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Abstract

Mining data streams is a core element of Big Data Analytics. It represents
the velocity of large datasets, which is one of the four aspects of Big Data,
the other three being volume, variety and veracity. As data streams in, mod-
els are constructed using data mining techniques tailored towards continuous
and fast model update. The Hoeffding Inequality has been among the most
successful approaches in learning theory for data streams. In this context, it
is typically used to provide a statistical bound for the number of examples
needed in each step of an incremental learning process. It has been applied
to both classification and clustering problems. Despite the success of the
Hoeffding Tree classifier and other data stream mining methods, such mod-
els fall short of explaining how their results (i.e. classifications) are reached
(black boxing). The expressiveness of decision models in data streams is
an area of research that has attracted less attention, despite its paramount of
practical importance. In this paper, we address this issue, adopting Hoeffding
Inequality as an upper bound to build decision rules which can help decision
makers with informed predictions (white boxing). We termed our novel
method Hoeffding Rules with respect to the use of the Hoeffding Inequality
in the method, for estimating whether an induced rule from a smaller sample
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would be of the same quality as a rule induced from a larger sample. The new
method brings in a number of novel contributions including handling uncer-
tainty through abstaining, dealing with continuous data through Gaussian
statistical modelling, and an experimentally proven fast algorithm. We con-
ducted a thorough experimental study using benchmark datasets, showing
the efficiency and expressiveness of the proposed technique when compared
with the state-of-the-art.

Keywords:
Data Stream mining, Big Data Analytics, Classification, Expressiveness,
Abstaining, Modular Classification Rule Induction

1. Introduction

One problem the research area of ‘Big Data Analytics’ is concerned with
is the analysis of high velocity data, also known as streaming data [1, 2], that
challenge our computational resources. The analysis of these fast streaming
data in real-time is also known as the emerging area of Data Stream Mining
(DSM) [2, 3]. One important data mining technique, and in turn DSM
category of techniques is classification. Traditional data mining builds its
classification models on static batch training sets allowing several iterations
over the data. This is different in DSM as the classification model needs to
be induced in a linear or sublinear time complexity [4]. Furthermore, DSM10

classification techniques need to allow dynamic adaptation to concept drifts
as the data streams in [4]. Applications of DSM classification techniques
are manifold and comprise for example monitoring the stock market from
handheld devices [5], real-time monitoring of a fleet of vehicles [6], real-
time sensing of data in the chemical process industry using soft-sensors [7],
sentiment analysis using real-time micro-bogging data such as twitter data
[8], to mention a few.

The challenge of data stream classification lies in the need of the classifier
to adapt in real-time to concept drifts, which is significantly more challeng-
ing if the data stream is of high velocity. Many data stream classification20

techniques are based on the ‘Top Down Induction of Decision Trees’, also
known as the ‘divide-and-conquer’ approach [9], such as [10, 11]. However,
the decision tree format is also a major weakness and often requires irrelevant
information to be available to perform a classificaton task [12]. Moreover,
adaptation of the trees is harder compared with rules when a change occurs,
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this could be a disadvantage for real-time applications.
The here presented work proposes the Hoeffding Rules data stream clas-

sifier that is based on modular classification rules instead of trees. Hoeffding
Rules can easily be assimilated by humans, and at the same time does not
require unnecessary information to be available for the classification tasks.30

Rule induction from data streams can be traced back to the Very Fast Deci-
sion Rules (VFDR) [13] and eRules data stream classifiers [9] for numerical
data. eRules induces modular classification rules from data streams, but re-
quires extensive parameter tuning by the user in order to achieve adequate
classification accuracy including the setting of the window size. Noting this
drawback that affects the accuracy, if the parameters are not set correctly,
a statistical measure that automatically tunes the parameters is desirable.
Addressing this issue, Hoeffding Rules adjusts these parameters dynamically
with very little input required by the user. The here presented Hoeffding
Rules algorithm is based on the Prism [12] rule induction approach using a40

sliding window [14, 15]. However, this window for buffering training data is
adjusted dynamically by making use of the Hoeffding Inequality [16]. One
important property of Hoeffding Rules compared with the popular Hoeffding
Tree data stream classification approach [10] is, that Hoeffding Rules can
be configured to abstain from classifying an unseen data instance when it is
uncertain about its class label. In addition, our approach is computation-
ally efficient and hence is suitable for real-time requirements. An important
strength of the proposed technique is the high expressiveness of the rules.
Thus, having the rules as the representation of the output can help users
in making timely and informed decisions. Output expressiveness increases50

trust in data stream analytics which is one of the challenges facing adaptive
learning systems [17]. To address the expressiveness issue for offline black
box machine learning models, the new algorithm Local Interpretable Model-
Agnostic Explanations (LIME) has been proposed in [18]. The method gen-
erates a short explanation for each new classified or regressed instance out
of a predictive model, in a form that is interpretable by humans (can be
expressed as rules, in a way). The work has attracted a great deal of media
attention, and has emphasised the need for expressive models. Model trust
has been further emphasised. This work and many other follow-up research
papers have been the result of experimental work that showed some serious60

flaws in deep learning models (a highly accurate black box approach) [19].
The work showed that miss-classification by deep learning models of some
images – due to added noise to these images – can occur to surprisingly very
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obvious examples to humans. Again, model interpretability and trust have
been emphasised as an important area of research.

The utility of expressiveness is introduced in this paper to refer to the
cost of expressiveness when comparing the accuracy of two methods. As ac-
curacy has been the dominating measure of interest in comparing classifiers
in both static and streaming environments, it is evident that real-time deci-
sion making based on streaming models still suffers from the issue of trust70

[17]. To address this issue, the user is able to determine an accuracy loss
band (ζ), such that the model can be expressive enough to grant trust, and
at the same time the accuracy can be tolerated at (−ζ%) of any other best
performing classifier which is less expressive (can be a total black box). We
argue that such a new measure will open the door for more trustful white box
models. In many applications (e.g., surveillance, medical diagnosis, terrorism
detection), decisions need to be based on clear arguments. In such applica-
tions, having a trustful model with a competent accuracy can be much more
appreciated than having a highly accurate model that does not convey any
reasoning about its decision. Other examples of applications that require80

convincing arguments can be found in [18].
This paper is organised as follows: Section 2 highlights works related to

the Hoeffding Rules approach. Section 3 highlights our dynamic rule induc-
tion and adaptation approach for data streams. An experimental evaluation
and discussion is presented in Section 4. Concluding remarks are provided
in Section 5.

2. Related Work

The velocity aspect of the Big Data trend is the main driver of work done
for over a decade in the area of data stream mining - long before the Big Data
term was coined. Among the proposed techniques in the area come a long90

list of classification techniques. Approaches to data stream classification
varied from approximation to ensemble learning. Two motives stimulated
such developments: (1) fast model construction addressing the high speed
nature of data streams; and (2) change in the underlying distribution of the
data, in what has been commonly known as concept drift.

Hoeffding Inequality [16] has found its way from the statistical literature
in the 60’s of the last century to make an impact in data stream mining,
having a number of techniques, mostly in classification, with notable success.
The Hoeffding bound is a statistical upper bound on the probability that
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the sum of a random variable deviates from its expected value. The basic100

Hoeffding bound has been extended and adopted in successfully developing
a number of streaming techniques that were termed collectively as Very Fast
Machine Learning (VFML) [20].

Earlier work on data stream mining addressed the aforementioned issues.
However, the end user perspective has been greatly missing, and hence the
user’s trust in such systems was frequently questioned. This issue has been
discussed in a position paper by Zliobaite et al [17].

Figure 1: Hierarchy of Output Expressiveness.

In this paper we address this issue, attempting to provide the end user
with the most expressive knowledge representation for data stream classifica-
tion, i.e., rules. We argue that rules can provide the users with informative110

decisions that enhance the trust in streaming systems. Figure 1 shows a
hierarchy of output expressiveness, with rule-based models being at the top
of all of the other classification techniques.

