et al., 2012) this strongly argues that Cl-indole interacts with 

the orthosteric site. 

These data demonstrate that antagonism of the orthosteric site prevents Cl-indole-

evoked tail currents.   

We have previously demonstrated that Cl-indole (in the absence of 5-HT) at 

concentrations up to 100 µM does not compete with [3H]-granisetron binding at the 

5-HT3A receptor (Newman et al., 2013), which was confirmed in the present study 

(Figure 8).  However, in the presence of sub-maximal concentrations of 5-HT, Cl-

indole competed for [3H]-granisetron binding sites, with the affinity of Cl-indole 

increasing for the [3H]-granisetron-labelled orthosteric site of the 5-HT3A receptor 

binding site with increasing concentrations of 5-HT (Figure 8, Table 1). In contrast, 

parallel experiments demonstrated that sub-maximal concentrations of 5-HT failed to 

modify the affinity of the partial agonist phenylbiguanide (Figure 8, Table 1). 

In complementary experiments we tested the ability of Cl-indole to bind to the 5-HT 

binding protein. This protein, formed by mutation of the acetylcholine binding protein, 



is able to bind 5-HT albeit with reduced affinity compared to the native 5-HT3 

receptor (Kesters et al., 2013). At higher concentrations, Cl-indole competed with 

[3H]-granisetron but did not show the same increase in affinity in the presence of 5-

HT as for the homomeric receptor (supplementary data figure 1), which suggests the 

5-HTBP does not fully replicate the interaction of Cl-indole with the h5-HT3A 

receptor. 

 

Cl-indole does not induce tail currents in the heteromeric 5-HT3AB receptor 

In contrast to the 5-HT3A receptor, the heteromeric 5-HT3AB receptor has been 

reported to have only one orthosteric site, formed at the interface of two A subunits 

(Miles et al., 2013). Since the action of Cl-indole requires the presence of the 

orthosteric agonist, we hypothesised that the agonist activity of Cl-indole would not 

be apparent at the heteromeric receptor. Unlike the homomeric receptor, the 

presence of Cl-indole (10 M) did not induce a tail current after removal of 5-HT; it 

did however potentiate the peak current amplitude (control 786.7±108.3 pA, Cl-

indole 1111.9±192.5 pA, n=6, p=0.03, Figure 9B). As subtle differences exist in the 

pharmacology of the heteromeric receptor, we tested if a higher concentration of Cl-

indole (30 M) would induce tail currents. Cl-indole did not induce a tail current but 

did again potentiate the peak current amplitude (control 585.1±56.2 pA, Cl-indole 

984.4±136.5 pA, n=5, p=0.02, Figure 9A, B).  Consistent with the lack of tail current 

in the heteromeric receptor, the presence of submaximal concentrations of 5-HT did 

not modulate the affinity of Cl-indole binding at the 5-HT3AB receptor (Table 2). 

 

  



Discussion 

Our previous studies demonstrated that Cl-indole was a potent and selective positive 

allosteric modulator of the 5-HT3 receptor (Newman et al., 2013).  Cl-indole slowed 

the rate at which 5-HT3A receptor-mediated currents decayed back to baseline 

following a brief application of 5-HT and appeared able to reactivate desensitised 

receptors (Newman et al., 2013). In the present study we demonstrated that Cl-

indole alone fails to activate the 5-HT3A receptor, although the presence of 5-HT 

reveals an action of Cl-indole once desensitisation had commenced (Figure 1). 

Based on the present and our previous studies, we therefore hypothesised that Cl-

indole may modulate the desensitised state of the receptor.  In the present studies 

the mechanism of action of Cl-indole was explored more fully. We used prolonged 

applications of the endogenous orthosteric agonist, 5-HT, to induce robust 

desensitisation of the 5-HT3A receptor but Cl-indole did not alter either the rate or 

magnitude of receptor desensitisation (Figure 2Biii) or the rate at which 5-HT3A 

receptors recovered following desensitisation (Figure 3). Given that some other 

allosteric modulators of 5-HT3A receptors have a profound effect on desensitisation 

rate (Deiml et al., 2004; Kooyman et al., 1993; Van Hooft et al., 1997), our data 

suggest that Cl-indole functions via an alternate mechanism.  

