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Abstract

The current frameworks of reasoning about agents’ collective
strategy are either too conservative or too liberal in terms of
the sharing of local information between agents. In this paper,
we argue that in many cases, a suitable amount of informa-
tion is required to be communicated between agents to both
enforce goals and keep privacy. Several communication op-
erators are proposed to work with an epistemic strategy logic
ATLK. The complexity of model checking resulting logics is
studied, and surprisingly, we found that the additional expres-
siveness from the communication operators comes for free.

Introduction
Strategic reasoning is an active area in multiagent sys-
tems. An extensive set of logic frameworks, see e.g., (Alur,
Henzinger, and Kupferman 2002; Horty 2001; Pauly 2002;
Chatterjee, Henzinger, and Piterman 2010; Mogavero, Mu-
rano, and Vardi 2010), have been proposed to reason about
agents’ strategic ability. Within these logics, the alternating-
time temporal logic ATL (Alur, Henzinger, and Kupferman
2002) is one of the most prominent. To work with incom-
plete information systems in which agents can only make
partial observation about the underlying system states, the
semantics of the logic has been re-investigated with sev-
eral proposals, see e.g. (van der Hoek and Wooldridge 2002;
Schobbens 2004; van Otterloo and Jonker 2005; Jamroga
and Ågotnes 2007; Guelev, Dima, and Enea 2011; Huang
and van der Meyden 2014c), etc. In these proposed logic
frameworks, a collective strategy of a group of agents is de-
fined as a collection of strategies, one for each agent in the
group, and an agent’s strategy depends on either its own lo-
cal information or the group’s information, which can be
their distributed knowledge (Jamroga and Ågotnes 2007;
Guelev, Dima, and Enea 2011) or common knowledge (Jam-
roga and Ågotnes 2007; Diaconu and Dima 2012). The shar-
ing with distributed knowledge is essentially the sharing of
all the available information between agents.

This paper aims to complement these semantic settings
with communication between agents. The rationale is based
on the following two arguments. The first argument is that,
there exist cases in which enabling communication between
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s0 c d
a 1 0
b 0 0

s1 c d
a 1 0
b 0 1

s2 c d
a 1 0
b 0 1

s3 c d
a 0 0
b 0 1

Table 1: Utilities of different states

agents in a group can strengthen the capability of agents and
enable them to achieve goals that are not achievable other-
wise. The second argument is that, there exist cases in which
sharing agents’ entire local information is undesirable. For
example, an agent is willing to collaborate with other agents
to achieve the group’s goals, and at the same time, intends
to keep some of its own privacy. This relates to, but not
the same as, secure multi-party computation (Yao 1982), in
which agents want to complete a computation and keep their
inputs private.

The approach we suggest in the paper is to introduce com-
munication operators into an epistemic strategy logic ATLK,
to quantify over the amount of information needed to satisfy
both the goals and the required privacy conditions. Two ap-
proaches of defining communication operators are explored.
The first is in a style of registration and cancellation: a com-
munication needs to register before working, and once reg-
istered, it will be effective until officially cancelled. The sec-
ond is a temporary communication: the communication oc-
curs and only occurs upon request at the current state.

We studied the complexity of model checking ATLK and
its extended logics, and found that, surprisingly, the addi-
tional expressiveness of communication operators comes for
free. All of them are NEXP-complete for the multiagent sys-
tems represented succinctly and symbolically.

Illustrative Example
Example 1 Consider a game of two players A and B. It
starts by tossing two independent coins v and w. Every out-
come of the coins represents a possible state. We use bit 0 to
represent tail and bit 1 to represent head. E.g., (1, 0) denotes
that coin v lands head and w lands tail. Therefore, there are
four states s0 = (0, 0), s1 = (0, 1), s2 = (1, 0), s3 = (1, 1). On
every state, the players have two actions {a, b} and {c, d}, re-
spectively. The utilities of joint actions of agents are given in
Table 1.

The agents are notified with partial information: player



v w A : v ∧ w A : v ⊗ w B : w
s0 0 0 0 0 0
s1 0 1 0 1 1
s2 1 0 0 1 0
s3 1 1 1 0 1

Table 2: Agents have partial information about the states

A learns conjunction v ∧ w and exclusive disjunction v ⊗ w
of the outcome, while player B learns the value of dice w.
The details of the states and the information agents have are
collected in Table 2. We can see that, agent A can not dis-
tinguish states s1 and s2, while agent B can not distinguish
states s0 and s2, and states s1 and s3.