2.1. Rule Induction from Data Streams

FLORA is a family of algorithms for data stream rule induction that
adjusts its window size dynamically using a heuristic based on the predic-
tive accuracy and concept descriptions. The most recent FLORA algorithm,
FLORA4, addresses the issue of concept drift. It can use previous concept
descriptions in situations of recurring changes and is robust to noise in the
data stream [21]. From the AQ-PM family of algorithms, the AQ11-PM120
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system is the most representative. AQ11-PM uses learned rules to select
data instances from the training data that lie on the boundaries of induced
concept descriptions and is storing these so-called ‘extreme ones’ in partial
memory [22]. However, those approaches are still not adapted to high speed
data stream environments, especially those featuring continuous attributes.
The FACIL [23] algorithm works similarly to AQ11-PM. However, FACIL
does not require all stored data instances to be extreme and the rules are
not revised immediately when they become inconsistent. Adaptation to drift
is achieved by simply deleting older rules. Nevertheless, none of these ap-
proaches was evaluated on massive datasets with numerical values (FACIL130

requires that the numeric data is normalised between 0 and 1). The most
recent approach is VFDR [13, 24] that shares ideas with VFML and was im-
plemented and tested in MOA [14], a workbench for evaluating data stream
learning algorithms. VFDR is able to learn an ordered or unordered rule set.

VFDR is the most similar algorithm to our approach (Hoeffding Rules).
The main difference between VFDR and the Hoeffding Rules approach pro-
posed in this paper is that Hoeffding Rules induction is based on Prism
[12] while VFDR induction is similar to the induction of Hoeffding Tree.
Moreover, the Hoeffding Rules approach can abstain from classifying, which
contributes to the high expressiveness of the induced rule set.140

For a more in-depth review of the related work we refer the reader to a
survey on incremental rule-based learners [25].

3. Hoeffding Rules: Expressive Real-Time Classification Rule In-
ducer

This section highlights the development of the proposed Hoeffding Rules
classifier conceptually. It involves the induction of an initial classifier in
the form of a set of expressive ‘IF... THEN...’ rules. The section first
highlights expressive rule sets in general in Section 3.1, and then discusses
the Prism algorithm as a basic approach for inducing such rules on batch
data in Section 3.2. Prism has been adopted by Hoeffding Rules as the basic150

process for inducing expressive rules. However, it has been enhanced with
a more expressive rule term induction method for continuous attributes as
described in Section 3.3 based on probability density distribution. Section 3.4
then describes the Hoeffding bound used by Hoeffding Rules as a metric to
estimate a good dynamic window size of the data stream to induce expressive
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rules from. Lastly, Section 3.5 illustrates the overall Hoeffding Rules real-
time induction process.

3.1. Expressive Rule Representation and Induction

Expressive classification rules are learnt from a given set of labelled data
instances, which consists of attribute values and rule learning algorithms to160

construct one or more rules of the form:

IF t1 AND t2 AND t3 ... AND tk THEN class ωi

The left side of a rule is the conditional part of the rule, which consists
of a conjunction of rule terms. A rule term is a logical test that determines
whether a data example to be classified has the classification ωi or not. A
classification rule can have one up to k rule terms, where k is the number of
attributes in the data.

A rule term can have different forms for both categorical and continuous
attributes. A rule term for categorical attributes typically has the form
α = v in which v is one of the possible values of attribute α. For continuous170

attributes, binary splitting techniques are widely used such as in [26, 27, 28].
With binary splitting a rule term is of the form (α < v) or (α ≥ v), in this
case, v is a constant from the range of observed values for attribute α. Hence,
if the data instances satisfy the body or conditional part of the rule, then
the rule predicts ωi as the class label.

3.2. Predictive Rule Learning Process

This Section discusses the induction of expressive rules such as the ones
described in Section 3.1 based on the Prism algorithm [12]. Hoeffding Rules’
basic rule induction strategy is also based on Prism. Prism uses a ‘separate-
and-conquer’ approach to induce expressive rules. In contrast, the ‘divide-180

and-conquer’ rule induction approach (which generates decision trees), Prism
generates decision rules directly from training data and not in the interme-
diate form of a tree, such as for example the C4.5 algorithm [29]:

IF w = 0 AND x = 1 THEN class = a
IF y = 0 AND z = 1 THEN class = a

Otherwise, class = b
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The three rules above cannot be represented in the form of a decision tree,
as they do not have any attributes in common. Representing these rules in a
decision tree would require adding unnecessary and meaningless rule terms.
This is also known as the ‘replicated subtree problem’ [30, 31] illustrated in190

Figure 2 for the two rules above.

Figure 2: An example of the replicated subtree problem for the rules: IF w = 0 AND
x = 1 THEN class = a, IF y = 0 AND z = 1 THEN class = a. Otherwise, class = b.

The tree structure example in Figure 2 is generated under the assumption
that there exist only the four attributes (w, x, z, y); that each attribute is
either associated with the value 0 or 1 ; and instances covered by the two
rules above are classified as belonging to class a whereas the remaining rules
predict class b.

This example reveals that the ‘divide-and-conquer’ rule induction ap-
proach can lead to unnecessarily large and complex trees [30], whereas the
Prism algorithm is able to induce modular rules such as the two rules above,
that have no attribute in common. Also, the authors of [32] discuss that200

decision tree models are less expressive, as they tend to be complex and dif-
ficult to interpret by humans once the tree model grows to a certain size.
Also, the authors of the well-known C4.5 decision tree induction algorithm
[29] acknowledged that pruning a decision tree model does not guarantee
simplicity and can still be too cumbersome to be understood by humans.

It has been shown in [28] that Prism’s induction method of expressive
rules achieves a similar classification accuracy compared with decision tree
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based classifiers and sometimes even outperforms decision trees (especially
if the data is noisy or there are clashes in the data) [28]. Thus, Prism has
been chosen as a basic rule induction strategy for Hoeffding Rules. Another210

reason for choosing Prism is that it naturally abstains from classification,
if no rule matches, whereas a decision tree based approach forces a clas-
sification [9]. Abstaining may be necessary in critical applications where
miss-classifications are very costly, such as in medical or financial applica-
tions.

Prism follows the ‘separate-and-conquer’ approach which repeatedly ex-
ecutes the following two steps: (1) induce a new rule and add it to the rule
set and (2) remove all data instances covered by the new rule. The stopping
criterion for executing these two steps is usually when all data instances are
covered by the rule set. Hence, this approach is also often referred to as the220

‘covering approach’. Cendrowska’s original Prism algorithm for categorical
attributes implements this ‘separate-and-conquer’ approach as shown in Al-
gorithm 1, where tα is a possible attribute value pair (rule term) and D is
the training data. The algorithm is executed for each class ωi in turn on the
original training data D.

There have been variations of Prism, such as N-Prism which also deals
with continuous attributes [28]; PrismTCS which imposes an order of the
rules in the rule set [33]; PMCRI which is a scalable parallel version of
PrismTCS [31] and Prism based ensemble approaches such as Random Prism
[34].230

Hoeffding Rules uses this basic Prism approach to induce rules from a
recent subset of the data stream. However, different compared with Prism,
Hoeffding Rules uses a more expressive representation of rule terms for con-
tinuous data, which will be discussed next in Section 3.3; and also uses the
Hoeffding bound to adapt the induced rule set to concept drifts in the data
stream in real-time, as will be discussed in Section 3.4.

