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Deep reinforcement learning is rapidly gaining attention due
to recent successes in a variety of problems. The combination
of deep learning and reinforcement learning allows for a generic
learning process that does not consider specific knowledge of
the task. However, learning from scratch becomes more difficult
when tasks involve long trajectories with delayed rewards. The
chances of finding the rewards using trial and error become
much smaller compared to tasks where the agent continuously
interacts with the environment. This is the case in many real
life applications which poses a limitation to current methods. In
this paper we propose a novel method for combining learning
from demonstrations and experience to expedite and improve
deep reinforcement learning. Demonstrations from a teacher are
used to shape a potential reward function by training a deep
supervised convolutional neural network. The shaped function is
added to the reward function used in deep-Q-learning (DQN) to
perform off-policy training through trial and error. The proposed
method is demonstrated on navigation tasks that are learned
from raw pixels without utilizing any knowledge of the problem.
Navigation tasks represent a typical AI problem that is relevant to
many real applications and where only delayed rewards (usually
terminal) are available to the agent. The results show that
using the proposed shaped rewards significantly improves the
performance of the agent over standard DQN. This improvement
is more pronounced the sparser the rewards are.

I. INTRODUCTION

Recent years have seen a rise in demand for intelligent

agents capable of performing complex actions. Advances in

robotics and computational capabilities provide opportunities

for many potential applications such as assistive robots [1], au-

tonomous vehicles [2] and human computer interaction [3][4].

However the challenge remains to create intelligent agents

capable of robust and effective behavior. Most applications

are dynamic (i.e. the agent frequently faces varying scenarios)

and involve many variables and are therefore not suitable

for manually designed policies. In addition, the dynamic

settings mean that tailored learning methods that require expert

knowledge in the learning process are not robust or don’t

generalize well. This motivates the development of general

learning processes that require minimal expert knowledge

about the task and therefore can be applied to a wider array of

problems or generalize to changing scenarios. Deep learning

greatly facilitates more generic learning methods by providing

the ability to learn from raw sensory data. The ability of deep

learning techniques to learn representations directly from raw

data eliminates the need for feature extraction methods that are

specifically engineered for a particular task or environment.

Reinforcement learning (RL) also provides a generic frame-

work for learning tasks. RL utilizes trial and error and learns

by receiving feed back from the environment. It, therefore,

does not require any description of the task or how to solve it.

The only information provided to the agent is a reward based

on its actions. While rewards can be designed to describe how

well the agent is doing at any given moment, in more realistic

settings a reward is only provided when the task is completed.

This paradigm is suitable for many real life applications and

facilitates using the same process to learn different problems

with minimal modifications.

Recently several successful attempts combine the use of

deep learning with RL to learn a wide array of tasks such

as Atari games [5][6], optimal control [7][8], board and card

games [9][10] and navigation [11]. Most efforts use deep

learning to directly map raw state representations to action

space. RL is a popular choice for learning actions because

most tasks can be modeled as a Markov decision process

(MDP). Moreover, optimizing a reward function arguably

provides a better description of a task than optimizing a

policy [12]. Learning from experience can produce robust

policies that generalize to dynamic scenarios by balancing

exploration and exploitation of rewards. However, finding a

solution through trial and error may take too long. Especially

in problems that require performing long trajectories of actions

with delayed rewards. In such cases it may be extremely

difficult to stumble upon rewards by chance and the time to

learn a policy to maximize the rewards exponentially increases.

Another draw back is that learning through trial and error

may result in a policy that solves the problem differently to

how a human would. Performing a task in a manner that is

intuitive to a human observer may be crucial in applications

where humans and intelligent agents interact together in an

environment [13]. Nass et al [14] suggest that humans view

computers interacting with them as social agents and that

humans interact with them in a manner derived from their

experiences interacting with other humans. Therefore, even

with the conscious knowledge that an agent is not a human,

interaction is improved when the agent behaves in a way that

is familiar to its human counter part.