A query we would like to make is, do the two agents have a
collective strategy to achieve utility 1? A collective strategy
is a collection of strategies, one for each agent. As stated
in most of the literature, a strategy needs to be uniform, i.e.,
each agent takes the same action on those states where it has
the same local information. Expressed as a formula of ATL
language1, the query is

φ1 ≡ 〈〈{A, B}〉〉AX(u = 1). (1)

Unfortunately, this is unsatisfiable. As we will elaborate
later, a formula is satisfiable on a system if it is satisfiable
on all initial states (in this example, s0, s1, s2, s3) of the sys-
tem. To see why the formula is unsatisfiable, we notice that
on state s0, to achieve utility 1, agent B has to take action
c and agent A has to take action a. Because of the unifor-
mity of agents’ strategy, agent B will also take action c on
state s2, which makes agent A take action a. Because agent
A can not differentiate states s1 and s2, it will take action a
on state s1. To match with this, agent B has to take action
c on state s1 and therefore on state s3. However, we notice
that no matter which action taken by agent A, the utility 1
can not be reached on state s3.

The approach we study in the paper is to introduce com-
munication between agents so that they can collectively
enforce the goal. Communication enhances the ability of
agents in distinguishing states and therefore enables better
strategies. A naive way of introducing communication is to
allow agents in a group to share their entire local informa-
tion, see e.g., (Guelev, Dima, and Enea 2011). For example,
in the game of Example 1, sharing entire local information
between the two agents will make them have complete infor-
mation about the state, and therefore have a collective strat-
egy to satisfy the formula φ1.

However, in many situations, sharing without reservation
can be undesirable. A system designer may care not only the
ability of agents to enforce goals but also some security or
privacy conditions, as exemplified in the following example.
Example 2 For the game of Example 1, the formula

φ2 ≡ ¬w⇒ ¬(KBv ∨ KB¬v) (2)
1Here we take a slightly different syntax as that of (Alur, Hen-

zinger, and Kupferman 2002), i.e., a strategy operator can be fol-
lowed by a CTL formula. The semantics of the language will be
given in Section 3.

expresses that agent B does not know the outcome of coin v
when coin w lands tail, and the formula

φ3 ≡ v ⊗ w⇒ ¬(KAv ∨ KA¬v ∨ KAw ∨ KA¬w) (3)

expresses that agent A does not know the outcome of coins
when their exclusive disjunction is 1. The requirement of the
game can then be

φ4 ≡ φ2 ∧ φ3 ∧ AX(u = 1) (4)

It is not hard to see that, allowing agents to share their entire
local information will not enable the existence of a collective
strategy to satisfy formula φ4, because the conditions φ2 and
φ3 do not hold when the agents have complete information.

The approach we explore in the paper is to let the agents
transmit a suitable amount of information.

Example 3 To enable the existence of a collective strategy
to satisfy φ4, we may let agent A transmit the value of v ∧ w
to agent B. With this message, agent B can distinguish states
s1 and s3, and therefore the group can have the following
collective strategy to satisfy both the goal AX(u = 1) and
the privacy conditions φ2 and φ3:
• agent A takes action b on state s3 and a on other states,
• agent B takes action d on state s3 and c on other states.

In the paper, knowledge formulas like φ2 and φ3 are used to
express security or privacy conditions, which in this context
mean that agents do not have some specific knowledge about
the current state.

Model Checking Multi-agent Systems
Let B(Var) be the set of boolean formulas over variables2

Var. For s being a truth assignment of the variables Var and
f ∈ B(Var) a formula, we write e(s, f ) for the evaluation
of f on s. We may write e(s, f ) (or ¬e(s, f )) to denote that
e(s, f ) = 1 (e(s, f ) = 0).

A multi-agent system consists of a collection of agents
running in an environment (Fagin et al. 1995). Let Agt =
{1, ..., n} be a set of agents. The environment E is a tu-
ple (Vare, inite, {Actsi}i∈Agt, {OVari}i∈Agt,−→e). The compo-
nent Vare is a set of environment variables such that every
truth assignment to Vare is an environment state. Let Le be
the set of environment states. The component inite ⊆ Le is a
set of initial environment states, OVari ⊆ Vare is a subset of
environment variables that agent i is able to observe, Actsi is
a set of local actions for agent i such that Actsi ∩ Acts j = ∅
if i , j and JActs = Πi∈AgtActsi is a set of joint actions, and
−→e⊆ Le×JActs×Le is a transition relation. The environment
nondeterministically updates its state by taking into consid-
eration the joint actions taken by the agents. Agents’ observ-
able variables may be overlapping, i.e., OVari ∩ OVar j , ∅,
to simulate the case where agents have shared variables. We
use se,i to denote the part of an environment state se that can
be observed by agent i, i.e., se,i = se|OVari . This can be gen-
eralized to a set of states, e.g., Le,i = {se,i | se ∈ Le}.