3.3. Probability Density Distribution for Expressive Continuous Rule Terms

The original Prism algorithm [12] only works on categorical attributes
and produces rule terms of the form (α = ν). eRules [9] and Very Fast Deci-
sion Rules (VFDR) [13] are among the few algorithms specifically developed240

for learning rules directly from a data stream in real-time. For continuous
attributes, eRules and VFDR produce rule terms of the form (α < ν), or
(α ≥ ν) and (α ≤ ν), or (α > ν) respectively.
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Algorithm 1: Learning classification rules from labelled data instances
using Prism.

1 for i = 1→ C do
2 D ← Dataset;
3 while D does not contain only instances of class ωi do
4 forall the attributes α ∈ D do
5 Calculate the conditional probability, P(ωi|tα) for all possible

rule terms tα;
end

7 Select the tα with the maximum conditional probability, P(ωi|tα) as
rule term;

8 D ← S, create a subset S from D containing all the instances
covered by tα;

end
10 The induced rule R is a conjunction of all tα at line 7;
11 Remove all instances covered by rule R from original Dataset;
12 repeat
13 lines 3 to 9;

until all instances of class ωi have been removed ;

end

A summary of the process of how eRules and VFDR deal with continuous
attributes can be described as follows:

1. For each possible value αj of a continuous attribute α, calculate the
conditional probability for a given target class for both rule terms (α <
ν) and (α ≥ ν) or (α ≤ ν) and (α > ν).

2. Return the rule term, which has the overall best conditional probability
for the target class.250

It is evident that this process of dealing with continuous attributes re-
quires many cut-point calculations for the conditional probabilities for each
possible value αj of a continuous attribute.

The example illustrated in Figure 3 comprises just six data instances, one
continuous attribute, one categorical attribute, and two possible class labels.
It shows how many cut-point calculations are needed by eRules or VFDR in
order to induce one rule term. The number of cut-point calculations needed
for each continuous attribute is the number unique values of the attribute
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Figure 3: Cut-point calculations to induce a rule term for continuous and categorical
attributes.

multiplied by 2. Clearly both algorithms, eRules and VFDR, still require a
lot of calculations even though the data in the example is very small. This260

is a drawback as computationally efficient methods are needed for mining
data streams. Furthermore, eRules and VFDR use a ‘separate-and-conquer’
strategy, which requires many iterations until a rule is completed.

G-eRules uses the Gaussian distribution of the attribute associated with
a class label as introduced in [35], to create rule terms of the form (x <
α ≤ y), and thus avoids frequent cut-point calculations. Evidence of the
improvements in performance while maintaining the accuracy of the induced
rules is discussed in [35]. This method is also used in the Hoeffding Rules
algorithm to avoid frequent cut-point calculations. It is also more expressive
than inducing rule terms from binary splits, as rule terms of the form (x <270

α ≤ y) can describe an interval of data. One would need to use two rule terms
induced by binary splitting to describe the same interval of data values of
a particular attribute. For each continuous attribute of the the instances,
a Gaussian distribution representing all possible values of that continuous
attribute for a given target class is used to generate these more expressive
rule terms.

If the data instances have class labels of ω1, ω2...ωi then we can compute
the most relevant value of a continuous attribute that is the most relevant one
to a particular class label based on the Gaussian distribution of the values
associated with this particular class label.280

The Gaussian distribution is calculated for a continuous attribute α with
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a mean µ and a variance σ2 from all possible numeric values associated with
the class label ωi. The class conditional density probability is calculated as
in the Equation 1:

P(tα|ωi) = P(tα|µ, σ2) =
1√

2rσ2
exp(−(tα − µ)2

2σ2
) (1)

Hence, a heuristic based on P(ωi|tα), or equivalently log(P(ωi|tα)) is cal-
culated and used to determine the probability of a class label for a valid value
of a continuous attribute as in the Equation 2:

log(P(ωi|tα)) = log(P(tα|ωi)) + log(P(ωi))− log(P(tα)) (2)

The probability between two values, Ωi, can be calculated for the range
between these two values such that if x ∈ Ωi, then x belongs to class ωi.
This method may not guarantee to capture the full details of the intricate290

continuous attributes, but the computational and memory efficiency can be
improved significantly as shown in [35] compared with binary splitting tech-
nique. The efficiency as a result of using Gaussian distribution only needs
to be calculated once and can be incrementally updated over time with just
two variables, µ and σ2.

As illustrated in Figure 4, the shaded area between x and y should rep-
resent the most common values of a continuous attribute α for class wi. A
good rule term of a continuous attribute is derived by choosing an area un-
der the curve of the corresponding distribution for which the density class
probability P(x < α ≤ y) is the greatest.300

This technique is used to identify a possible rule term in the form of
(x < α ≤ y), which is highly relevant to a range of values of the continuous
attribute α for a target class ωi from a subset of data instances. The process
can be described in the following steps:

1. Mean µ and variance σ2 of each class label is calculated for each avail-
able continuous attribute.

2. Equations 1 and 2 are used to work out the class conditional density
and posterior class probability for each value of a continuous attribute
for a target class.

3. A value with the greatest posterior class probability is selected.310

4. Choose a smaller value compared with the value selected in step 3
that also has the greatest posterior class probability among all smaller
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Figure 4: The shaded area represents a range of values of continuous attribute α for class
ωi.

values. Choose also a greater value compared with the value selected
in step 3 that also has the greatest posterior class probability among
all greater values.

5. Calculate density probability with the two values in step 4 by using
the corresponding Gaussian distribution calculated in step 1 for the
target class.

6. Select the range of the attribute (x < α ≤ y) as a rule term, for which
the density class probability is the maximum.320

The normality assumption should not cause major problems if large enough
sample sizes are used (> 30 or 40) [36]. As stated by Altman and Bland [37],
the distribution of data can be ignored if the samples consist of hundreds of
observations. This is the case for data stream classifiers such as Hoeffding
Rules, as they are designed for infinite data streams. Also, there are a few
notable points from the central limit theorem [37, 38] regarding the normality
assumption:

• If the sample data is approximately normally distributed, then the
sampling distribution will also be normal distributed.

• If the sample size is large enough (> 30 or 40) then, the sampling330

distribution tends to be normally distributed, regardless of the actual
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underlying distribution of the data.

From the points just mentioned above, true normality is considered to be
a myth but a good estimation of normality can be confirmed by using normal
plots or significance tests [37]. The main idea behind these tests is to show
whether data significantly deviates from normality [36, 37, 38].

The next Section describes the adaptation of the rule induction process
to data streams.

3.4. Using the Hoeffding Bound to Ensure Quality of Learnt Rules from a
Data Stream340

It is reasonable to assume that the recent data in a data stream is more
likely to reflect the current concept more accurately compared with older
data [39]. Some works [40, 41, 42, 13, 9] in data mining discuss and use a
sliding windows process as illustrated in Figure 5.

Figure 5: Sliding windows process.

The fundamental idea of the sliding windows process is that a window is
maintained which stores most recently seen data instances, and from which
older data instances are dropped according to some set of rules. Data in-
stances in a window can be used for the following three tasks [14, 43]:

1. To detect change. Using a statistical test to compare the underlying
probability distribution between different sub-windows.350

2. To obtain updated statistics from recent data instances.
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3. To rebuild or revise the learnt model after data has changed.

By using sliding windows technique, algorithms will not be affected by
stale data and they can also be used as a tool to approximate the amount of
memory required [1].