An alternative approach to learning actions is learning from

demonstrations which aims to learn a policy that mimics

a teacher’s behavior. Demonstration is an intuitive way of



2

imparting knowledge to a learner and is easier than describing

how to solve a problem [15]. Learning from demonstrations

has the advantage of faster learning as it learns from good

examples as opposed to random exploration. Moreover, it

results in a policy that follows the teacher’s way of solving the

task. However, learning a direct mapping between observation

and action results in a policy that generalizes poorly to unseen

scenarios. The supervised policy only learns to deal with

situations covered in the demonstrations. Since demonstrations

only cover the optimal trajectory, if the agent deviates even

slightly from that trajectory (which is expected in any machine

learning application), it finds itself in an unseen situation

not covered by the training data. So essentially the policy is

trained using samples from a distribution that is different to

the one it is evaluated on. Moreover, supervised learning needs

a sufficient number of demonstrations which for deep network

architectures may be large.

In this paper we propose a reward shaping method for inte-

grating learning from demonstrations with deep reinforcement

learning to alleviate the limitations of each technique. Unlike

most reward shaping methods, the reward is shaped directly

from demonstrations and thus does not need measures that

are tailored specifically for a certain task. Moreover, deep

learning is used to learn a mapping between raw observa-

tions and rewards from the demonstrations. The proposed

method uses a deep convolutional neural network to learn a

reward shaping function from demonstrations performed by a

teacher. This function provides additional rewards based on

the teacher’s behavior that are added to the rewards from

the environment. The augmented reward function is used

to train an agent through Deep-Q-Networks (DQN) [5], a

variation of Q-learning that employs deep learning. Both the

supervised reward shaping network and the reinforcement

learning network utilize stacked convolutional layers to learn

reward estimates directly from raw pixels. This approach takes

advantage of the extra information provided by demonstrations

to expedite and improve reinforcement learning, while being

able to generalize by learning through exploration and trial

and error.

Moreover we propose an adaptive network updating method

based on training loss of the Q-network to speed up and stabi-

lize learning. A contribution of DQN is to use two networks,

and freeze the reward network’s learning while the policy

network learns from it’s predictions. The results indicate that

the current established method of setting a predefined number

of steps before updating the reward network is inefficient and

that using an adaptive freezing period significantly improves

the convergence of DQN.

The proposed method is evaluated on a 2D navigation task

that provides delayed rewards and requires learning from raw

visual data. Navigation is an important skill for intelligent

agents due to its relevancy to a variety of applications. It

is common in realistic applications to only provide a reward

when the target is reached. Navigation can be a main task

as in autonomous vehicle applications such as aerial vehicles

[16][2][17] or land vehicles [18][19][20] or as a base skill

for other tasks such as humanoid robots which need to move

before performing other tasks [21][22].

In the next section we review related work. Section 3

describes the proposed methods. Section 4 details the ex-

perimental setup and the produced results. Finally Section

5 concludes the paper and provides directions for future

research.

II. RELATED WORK

In this section we present related work that utilize deep re-

inforcement learning and describe different methods proposed

in the literature to combine learning from demonstrations and

experience.

Deep learning methods have shown great success in learning

from raw sensory data. This is particularly useful in problems

where tailor-made features are difficult to create. In order

to combine reinforcement learning with deep learning from

high dimensional visual input, RL methods must be scaled

to accommodate large non linear function estimators such as

convolutional neural networks [8]. DQN [5][23] introduces

a version of Q-learning that learns from raw visual data

using convolutional neural nets. This is achieved by creating a

replay buffer of training samples that are collected off-policy.

Random mini-batches from the buffer are selected to train the

Q-network. This method is favorable to using incoming obser-

vations for online training for two reasons [24]: Firstly, closely

correlated samples violate the assumption that the training

samples are independent and identically distributed (i.i.d.) and

thus create an imbalanced training set. Secondly a model that

uses a saved training queue is less prone to forgetting rare

training samples that appear early in the learning process. In

addition to introducing a training buffer, DQN proposes using

a separate network (target network) to generate the estimated

rewards which are used to calculate the loss of the Q-network.

This approach helps stabilize learning as the target rewards

stay constant while the Q-network is learning. This technique

showed human level performance on several Atari games and

paved the road for deep reinforcement learning methods.