An agent Ai, for i ∈ Agt, is a tuple (Vari, initi,−→i). The
component Vari is a set of local variables such that each truth

2W.l.o.g., we assume that variables are boolean.



assignment to Vari is a local state. Let Li be the set of local
states of agent i. The component initi ⊆ Li is a set of initial
local states, −→i⊆ Li×Le,i×Actsi×Li is a transition relation:
a tuple (li, oi, ai, l′i) ∈−→i means that when agent i is at state
li and has an observation oi on the environment state, it may
take action ai and move into the state l′i . If there are several ai
with the same li and oi, the agent i will nondeterministically
choose one of them to execute.

Let Var = Vare ∪
⋃

i∈Agt Vari and Acts =
⋃

i∈Agt Actsi. A
multi-agent system is defined as M(E, {Ai}i∈Agt) = (S , I,−→
, {Bi}i∈Agt). The set S = Le ×Πi∈AgtLi is a set of global states.
For a global state s = (le, l1, ..., ln), we write si ≡ li for i ∈
Agt, and se ≡ le. The same for joint actions. The set I is a set
of initial states such that s ∈ I if se ∈ inite and si ∈ initi for all
i ∈ Agt. The transition relation −→⊆ S ×JActs×S is defined
as (s, a, t) ∈−→ if (si, se,i, ai, ti) ∈−→i for all i ∈ Agt and
(se, a, te) ∈−→e. The indistinguishable relation Bi ⊆ S × S
is such that Bi(s, t) iff si = ti and se,i = te,i. We use Ni(s) =
{ai ∈ Actsi | ∃ti ∈ Li : (si, se,i, ai, ti) ∈−→i} to denote the set
of local actions of agent i that are enabled on global state
s. We assume that the environment transition relation −→e
is serial, i.e., for every state s and every joint action a such
that ai ∈ Ni(s) for all i ∈ Agt, there exists a state t such
that (s, a, t) ∈−→e. However, we do not assume the same for
agents, i.e., given a local state si and an observation se,i, a
local action ai may be disabled.

A (uniform and memoryless) strategy θi of agent i maps
each state s ∈ S to a nonempty set of local actions such
that θi(s) ⊆ Ni(s) and for all states s, t ∈ S , Bi(s, t) im-
plies θi(s) = θi(t). A strategy θi of agent i can be used
to update the agent Ai such that all transitions are consis-
tent with θi. Formally, for Ai = (Vari, initi,−→i), we de-
fine Ai[θi] = (Vari, initi,−→′i) such that (ti, oi, ai, t′i ) ∈−→

′
i iff

(ti, oi, ai, t′i ) ∈−→i and ai ∈ θi(s) for some global state s with
si = ti and se,i = oi. Moreover, given a collective strategy
θG = {θi}i∈G of a set G of agents, we define an updated sys-
tem M(E, {Ai}i∈Agt)[θG] = M(E, {Ai}i∈Agt\G ∪ {Ai[θi]}i∈G). For
any updated system M, we write M0 for the original system
where no strategy has been applied.

We use a language ATLK to describe the specifications of
a multi-agent system M. Formally, ATLK has the syntax:

φ ::= p | ¬φ | φ1 ∨ φ2 | EXφ | EGφ | E(φ1Uφ2) | 〈〈G〉〉φ | EGφ

where p ∈ Var is an atomic proposition and G ⊆ Agt is
a set of agents. Intuitively, formula 〈〈G〉〉φ means that the
agents in G have a collective strategy to enforce φ, and EGφ
means that every agent in G knows φ. In particular, we have
E{i}φ = Kiφ. Formulas EXφ, EGφ and E(φ1Uφ2) have stan-
dard meaning as in CTL. Other operators can be obtained in
the usual way, e.g., Aφ = ¬E¬φ, Fφ = TrueUφ, etc.