The proposed Hoeffding Rules algorithm uses Hoeffding Inequality [16] to
estimate the confidence of, whether adding a rule term to a rule, or stopping
the rule’s induction process is appropriate. This makes it more likely that
the rule will cover instances from the stream that match the rule’s target
class. The use of Hoeffding Inequality in Hoeffding Rules was inspired by360

[44, 45, 10]. In addition, the word ‘Hoeffding’ in our algorithm name is
derived from the name of the formula called Hoeffding Inequality [16], which
provides a statistical measurement in confidence of the sample mean of n
independent data instances x1, x1..., xn. If Etrue is the true mean and Eest
is the estimation of the true mean from an independent sample then the
difference in probability between Etrue and Eest is bounded by Equation 3,
where R is the possible range of the difference between Etrue and Eest:

P[|Etrue − Eest| > ε] < 2e−2nε
2/R2

(3)

From the bounds of the Hoeffding Inequality, it is assumed that with the
confidence of 1− δ, the estimation of the mean is within ε of the true mean.
In other words, we have:370

P[|Etrue − Eest| > ε] < δ (4)

From Equations 3 and 4 and solving for ε, a bound on how close the
estimated mean is to the true mean after n observations, with a confidence
of at least 1− δ, is defined as follows:

ε =

√
R2 ln(1/δ)

2n
(5)

By using Hoeffding bound as an independent metric to verify the true
likeness of a rule term, we say that the rules that satisfy the Hoeffding bound
are likely to be as good as the rules learnt from an infinite data stream.

ε is calculated after the rule term with the best conditional probability
for class ωi is selected. However, the rule term will be added to the current
rule unless the difference of the conditional probabilities between the selected
(best) and the second best rule term is greater than ε. Otherwise, the rule’s380
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induction process is completed and the rule is added to the rule set. A new
iteration for a new rule is started again with data instances covered by the
previous rule removed.

If G(tα) is the heuristic measurement that is used to test the rule term tα,
then R in Equation 5 represents the range of G(tα). G(tα) in our approach
is the conditional probability P(class = i|tα) at which a rule term tα covers
a target class ωi. Hence, the probability range of a rule term R is 1. n is the
number of data instances that the rule has covered so far.

Concerning the goodness of the best rule term, let tαj
be the rule term

with the highest conditional probability from the current iteration, and tαj−1
390

be the rule term with the second highest conditional probability from the
current iteration, then:

∆G = G(tαj
)−G(tαj−1

) (6)

If ∆G > ε, then the Hoeffding bound guarantees that with a probability
of 1 − δ, the true ∆G ≥ (∆G − ε). If this is the case, we include the rule
term into the current rule as part of Algorithm 1 at step 7 and continue to
search for a new rule term if the rule still covers data instances of different
classifications than the target class. Once all possible rules are induced for all
class labels from the current window, then all instances covered by the rules
are removed and the instances not covered are added to a temporary buffer.
This buffer is then combined with the data from the next sliding window for400

inducing new classification rules.
Essentially, we use the Hoeffding bound to determine a probability with

the confidence of 1− δ that the observed conditional probability, with which
the rule term covers the target class in n examples, is the same as we would
observe for an infinite number of data instances.

The next section brings the previously outlined methods for rule induc-
tion, dealing with continuous attributes and adaptation to concept drift to-
gether.

3.5. Overall Learning Process of Hoeffding Rules

The following sections describe how we adapted and combined sliding410

windows, Hoeffding Inequality, and the Prism algorithm to induce and main-
tain an adaptive modular set of decision rules for streaming data. These
techniques have been discussed in greater detail in the Sections 3.1 to 3.4.
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3.5.1. Inducing the Initial Classifier

The first step of Hoeffding Rules’ execution is the generation of the initial
classifier, which is done in a batch mode using Prism on the first n instances
in the window. As described in Section 3.2, the Prism algorithm is able
to induce expressive classification rules directly from training data by using
‘separate-and-conquer’ search strategy. The method of inducing numerical
rule terms using this algorithm has been replaced with the computationally420

more efficient way of inducing numerical rule terms, based on the Gaussian
Probability Density Distributions described in Section 3.3 in this paper.

For the first window, the window size n is predefined. Subsequently the
number of data instances for each window consists of unseen data instances
plus the data instances not covered by the rules from the previous window.
The learning process of Hoeffding Rules is described in Algorithm 2.

3.5.2. Evaluating Existing Rules and Removing Obsolete Rules

The evaluation and removal of rules is done online. Once labelled in-
stances are available, then the rules of the current classifier are applied on
these instances. Each rule remembers how many instances it has correctly430

and incorrectly classified in the past. From this, the rule can update its
accuracy after each classification attempt. If a rule’s classification accuracy
drops below a pre-defined threshold (by default 0.8) and the rule has also
taken part in a minimum number of classification attempts (by default 5),
then the rule is removed. The reason for considering a minimum number of
classification attempts is to avoid that the rule is removed too early.

For example, if the rule’s minimum number of classification attempts
before removal is only 1, then it would be removed already if the first clas-
sification attempt fails. However, with the default settings, the rule would
at least ‘survive’ 5 attempts. Assuming that only the first of the 5 attempts440

fails, then the rule would be retained, as it has an accuracy of 4 ÷ 5 = 0.8,
which is the minimum classification accuracy required.

The default settings may be adjusted according to the user requirements.
A lower minimum accuracy will result in the classifier adapting slower, how-
ever, a high accuracy may result in rules expiring quickly, and thus more
computation is required to induce new rules. Also a low number of minimum
classification attempts will result in rules expiring quickly and a high number
of minimum classification attempts will result in a slower adaptation. In our
experiments, we have found that the default values work well in most cases.
The default values have been used in all experimental results presented in450
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Algorithm 2: Hoeffding Rules - Inducing rules from an infinite data
stream.
R← Learnt rule set;
r ← A classification rule;
S ← Stream of data instances;
Wunseen ← Buffer of unseen data instance;
WHB ← Buffer of data instances not covered by rules from previous
Wunseen;
n : pre-defined window size;

7 while S has more data instance do
8 i→ new instance from S ;
9 if r ∈ R covers i then

10 Validate the rule r and remove if necessary;
else

12 Add i to Wunseen;
1313 if Wunseen = n then
14 W ′ := Wunseen +WHB;
15 empty(Wunseen,WHB);
16 Learn rule set, R′, in batch mode as in Algorithm 3 from

W ′;
17 Add R′ to R;
18 WHB := data instances not covered by r ∈ R′ in W ′;

end

end

end

this paper.

3.5.3. Storing Data Instances that do not Satisfy the Hoeffding Bound

One of the notable features of Hoeffding Rules is the use of Hoeffding
Inequality to determine the credibility of a rule term as described in Section
3.4. For an algorithm based on ‘separate-and-conquer’ strategy in batch data,
a new rule term is searched and added to a current rule until the rule only
covers data instances of the target class. Sliding window technique is used
as described in Section 3.4 to actively learn rules in real-time. The window
contains the most recent training data instances, and these data instances
are used to induce classification rules over time. However, Hoeffding Rules460
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Algorithm 3: Hoeffding Rules - Inducing rules in batch mode.

1 for i = 1→ C do
2 D ← input Dataset;
3 while D contains classes other than ωi do
4 forall the α in D do
5 if α is categorical then
6 Calculate the conditional probability, P(ωi|tα) for all rule

terms tα; else if α is continuous then
7 calculate mean µ and variance σ2 of continuous

attribute α for class ωi;
8 foreach value αj of attribute α do
9 Calculate P(αj |ωi) based on created Gaussian

distribution created in line 8;

end
11 Select αj of attribute α, which has highest value of

P(αj |ωi);
12 Create tα in form of x < α ≤ y as bfsection 3.3;
13 Calculate P(tα|ωi), where tα is in the form of x < α ≤ y;

end

end

16 Calculate Hoeffding bound, ε =
√

R2 ln(1/δ)
2∗(no. instances in D) ;

17 if P(tα|ωi)best − P(tα|ωi)second−best > ε then
18 Select tα for which P(tα|ωi) is a maximum;

else
20 Stop inducing current rule;

end
22 Create subset S of D containing all the instances covered by tα;
23 D ← S;

end
25 R is a conjunction of all the rule terms built at line 17;
26 Remove all instances covered by rule R from input Dataset;
27 repeat
28 lines 2 to 22;

until all instances of ωi have been removed ;
30 Reset input Dataset to its initial state;

end
return induced rules;
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algorithm does not always induce rules that cover only examples of the target
class, because Hoeffding Rules will stop inducing further rule terms if the rule
does not satisfy the Hoeffding bound metric from the current subset of data
instances.