In [8], the replay buffer and sampling methods introduced

in DQN are adopted to an actor-critic framework to deal

with continuous action spaces (such as analogue control). The

action-value function in DQN only allows for a finite and

limited number of actions as the neural network predicts an

estimated reward for each one. This approach is replaced by an

actor-critic method in which the neural network predicts what

actions to perform and a critic evaluates this step based on the

returned rewards. Therefore a loss function can be calculated

for any action space.

In [6], an alternative method is proposed to deal with the

correlation of sampled instances and non-stationarity of the

updates. Instead of saving samples in a replay buffer, multiple

agents are deployed (each in its own copy of the environment)

in parallel. The instances sampled from all agents are used to

train the single Q-network simultaneously. Since each agent

will probably be exploring a different aspect of the task at the

same time, the samples they provide will not be highly cor-

related and provide similar diversity to random mini-batches

from the replay buffer. In addition to being efficient with

memory and computational resources, this approach enables
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gathering samples on-policy or off-policy alike. Asynchronous

parallel sampling is applied to a number of deep reinforcement

learning algorithms including DQN and an actor-critic method

(called A3C) which achieved state of the art results on the

Atari benchmark and demonstrated effective performance in

a navigation task in a 3D simulated environment. Utilizing

additional information about the target is used to speed up

and improve deep RL in [11]. Information about the target

is provided in the form of images of the target. The network

takes pixels representing the target as input as well as pixels

representing the current state and learns in a manner similar to

A3C. The results show that the addition of target information

significantly improves policy learning and allows for transfer

learning to similar tasks with different targets.

Although deep reinforcement learning has shown great

advancements and demonstrated effective performance on a

number of problems, demonstrations can provide extra infor-

mation that can be useful to learning a policy. A supervised

deep learning method is applied to the same Atari benchmark

in [25] using demonstrations from an offline Monte Carlo

policy. The agent trained using demonstrations is shown

to outperform learning from trial and error alone. Another

example of demonstrations outperforming trial and error is

shown in [26]. DQN is used to play a game of Pacman

and the performance of reinforcement learning is compared

to supervised learning. The experiments show that learning

purely from trial and error failed to produce an effective policy

in reasonable time. While supervised learning using training

demonstrations played by the authors proved to converge much

faster and produce a well performing policy.

To achieve the advantages of both approaches, many efforts

have been made to combine learning from demonstrations

with reinforcement learning. Early research shows that demon-

strations can improve and speed up reinforcement learning

as well as avoid falling in local minima [27]. A popular

method of utilizing demonstrations in reinforcement learning

is apprenticeship learning [12]. Apprenticeship learning does

not require rewards to be explicitly provided but rather learns

a reward function from the demonstrations. It is assumed the

the teacher is trying to optimize an unknown reward function

and thus the goal is to learn an estimate of this function

from demonstrations. A policy to optimize this function is

then learned via reinforcement learning. This approach has the

advantage of not needing explicit rewards. However, this may

affect it’s generalization ability specially if the environment is

dynamic and the demonstrations doesn’t cover all possibilities.

In similar vein, reward shaping [28][29] aims to create

a reward function, however, unlike apprenticeship learning

the created function is not used on its own to reward the

agent. Instead the shaped reward is augmented to the reward

from the environment, thus providing extra information to

speed up learning while maintaining generalization by ex-

ploring environment reward returns. In [30], it is shown that

shaping a potential reward function maintains the conver-

gence guarantees of reinforcement learning. A shaped reward

function can also be used to assist traditional learning from

demonstrations instead of reinforcement learning. In [31],

a policy is optimized to mimic given demonstrations (how

to solve the problem) while a shaped reward function pro-

vides target driven constraints to the optimization. Typically

reward shaping approaches do not learn a reward function

from demonstrations, but rather use prior knowledge of the

task to shape the rewards. For example a function of the

Manhattan distance to the target is used in [30]. However,

such information about the performance of the agent may

not be available in most realistic tasks. Therefore in order

to make the learning process more generic and applicable to a

wider range of applications, a recent version of reward shaping

proposes to use demonstrations to create the reward function

[32]. The shaped reward function evaluates the similarity of

the action taken by the agent at the current state to the

recorded demonstrations. So if the same action was taken by

the demonstrator in similar states, the reward would be closer

to 1. Manually engineered features for each task are used to

provide representations of the states. A non-normalized multi-

variate Gaussian equation is used to evaluate the similarity of

the state-action pairs to the demonstrations.