A (labelled) fullpath ρ = s0a1s1... is an infinite sequence
of states and actions such that s0 is an initial state, and for
every k ≥ 0, (sk, ak+1, sk+1) ∈−→. We use ρ(m) to denote
the state sm. Moreover, we write Path(M, s) for the set of
fullpaths ρ of M such that ρ(0) = s, and rch(M) for the set
of reachable states of M, i.e., s ∈ rch(M) if there exists a
state t ∈ I such that there exists a fullpath ρ ∈ Path(M, t)
such that s = ρ(m) for some m ≥ 0.

The semantics of the language on a system M is described

as a relation M, s |= φ, which is defined recursively as fol-
lows for state s ∈ S and formula φ.
• M, s |= p if e(s, p).
• M, s |= ¬φ if not M, s |= φ.
• M, s |= φ1 ∨ φ2 if M, s |= φ1 or M, s |= φ2.
• M, s |= 〈〈G〉〉φ if there exists a collective strategy θG such

that for all agents i ∈ G, there is M0[θG], t |= φ for all
states t ∈ rch(M0) with Bi(s, t).

• M, s |= EGφ if for all agents i ∈ G and all states t ∈
rch(M0) with Bi(s, t), there is M, t |= φ.

• M, s |= EXφ if M, t |= φ for some state t with (s, t) ∈−→.
• M, s |= E(φ1Uφ2) if there exist a path ρ ∈ Path(M, s) and

a number m ≥ 0 such that M, ρ(k) |= φ1, for all 0 ≤ k ≤
m − 1, and M, ρ(m) |= φ2.

• M, s |= EGφ if there exist a path ρ ∈ Path(M, s) such that
M, ρ(k) |= φ for all k ≥ 0.
Note that, when dealing with formula 〈〈G〉〉φ, the strategy

θG is applied on the original system M0, instead of the cur-
rent system M. Moreover, M0 is used in computing indis-
tinguishable states when interpreting formula EGφ; agents
are incapable of observing the strategies that are currently
applied, including its own strategy.

Given a multi-agent system M and a formula φ, the model
checking problem, written as M |= φ, is to decide whether
M, s |= φ for all s ∈ I.

Adding Fixed Communication
A communication is held by an agent sending a message
to another agent via an instantaneous lossless channel. An
agent’s local state represents the maximal information it has.
It is reasonable to assume that a message sent by an agent
does not contain more information than its local state3. In
the paper we assume that agents do not have memory. There-
fore, agent i’s local state contains current valuation of local
variables Vari and observable environment variables OVari.

Every communication is associated with a directed chan-
nel. A communication is fixed if, once the channel is estab-
lished, the message will be transmitted from the sender to
the receiver on every state that follows.

A multiagent system M needs to maintain a set CM of
existing communication. During the establishment stage, a
tuple (k, i, j, ϕ) such that k = |CM |, i, j ∈ Agt and ϕ ∈
B(OVari ∪ Vari) is registered/added into CM . Intuitively, k
denotes the index of the new communication, i and j are
sender and receiver respectively, and ϕ is a formula that will
be used to interpret future messages. In the following, we use
ck to denote the kth communication that has been registered
in CM , sndrk and rcvrk to denote the sender and receiver, and
ϕk to denote the message formula.

Once a communication has been registered, the actual
message will be transmitted from the sender to the receiver
on every state since then (including the current state). For
a communication ck and a state s, agent sndrk transmits a

3We assume that an agent always tells some truth about its cur-
rent local state.



pair mk,s = (k, e(s, ϕk)) to agent rcvrk. Recall that e(s, ϕk)
is the evaluation of formula ϕk on the state s. When there
is no confusion, we may simply use formula ϕk to denote a
message, as in Example 3.

A message mk,s provides agent rcvrk with information on
the current state s. This additional information may or may
not increase the information agent rcvrk has about the cur-
rent state. The impact of the transmission of a message mk,s
can be expressed as an update to agents’ indistinguishable
relations. Formally, we define Bi[ck] as follows: for any two
states s and t,

Bi[ck](s, t) =

{
Bi(s, t) ∧ (e(s, ϕk)⇔ e(t, ϕk)) if i = rcvrk
Bi(s, t) if i , rcvrk

Intuitively, the updated relation has an extra condition that
the related states have the same evaluation on the formula
ϕk. The update on the indistinguishable relations can be gen-
eralized to work with a set CM of communication. For any
two states s and t,

Bi[CM](s, t) ≡ Bi[c0]...[ck](s, t) for k = |CM | − 1.

The following proposition says that the ordering of apply-
ing these communication does not matter.