Figure 6: Combining data instances that satisfy the Hoeffding bound from the previous
window with the unseen data instances from the current window.

As illustrated in Figure 6, once all possible rules are induced from the
sliding window then all data instances that are not covered by the newly
created rules are stored in a buffer. This buffer is combined with the next
window of unseen data instances from the stream. Hence, after the first
window, each sliding window is filled with unseen data instances from the
window and the instances from the Hoeffding bound buffer from the previous470

windows. The Hoeffding bound buffer contains instances that are not covered
by the current rule set.
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3.5.4. Addition of new Rules

The addition of new rules also takes place online. As outlined in Section
3.5.2, Hoeffding Rules applies its current rules to new data instances that
are already labelled, in order to evaluate the rule set’s accuracy. However, if
none of the rules applies to a labelled data instance, then this data instance
is added to the window. Once the window of unseen instances reaches the
defined threshold, data instances are learnt as outlined in Algorithm 2 to
induce new rules, which are then added to the current classifier. Next the480

window is reset by removing all instances from it.
This is based on the assumption that the instances in the window will

primarily cover concepts that are not reflected by the current classifier. Thus,
rules induced from this window will primarily reflect these missing concepts.
By adding these rules to the classifier, it is expected that the classifier will
adapt automatically to new emerging concepts in the data stream.

4. Experimental Evaluation and Discussion

An empirical evaluation has been conducted to evaluate Hoeffding Rules
in terms of accuracy, adaptivity to concept drift and the trade off between
accuracy for a white box model such as Hoeffding Rules compared with a490

less expressive model such as Hoeffding Tree. In addition, Hoeffding Rules
has also been evaluated in terms of its expressiveness compared with its more
direct competitors Hoeffding Tree and VFDR. This has been accomplished
empirically by measuring the number of average decision steps needed for
classifying an unseen data instance, and qualitatively by examining some of
the decision rules induced by Hoeffding Rules on two examples. The imple-
mentation of the proposed learning system was developed in Java, using the
MOA [14] environment as a test-bed. MOA stands for Massive Online Anal-
ysis and is an open-source framework for data stream mining. Related to the
WEKA project [46], it includes a collection of machine learning algorithms500

and evaluation tools special to data stream learning problems. The MOA
evaluation features (i.e. prequential-error implemented as EvaluatePrequen-
tial) were used in our experiments. For the MOA evaluation, the sampling
frequency was set to 10,000. This technique and setting are commonly used
in the data stream mining literature as such in [47, 14]. In the remainder
of this section, unless stated otherwise, the default parameters of the MOA
platform were used.
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4.1. Experimental Setup

Two different classifiers were used for comparing and analysing the Ho-
effding Rules algorithm.510

• VFDR (Very Fast Decision Rules) [13], is to the best of our knowledge
the state-of-art in data stream rule learning.

• Hoefffding Tree [10], is state-of-art in decision tree learning from data
streams.

The rationale behind this choice is twofold: (1) Hoeffding Tree has es-
tablished itself for the last decade as the state-of-the-art in data stream
classification, with a long history of success; and (2) both techniques use the
Hoeffding bound for result approximation, which we have also adopted in520

our technique. It is worth noting that opaque black box methods recently
trialed in a data stream setting like deep learning [48] lack the expressiveness
element, and thus have not been chosen for our experimental study.

Table 1 shows the default parameters for the classifiers that were used in
all of our experiments unless stated otherwise.

Table 1: Parameter settings for classifiers used in the experiments.

Hoeffding Rules
VFDR

(Very Fast Decision Rules)
Hoeffding Tree

HR.SW: 200
HR.MRT: 3
HR.RVT: 0.7
HR.HBT: 0.01
HR.APT: 0.5

VF.P: 0.1
VF.SC: 0.0
VF.TT: 0.05
VF.AAP: 0.99
VF.PT: 0.1
VF.AT: 15
VF.GP: 200
VF.PF: First hit
VF.OR: false
VF.AD: false

HT.NUE: Gaussian Observer
HT.NOE: Nominal Observer
HT.GP: 200
HT.SC: Information Gain
HT.SCON: 0.0
HT.TTH: 0.05
HT.BS: false
HT.RPA: false
HT.NPP: false
HT.LP: NBAdaptive

HR.SW: Sliding window size
HR.MRT: Minimum rule tries
HR.RVT: Rule validation threshold
HR.HBT: Hoeffding bound threshold
HR.APT: Adaptation threshold

VF.P: % of total samples seen in the node
VF.SC: Split Confidence
VF.TT: Tie threshold
VF.AAP: Anomaly probability threshold
VF.PT: Probability threshold
VF.AT: Anomaly threshold
VF.GP: Grace period
VF.PF: Prediction function
VF.OR: Ordered rules
VF.AD: Anomaly detection

HT.NUE: Numeric attribute estimator
HT.NOE: Categorical attribute estimator
HT.GP: Grace period
HT.SC: Split criterion
HT.SCON: Split confidence
HT.TTH: Tie threshold
HT.BS: Binary split
HT.RPA: Remove poor attribute
HT.NPP: No pre-prune
HT.LP:Leaf predictieve
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4.2. Datasets

Different synthetic and real world datasets were used in our experiments.
As for synthetic datasets, stream generators available in MOA were used.
The real world datasets ‘Airlines’ and ‘Forest Covertype’ are known and
used for batch learning, in which case all data instances from datasets are530

read and learnt in one pass. However, we simulate these datasets into data
streams by reading data instances from these dataset in ordered sequence
over the time.

Table 2: Parameter settings for synthetic stream generators used in the experiments.

Random Tree Random Tree with Drift SEA SEA with Drift STAGGERS STAGGER with Drift

RT.TRSV: 1
RT.ISV: 1
RT.NCL: 4
RT.NCA: 5
RT.NNA: 5
RT.NVPCA: 5
RT.MTD: 5
RT.FLL: 3
RT.LF: 15%

Before Drift After Drift
SEA.F: 1
SEA.IRS: 1
SEA.BC: true
SEA.NP: 10%

Before Drift After Drift
ST.IRS: 1
ST.F: 1
ST.BC: true

Before Drift After Drift

RT.TRSV: 1
RT.ISV: 1
RT.NCL: 4
RT.NCA: 5
RT.NNA: 5
RT.NVPCA: 5
RT.MTD: 5
RT.FLL: 3
RT.LF: 15%

RT.TRSV: 5
RT.ISV: 5
RT.NCL: 4
RT.NCA: 5
RT.NNA: 5
RT.NVPCA: 5
RT.MTD: 5
RT.FLL: 3
RT.LF: 15%

SEA.F: 1
SEA.IRS: 1
SEA.BC: true
SEA.NP: 10%

SEA.F: 2
SEA.IRS: 1
SEA.BC: true
SEA.NP: 10%

ST.IRS: 1
ST.F: 1
ST.BC: true

ST.IRS: 1
ST.F: 2
ST.BC: true

Drift at: 150,000
Drift Width: 10,000

Drift at: 150,000
Drift Width: 10,000

Drift at: 150,000
Drift Width: 10,000

RT.TRSV: Tree random seed value
RT.ISV: Instance seed value
RT.NCL: Number of class labels
RT.NCA: Number of categorial attribute(s)
RT.NNA: Number of numerical attribute(s)
RT.NVPCA: Number of values per categorical attribute
RT.MTD: Max tree depth
RT.FLL: First leaf level
RT.LF: Leaf fraction

SEA.F: Classification function as defined in paper
SEA.IRS: Seed for random generation of instances
SEA.BC: Balanced class
SEA.NP: Noise Percentage

ST.IRS: Instance random seed
ST.F: Classification function
ST.BC: Balanced class

∗ 400,000 data instances are generated for each experiment.
∗ In each experiment, all classifiers are given identical data instances and same sequenced order.