Another approach to incorporating demonstrations in RL

is guided policy search [33] which uses differential dynamic

programming (DDP) to generate guiding samples from given

demonstrations. These samples are used help a policy search

algorithm reach reward dense areas faster. While this method

is model-free, it relies on the model based DDP to generate

guiding samples which required a working model of the task’s

dynamics.

With the rising interest in deep reinforcement learning, some

efforts explore incorporating learning from demonstrations

with RL in a deep learning context. To preserve the generic

design of the learning method, learning from demonstrations

just as the RL algorithm should not require specific knowledge

of the task. In [9], deep reinforcement learning is combined

with supervised learning to train an agent to play the board

game GO. The acting policy is initialized using weights

trained via supervised learning on a dataset of previous games.

Moreover, a value function is used to evaluate whether a game

will eventually be won or lost given the current state. This

function is trained using supervised learning on a specially

prepared dataset of recorded games. The reinforcement learn-

ing algorithm finds a policy based on terminal rewards and

the predictions of the value function. This method has proven

to rival human level and significantly outperforms using only

supervised learning [34].

In [7], supervised and reinforcement learning are combined

to learn object manipulation tasks in a version of guided policy

search. RL is initially used under conditions where details of

the task are known. The performance of this policy is used

as demonstrations to train a supervised convolutional neural

network. The supervised policy doesn’t require task knowledge

such as the position of target objects and learns to perform

the task from raw visual input. However, this approach limits

the ability to improve the policy through exploration once the

policy is learned. Apprenticeship learning is also extended to

use a deep neural network to learn from raw visual input

[35] which alleviates the need for manually designed reward

functions or feature representations. In [36], Monte Carlo

Tree Search (MCTS) Methods and deep learning are used for
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reward design. This method does not utilize demonstrations

in the reward design, but rather uses MCTS to generate

trajectories and learns internal rewards based on those trees.

The internal rewards are learned using a version of Policy-

Gradient for Reward-Design (PGRD) [37] that employs a deep

convolutional neural network. Similar to reward shaping, the

internal rewards are then augmented to the rewards from the

environment.

III. METHOD

This section presents the proposed method for deep reward

shaping from demonstrations. The method uses a deep super-

vised network to learn a shaping function from demonstration.

The shaped reward is added to the environment reward used

by DQN [23] to speed up and improve policy learning through

reinforcement learning. First we formalize the reinforcement

learning and learning from demonstrations approaches.

Reinforcement learning assumes the task takes place in

an environment E and is formulated as a Markov Decision

Process (MDP). An experience is represented as a tuple

(s, a, r, s′) where s represents the state as observed by the

agent, a is the action taken by the agent at state s, r is

the reward received for performing action a and s′ is the

new state resulting from that action. While demonstrations

are presented as pairs of input and output (x, y). Where x
is a vector of features describing the state at that instant and

y is the action performed by the demonstrator. The pair of

observation and action (x, y) in demonstrations corresponds

to (s, a) in the Markov Decision Process. So the demonstrator

can be considered as an optimal policy π∗ which provides the

optimal action choice a∗ = π∗(s)
The reinforcement learning algorithm works by training a

deep convolutional neural network to predict the discounted

reward of performing an action. Figure 1 illustrates the ar-

chitecture of the network. More formally, the agent learns by

optimizing Q(s, a) where Q is an estimation of the return

of performing a at state s which uses the recursive Bellman

equation.