A surprising observation from the desensitisation studies was that the presence of 

Cl-indole revealed tail currents following removal of the 5-HT. Our unpublished data 

show that mutation of the 5OHI binding site in the human 5-HT3A receptor used in 

this study, had no effect on the ability of Cl-indole to modulate the 5-HT response.  A 

tail current has previously been described following the treatment of mouse 5-HT3A 

receptors with 5OHI (Kooyman et al., 1993). High concentrations of 5OHI (10 to 50 

mM) evoked a tail current superficially similar to that evoked by Cl-indole in our 

study. However unlike Cl-indole, high concentrations of 5OHI inhibited the 5-HT 

response and the tail currents could be ascribed to relief of 5OHI-mediated block. 

Similarly, 10 mM trichloroethanol also induced a tail current at mouse 5-HT3A 

receptors, which was ascribed to relief from a blocked state (Zhou et al., 1996). 

Indeed, tail currents are most commonly ascribed to the relief from non-competitive 

open channel block. For example, penicillin is an open-channel blocker at the 

GABAA receptor, where it binds within the pore and locks the receptor into an open 

but blocked conformation (Rossokhin et al., 2014). Removal of penicillin generates 



large tail-currents as receptors transition from an open-blocked to an open, ion-

permeant state (Rossokhin et al., 2014). Open channel block of the 5-HT3A receptor 

by 5-HT has been described by Hapfelmeier et al (Hapfelmeier et al., 2003) in 

macroscopic currents and at the single channel level by Corradi et al (Corradi et al., 

2009).  It has been proposed that 5-HT can occupy a non-agonist binding site and 

block conductance through the receptor in an open-channel like manner. It is 

therefore possible that Cl-indole may enhance 5-HT-mediated open-channel block, 

thereby causing a larger proportion of receptors to exist in a blocked state during 

continued agonist exposure. Following agonist removal, this population of receptors 

would transition from blocked to the open-conductive state and produce the 

observed tail currents. However, our data indicates that Cl-indole does not function 

in this manner. Previous reports of 5-HT-mediated channel block have shown that it 

is only evident at concentrations exceeding 5 μM (Corradi et al., 2009; Hapfelmeier 

et al., 2003). In the present studies tail currents were associated with lower 

concentrations of 5-HT, the amplitude of tail currents was not altered across the 

range of 5-HT concentrations investigated (1-10 μM), and tail currents were not 

observed in the absence of Cl-indole. Taken together, these data indicate that Cl-

indole-induced tail currents do not arise from promotion of channel block. 

We propose that Cl-indole potentiates 5-HT mediated responses by a novel 

mechanism where in the presence of the orthosteric ligand (5-HT), Cl-indole can 

bind to orthosteric sites leading to increased receptor activity.  Several observations 

support this hypothesis: (1) the concentration-dependent presence of 5-HT reveals 

an ability of Cl-indole to compete for the [3H]granisetron-labelled orthosteric binding, 

(2) the orthosteric 5-HT3 receptor antagonist, ondansetron, effectively blocks the Cl-

indole-dependent tail current and (3) the IV curve of the tail current is 

indistinguishable from that for the 5-HT3A receptor. Additional support is lent by the 

observation that in a heteromeric 5-HT3AB receptor with potentially only one 

available orthosteric site, no tail current was observed. Our interpretation is therefore 

that Cl-indole acts as both a positive allosteric modulator and an orthosteric agonist 

requiring the presence of an orthosteric ligand such as 5-HT.  