Each dataset used in our experiments can be summarised as follows:

• SEA artificial generator was introduced in [49] to test their stream
ensemble algorithm. The dataset has two class labels and three contin-
uous attributes in which one attribute is irrelevant to the class labels
and underlying concept of the data stream. More information how this
data stream is generated is described in [49]. [15, 13, 9] also use this540

dataset in their empirical evaluations among other datasets.

• RandomTree Generator was introduced in [10] and generates a
stream based on a randomly generated tree. The generator is based
on what is proposed in [10]. It produces concepts that in theory should
favour decision tree learners. It constructs a decision tree by choosing
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attributes at random for splitting and assigns a random class label to
each leaf. Once the tree is built, new examples are generated by as-
signing uniformly distributed random values to attributes, which then
determine the class label using the randomly generated tree.550

• STAGGER was introduced by Schlimmer and Granger [50] to test the
STAGGER concept drift tracking algorithm. The STAGGER concepts
are available as a data stream generator in MOA and has been used as
a benchmark to test for concept drift in [50]. The dataset represents a
simple block world defined by three nominal attributes size, colour and
shape, each comprising 3 different values. The target concepts are:

size ≡ small ∧ color ≡ red
color ≡ green ∨ shape ≡ circular560

size ≡ (medium ∨ large)

While performing preliminary experiments with the data stream gen-
erators in MOA, it became apparent that the concepts defined did not
match the ones proposed in the original paper. This was observed from
the rules generated by our approach from the STAGGER data stream.
Meanwhile, the ‘bug’ was reported to the MOA development team and
the current, corrected implementation of the generator has been used
for the experiments presented in this section. This highlights the ex-
pressiveness of the rules induced by Hoeffding Rules.570

• Forest CoverType contains the forest cover type for 30 × 30 meter
cells obtained from US Forest Service (USFS) Region 2 Resource In-
formation System (RIS) data. It contains 581,012 instances and 54
attributes, and it has been used in several papers on data stream clas-
sification, i.e in [51].

• Airlines dataset was generated based on the regression dataset by
Elena Ikonomovska, which consists of about 500,000 flight records.
The main task of this dataset is to predict whether a given flight580

will be delayed based on the information of scheduled departure. This
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dataset has three continuous and four categorical attributes. Elena
Ikonomovska also uses this dataset in one of her studies on data streams
[52]. This dataset was downloaded from the MOA website and used in
our empirical experiments without any modifications.

All synthetic data stream generators are controllable by parameters and
Table 2 shows the settings used for all synthetic streams in our evaluation.

4.3. Utility of Expressiveness

The empirical evaluation is focused on the cost of expressiveness when
comparing the accuracy and performance between classifiers for data streams.590

4.3.1. Accuracy Loss Band

As mentioned in [17], a learnt model from the labelled data instances
may produce high predictive accuracy for unlabelled data, but the learnt
model can be hard and complex to understand for human users or even
domain experts. All classifiers were evaluated on the same base datasets in
order to examine the trade-off between rule-based classifiers such as VFDR
and Hoeffding Rules compared with tree based classifiers such as Hoeffding
Tree. Concept drift was also simulated in all synthetic datasets from 150,000
data instances onwards for approximately 1,000 further instances, where both
concepts were present before switching completely to the new concept. The600

accuracy loss band ζ can be either positive or negative, where positive values
indicate that Hoeffding Rules achieves a better accuracy and negative values
indicate the shortfall in accuracy compared with its competitor.

Figures 7a, 7b, 7c, 7d, 7e, 7f, 8a and 8b show that accuracy loss band ζ
of Hoeffding Rules is very competitive compared with Hoeffding Tree while
clearly outperforming VFDR in most cases. The reader should note that the
existing implementations of Hoeffding Tree, VFDR and synthetic data gen-
erators in MOA were used, these classifiers may have been optimised to work
well on these synthetic datasets. Two real datasets Airlines and CoverType
are chosen and included for an unbiased evaluation. VFDR is the closest610

algorithm to Hoeffding Rules because it is a native rule-based classifier with
the ability to produce rules directly from the seen labelled data instances.
However, VFDR does not offer abstaining and forces a classification. Evi-
dently, Hoeffding Rules has a positive loss band compared with VFDR on
both real and synthetic datasets and outperforms Hoeffding Tree on the Air-
lines dataset, while suffering a minor negative loss band on a few occasions
on the Covertype dataset.
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(a) SEA Dataset with No Concept Drift (b) SEA Dataset with Concept Drift at
150,000

(c) Random Tree Dataset with no Concept
Drift

(d) Random Tree Dataset with Concept
Drift at 150,000

(e) STAGGER without Concept Drift (f) STAGGER with concept drift at
150,000

Figure 7: Difference in accuracy compared with other classifiers for synthetic data streams.
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(a) Forest Covertype - Real Dataset (b) Airlines - Real Dataset

Figure 8: Difference in accuracy compared with other classifiers for real data streams.

4.3.2. Cost of Expressiveness

We also estimated the cost of expressiveness in terms of steps required
for a model to predict a class label. This evaluation is focussed on the most620

expressive rule and tree based algorithms. More decision making steps in
rule and tree based algorithms implies more and potentially unnecessary and
costly tests for a user to obtain a classification, which is not desirable [12, 53].
Support Vector Machines and Artificial Neural Networks based algorithms
are not investigated here as they are nearly non-expressive and difficult to
comprehend by human analysts. Also instance based and probabilistic mod-
els are not very interesting to the human analyst in terms of expressiveness
as they only indirectly explain a classification through either the enumera-
tion of data instances in the case of instance based learners, or through basic
probabilities in the case of probabilistic learners.630

Classification steps for Hoeffding Rules and VFDR refer to the number
of rule terms (conditions) in a rule that are needed for classifying a data in-
stance. Similarly classification steps for Hoeffding Tree refer to the number of
nodes that need to be visited (conditions) from the root of the tree to the leaf
that provides a particular classification. As shown in Figures 9a, 9b, 9c,9d,
9e, 9f, 9g and 9h, Hoeffding Rules is more competitive in terms of number
of classification steps over time compared with the Hoeffding Tree classifier.
We observed in all experiments that Hoeffding Tree does not start building
its tree model until several thousand data instances have been buffered to
satisfy the Hoeffding Inequality. Hoeffding Tree does not limit the depth of640

the tree nor does it have a built-in pruning mechanism to restrict its size,
thus it grows larger over time. This is reflected in the increasing number of
steps required over time to classify data instances as can be seen in Figures
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(a) SEA Dataset with No Concept Drift (b) SEA Dataset with Concept Drift at
150,000

(c) Random Tree Dataset with no Concept
Drift

(d) Random Tree Dataset with Concept
Drift at 150,000

(e) STAGGER No Concept Drift (f) STAGGER with concept drift at
150,000

(g) Real dataset - Airlines (h) Real dataset - Covertype

Figure 9: The average number of classification steps needed by Hoeffding Rules compared
with Hoeffding Tree and VFDR. 28



9a, 9b, 9c,9d, 9e, 9f, 9g and 9h. In addition, we expect all three classifiers
to adapt to concept drifts. The rule-based classifiers will change their rule
sets, whereas Hoeffding Tree will replace obsolete subtrees with newer sub-
trees. Either way, a concept drift may alter the number of steps needed to
reach a classification significantly. This explains the more abrupt changes
of classification steps of some algorithms for the STAGGER and Covertype
data streams depicted in Figures 9f and 9h. Regarding the Covertype data650

stream, it consists of real data and thus it is not known if there is a concept
drift. However, the more abrupt changes of the number of classification steps
indicates that there is a drift starting somewhere between instances 150,000
to 200,000. Thus we have used a separate concept drift detection method, a
version of the Micro-Cluster based concept drift detection method presented
in [54, 55], which has confirmed a drift starting at position 150,000 instances.