Q(s, a) = Es′ E [r + γmaxa′Q(s′, a′)|s, a] (1)

Where r is the actual reward for performing a at state

s, γ is a discount factor for potential future rewards and

maxa′Q(s′, a′) is the maximum estimated reward possible

at the next state s′. If s is a terminal state (one which

ends the task, regardless of result), then Q(s, a) = r. The

function Q(s, a) is learned via a deep convolutional neural

network and is used to provide the agent with actions when

presented with a new state. In practice a second network is

used to predict the target rewards Q′(s′, a′) used in training

Q(s, a). The reason for that is to provide a constant target for

training while updating Q(s, a) to stabilize learning. The target

network is updated periodically to be equivalent to Q(s, a).
This raises the issue of how long to freeze the target network

for before updating it. A freezing period that is too short will

not allow Q(s, a) to converge to the target rewards and results

in unstable learning. A freezing period that is too long is

inefficient since Q(s, a) continues to learn outdated targets.

To improve the learning efficiency we propose an adaptive

method to update the target network. Convergence will occur

at different rates for different tasks or even for different batches

within the same task. Therefore rather than a constant freezing

period, we set a condition -based on training loss- for updating

the target network. Equation 2 shows the updating condition.

Loss =
(Q(s, a)− [r + γmaxa′Q′(s′, a′)|s, a])2

2
≤ ε (2)

Where ε is a constant indicating how small the loss needs

to be before updating the targets.

The main contribution of this paper is to incorporate reward

shaping from demonstrations with reinforcement learning in a

deep learning context. A shaped reward is an extra reward that

is derived from extra information and is added to the reward

from the environment. A shaping function F (s, a, s′) is used

to generate the shaped reward. The shaping function is added

to the target reward in equation 1 yielding :

Q(s, a) = Es′ E [r+γmaxa′Q′(s′, a′)|s, a+F (s, a, s′)] (3)

Ng et al [30] proved that forming F as function of

the transition between states (i.e. the difference in potential

between the states) rather than a function of the current

state-action pair (s, a) maintains the convergence guarantees

of reinforcement learning and preserves the optimal policy.

Therefore we express F as the difference between potential

functions for states s and s′.

F (s, a, s′) = γmaxa′P (s′, a′)−maxaP (s, a) (4)

Where P (s, a) is a function estimating the potential of the

pair (s, a). We use as the potential function a convolutional

neural network trained in a supervised manner on a set of

collected demonstrations D = (x, y). The network has the

same architecture as the network used to learn Q(s, a) and

therefore produces an estimated potential for each action given

s. The target outputs y are encoded as one-hot labels, i.e the

output is a vector of possible actions with value one for the

performed action and zero otherwise. The output layer of the

network uses a linear activation function instead of the softmax

activation function commonly used in supervised classification

problems to avoid sharp potential estimates for unseen states.

So P is used as a multivariate regression network rather

than a classification network and the predicted potential for

each action is a real number. Using a deep network for the

potential function has the advantage of being able to learn

from raw data and doesn’t require designing representations of

the demonstrations. Moreover, unlike [32] the demonstrations

don’t need to be stored or traversed to calculate the potential

for a new state-action pair.

Utilizing this potential based function in equation 3 provides

extra information from demonstrations to the reinforcement

learning algorithm. This alleviates the challenges of sparse

environment rewards and allows the agent to get more frequent

feedback. Without this extra knowledge, the only policy avail-

able for the agent is to explore randomly until it has sampled

enough experiences, which is not efficient when the rewards
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Fig. 1. Architecture of the neural network used for training

are sparse. Reward shaping speeds up reinforcement learning

by limiting the need for extensive random exploration.

Algorithm 1 presents the pseudo code for reinforcement

learning with deep reward shaping from demonstrations.

Algorithm 1 DQN with Deep Reward Shaping from Demon-

strations

1: given: Teacher demonstrations D = (x, y)
Network Q(s, a) with random weights Network

Q′(s′, a′) with random weights Network P (s, a) with

random weights

Empty replay buffer B
Loss threshold ε for adaptive updates

Train P (s, a) on D
2: for episodes do
3: for timestep t = 1 : T do
4: With probability ε, at = random action

5: Otherwise at = maxaQ(st, a; θ)
6: Perform at and get rt,st+1

7: Store the tuple (st, at, rt, st+1) in B
8: Randomly select minibatch of

experiences (si, ai, ri, si+1) from B:
9: F (si, ai, si+1) =

γmaxa′P (si+1, a
′)−maxai

P (si, ai)
10: if si+1 is terminal:

11: yi = ri
12: else
13: yi = ri + γmaxa′Q′(st+1, a

′; θ) +
F (si, ai, st+1)

14: Optimize θ using gradient descent for:

loss = (yt−Q(si,ai;π))
2

2
15: if loss ≤ ε :

16: Q′(s′, a′) ← Q(s, a)

The teacher provides demonstration as in traditional learn-

ing by demonstration problems. Unlike [9], no specially de-

signed labeled dataset (that includes extra information other

than state and action, such as evaluation measures of the per-

formance) is needed to pre-train Q(s′, a′) or F (s, a, s′), which

makes the training process more generic and streamlined.