Ago-allosteric modulators have been defined as ligands that can function both as an 

agonist in their own right and as an allosteric modulator of the orthosteric ligand 

(Schwartz et al., 2007). This class of modulators has been well described for GPCRs 



(Smith et al., 2011a; Smith et al., 2011b; Yamazaki et al., 2012) but has also been 

described for cys-loop LGICs. Thus phenobarbitol, 4BP-TQS and thymol and 

carvacrol have all been described as ago-allosteric modulators for GABAA, nicotinic 

7 and 5-HT3A receptors, respectively (Amin et al., 1993; Gill et al., 2011; Lansdell 

et al., 2015). However, all these modulators act as allosteric agonists in the absence 

of the orthosteric ligand. Interestingly, 4BP-TQS acts via a site in the TM2 domain of 

the nicotinic 7 receptor (Gill et al., 2011), while thymol and carvacrol display 

agonism via a site in TM1 of the 5-HT3A receptor (Lansdell et al., 2005).  

The proposed mechanism of action of Cl-Indole shows some similarity to compounds 

that modulate nAChRs by acting through ‘non-canonical’ extracellular agonist 

binding sites (Short et al., 2015) or as ‘accessory site-selective agonists’ (Wang et 

al., 2015). These compounds act at heteromeric receptors with the mechanism of 

action explained by compounds interacting with sites distinct from the conventional 

orthosteric site.  Importantly, this study examined the effect of Cl-Indole on 

homomeric 5-HT3A receptors, which are expected to have five identical agonist 

binding sites. 

Therefore Cl-indole fundamentally differs from previously described modulators by its 

agonist action at the orthosteric site, as well as its allosteric action, both of which 

require the additional presence of an orthosteric ligand such as 5-HT.  Since the 

action of Cl-indole is hidden, requiring the presence of an orthosteric agonist to be 

revealed, we propose that it forms a new class of action that we term cryptic 

orthosteric modulation (COM). 

The 5-HT3A receptor has five orthosteric sites (Barnes et al., 2009) of which two to 

three are believed to be occupied for maximal receptor activation (Corradi et al., 

2009). The question therefore arises whether Cl-indole binds to unoccupied 

orthosteric sites or does it compete with 5-HT for occupied sites?  Both in this study 

and previously (Newman et al., 2013) we have shown that Cl-indole potentiates 

responses induced by sub-maximal but not maximal 5-HT concentrations.  Studies 

investigating receptor stoichiometry using nAChR suggest that agonist binding to a 

single binding site within the LGIC complex can activate the channel (Andersen et 

al., 2013; Rayes et al., 2009).  As the number of binding sites engaged increases, 

the channel can become maximally activated (Corradi et al., 2009). Therefore at low 



agonist concentrations it would be predicted that relatively few binding sites are 

occupied and the current amplitude is consequently lower.  Cl-indole can then 

interact with the free orthosteric sites to potentiate the response; this action is only 

revealed by the presence of 5-HT.  In contrast at higher 5-HT concentrations, 

multiple orthosteric binding sites are occupied, effectively blocking Cl-indole access 

to the orthosteric site.  As a result Cl-indole cannot potentiate the response. Once 

the 5-HT molecules begin to dissociate, the orthosteric binding sites become 

sequentially available, allowing Cl-indole to bind and re-activate the channel, thus 

generating the evident tail current.  This proposes that Cl-indole can only interact 

with unoccupied orthosteric sites. Our previous study demonstrated that when Cl-

indole was applied to desensitised receptors, a current was evoked (Newman et al., 

2013), which in the light of the present findings suggests that this current may have 

resulted from generation of a tail current. 

The heteromeric 5-HT3AB receptor has been reported to have the subunit order of A-

A-B-A-B ((Miles et al., 2013) Since the orthosteric site is formed from an A-A 

interface, this stoichiometry suggests the presence of just a single orthosteric site in 

the heteromeric 5-HT3AB receptor.  Our hypothesis is that the tail current is due to 

agonism of the receptor via the orthosteric site in the presence of the orthosteric 

ligand. This is supported by the absence of a tail current and lack of Cl-indole 

competition in the presence of 5-HT for the heteromeric 5-HT3AB receptor. 