Figures 9a, 9b, 9c,9d, 9e, 9f, 9g and 9h also compare the average number
of classification steps of Hoeffding Rules with VFDR. The figures show that
VFDR has a very similar average number of classification steps compared
with Hoeffding Rules. For all observed cases, except for the Covertype data660

stream, Hoeffding Rules needs an average of about 1.5 classification steps
only. However, as shown in Table 3, Hoeffding Rules achieves a much higher
classification accuracy than VFDR and in most cases also requires less time
to learn as illustrated in Figure 11. In most cases where there is concept
drift it can be seen that the number of average classification steps increases
for Hoeffding Tree, whereas Hoeffding Rules’ and VFDR’s average number
of classification steps stays almost constant.

The number of steps required for a classification task demonstrates the
effort required to translate a classification from a tree based model into the
form of an expressive ‘IF... THEN...’ rule. The current implementation of670

Hoeffding Tree in MOA, as well as the Hoeffding Tree algorithm presented in
its original paper [10], do not provide any mechanism for translating a leaf
into an expressive rule. One can argue that a set of decision rules can be
easily extracted from an existing tree model as Quinlan [56] has mentioned
as early as in 1986. An extracted decision rule from a hierarchical model
represents logic tests from a root node to a leaf. However, as Hoeffding
Tree is designed to adapt to changes in data streams, this extraction process
would need to repeat every time the tree expands or changes its structure.
Therefore, maintaining an accurate and up-to-date rule set from a Hoeffding
Tree could be a challenge and a computationally demanding task.680

For synthetic datasets with concept drift at 150,000 in Figures 9b, 9d and
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9f, we detected notable changes in the number of steps required for classi-
fication using Hoeffding Tree but not for using Hoeffding Rule and VFDR.
This is an expected behaviour because Hoeffding Tree may need to replace
an entire subtree or in the worst case the entire tree from the root node if
there is a drift in the data stream. However, rule-based classifiers such as
Hoeffding Rules and VFDR do not need to replace larger numbers of rules,
as rules can be examined, altered and replaced individually. Examining, re-
placing and altering individual ‘rules’ (decision paths from the root node to
a leaf node) is not possible in trees without also altering further ‘rules’ that690

are connected to the rule to be changed through intermediate tree nodes. For
real datasets, we do not have an absolute ground truth whether concept drifts
are encoded in the data or not, but we expect to see concept drifts in real-life
data streams. In particular, we saw a correlated behaviour between abstain-
ing and classification steps in Figures 9h and 10 for the Covertype dataset
between 150,000 and 200,000 instances. As mentioned before we have used a
version of the Micro-Cluster based concept drift detection method presented
in [54, 55], which confirmed a drift starting at position 150,000 instances. In
this particular case Hoeffding Rules dropped slowly in the average number of
steps needed for classification, and Hoeffding Tree suddenly stopped growing700

and stalled for about 50,000 data instances before starting to grow further.
Hence, we believe that Hoeffding Tree also adapted to a drift here.

4.3.3. Expressive Rules’ Ranking and Interpretation

At any given time a user can inspect the decision rules directly from the
rule set produced by Hoeffding Rules and can be confident that the rules
reflect the underlying pattern encoded in the data stream at any given time.
For example, we extracted the top 3 rules (based on the rules’ individual
classification accuracy) learnt from the two real datasets, Covertype and
Airlines at 50,000 data instances:

• Covertype Dataset:710

– IF Soil-Type40 = 0 AND Soil-Type30 = 0 AND Soil-Type38 = 0 THEN Class = 0

– IF Soil-Type38 = 1 THEN Class = 7

– IF Soil-Type10 = 1 AND 0.57 < Aspect <= 0.64 THEN Class = 6

• Airlines Dataset:

– IF AirportTo = CHA AND DayOfWeek = 3 AND AirportFrom = ATL AND Airline
= EV THEN Class = 1
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– IF AirportFrom = CLT THEN Class = 0

– IF AirportTo = AZO THEN Class = 1

As it can be seen, rules induced by Hoeffding Rules can be modular
(independent from each other) meaning that the rules not necessarily have720

any attributes in common, which is not possible when rules are presented in
a tree structure. Rules extracted from a tree will have at least the attribute
chosen to split on the root node in common, even if this attribute may not be
necessary for some classification tasks. Thus a tree structure may result in
potentially unnecessary and costly tests for the user. This is also known as
the replicated subtree problem [30]. We refer to Section 3.2 for an explanation
of the replicated subtree problem.

In addition as mentioned in Section 4.2, while performing preliminary
experiments with the data stream generators in MOA, it became apparent
that the concepts defined for the STAGGER generator did not match the ones730

proposed in the original paper [50]. This further highlights the expressiveness
of the rule set induced by Hoeffding Rules. This ‘bug’ was reported to the
MOA development team and a corrected version of the stream generator was
used for the experiments described in this paper.

4.4. Abstaining from Classification

The results presented in Section 4.3 showed the tolerance of rule-based
classifiers compared with decision tree based classifiers for the utility of ex-
pressiveness. Another important feature of Hoeffding Rules is the ability to
abstain. In Figure 10, we observe that the abstaining rate of Hoeffding Rules
decreases as Hoeffding Rules processes more instances, except for the Ran-740

dom Tree dataset. For synthetic datasets with concept drift, we also notice
that at the point of simulated concept drift (150,000), the abstaining rate
spiked up but quickly recovered to adapt to the new concept. This indicates
one of the major benefits of abstaining instances from classification, when
Hoeffding Rules is uncertain about a classification it does not risk classifying
unseen data instances. This feature is desirable or even crucial in domains
and applications where miss-classification is costly or irreversible. As men-
tioned before we have used a version of a Micro-Cluster based concept drift
detection method presented in [54, 55], which confirmed a drift starting at
position 150,000 instances.750

Table 3 shows the accuracy evaluation between Hoeffding Tree, VFDR
and Hoeffding Rules. One unique feature of Hoeffding Rules is its ability to
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Figure 10: Abstaining rates of Hoeffding Rules.

refuse a classification if the classifier is not confident to output a decisive pre-
diction from its rule set. We recorded the tentative accuracy and abstaining
rate for Hoeffding Rules as well as overall accuracy for Hoeffding Tree and
VFDR. Tentative accuracy for Hoeffding Rules is the accuracy for instances
where the classifier is confident to produce a reliable prediction. The tenta-
tive accuracy was also used for estimating the utility of expressiveness shown
in Section 4.3.

Table 3: Accuracy evaluation between Hoeffing Tree, VFDR and Hoeffding Rules.

Dataset
Algorithm Measure SEA Random Tree STAGGER

Forest Covertype Airlines
No Drift With Concept Drift No Drift With Concept Drift No Drift With Concept Drift

Hoeffding Rules
Tentative Accruacy
(%)

82.6 84.30 81.86 75.62 100 98.50 74.24 66.74

Abstaining Rate
(%)

8.07 6.43 49.51 56.02 22.27 28.52 10.04 16.47

VFDR
Overall Accruacy
(%)

81.3 82.26 52.28 47.07 100 86.20 61.32 62.50

Hoeffding Tree
Overall Accuracy
(%)

88.08 89.23 88.98 61.08 100 99.75 82.04 66.04

We can see that Hoeffding Rules outperforms VFDR in all cases and is760

very competitive compared with Hoeffding Tree, both on synthetic and real
data streams. Hoeffding Rules is also competitive with Hoeffding Tree, the
accuracy of both classifiers is very close, with Hoeffding Rules outperforming
Hoeffding Tree in 3 cases. However, compared with Hoeffding Tree, Hoeffding
Rules produces a more expressive rule set and fundamentally does not suffer
from the replicated subtree problem. Also, the classification rules generated
by Hoeffding Rules can be easily interpreted and examined by human users
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Figure 11: Learning time Hoeffding Rules, Hoeffding Tree and VFDR.

or domain experts. Decision trees would first need to undergo a further
processing step before a human user can interpret the rules. This would
translate the tree into rules starting in single passes from the root node down770

to each leaf. This may well be a too cumbersome and a too time consuming
task for the decision taker.