The task is assumed to be an MDP where the current state

represents all past information ( no extra context is needed to

make a decision). Therefore a single image frame is used as

the agent’s observation and the resulting policy is stationary

(i.e doesn’t require information about the current position in

the trajectory).

The neural network architecture used to optimize Q and

P is a deep architecture with three convolutional layers that

follows the network architecture in [5] with the exception of

using a single frame as input. The convolutional layers are

followed by a fully connected (FC) hidden layer and finally

an output layer. A rectified linear activation function (ReLU)

is used for all layers apart from the output layer in which

a linear activation function is used. Table I summarizes the

network architecture.

TABLE I
NEURAL NETWORK ARCHITECTURE

Layer Size of activation volume
Input 84 × 84

Conv1 8 × 8 × 32
Conv2 4 × 4 × 64
Conv3 3 × 3 × 64

FC 512
Output(FC) 4

IV. EXPERIMENTS

In this section we describe the experiments con-

ducted to evaluate the proposed approach and present

the results. Implementation of the proposed method in-

cluding the task used for evaluation is available at

https://github.com/ahmedsalaheldin/MashRL.git

A. Grid Navigation Task

The proposed method is demonstrated on a navigation task

in a 2D simulated environment. The environment consists of a

grid with dimensions set before starting the experiment. Each

cell in the grid corresponds to a state where state st is a

raw image of the agent’s observation at frame t. The states

are represented as images of the number of their respective

cells. So for example cell 25 is represented by an image

of the number 25. All images are 84 × 84 pixels and are

greyscale. The grid dimensions can be set to any size and the

state representations are generated automatically. We conduct

experiments on grids of sizes 5 × 5, 15 × 15 and 30 × 30.

The grid is also initialized with the agent’s starting position

and the position of the target. The agent is able to move in

the 4 directions of the compass a ∈ {GO LEFT, GO RIGHT,

GO FORWARD, GO BACK}. If the agent attempts to move

off the grid, it will remain in the same state. The agent is

rewarded with a positive reward (+1) only when it reaches
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the target and the episode is terminated. The agent receives a

negative reward (-1) for attempting to step off the grid. Figure

2 illustrates the navigation task on a 5 × 5 grid. Each cell

consists of an image representing that state. The blue marker

signifies the agent’s starting position while the green marker

indicates the target state. The agent and target’s positions are

fixed to facilitate evaluation.

Although the task is simple it provides a number of chal-

lenges typical with real applications. Firstly, no designed

features are available for reinforcement learning or learning

from demonstrations and the agent is required to learn solely

from raw pixels. Moreover, Only terminal delayed positive

rewards are provided which require the agent to perform long

trajectories. For comparison, in our experiments on a 30x30

Grid, the shortest route to the target consists of 57 actions.

While a recent study proposed a new complex simulator with

realistic graphics [11] where the shortest trajectory to the target

is typically less than 20 actions.

Fig. 2. Illustration of the Grid Navigation Taks

B. Experimental Setup

To evaluate the proposed method we conduct several ex-

periments for each grid size. Firstly, the adaptive method

for updating the target network is evaluated against static

freeze parameters. Typically a large freeze parameter (10000)