Interestingly, the peak 5-HT3AB heteromeric receptor current was potentiated by Cl-

indole. We interpret this to mean that Cl-indole may have an allosteric action via the 

A-B and B-A interfaces. The potential for allosteric action through an A-B or B-A site 

is supported by Miles et al (Miles et al., 2015) who showed that mcPBG can be both 

an agonist and allosteric modulator at the  heteromeric receptor. These observations 

are consistent with our proposal that Cl-indole forms a new class of molecule 

exhibiting both agonist and allosteric actions requiring the presence of the orthosteric 

ligand. 

The novel mechanism of action of Cl-indole at the 5-HT3 receptor may offer 

therapeutic advantages for ligands with this mechanism at LGICs. Thus for instance 

a potentiation of 5-HT3 receptor function may benefit patients with constipation-

predominant irritable bowel syndrome. Furthermore, if the novel mechanism 

translates to other members of the LGIC receptor superfamily, then such potentiation 



of GABAA receptors for example may offer benefits for the treatment of a variety of 

conditions such as anxiety. Alternatively, a potentiation of nicotinic acetylcholine 

receptors may benefit patients with cognitive decline. 

In summary, using the 5-HT3A receptor as a model, this study identifies a previously 

unknown mode of activation of LGICs. We demonstrate that Cl-indole represents a 

modulator requiring the presence of the orthosteric ligand for its action – a Cryptic 

Orthosteric Modulator. The retained physiological control via the endogenous agonist 

to reveal both actions may offer therapeutic advantages for drugs targeting LGICs 

via this mechanism.  
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[5-HT] nM IC50 (µM) 

Cl-indole PBG 

0 >100 15±2 

10 77±12 14±1 

30 49±12 14±1 

100 27±6 15±3 

200 10±1 10±2 

 

Table 1. Ability of Cl-indole and PBG to compete for [3H]-granisetron binding to the 
orthosteric site of the 5-HT3A receptor. Data represent IC50 values for the competing 
drugs in the absence or presence of 5-HT (mean±SEM, n=4-8). 
  



 

[5-HT] (nM) Cl-indole IC50 (μM) 

0 144±41 

10 306±63 

30 198±42 

100 222±40 

200 255±83 

300 210±40 

 

 

Table 2. Ability of Cl-indole to compete for [3H]-granisetron binding to the orthosteric 

site of the 5-HT3AB receptor. Data represent IC50 values for the competing drugs in the 

absence or presence of 5-HT (mean±SEM, n=5). 

 

 
 
  



 

 

 

 

Figure 1. Cl-indole is not a 5-HT3A receptor agonist 

Cl-indole (30 M 100 ms) did not evoke a response. However in the presence of 5-

HT (10 M, bath application), Cl-indole (30 M 100 ms) provoked an inward current. 

Representative trace, n=7.  



 

 

Figure 2. Cl-indole does not modulate 5-HT3A receptor desensitisation (Ai); 

Prolonged application of 5-HT (10 μM, 20 seconds) activated a large 5-HT3A 

receptor current that displayed pronounced desensitisation under control conditions 

(black trace); single recording representative of 11 recordings.The magnitude and 

kinetics of desensitisation of the current evoked by 10 M 5-HT were unaffected by 

concomitant bath application of Cl-indole (10 μM) (red trace).(Aii) Normalising 5-HT 

(10 μM) induced current to the peak response highlighted the lack of effect of Cl-

indole on receptor desensitisation. (Bi & ii) The time constants of the current decay 

in the absence (black bar) or presence (red bar) of Cl-indole (10 M). (Biii) Degree of 

receptor desensitisation in the absence (black bar) or presence (red bar) of Cl-indole 

(10 M). Data represent the mean ± SEM, n=11). 