Proposition 1 Bi[CM](s, t) iff Bi[c](s, t) for all c ∈ CM .

In this section, to simplify notations, we assume that a re-
ceived message can not be re-sent directly or sent as a com-
ponent of a new message, from its receiver to another agent.
The case of nested communication will be formally treated
in Section 6.

A fixed communication may be cancelled upon request.
The cancellation of the communication with agents G as re-
ceivers is defined as follows.

Bi[CM \G](s, t) =

{
Bi(s, t) if i ∈ G
Bi(s, t)[CM] if i < G

where Bi(s, t) is the original definition in the system M. The
necessity of cancelling a communication will be elaborated
in the next section with an example.

Now we are ready to define the way how a system M =
(S , I,−→, {Bi}i∈Agt) maintains a set CM of communication.
This is done by constructing a system M[CM] = (S , I,−→
, {B′i}i∈Agt) such that B′i = Bi[CM] for all i ∈ Agt.

To specifying the registration and cancellation of commu-
nication, we introduce into the language ATLK two new op-
erators SG and NG for G ⊆ Agt being a set of agents. The
new language ATLK f c has the syntax as follows.

φ ::= p | ¬φ | φ1 ∨ φ2 | EXφ | EGφ | E(φ1Uφ2) |
〈〈G〉〉φ | EGφ | SGφ | NGφ

The semantics of the operators is defined as follows.

• M[C], s |= SGφ if there exists a set C′ of communication
between agents in G such that M[C ∪C′], s |= φ.

• M[C], s |= NGφ if M[C \G], s |= φ.

• M[C], s |= 〈〈G〉〉φ if there exists a collective strategy θG
such that for all agents i ∈ G, there is M0[C][θG], t |= φ
for all states t ∈ rch(M0[C]) with Bi[C](s, t).

s0 c d
a 1 0
b 0 0

s1 c d
a 0 1
b 0 0

s2 c d
a 0 0
b 1 0

s3 c d
a 0 0
b 0 1

Table 3: Utilities of different states, second round

• M[C], s |= EGφ if for all agents i ∈ G and all states t ∈
rch(M0[C]) with Bi[C](s, t), there is M[C], t |= φ.

The semantics of other constructs follows the similar pattern
as that of Section 3.

With fixed communication, the model checking problem
is, given a multiagent system M and a formula φ of the lan-
guage ATLK f c, to decide whether M[∅] |= φ.

Example 4 The specification stated in Example 2 can now
be expressed with the following formula.

φ5 ≡ S{A,B}〈〈{A, B}〉〉φ4 (5)

which says that there exist a set of communication for agents
A and B such that, the agents have a strategy to enforce φ4.
The satisfiability of φ5 on the game M, i.e., M |= φ5, can be
witnessed by the communication given in Example 3.

Necessity of Cancelling a Communication
Fixed communication enhance the system with updated in-
distinguishable relations of agents. If not cancelled, these
updates occur in the entire system execution. This may re-
sult in unnecessary communication or undesirable result.

Example 5 The following is a variant of Example 1 and 2.
The game has two rounds. The first round is the same as
described before. In the second round, the two coins are
flipped again and the agents are notified with the same in-
formation. Assume that agents can distinguish states of dif-
ferent rounds. Technically, this can be implemented by relat-
ing each state with a round number, e.g., (1, s1) denotes the
state s1 of the first round and (2, s3) denotes the state s3 of
the second round, and enhancing agents’ indistinguishable
relations with a constraint: n , m ⇒ ¬Bx((n, s), (m, t)) for
all x ∈ {A, B}, s, t ∈ {s0, s1, s2, s3}.

The utilities of the second round are different with those
of the first round, and are given in Table 3. Consider the
following formula for the second round

φ6 ≡ ¬(KBv ∨ KB¬v) ∧ AX(u = 1) (6)

which says that the required utility is 1 and agent B does
not know the outcome of coin v. We notice that the formula
AX S{A,B}〈〈{A, B}〉〉φ6 can be satisfied by agent B sending a
message w to agent A in the second round. With that mes-
sage, agent A has complete information about the state but
agent B’s ability is kept the same. Then the group has a col-
lective strategy as follows:

• agent B takes action c on state s0 and s2 and action d on
state s1 and s3,

• agent A takes action a on state s0 and s1 and action b on
state s2 and s3.



However, the following formula, which combines the re-
quirement of the first round and the second round, is not
satisfiable.