is used to ensure convergence but smaller values may result in

faster training. Adaptive updating is compared against freezing

the target network for 10000, 2500, 500 and 100 steps. The

loss threshold ε is set to 0.02. This comparison is done

using the DQN algorithm without reward shaping. The second

experiment compares the proposed reward shaping approach

with DQN using adaptive updating for both approaches. The

second experiment is repeated using the best performing static

freeze parameter (500) to show that RL can benefit from

demonstrations regardless of the updating method. Finally we

compare the proposed approach with DQN while using limited

exploration. As mentioned in Section 3, the prior knowledge

incorporated through reward shaping from demonstrations

provide a base for the policy to start learning. As such, the

need for extensive random exploration is limited. Exploration

is controlled by the parameter ε which decides if the agent

gathers samples randomly or according to the current learned

policy. Following [5], the learning rate used is 0.00025 and ε

decays to 0.1 over training time. The supervised training of the

potential function P (s, a) is executed on demonstrations per-

formed by a deterministic optimal policy. The policy performs

5 complete trajectories of the task to gather enough samples for

supervised training. For all experiments, the agent is allowed to

train for 1000 epochs. After each epoch, the agent performs the

current policy in a test session and the score is reported. Since

success in this task is binary, the score is defined as the number

of successful test sessions up to the current epoch. Using such

an expanding window produces a monotonically increasing

graph that reflects the rate of learning and the stability of the

learned policy.

C. Results

This section presents the results of the proposed method.

Figures 3 to 6 show the results of the 4 experiments conducted

on grids of sizes 5 × 5, 15 × 15 and 30 × 30. The X axis

represents the number of epochs used for training. The Y

axis represents the score achieved by the agent at that test

session. The score shows how many training epochs resulted

in a policy that successfully solves the problem up to the

current epoch. Figure 3 shows a comparison of different static

freezing parameters against the proposed adaptive measure for

updating the target network. The graphs show that adaptive

updating achieves better results than all static parameters. For

grid sizes 5× 5 and 15× 15, setting the freezing parameter to

100 produced the second best results with a very slightly lower

curve than adaptive updating. Freezing parameter 500 closely

follows, and increasing the freezing parameter results in slower

learning. Similar results are shown on grid size 30 × 30,

however, the best performing static parameter is 500 as using

100 fails to learn completely. This is due to requiring more

time to converge on more complex tasks and highlights the

difficulty of choosing static freezing parameters for different

tasks and the advantage of using adaptive updating.

Figure 4 evaluates the proposed reward shaping method

against DQN. Both approaches use adaptive updates for this

comparison. The graphs show that using reward shaping results

in a more stable policy faster than traditional DQN. The same

observations are made in figure 5 which uses a static freezing

parameter to show that the reward shaping approach does

not depend adaptive updates. These results demonstrate the

benefits of this paper’s main contribution over standard deep

reinforcement learning.

Figure 6 compares the reward shaping approach to DQN

using an initial ε of 0.4 instead of 1. This decreases the initial

exploration performed by the agent to collect samples and

their corresponding rewards. The graphs show that reward

shaping continues to outperform DQN. On the 30×30 grid, the

performance of DQN drops significantly due to the increased

search space, while reward shaping results in faster and more

stable learning. This indicates that the prior knowledge ex-

tracted from demonstrations provides guidance to the sampling

policy and results in a learning process that is more robust to

changes in exploration parameters. A noteworthy observation

is that all experiments show that the benefits of the proposed

method are more pronounced the larger the grid size. This is
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because the challenges addressed in this method increase as

the grid becomes bigger. The number of states increases and

the number of steps needed to complete the task also increase

which makes the rewards available to the agent even sparser.

V. CONCLUSION

This paper proposes a novel method for deep reward shaping

from demonstrations to improve deep reinforcement learning.

Learning from demonstrations allows a generic approach to

reward shaping and learns from raw visual data without

requiring specific information about the task. Moreover, an

adaptive approach to updating the target network is proposed

that is shown to benefit deep reinforcement learning whether

with or without the use of reward shaping and alleviates

the need to manually select parameters suitable for the task.

The results are conducted on a 2D navigation task and show

that the proposed reward shaping approach speeds up and

improves deep reinforcement learning and provides increased

stability against exploration policies. Our next step is to test

the proposed approach on learning various navigation tasks in

a more realistic simulator [38]. We also aim to incorporate

reward shaping from demonstration with A3C [6] which is

considered the current state of the art in deep reinforcement

learning.
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