 

 

  



 

Figure 3. Cl-indole does not modulate 5-HT3A receptor recovery from 

desensitisation. (A) A single prolonged application (P1) of 5-HT (10 μM, 20 s) 

induced similar receptor desensitisation in absence (black trace) or the presence of 

Cl-indole (10 μM, red trace). After removal of the 5-HT, a second test pulse (P2) of 5-

HT (10 μM, 1 s) with a delay between 5 s and 2 minutes tested recovery from 

desensitisation; a single representative trace from 5 recordings.  Traces show an 

example recording with a 30 s interpulse interval.  (B) Fractional recovery of the 

current amplitude elicited by the second 5-HT pulse (P2/P1) was plotted against the 

inter-pulse interval in the absence (black symbols) or presence of Cl-indole (10 µM, 

red symbols); data represent the mean±SEM, n=5. 



 

Figure 4. Cl-indole evokes tail currents (A) In control conditions, the current 

decayed back to baseline levels after removal of 5-HT (black trace). In contrast, 

removal of the agonist in the presence of Cl-indole (red trace) induced a tail current 

with slow activation and deactivation kinetics. The presence of the tail current was 

completely reversible upon removal of Cl-indole (grey trace); trace representative of 

13 recordings. (B) Peak tail current amplitude did not correlate with the degree of 

receptor desensitation (Bi) resulting from a 20s 5-HT application ( - 10 μM,  - 3 

μM,  - 1 μM), but correlated with 5-HT-induced current density (Bii). Data 

represent individual recordings. 

 

  



 

Figure 5. Cl-indole does not modulate the current voltage relationship of the 5-

HT3A receptor current.  (A) IV curves (-120 mV – 120 mV) were constructed at the 

peak of the Cl-indole-induced tail current. (B) The current voltage relationship was 

unaltered by Cl-indole (10 M). Data represent the mean±SEM, n=6. 

  



 

Figure 6. Cl-indole induced tail current amplitude is independent of 5-HT 

concentration.(A and Bi) In the presence of Cl-indole (10 µM), application of 5-HT 

evoked a concentration dependent inward current (10 μM – black trace, 1 μM – red 

trace; trace representative of 9 recordings). (A and Bii) A similar amplitude tail 

current was observed at all agonist concentrations.  (Biii) The rise time of the tail 

currents was dependent on 5-HT concentration. Bar graphs represent mean+SEM, 

n=9. 

 

  



 

Figure 7. 5-Cl-indole mediated tail currents are blocked by ondansetron. (A) Selective 

orthosteric antagonist, ondansetron (10 µM, 15 s), applied one second prior to removal of 5-

HT (10 µM, 20 s), completely blocked tail currents (grey trace), which are usually seen in the 

presence of 5-Cl-indole (red trace). (B) Ondansetron (10 µM, 10 s) applied at the peak of the 

tail current, completely blocked the tail current (grey trace). Traces representative of 5 

recordings. Bar graphs represent mean+SEM, n=5. 

  



 

 

Figure 8. The presence of 5-HT allows Cl-indole to compete for [3H]-granisetron 

binding to the orthosteric site of the 5-HT3A receptor. Left graph: Cl-indole (up to 100 

µM) essentially does not compete for [3H]-granisetron in the absence of 5-HT, but in the 

presence of 5-HT (10 – 300 nM), there is a concentration-dependent increase in the affinity 

of Cl-indole for the [3H]-granisetron-labelled orthosteric site. Right graph: the same 

concentrations of 5-HT fail to alter the affinity of the orthosteric agonist, PBG. Data from a 

single experiment that was representative of 4-8 independent experiments (see Table 1 for 

summary of arising data). 
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Figure 9. Cl-indole does not induce tail currents in heteromeric 5-HT3AB 

receptors. (A) Pressure ejection of 5-HT (10 M, 20 s, 20 psi) evoked a rapidly 

desensitising current in both control (black trace) and in the presence of 30 M Cl-

indole (red trace). Removal of 5-HT did not induce a tail current in either condition. 

(B) Cl-indole (30 M, left panel, n=5; 10 M right panel, n=6) potentiated the peak 5-

HT current amplitude. Bar graphs represent mean+SEM.  

 

 