φ7 ≡ S{A,B}〈〈{A, B}〉〉(φ4 ∧ AX S{A,B}〈〈{A, B}〉〉φ6) (7)
Taking both the messages designated for φ4 and for φ5 will
cause the agents have complete information about the sys-
tem state and therefore do not satisfy the security conditions.

This can be handled by the capability of cancelling a com-
munication. Let M2 be the new game of two rounds, and
φ8 ≡ S{A,B}〈〈{A, B}〉〉(φ4 ∧ AX N{A,B}S{A,B}〈〈{A, B}〉〉φ6). (8)

We have that M2 |= φ8.

Handling Nested Communication
In this section, we consider nested communication which is
not covered in the definitions of Section 4. A communica-
tion from an agent is nested if it contains information that is
received from other agents.
Example 6 Consider a variant of Example 1 with an ad-
ditional player C who is not notified with any information
about the outcome but wants to discover the outcome of coin
v. It is assumed that C can only communicate with B. Intu-
itively, the following formula
φ9 ≡ S{A,B}S{B,C}〈〈{A, B}〉〉(φ4 ∧ (w⇒ KCv ∨ KC¬v)) (9)

says that after the communication between A and B, and
B and C, along with the previous requirement φ4, an extra
condition that C can discover the outcome of v when coin w
lands head holds. If no nested communication is allowed, the
formula is not satisfiable, because without the information
from A, agent B does not know any information about v and
thus can not help agent C.

However, the following nested communication may be ap-
plied to satisfy the formula φ9. The communication between
A and B are the same as suggested in Example 3. The com-
munication between B and C can be done by letting agent B
send both v ∧ w and w to C. Note that the message v ∧ w is
received from agent A.

According to the definition, a communication ck from an
agent i has to satisfy the condition that ϕk ∈ B(OVari∪Vari).
To handle nested communication, for every communication
ck, we introduce an extra local variable vk for agent rcvrk,
i.e., let

Vari[ck] =

{
Vari ∪ {vk} if i = rcvrk
Vari if i , rcvrk

This can be generalised to work with a set Ck of commu-
nication as Vari[Ck] = Vari[c0]...[ck] for k = |CM | − 1. The
following expression

rel ≡
|CM |−1∧

j=0

v j ⇔ ϕ j

records the equivalence relations between newly-introduced
variables and their corresponding messages. Let VarCM be
the set of newly introduced variables, we can define

Bi[ck](s, t) =


∃VarCM : Bi(s, t) ∧ (e(s, ϕk)⇔ e(t, ϕk)) ∧ rel

if i = rcvrk
Bi(s, t) if i , rcvrk

and generalise it to Bi[CM] and M[CM].

Example 7 Continue with Example 6. There are three com-
munication: c1 = (1, A, B, v ∧ w) will introduce a local vari-
able v1 for agent B such that v1 remembers the value of v∧w;
c2 = (2, B,C, v1) and c3 = (3, B,C,w) will introduce two lo-
cal variables v2 and v3 for agent C such that v2 remembers
the value of v1 and v3 remembers the values of w.

Then for states s1 and s3 where w = 1, the updated indis-
tinguishable relation for agent C is BC[c1, c2, c3](s1, s3) ≡
∃v1, v2, v3 : BC(s1, s3) ∧ (e(s1, v1) = e(s3, v1)) ∧ (e(s1,w) =
e(s3,w))∧ (v1 ⇔ v∧w)∧ (v2 ⇔ v1)∧ (v3 ⇔ w), and thus we
have that ¬BC[c1, c2, c3](s1, s3), which means that agent C
can distinguish state s1 and s3 with the messages from agent
B. Therefore, after the nested communication, we have that
w⇒ KCv ∨ KC¬v, and therefore φ9 is satisfiable.

Adding Temporary Communication
In this section, we suggest another way of handling the case
of Example 5. A communication is temporary if the corre-
sponding message is transmitted only at the current state. A
temporary communication can be used in combination with
strategy operator or knowledge operator to reasoning about
agents’ enhanced capability at the current state.

Instead of introducing another communication operator,
we update the strategy operator and knowledge operator to
allow additional communication. The new language ATLKtc

has the syntax as follows.

φ ::= p | ¬φ | φ1 ∨ φ2 | EXφ | EGφ | E(φ1Uφ2) | 〈〈G〉〉tcφ | Etc
Gφ

The semantics of the updated operators is defined as follows.
1. M, s |= 〈〈G〉〉tcφ if there exist a set C of communication

between agents in G such that with the additional com-
munication, there exists a collective strategy θG such that
for all agents i ∈ G and all states t ∈ rch(M) such that
Bi[C](s, t), there is M0[θG], t |= φ.