Automating tree traversal to increase expansiveness is an additional linear
process with respect to the number of tree nodes, or in its best case for
balanced trees, it can be O(log(tn)) where tn is the number of nodes in the
tree [57].

4.5. Computational Efficiency

In order to examine Hoeffding Rules’ computational efficiency, we have
compared Hoeffding Rules, VFDR and Hoeffding Tree on the same data
streams as in Table 3. As shown in Figure 11, the execution time of Hoeffding780

Rules outperforms that of VFDR by far and is also very close to that of
Hoeffding Trees.

It can be seen that Hoeffding Rules is particularly superior to VFDR for
data streams with mostly numerical attributes such as the SEA and Random
Tree (RT) data streams. This is expected as VFDR needs many cut-point
calculations for inducing new rule terms from numerical attributes, whereas
Hoeffding Rules just needs to update the Gaussian Probability Density Dis-
tributions. This computational difference has been discussed in Section 3.3
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In summary, loosely speaking, Hoeffding Rules shows a much better per-
formance in terms of utility of expressiveness compared with its direct com-790

petitor VFDR and is also competitive compared with its less expressive com-
petitor Hoeffding Tree. The same counts for the evaluation with respect to
computational efficiency, Hoeffding Rules’ runtimes are much shorter com-
pared with VFDR and only slightly longer compared with Hoeffding Tree.

5. Conclusions

The research presented in this paper is motivated by the fact that rule-
based data stream classification models are more expressive than other mod-
els, such as decision tree models, instance based models and probabilistic
models. Inducing a classifier on data streams has some unique challenges
compared with data mining from batch data, as the pattern encoded in the800

stream may change over time which is known as concept drift. While most
data stream mining classification techniques focus on achieving a high accu-
racy and quick adaptation to concept drift, they are often rather unfriendly,
cumbersome or too complex to provide trustful decisions to the users, which
is undesirable in many domains such as surveillance or medical applications.

This paper proposed the new Hoeffding Rules data stream classifier that
focusses on producing an expressive rule set that adapts to concept drift
in real-time. Compared with less expressive data stream classifiers, Hoeffd-
ing Rules explains how a decision is reached. The algorithm is based on a
‘separate-and-conquer’ approach and the Hoeffding bound to adapt the rule810

set to concept drifts in the data. Different compared with existing well es-
tablished data stream classifiers, Hoeffding Rules may decide to abstain from
classifying a data instance if it is uncertain about the true class label. This
again is desirable in applications where a false classification label may be
very costly such as in medical applications or network intrusion detection.
Additionally, the abstained data instances can also be considered for active
learning, which is a direction to go forward for our proposed Hoeffding Rules
classifier to improve and maximise the effectiveness of the learnt model. In
this way, the abstaining feature is not just reducing the miss-classification
but can also potentially improve the accuracy of the overall model.820

An empirical evaluation examined the utility of inducing expressive rules
with Hoeffding Rules compared with its competitors VFDR and Hoeffding
Tree. VFDR is another highly expressive rule-based classifier, and Hoeffding
Tree is a less expressive but state-of-the-art tree based data stream classifier.
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The evaluation measured the loss band ζ between the competitors and the
speed of inducing rules on streaming data. The results show that Hoeffing
Rules outperforms its direct competitor VFDR in terms of accuracy loss band
and execution time. Compared with Hoeffding Tree, the proposed algorithm
only showed a slight loss of accuracy and runtime. However, Hoeffding Rules
produces more expressive rules compared with Hoeffding Tree and is also830

able to abstain from classification when it is uncertain. The experimental
work has shown that Hoeffding Rules provides an array of unique advantages
over other stream classifiers: (1) the fastest rule-based streaming method;
(2) a trusted method that effectively handles uncertainty; and (3) the most
expressive stream classifier with a small ζ when compared with the closest
less expressive method (Hoeffding Tree). As such and to the best of our
knowledge, the reported results evidence that Hoeffding Rules is the fastest
and most trustworthy stream classifier.
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[52] E. Ikonomovska, J. Gama, S. Džeroski, Learning model trees from evolv-1000

ing data streams, Data Mining and Knowledge Discovery 23 (2010) 128–
168. doi:10.1007/s10618-010-0201-y.

[53] M. Bramer, Principles of data mining, Springer, 2016.

[54] M. Hammoodi, F. Stahl, M. Tennant, Towards online concept drift de-
tection with feature selection for data stream classification, in: 22nd
European Conference on Artificial Intelligence, 2016, pp. 1549–1550.
URL http://centaur.reading.ac.uk/68360/

40



[55] M. Hammoodi, F. Stahl, M. Tennant, Towards real-time feature tracking
technique using adaptive micro-clusters, in: BCS SGAI Workshop on
Data Stream Mining Techniques and Applications, 2016.1010

[56] J. R. Quinlan, Induction of Decision Trees, Machine Learning 1 (1)
(1986) 81–106. doi:10.1023/A:1022643204877.

[57] E. Gossett, Discrete Mathematics with Proof, Wiley, 2009.

Biographies

Thien Le

Mr Thien Le is currently researching in big data analytics, data stream
mining, data science and machine learning algorithms. He completed his BSc
degree in Computing at Southampton Solent university in 2013 and currently
pursuing a Ph.D in Computer Science at the University of Reading. Thien
is currently working as Research Associate for the ‘Fast Generalised Rule1020

Induction’ project.

Frederic Stahl

Dr Frederic Stahl completed his degree at the University of Applied Sci-
ence in Weihenstephan (Germany) in Bioinformatics. He received the aca-
demic grade as Diploma Engineer in 2006 and obtained his Ph.D. from the
University of Portsmouth in 2010. The title of his Thesis is ‘Parallel Rule
Induction’. After his PhD Frederic continued working as Senior Research
Associate at the University of Portsmouth until February 2012. Frederic
joined Bournemouth University as fixed term Lecturer from February 2012

41



until November 2012 and is currently working as Lecturer at the University1030

of Reading. His research interests are in the area of data mining of large and
complex datasets; parallel and distributed data mining; data stream min-
ing; data mining in resource constraint environments, machine learning and
artificial intelligence.

Mohammed Medhat Gaber

Prof. Mohamed Gaber is a Professor in Data Analytics at the School of
Computing and Digital Technology, Birmingham City University. Mohamed
received his PhD from Monash University, Australia. He then held appoint-
ments with the University of Sydney, CSIRO, and Monash University, all in
Australia. Prior to joining Birmingham City University, Mohamed worked1040

for the Robert Gordon University as a Reader in Computer Science and at
the University of Portsmouth as a Senior Lecturer in Computer Science, both
in the UK. He has published over 150 papers, co-authored 2 monograph-style
books, and edited/co-edited 6 books on data mining and knowledge discovery.
His work has attracted well over three thousand citations, with an h-index
of 26. Mohamed has served in the program committees of major confer-
ences related to data mining, including ICDM, PAKDD, ECML/PKDD and
ICML. He has also co-chaired numerous scientific events on various data min-
ing topics. Professor Gaber is recognised as a Fellow of the British Higher
Education Academy (HEA). He is also a member of the International Panel1050

of Expert Advisers for the Australasian Data Mining Conferences. In 2007,
he was awarded the CSIRO teamwork award.
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