2. M, s |= Etc
Gϕ if there exist a set C of communication be-

tween agents in G such that with the additional commu-
nication, for all agents i ∈ Agt and all states t ∈ rch(M0)
such that Bi[C](s, t), there is M, t |= ϕ

Example 8 We can specify the requirement of Example 5
with the following formula

φ10 ≡ 〈〈{A, B}〉〉tc(φ4 ∧ AX 〈〈{A, B}〉〉tcφ6) (10)

By the previous analysis, the formula is satisfiable.
Unlike ATLK f c in which nested communication is set up

by nested operators, no nested communication can be ob-
tained for ATLKtc as the communication occurs upon re-
quest at the current state and is automatically dropped after-
wards. The model checking problem is, given a multiagent
system M and a formula φ of the language ATLKtc, to decide
whether M, t |= φ for all initial states t ∈ I.

The logics ATLKtc and ATLK f c represent two differ-
ent, yet natural, ways of communication between agents.
In ATLK f c, the nested communication is established with
several nested operators, that is, the nesting is done explic-
itly. The same approach cannot be applied to ATLKtc, whose
communication will be lost after the application of the op-
erator. It is unnatural, and probably overly-complicated, to
have a nested communication within a single operator.



Complexity
We analyse the complexity of model checking logics pre-
sented in the previous sections. The model checking prob-
lem is measured over the number of variables Var, the num-
ber of local actions Acts, and the number of operators in φ.
Let m = |Var |, k = |Acts| and l = |φ|. The set Ags of agents is
fixed.

The system is in succinct representation: the number of
system states is |S | = O(2m). To be consistent with the com-
munication in which messages contain boolean formulas, we
assume that initial states inite, initi and transition relations
−→e,−→i are all represented as boolean formulas such that
inite ∈ B(Vare), initi ∈ B(Vari), −→e∈ B(Vare∪Acts∪Var′e),
and −→i∈ B(Vari∪Vare∪Actsi∪Var′i), where Var′e and Var′i
are next-time variables for the environment and the agent i,
respectively. The representations of a set of states and a tran-
sition relation as boolean formulas is a standard technique in
symbolic model checking, see (Clarke, Grumberg, and Peled
1999) for the details. For instance, a formula f ∈ B(Vare)
represents a set of environment states as follows:

{s ∈ Le | e(s, f ) = 1}

Recall that an environment state is a truth assignment over
the variables Vare. Therefore, the expression represents the
set of truth assignments that make the formula f true. For
the transition relation, a formula t ∈ B(Vare ∪ Acts ∪ Var′e)
represents a transition relation as follows:

{(s, a, s′) ∈ Le × JActs × Le | e(s ∪ a ∪ s′, t) = 1}

Moreover, the relation Bi is also represented as a boolean
formula such that Bi ∈ B(Vare ∪ Var′e). We also call this
symbolic representation. Note that, formulas can be of ex-
ponential size with respect to m and k.

We have the following proposition.
Proposition 2 Both communication and strategy can be
represented as a truth table of exponential size.
Proof: (Sketch) Given a set Vari∪OVari of local variables, a
formula ϕ ∈ B(Vari ∪OVari) carries a single-bit information
about the current local state of agent i. It can be alternatively
represented as a boolean function fϕ : Li × Le,i → {0, 1}.
Each local state (si, se,i) ∈ Li × Le,i is a truth assignment to
the variables Vari ∪ OVari and therefore the function fϕ can
be represented as a truth table over the variables Vari∪OVari.
The truth table has an exponential number of lines, each of
which represents a mapping from a state (si, se,i) to a boolean
value f ((si, se,i)).

A strategy θi is a mapping from Li × Le,i to a nonempty
subset of local actions Actsi. For agent i, we introduce a
set of |Actsi| boolean variables BActsi, such that each local
nondeterministic choice corresponds to a truth assignment to
BActsi. Therefore, a strategy θi can be represented as a truth
table over the variables Vari ∪OVari ∪ BActsi. The table has
an exponential number of lines, each of which expresses that
a subset of local actions are selected in a state (si, se,i). �

First of all, we have the following conclusion for ATLK
by extending a result from (Huang, Chen, and Su 2015).
Theorem 1 Model checking ATLK is NEXP-complete for a
multi-agent system of succinct and symbolic representation.

Now we can have the following two conclusions.

Theorem 2 Model checking ATLKtc is NEXP-complete.

Proof: (Sketch) The lower bound comes from Theorem 1.
For the upper bound, the algorithm returns the reversed re-
sult of the following procedure:

1. guesses an initial states s0 of the model M and

2. returns the reversed result of sat(M[∅], s0, φ).

The function sat(M[C], s, φ) is computed inductively by the
structure of the formula φ. For the space limit, we only give
details for strategy operator.

1. sat(M[C], s, 〈〈G〉〉tcφ) if we can

(a) guess a set of communication C′ and obtain M0[C∪C′],
(b) guess a strategy θG based on relation Bi[C ∪ C′] and

obtain the system M0[C ∪C′][θG], and
(c) verify sat(M0[C ∪C′][θG], t, φ) on all states t such that

t ∈ rch(M0) and Bi[C ∪C′](s, t),

where by M0[C ∪ C′], we remove all strategies from the
system but keep those fixed communication.

Note that, for the point (a) of the case sat(M, s, 〈〈G〉〉tcφ), we
do not need to explicitly guess a truth table for C and then
apply it on M0. Because the number of communication can
be exponential, this will not enable us to achieve the com-
plexity bound. Instead, we do the following:

1. guess the resulting updated relation Bi[C ∪C′], and

2. check whether Bi[C] ⇒ Bi[C ∪ C′] and Bi[C ∪ C′] ⇒∨
j∈G B j[C].

The second step is to make sure that the relation Bi[C∪C′] is
an enhanced relation of Bi[C] by accepting certain informa-
tion from other agents in G. It can be shown that the guessing
can be done in exponential time with respect to m, and the
verification of Bi ⇒ Bi[C] and Bi[C] ⇒

∨
j∈G B j can also

be done in exponential time with respect to m. Therefore we
have the NEXP upper bound. �

Theorem 3 Model checking ATLK f c is NEXP-complete.

Proof: (Sketch) The lower bound comes from Theorem 1.
For the upper bound, the algorithm largely resembles that of
Theorem 2. For the nested communication, we do not ex-
plicitly use the additional variables. Instead, we treat these
additional variables as intermediate variables that are exis-
tentially quantified away when generating the new relation.
See the expression Bi[ck](s, t) for such an expression. �

With the above theorems, we can conclude that the logics
ATLK f c and ATLKtc have the same model checking com-
plexity as that of ATLK, if the system is in succinct or sym-
bolic representation.

Related Work
The studying of communication in a logic framework can
be related to the logic of public announcements (Baltag,
Moss, and Solecki 1998), which treats the effects of com-
munication of agents in a way of updating the system by a
production with another system representing a (communica-
tion) action. For such an update, one needs to fully specify



the communication action and the communication leads to
changes on the system. Because of the changes on the sys-
tem, the semantics works with perfect recall. Our framework
is more flexible. First, the details of the communication are
decided by model checking algorithm and the communica-
tion does not lead to changes on the system (communication
is registered in a set instead). Second, although the presented
semantics works with imperfect recall, it can be adapted
for perfect recall by standard techniques in temporal epis-
temic logic. Note that, the computational complexity can be
higher for perfect recall semantics. Moreover, (Agotnes and
van Ditmarsch 2008) extends the public announcement logic
with strategy operator, and (de Lima 2011) considers an al-
ternative semantics for strategy formula 〈〈G〉〉φ: there is an
announcement by group G after which φ, where the other
agents remain silent.

As for the model checking complexity relevant to the cur-
rent framework, (Huang, Chen, and Su 2015) presents a set
of complexity results for model checking concurrent and
symbolic representations of multiagent systems.

Conclusions and Future Work
The paper presents our first step towards considering the im-
pact of communication on agents’ collaboration and coordi-
nation. It is somewhat surprising that, the additional commu-
nication between agents does not incur increased complexity
for the important model checking problem.

As the next step, we may consider incorporating com-
munication into e.g, more expressive strategy logics such
as (Huang and van der Meyden 2014c; 2014a) or log-
ics with probabilistic knowledge or strategy operators such
as (Huang, Su, and Zhang 2012; Huang and Luo 2013;
Huang, Luo, and van der Meyden 2011), etc. We are also
interested in extending the current symbolic model check-
ing algorithm (Huang and van der Meyden 2014b) to work
with communication operators.
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